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Abstract—In cloud-based data marketplaces, the cardinal ob-
jective lies in facilitating interactions between data shoppers
and sellers. This engagement allows shoppers to augment their
internal datasets with external data, consequently leading to
significant enhancements in their machine learning models.
Nonetheless, given the potential diversity of data values, it
becomes critical for consumers to assess the value of data before
cementing any transactions. Recently, Song et al. introduced Pri-
mal (publish in ACSAC), the pioneering cloud-assisted privacy-
preserving data evaluation (PPDE) strategy. This strategy relies
on variants of functional encryption (FE) as the underlying
framework, conferring notable performance advantages over
alternative cryptographic primitives such as secure multi-party
computation and homomorphic encryption. However, in this
paper, we regretfully highlight that Primal is susceptible to
inadvertent misuse of FE, and leaves much-desired room for
performance amelioration. To combat this, we introduce a novel
cryptographic primitive known as labeled function-hiding inner-
product encrypted. This new primitive serves as a remedy and
forms the foundation for designing the concrete framework for
PPDE. Furthermore, experiments conducted on real datasets
demonstrate that our framework significantly reduces the overall
computation cost of the current state-of-the-art secure PPDE
scheme by roughly 10× and the communication cost for the data
seller by about 2×.

Index Terms—Privacy-Preserving, Data Evaluation, Functional
Encryption

I. INTRODUCTION

A. Data Evaluation (DE)

Deep learning techniques have greatly improved traditional
machine learning (ML) in applications like image recognition
[1], [2], medical prediction [3], [4], and autopilot [5]. These
algorithms require ample high-quality data [6] for training
effective models. To meet the demand for additional data, data
marketplaces have emerged [7], [8]. These platforms operate
on a Data-as-a-Service model [9], facilitating the exchange
and access of diverse datasets on a large scale for enterprises
and individuals.
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A data marketplace not only provides a diverse range of
data for training better ML models but also offers cloud-
based data evaluation services to assist shoppers in assessing
and acquiring high-quality data [10], resulting in significant
enhancements in model performance.

Traditionally, the evaluation of ML data for shoppers ne-
cessitates cloud access to both the shopper’s model and the
sellers’ data. However, sellers are hesitant to expose their data
prior to receiving payment due to concerns about potential
data leaks and devaluation. Likewise, shoppers are unwilling
to disclose their proprietary models as they are valuable digital
assets. Consequently, the development of a privacy-preserving
data evaluation (PPDE) framework is imperative in a cloud-
based data marketplace.

Existing cloud-based data marketplaces [11], [12] often have
a limited focus, either supporting data evaluation for machine
learning models or providing privacy protection solely for
models, data, and services in the cloud. Few platforms success-
fully integrate both aspects. While current machine learning
privacy-preserving schemes [3], [13]–[17] can safeguard the
privacy of models and data in the cloud, they often result in
significant computational or communication overhead, partic-
ularly when executing model operations like predicting data
under ciphertext. Moreover, these schemes, whether utilizing
homomorphic encryption (HE) [13]–[15] or multiparty compu-
tation (MPC) [3], [16], [17], either only perform feed-forward
computations to compute predicted values in a secure manner
(HE-based schemes) or rely on a multi-server setup (MPC-
based schemes), which suffers from server collusion and is
difficult to realize in the real world, rendering them impractical
for tasks that necessitate privacy-preserving data evaluation.

B. PPDE via FE: State of the Art

To the best of our knowledge, Song et al. present the first
end-to-end method [18] (call Primal published in ACSAC)
specifically tailored for privacy-preserving data evaluation
(PPDE) thus far. This method utilizes lightweight functional
encryption (FE) as its foundation and introduces a customized
inner product FE strategy to enhance performance. Experimen-
tal results vividly illustrate the superior computational perfor-



mance of Primal compared to other cryptographic primitives
such as MPC and HE.

