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Abstract— Offline Reinforcement Learning (RL) offers an
attractive alternative to interactive data acquisition by lever-
aging pre-existing datasets. However, its effectiveness hinges
on the quantity and quality of the data samples. This work
explores the use of more readily available, albeit off-dynamics
datasets, to address the challenge of data scarcity in Offline
RL. We propose a novel approach using conditional Diffusion
Probabilistic Models (DPMs) to learn the joint distribution
of the large-scale off-dynamics dataset and the limited target
dataset. To enable the model to capture the underlying dynam-
ics structure, we introduce two contexts for the conditional
model: (1) a continuous dynamics score allows for partial
overlap between trajectories from both datasets, providing the
model with richer information; (2) an inverse-dynamics context
guides the model to generate trajectories that adhere to the
target environment’s dynamic constraints. Empirical results
demonstrate that our method significantly outperforms several
strong baselines. Ablation studies further reveal the critical role
of each dynamics context. Additionally, our model demonstrates
that by modifying the context, we can interpolate between
source and target dynamics, making it more robust to subtle
shifts in the environment.

I. INTRODUCTION

Conventional Reinforcement Learning (RL) excels at
learning from live interactions within its environment, but
real-time data acquisition can be resource-intensive, danger-
ous or infeasible in critical domains. Offline RL emerges
as a powerful alternative, leveraging pre-existing datasets
without live interactions to train control policies [1], [2].
This approach opens doors to training intelligent agents
across a wide range of applications, including life-saving
surgical robots [3], [4], data-driven financial trading [5], [6],
improved medical diagnosis [7], [8], and autonomous vehi-
cles [9]–[11]. Despite its potential, its effectiveness heavily
relies on the quantity and quality of available data, with
performance deteriorating sharply when data is scarce [12],
[13]. However, collecting large-scale expert-level data from
offline sources remains challenging despite not requiring live
interaction with the environment.

This work explores the use of more accessible source
datasets to address the challenge of data scarcity in Offline
RL. We draw inspiration from the success of transfer learning
in supervised learning [14], [15], where researchers have
increasingly utilized data from additional, easier-to-obtain
sources [16]–[18]. In the context of Offline RL, we apply
this principle by employing a readily available off-dynamics
source dataset that aligns with the target task’s objective
but possesses different transition dynamics compared to the
target environment. This strategy can be well applicable

Fig. 1: (Left) We utilize an accessible off-dynamics source
dataset to enhance a limited target dataset for Offline RL.
Our goal is to generate optimal trajectories within the green
region. (Right) By conditioning a diffusion planner with our
proposed continuous dynamics score, we enable the model to
capture the underlying dynamics structure within the latent
space through overlapping dynamics information.

to real-world settings. For instance, self-driving cars can
leverage data from diverse cities or vehicle models; medical
diagnosis can benefit from similar but non-identical illness
data; surgical robots can initially train on artificial organs;
financial trading algorithms can utilize data from larger,
related markets to inform decisions in smaller ones.

Several approaches have been proposed to leverage off-
dynamics samples to boost RL training. One popular method
is to introduce a reward bonus to incentivize agents for taking
actions which end up resembling the target environment [13],
[19]–[22]. However, this incurs extra cost and renders the
learning of the primary task to be less effectively due to the
embedded nature of the reward bonus. An alternative method
is to apply transformations to the source domain [23]–[25],
making it behave like the target domain. This allows the
agent to learn as if it were in the target domain. However,
this requires online interactions with the target environment,
making it unsuitable for our problem setting.

To address these limitations, we propose to utilize the
flexibility and expressiveness of diffusion probabilistic mod-
els (DPMs) [26]–[28] to learn a joint distribution of both
source and target data for greater data efficiency. DPMs have
demonstrated impressive capabilities in image generation
[29], [30], audio generation [31], video generation [32] and
more recently in Offline RL [33]–[35]. To enable our model
to generate trajectories for the target environment, we utilize
classifier-free guidance [36] by conditioning our model with
dynamics-related contexts. For this context, we propose a
continuous dynamics score as an alternative to the discrete



dynamics labels as seen in Figure 1. This “soft score” allows
for greater coverage, enabling overlap between trajectories
from different datasets. Furthermore, we incorporate an
inverse-dynamics context that measures the closeness to the
target dynamics, ensuring the generated trajectories adhere
to the target environment’s dynamic constraints. Together,
the context facilitates capturing the underlying dynamics
structure within the latent space more effectively, leading
to improved generation performance.