However, we regret to highlight that Primal is not as secure
as claimed by the authors, primarily due to the improper
utilization of FE (see section IV for more information).
Furthermore, the communication and computing overhead of
Primal present a significant gap in practicality, leaving much-
desired room for performance improvement. As a result, it is
essential to thoroughly address and rectify these vulnerabilities
in order to strengthen the scheme’s resilience and safeguard
the privacy of the evaluated data.

C. Our Contributions

In this study, our objective is to highlight the significant
disparity in the practicality of current research, particularly
in the case of Primal-based PPDEs, concerning security and
efficiency. Furthermore, we present a privacy-enhancing alter-
native that offer satisfactory performance. To the best of our
knowledge, our alternative, an extension of Primal, is essen-
tially the first implementation of PPDE that excels in being
lightweight while ensuring semantic security. In summary, our
contributions can be outlined as follows.

(1) Vulnerability of Primal. We discover critical flaws in
Primal, specifically in its misuse of inner-product FE (IPFE),
which inadvertently enables the cloud to infer the seller’s raw
data. Put simply, a passive adversary can execute the following
three types of attacks through meticulous operation.

A1. Exploiting simultaneous equations via Gaussian elim-
ination to ascertain the seller’s input data. A2. Colluding
with the shopper and launch a “Mix-and-Match” attack to
train the encrypted ML model without rendering the necessary
payment. A3. Inferring the original data by utilizing the master
secret key. It is important to highlight that such information
leakage occurs even when employing a provably secure IPFE
scheme, such as the one used in [18] based on [19].

(2) New Variant of Function Encryption. We introduce
an efficient and practical cryptographic tool, labeled function-
hiding inner-product encryption (labeled-FHIPE) to remedy
the weakness in Primal.

Our first innovation involves a label-matching mechanism
in the novel labeled-FHIPE scheme. It guarantees decryption
and private function computation only when decryption key
and ciphertext labels match, effectively addressing ”Mix-
and-Match” (A2) attacks. This control over ciphertext ac-
cess ensures precise use of encrypted data for our com-
putational tasks. The second innovation harnesses function-
hiding capability of labeled-FHIPE to re-encrypt and hide
the shopper’s model, addressing data leakage inherent in the
Primal approach, effectively countering A1 attacks caused
by intermediate data exposure. Finally, our privacy-preserving
framework, built on labeled-FHIPE, includes a Trusted Third
Party (TTP) for secure master secret key management. This
essential incorporation, a standard requirement for Functional
Encryption (FE) schemes [20], [21] except some decentralized
designs, effectively addresses vulnerabilities in A3. By protect-
ing the master secret key from both sellers and shoppers, our
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Fig. 1. PPDE Workflow

framework averts A3-type attacks, preventing direct inference
of sensitive information.

(3) Experimental Analysis. We perform an evaluation us-
ing three datasets and two unique neural network architectures
to measure computational and communication overhead, and
to assess the effectiveness of data selection and validation.
The results exhibit that our framework significantly reduces
the overall computation cost of the current best secure PPDE
scheme by roughly 10× and the communication cost for the
data seller by about 2×. Moreover, our approach particularly
excels in scalability, as demonstrated by the linear growth of
computation time in the first-layer private inner-product calcu-
lation with increasing vector dimensions or model precision.

II. PRIVACY-PRESERVING DATA EVALUATION

A. Neural Networks and Pre-Process for Convolutional Layer

Traditional neural networks process data through intercon-
nected layers, including input, hidden, and output layers. The
hidden layers, often fully-connected or convolutional, allow
complex pattern learning.

In a convolutional layer, necessary operations are carried out
between inputs from the preceding layer and the current layer’s
convolutional kernels. Effectively, these can be construed as
inner product operations. For the sake of simplicity in the
subsequent descriptions, we introduce a data preprocessing
approach that recasts convolutional operations into inner prod-
uct operations. Initially, the i-th layer’s convolutional kernel
Km×n

i is converted into a vector ki of length m ·n. For input
data, we restructure each layer’s feature maps into a matrix
Tm′×n′

i , where n′ = m × n, as per the actual stride. As a
result, the convolutional layer’s output feature map can be seen
as a matrix multiplication zi = Ti×ki. This vector zi is then
reshaped into a matrix Zi for output.