We conduct comprehensive experiments to evaluate the
effectiveness of our method on a diverse set of challenging
off-dynamics settings. Empirical results demonstrate that our
method outperforms several strong baselines. The simplicity
of the proposed dynamics-related contexts coupled with
the powerful capabilities of DPMs allow us to effectively
leverage an accessible off-dynamics source dataset. Lastly,
we demonstrate that by modifying the context, we can
interpolate between source and target dynamics, making the
model more robust to subtle shifts.

II. RELATED WORK

A. Off-dynamics Reinforcement Learning
Coined by [19], Off-dynamics RL refers to a unique RL

scenario where the transition dynamics in the source domain,
used to train the policy, differ from those in the target
domain. It can be applied to two settings, as described below.
Off-dynamics Online RL. In the online setting, it is assumed
that online samples from both domains are accessible, typi-
cally with a limited amount available in the target domain.
In [19], a reward adjustment is proposed to encourage agents
to favour transitions that are similar to the target dynamics
when selecting actions during source domain training. The
reward adjustment is based on auxiliary classifiers that are
trained separately to differentiate between source-domain and
target-domain transitions. This concept of utilizing dynam-
ics classifiers has also been adapted to other off-dynamics
problems such as model-based RL [20], inverse RL [37] and
unsupervised RL [22].

A special case of off-dynamics RL involves the use of
simulators as the source domain [23]–[25], [38]. Instead of
reward adjustments, these approaches ground the simulator
by applying a transformation on the source domain [23]–
[25] to make it behave like the target domain. In this case,
the agent can learn as if it were in the target domain.
These transformation models employ forward and/or inverse
dynamics models of the source and/or target domain. Instead
of learning any dynamics models, some approaches [38],
[39] involve using a classifier by redefining the task as an
adversarial learning problem [40], [41].
Off-dynamics Offline RL. In the offline setting, Niu et al.
[21] introduce a method that combines offline samples from
the target domain with off-dynamics online samples from the
simulator. Lastly, the most relevant work to our setting, [13],
exclusively uses offline samples from both the source and
target domains. Both of these approaches closely align with
the method described in [19], applying a reward adjustment
to the offline samples to facilitate learning.

B. Diffusion Models
Diffusion Probabilistic Models. These generative models
[26]–[28] have gained significant attention for their ability to
produce high-quality, diverse samples across various domains
such as images [29], [30], [42], audio [31], [43] and video
[32]. They learn to gradually construct data by reversing a
process that adds noise to the data over several steps. Some of
the key benefits include: (1) enabling the creation of flexible
models that can accommodate arbitrary data structures, (2)
enabling training in a tractable manner, and (3) exhibiting
high stability during training and lower susceptibility to
mode collapse, unlike in Generative Adversarial Networks
(GANs) [44], [45].
Conditional DPMs. To enhance the capabilities of DPMs,
conditional DPMs are introduced through classifier-guided
sampling [42] and a classifier-free approach [36]. They
have been applied to a broad spectrum of tasks. A no-
table application involves generating images from textual
descriptions [29], [30], [42], where the generative model
produces visuals based on the provided text input. Besides
utilizing textual contexts for conditioning, other contexts
have been explored for conditional image generation, e.g.,
low resolution contexts for super-resolution [46], binary
masks contexts for in-painting [47] and semantic masks,
human poses contexts for ControlNet [48]. Beyond image
generation, conditional DPMs have also achieved success in
various fields. e.g. 2D molecular graph contexts for 3D graph
generation [49], partial point-cloud observations contexts for
point-cloud synthesis [50], and linguistic features contexts
for audio generation [31].

C. Diffusion-based Planners.
Recently, diffusion-based planners [33], [34] utilize DPMs

to generate trajectories which address the Offline RL chal-
lenges as discussed in [1], [51]. By leveraging the powerful
generative capabilities of DPMs, diffusion-based planners are
able to outperform existing offline RL methods while having
the additional benefits of specifying flexible constraints or
composing multiple skills [33]–[35]. They have been adopted
for various problem settings or tasks, such Multi-agent RL
[52], Meta-RL [53], Multi-task RL [54] and Safe RL [55].
To maximize the return of the generated trajectories in
these diffusion-based planners, Diffuser [33] uses classifier-
guided sampling [42] whereas Decision-Diffuser [34] adopts
a classifier-free approach [36].

One limitation of diffusion-based planners is the long
inference time, attributed to the slow sampling process
of DPMs. Researchers have proposed several methods to
accelerate this process [56], [57]. While numerous follow-
up works on diffusion-based planners exist, none specif-
ically focus on utilizing an off-dynamics dataset to train
the diffusion-based planners. The most relevant work to
ours is [53], where a diffusion-planner uses trajectories
generated from a large number of off-dynamics environments
for meta-training, aiming to generalize to the target domain.
In contrast, our approach concentrates on adaptation rather
than generalization, utilizing only a single source domain.



III. PRELIMINARIES

A. Reinforcement Learning

Markov Decision Process. In RL [58], an environment is
characterized by a Markov Decision Process (MDP) defined
as M = (S,A,P,R,γ,d0), where S and A represent the state
and action spaces, respectively . The transition dynamics are
denoted by P : S×A×S → [0,1], and the reward function is
represented by R : S×A× S → R. The discount factor is a
scalar γ ∈ [0,1) representing how much the agent prioritizes
immediate rewards over future rewards and d0 defines the
initial state distribution. An agent’s policy π : S → A induces
a probability distribution over trajectories τ = (st ,at ,rt)t≥0,
where st ,at ,rt are the state, action and reward at timestep
t, respectively. For a planning horizon of H, the expected
return for a trajectory is given by R(τ) = ∑

H
t=0 γ trt . The goal

of RL is to find the optimal policy π∗ that maximizes the
expected cumulative discounted reward with the objective:
π∗ = argmaxπ Eτ∼pπ

[R(τ)].
Offline RL. In contrast to traditional RL, the offline RL
framework [1], [59] employs a static dataset D= {(s,a,r,s′)}
for learning. Here, s′ denotes the subsequent state following
the application of action a from state s, bypassing the need
for data collection through direct environment interaction
using a policy, π . This dataset is collected by an unknown
behavior policy µ , and is utilized for the learning of a
new policy entirely from D, without any online interactions
with the environment. This resembles supervised learning,
where D serves as the training set. A significant problem
in offline RL is the distribution shift between the behavior
policy and the learnt policy [1], resulting in overly optimistic
value estimates when evaluating unseen states or actions. To
address this, prior works explicitly constrain the learnt policy
to be close to the behavior policy [60], [61], or reduce the
optimism of the value functions [62], [63]. An alternative
approach involves bypassing the value estimate by framing
offline RL as a sequence modeling problem [33], [51], [64].

B. Diffusion Models

Diffusion Probabilistic Models. DPMs [26]–[28] form a
class of generative models that learn data distributions q(x)
through a process that inversely models the addition of noise.
Specifically, data points sampled from pdata(x) undergo a
forward noising sequence to produce a Markov chain x0 : K
defined as xk ∼N (

√
αkxk−1,(1−αk)I), with α0:K being the

noise schedule and K being the number of diffusion steps.
This chain is reversed by a variational process pθ (xk−1|xk) =
N (xk−1|µθ (xk,k),(1 − αk)I), beginning with xK ∼ N (0, I)
and iteratively denoised until x0 is recovered. The procedure
can be optimized through a surrogate loss [28]:

L(θ) = Ek∼[1,K],x0∼q,ε∼N (0,I) ∥ε − εθ (xk,k)∥2 (1)

where the mean of the reverse Gaussian is given by
µθ (xk,k) =

xk−
√

1−αkεθ (xk,k)√
αk

, with ᾱk = ∏
k
s=1 αs.

Conditional Diffusion Models. The DPM method can be
extended to a conditional generative model pθ (xt−1|xt ,c)
using c as an input context through classifier-free guidance

[36]. During sampling, the predicted noise is adapted to
a weighted combination of conditional and non-conditional
sampling, ε̂θ (xt | c) = (1 + w)εθ (xt | c) + εθ (xt | /0), where
/0 represents the null context. and w regulates the trade-
off between sample quality and diversity by balancing the
conditioned and unconditioned models. In practice, the un-
conditioned model is obtained by applying dropout on the
context embedding. While training a conditional model with
classifier-guided sampling [42] is possible, classifier-free
guidance provides advantages such as improved control over
generation and superior performance [30], [34].
Diffusion Planning By framing Offline RL as a sequence
modeling problem, we can simplify this task as a supervised
learning and planning framework [64]. Building on this
concept, Diffuser [33] is introduced as a diffusion-based
trajectory planning model that utilizes expressive DPMs to
model trajectories in the following form:

τ =

[
s0 s1 . . . sH
a0 a1 . . . aH

]
, (2)

where H is the planning horizon. The model is optimized
based on Equation 1, with εθ (τk,k) being modeled by U-
Nets [65], chosen for their non-autoregressive, temporally
local, and equivariant characteristics. Conditional sampling
is employed to generate trajectories that maximize return.
By defining Ot as a binary random variable indicating the
optimality of timestep t in a trajectory, where p(Ot = 1) =
exp(γ tr (st ,at)), it is sufficient to guide the trajectory with
the gradient of the return: ∇J = ∑

T
t=0 ∇st ,at r (st ,at) =

∇τ log p(O1:T | τ) . A separate model Jφ is trained to predict
the cumulative rewards, and the gradients of Jφ are used to
guide the trajectory following the classifier-guided sampling
procedure [42]. Following Diffuser, Decision-Diffuser [34]
adopts a classifier-free approach [36], utilizing reward infor-
mation as context. In this work, we adopt the classifier-free
approach due to the ease of incorporating additional contexts
beyond return.

C. Problem Formulation: Off-Dynamics Offline RL

In this paper, we aim to enhance a limited target dataset
offline using an accessible off-dynamics source dataset. We
go beyond the standard offline RL framework of using a
single fixed static offline dataset Dtarget. Formally, similarly
defined in [13], we incorporate an additional source dataset
Dsource = (s,a,r,s′), collected by another unknown behavior
policy µsource, where µsource ̸= µtarget. A key distinction is that
the source dataset is derived from an easily accessible source
MDP Msource, which exhibits different transition dynamics
from the target MDP Mtarget, i.e., ∃(s,a,s′) : Psource(s′|s,a) ̸=
Ptarget(s′|s,a). We assume that µsource is nearly optimal, and
Dsource sampled under Msource is abundant but off-dynamics.
Conversely, the target dataset is presumed to have limited and
suboptimal trajectories sampled under Mtarget. Our goal is to
enable the transfer of knowledge between the offline datasets
Dsource and Dtarget to diminish the data dependency of Dtarget
for learning an optimal policy for Mtarget.



IV. APPROACH

We present our novel approach to improve a limited, sub-
optimal target dataset, Dtarget, by leveraging a larger, diverse
but off-dynamics source dataset, Dsource. We achieve this by
training a conditional DPM to learn the joint distribution
of both datasets. Naively training both datasets would be
ineffective, as it would bias the model towards the source
dynamics due to the larger size and optimality of Dsource.
This bias would cause the generated trajectories not to align
with the target environment’s dynamics.

To address this challenge, the model is conditioned on the
following two dynamics-related contexts:

• Continuous dynamics score: This replaces discrete la-
bels (Figure 1) with a “soft” score, allowing for
smoother transitions and overlap between trajectories
from different datasets.

• Inverse-dynamics context: This measures how closely
generated trajectories align with the target environ-
ment’s dynamics, ensuring the generated samples adhere
to its specific constraints.

Although both contexts are related to dynamics information,
they serve different purposes. The continuous dynamics
score focuses on aligning the source and target dynamics,
whereas the inverse dynamics context is used to generate
feasible actions based on the target dynamics. Together, these
contexts enable the model to learn the joint distribution while
adhering the inherent dynamics within the latent space.

A. Dynamics Score Context

We aim to introduce a context that can effectively capture
both the differences and similarities between Dsource and
Dtarget in terms of dynamics information. A straightforward
method is assigning the context as a discrete one-hot label.
However, this does not provide sufficient information due
to the potential overlaps in dynamics between the datasets.
For instance, there could exist transitions in both Dsource
and Dtarget that are identical, indicating a shared dynamic
characteristic across both domains. Given this, a discrete
labeling system could fail to capture the nuanced differences
and shared attributes adequately.

To address this limitation, we propose replacing the dis-
crete context with a continuous score. This score should also
be symmetric, ensuring equal representation for trajectories
originating from Dsource and Dtarget. To achieve this, for
each trajectory τ in the form of Equation 2, we define the
dynamics score as

cdyn score(τ) =
1

κH

H−1

∑
t=0

{
log[Ptarget(st ,at ,st+1)+ ε]

− log[Psource(st ,at ,st+1)+ ε]} .
(3)

where Psource and Ptarget represent the probability of a given
transition originating from the source and target datasets
respectively, ε is a small value to prevent infinities and κ

is a scaling parameter to keep the score within [−1,1]. We
apply logarithmic scaling to enhance the dynamic range,

particularly at the extreme values of the output probabil-
ities. Overall, a smaller score indicates trajectories follow
source-like dynamics while a larger score implies target-like
dynamics, and a score of zero suggests equal likelihood of
both. Details of modelling Ptarget will be elaborated in Section
IV-C.

B. Inverse-dynamics Context

When attempting to maximize the out-of-distribution re-
turn context through the diffusion sampling process, the
generated trajectory may not fully adhere to the dynamics
constraints of the underlying MDP. To better enforce these
constraints, one approach is to execute an inverse action
based on the inverse dynamics to maintain the agent’s
dynamic constraints, as seen in [66]. Specifically, a sep-
arately trained inverse-dynamics model is used to predict
the action from two consecutive states that best conform to
the underlying MDP. Similar to this approach, we integrate
the inverse-dynamics information into our method. The key
difference, however, is that instead of using the inverse action
as a post-processing method, we directly use it as a context
for the conditional model. The rationale is as follows: if the
inverse action is computed after the trajectory generation,
the consecutive states could already violate the dynamics
constraints, and the inverse model cannot recover the correct
action. On the other hand, incorporating the inverse dynamics
constraints during training compels the trajectory to adhere as
closely as possible during the conditional sampling process,
thus avoiding violation of the dynamics constraints in the first
place. Formally, for each trajectory τ in the form of Equation
2, the inverse context, cinverse is computed as follows:

cinverse(τ) =
1
H

H−1

∑
t=0

log[1+∥Itarget(st ,st+1)−at∥2], (4)

where Itarget is the target inverse dynamics model, H is the
planning horizon. The logarithm function helps to compress
the range of the large-valued errors.

C. Practical Algorithm

We begin by outlining the process of learning Ptarget,
Psource and Iinverse. To model Ptarget, we parameterize a binary
classifier, pφ = p(st ,at ,st+1;φ), with a multi-layer perceptron
(MLP). For Psource, we simply use 1 − pφ . We fit pφ by
minimizing the standard binary cross-entropy loss:

L(φ) =−E(st ,at ,st+1)∼Dsource∪Dtarget[
y log(pφ )+(1− y) log(1− pφ )

]
,

(5)

where y = 0,1 represents the source and target labels respec-
tively.

Next, to model the inverse dynamics Itarget, we parameter-
ize it by ψ with another MLP, and minimize the standard
mean-squared error between the predicted action and true
action at :

L(ψ) = E(st ,at ,st+1)∼Dtarget

[
(Itarget(st ,st+1;ψ)−at)

2] . (6)



Algorithm 1 Training: Off-dynamics Conditional Diffusion
Planners

1: Input: Target dataset Dtarget, Source dataset Dsource
2: Input: Number of training updates N,
3: Number of diffusion time steps T
4: Initialize dynamics score model qφ and inverse model fψ
5: Fit qφ using Loss in Eq.5 over Dtarget ∪Dsource
6: Fit fψ using Loss in Eq.6 over Dtarget
7: // Start Conditional Diffusion Training
8: Initialize Conditional U-Nets εθ

9: for n in 1,2, ...,N do
10: Sample stratified batch τB ∈Dtarget ∪Dsource
11: Compute context cdyn score(τB) = qφ (τB)
12: Compute context cinverse(τB) = fψ (τB)
13: Set full context y(τB) = [R(τB),cdyn score(τB),cinverse(τB)].
14: for t in 1,2, ...,T do
15: Update θ with εθ (τB, t,y(τB)) using Loss in Eq.8
16: end for
17: end for

Now, we introduce a practical algorithm that combines
all components for training a off-dynamics conditional
diffusion-based planner. Our model follows the classifier-
free approach with input trajectories τ , following Equation 2.
The models are conditioned on the full context y(τ), which
consists of the dynamics score, the inverse dynamics and the
normalised return R(τ) ∈ [0,1] as follows:

y(τ) = [R(τ),cdyn score(τ),cinverse(τ)]. (7)

This context summarizes the optimality and the dynamics
information of each trajectory in a continuous form as
movitated in Fig. 1. By leveraging dynamics information,
the conditional model gains the ability to flexibly learn from
both Dsource and Dtarget with greater data efficiency. It also
enables the conditional model to generate optimal trajectories
from either domain in a seamless manner. The objective for
the conditional diffusion process is,

max
θ

Eτ∼(Dsource∪Dtarget) [log pθ (x0(τ) | y(τ))]

with the loss given by

L(θ) = Ek∼[1,K],x0∼q,ε∼N (0,I) ∥ε − εθ (xk(τ),k,y(τ))∥2 (8)

The complete training procedure is detailed in Algorithm 1.
During planning, we set the target context y(τ) = [1,1,0] to
generate trajectories that maximize the reward for the target
environment. This aligns with Equations 3 and 4, where
Ptarget(st ,at ,st+1) = 1 and Itarget(st ,st+1) = at , ensuring the
generated trajectories adhere to the target dynamics.

V. EXPERIMENTS

We design and conduct comprehensive experiments to
thoroughly compare the effectiveness of our method with
existing ones. We begin by outlining the experimental setup,
which involves creating a diverse and challenging set of off-
dynamics datasets for training and evaluation. Nine distinct
settings are used to compare our approach with several strong
baselines. Additionally, an ablation study is conducted to
investigate the specific contribution of each dynamics context

to the performance improvement. Finally, we investigate
the robustness and capacity of our model to seamlessly
interpolate between source and target dynamics.

A. Experimental Setup

Datasets. We formulate our experimental datasets based
on our proposed framework, illustrated in Figure 1 (left).
We require a large and diverse offline source dataset, and
select the Hopper, Walker2d, and Halfcheetah medium-expert
datasets from D4RL [59], each consisting of around 2 million
samples. For the target dataset, we need limited and sub-
optimal samples with different dynamics compared to the
source. To achieve this, we first create multiple off-dynamics
variants by modifying parameters like mass, size, control
range, friction, and gear torques within each environment.
Subsequently, we collect 10,000 samples from each modified
environment using a behavioral policy trained with Dif-
fuser in the respective source environment. This diverse and
challenging off-dynamics setting allows for comprehensive
evaluation of our method.
Baselines. We benchmark against various data-driven con-
trol algorithms for off-dynamics offline RL. We apply the
off-dynamics reward compensation method DARA [13] to
several well-performing offline RL algorithms. Among these
offline RL algorithms, we include model-free methods like
BCQ [60] and CQL [62], as well as diffusion-based methods
like Diffuser [33]. In addition to DARA, we include the fine-
tuning method, which performs 10,000 additional updates on
a pre-trained source model using the target dataset.
Implementation details. For the hyper-parameters of DPM,
we follow the default settings in Diffuser [33]. For both the
classifier and inverse models, we use basic MLPs with 2 hid-
den layers and 32 nodes, each trained for 200k updates. We
apply min-max normalization to the outputs of these models
prior to context computations. During training, we apply a
context dropout of p = 0.5 for each context independently.
To address the imbalanced dataset, we ensure a 1:1 ratio
of source and target data in each batch during sampling.
During sampling, we use a conditional sampling weight of
w = 0.9 for all environments. We evaluate our models over
300 episodes across 3 seeds (total 900 episodes) and compute
the normalized score over the target environments [59].

B. Main Results

We conduct experiments on three different environments,
each with three variations in their physical properties, result-
ing in a total of nine different settings. Table I displays the
normalized scores of different methods over four training
types: 1) source only, 2) target only, 3) source pretrain-
ing with target finetuning, and 4) joint source and target
training. For the source only setting, which uses a Diffuser
trained on optimal samples from the source dataset (“Dsource”
column), the performance is significantly decreased across
all environments when evaluated on the target environment.
This finding highlights the inherent challenges presented
by our off-dynamics environments. We use this behavioral



Environment Property Source Target Dsource Dtarget Dsource pretrain + Dtarget finetune Dsource ∪Dtarget Joint Training
Diffuser Diffuser Diffuser CQL BCQ CQL+DARA BCQ+DARA Proposed

Half-cheetah
total mass 14 7 30.2 30.5 32.6 26.3 28.7 27.3 19.8 56.8 ± 5.9
torso size 0.046 0.092 43.6 43.9 38.2 32.0 46.8 45.9 32.2 54.1 ± 7.9

control range [-1,1] [-0.5,0.5] 41.7 43.1 25.2 52.2 2.2 53.2 53.1 61.5 ± 6.6

Walker2d
thigh action Enabled Disabled 22.6 24.4 39.1 28.8 -0.3 32.2 10.2 58.5 ± 9.0

foot gear torque 100 70 42.9 43.1 36.7 46.8 51.0 -0.2 44.2 63.4 ± 12.2
foot length 0.1 0.25 42.7 42.9 41.6 48.3 43.6 -0.2 5.3 63.0 ± 10.7

Hopper
foot friction 2.0 1.7 50.7 51.3 52.5 32.1 40.2 49.7 109.5 124.2 ± 31.5

torso stiffness 0 3 73.9 75.8 72.2 65.7 72.5 51.8 42.9 95.0 ± 6.9
leg size 0.03 0.04 74.2 76.0 57.3 36.8 82.8 75.6 93.1 95.9 ± 9.3

Average 46.9 47.9 43.9 41.0 40.8 37.3 45.6 74.7

TABLE I: Mean normalized scores evaluated on the target environment over 900 episodes across 9 diverse settings.
The columns ‘Source’ and ‘Target’ represent the dynamics settings of Dsource and Dtarget, respectively. Our proposed method
is a conditional diffusion planner with contexts according to Equation 7, trained with Algorithm 1.

Fig. 2: Ablation: models trained with different contexts
following Algorithm 1. We report the mean normalized
score across different settings per environment. (‘R’, Orange)
represents the base model conditioned on only the return.
(‘R+OH’, LightBlue) adds on the one-hot source/target label
as contexts to base model. (‘R+DS’, Blue) adds on the dy-
namics score as contexts to base model. (‘R+DS+ID’, Green)
further adds on the inverse-dynamics context. (‘R+DS+IA’,
LightGreen) applies inverse action on ‘R+DS’.

policy to collect samples for our target dataset. Next, for the
target-only setting, we trained a model with Diffuser using
exclusively target samples (“Dtarget” column). This resulted
in a slight improvement over the model trained solely on
source data. This score serves as a baseline for the target
dataset’s performance.

Moving on to finetuning (“Dsource pretrain+Dtarget fine-
tune” column), we observe that all three methods (Diffuser,
CQL, BCQ) generally perform worse than the source-only
Diffuser. A possible reason is that the model struggles to
balance learning dynamics from the target dataset while
retaining the knowledge of optimal behaviors learned from
the source dataset during the finetuning process. Lastly, in
the joint training setting (“Dsource ∪Dtarget Joint Training”
column), both DARA methods face difficulties in this low-
data regime despite the dynamics-aware reward adjustment.
On the other hand, our proposed conditional DPM with
dynamics contexts outperform all baselines by a significant
margin. This is attributed to the powerful DPM’s ability to
generate high-reward trajectories for the target environment,
guided by the dynamics-related contexts. Below we break
down the contribution of each individual context.

C. Contexts Analysis

To better understand each context’s contribution, we con-
ducted additional experiments and present the mean normal-
ized scores per environment in Figure 2.

Source/Target Dynamics We evaluated the impact of us-
ing discrete labels (‘R+OH’, LightBlue) versus our proposed
soft score (‘R+DS’, Blue), as detailed in Section IV-A. While
discrete labels showed some improvement over the baseline
(’R’, Orange), our soft score consistently outperformed both,
confirming its superior ability to capture the underlying
dynamics structure.

Inverse Dynamics Incorporating the inverse dynamics
context (‘R+DS+ID’, Green) from Section IV-B, in addition
to the dynamics score, yielded further improvements. This
suggests that the inverse dynamics context provides valuable
guidance during sampling, leading to even better adherence
to target dynamics. However, directly applying the inverse
action on R+DS proved detrimental (‘R+DS+IA’, Light-
Green), underlining our hypothesis that consecutive states
generated by R+DS might violate dynamics constraints, hin-
dering the inverse model’s ability to recover correct actions.
This was particularly pronounced with Hopper, where using
the inverse action led to performance worse than relying
solely on the return context.

In summary, these ablation studies highlight the impor-
tance of both our soft score for dynamics alignment and
the inverse dynamics context for generating feasible actions.
They also demonstrate the limitations of directly applying
inverse actions in the presence of potential constraint viola-
tions.

D. Robustness

Inspired by the success of diffusion models in other
domains, where they achieve smooth interpolation within the
latent space by controlling contexts, we investigate whether
our model exhibits similar behaviors. This ability becomes
crucial in real-world scenarios, as target dynamics often
undergo subtle shifts. To explore this, we leverage one of
our experimental settings involving Halfcheetah with varying
masses (Table I, first row). The source and target datasets
correspond to masses of m = 14 and m = 7, respectively.
Using the models trained with these two datasets, we further



Fig. 3: Plot of the generalisation capabilities for Halfchee-
tah. Models are trained on Dsource (m = 14), Dtarget (m = 7).
Models are evaluated at interpolated masses 8 ≤ m ≤ 13 and
extrapolated masses 3 ≤ m ≤ 6. Mean returns are shown due
to varying normalizing score factors across different masses.

evaluate the masses in between (interpolation: 8 ≤ m ≤ 13)
and beyond (extrapolation: 3 ≤ m ≤ 6). We evaluate our
model, alongside two baselines: (1) Diffuser, using only
source data; (2) CQL+FT, source pre-train with target fine-
tuning. For our approach, we apply a simple linear scale on
the dynamics-related contexts based on mass for intermediate
evaluations. During extrapolation 3 ≤ m ≤ 6, we utilize the
context corresponding to the target mass m = 7.

Figure 3 presents the results. Our method (orange line)
exhibits robust performance across the interpolated range
(8 ≤ m ≤ 13), even without training data following these
environment’s dynamics. Compared to CQL+FT (red line),
the model maintains similar performance for m = 8,9, but
exhibits a gradual decline beyond those values. This aligns
with the expectation that the fine-tuned model has forgotten
most of its source information. While sharing a similar
architecture, the Diffuser trained on source data (green line)
experiences a rapid performance drop beyond the source
mass of m = 7. This suggests that the dataset with matching
dynamics, despite its small quantity, remains crucial for
effectively training our model. Finally, when extrapolating
masses outside the range of the training data (3 ≤ m ≤ 6), all
three models exhibit similar limitations in their capabilities.
This is evident in the similar rate of performance degradation
observed for all models in this region.

VI. CONCLUSION

In this paper, we propose a new approach, which utilizes a
conditional DPM with dynamics-related contexts to address
the challenge of data scarcity in offline RL. We introduce a
continuous dynamics score and an inverse-dynamics context
to effectively capture the underlying dynamics structure
within the latent space, enabling the model to learn from

both a larger off-dynamics source dataset and a limited,
sub-optimal target dataset. Experimental results demonstrate
that our method significantly outperforms various baselines.
Ablation studies further reveal the critical role of each
dynamics context in improving performance. Additionally,
our model exhibits promising robustness in handling inter-
polation scenarios, showcasing its potential for real-world
applications with dynamic shifts in the target environment.
Our future work aims to expand the applicability of our
method by incorporating multiple off-dynamics datasets,
enabling adaptation to changes in robot embodiment, and
ultimately validating its effectiveness in real-world robotics
scenarios.
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