B. Privacy-Preserving Data Evaluation

In the data marketplace, sellers strive to provide high-quality
data while shoppers, leveraging cloud services, evaluate this
data to inform purchasing decisions. The evaluation process
often necessitates data disclosure, raising privacy concerns.
To mitigate these, Privacy-Preserving Data Evaluation (PPDE)
techniques are proposed.



The PPDE workflow involves sellers encrypting their data
for cloud upload, and shoppers doing likewise with their mod-
els. The cloud server processes the encrypted data, enabling
data selection and validation. In the data selection phase, the
shopper, upon receiving the computed encrypted predictions
from the cloud server, decrypts it and applies active learning
to select quality data. During the data validation phase, the
encrypted data is utilized to train the fully encrypted network.
After multiple training rounds, the data quality is evaluated by
observing the predicted performance.

C. Active Learning in PPDE
Active learning, a key component of PPDE, enables the

selection of informative training data from an unlabeled pool,
enhancing data quality. The cloud server calculates on en-
crypted data and the model to output an encrypted prediction
value. Once decrypted, this value aids the shopper in assessing
the training data quality via active learning, minimizing the
need for extensive labeled data.

Active learning smartly chooses beneficial data for labeling,
often using uncertainty measures. For example, uncertainty
measure selection in [22] uses the prediction values to pick
informative data, bypassing the need for direct data access.
Integrating active learning with privacy-preserving techniques
ensures efficient, privacy-preserving data evaluation, which is
vital for sensitive domain applications.

III. CRYPTOGRAPHIC BACKGROUND

A. Notations
Here, Z symbolizes the set of integers, while Zp signifies

the quotient ring of integers modulo a positive integer q. Bold
lowercase letters like x represent vectors. The cardinality of
a finite set X is represented as |X |. a ← A implies a is the
output of algorithm A if A is an algorithm; otherwise, a is a
uniformly sampled element from set A. The hadamard product
between two matrices or vectors of identical dimensions is
denoted by ◦. The dimension of a variable is signified by | · |.
A[i] refers to the i-th row in matrix A, while A[i][j] represents
the element at the intersection of the i-th row and j-th column.

B. Functional Encryption for Inner Product: A Sketch
We first briefly introduce functional encryption for inner

product (IPFE). An IPFE scheme consists of four Probabilistic
Polynomial Time (PPT) algorithms:

• Setup(1κ, 1l) → (mpk,msk) : It takes the security pa-
rameter 1κ and dimension 1l as input, and outputs master
public/secret key pair (mpk,msk);

• KeyGen(msk,y)→ dky : It takes a master secret key
msk, a weight vector y ∈ Zl

p as input, and outputs
decryption key dky;

• Enc(mpk,x)→ ctx : It takes a master public key mpk,
a message x ∈ Zl

p as input, and outputs a ciphertext ctx;
• Dec(dky, ctx,y)→z : It takes a decryption key dky, a

ciphertext ctx, and a weight vector y as input, and outputs
the original inner product result z.

Due to space limitations, please refer to [19] for the definitions
of correctness and security for the IPFE scheme.

RealCPA-FE
A (1κ)

(pk,msk)← Setup(1κ, 1l)

x∗ ← A(1κ, pk)
ct∗ ← Enc(x∗)

α← AOKeyGen(·)(ct∗)

IdealCPA-FE
A,S (1κ)

(p̃k, m̃sk)← S̃etup(1κ, 1l)

x∗ ← A(1κ, p̃k)
ct∗ ← Ẽnc(m̃sk)

α← AOKeyGen(·)(ct∗)

Fig. 2. Security Experment

C. Function-Hiding Inner Product Encryption

Function-Hiding Inner Product Encryption (FHIPE) en-
hances IPFE by concealing the weight information, thereby
offering a more comprehensive privacy safeguard. FHIPE
facilitates weight encryption, preventing unauthorized access
to specific weight details. Consequently, FHIPE provides an
advanced privacy-preserving measure, accommodating a wider
application spectrum where privacy is paramount. We formally
examine the four PPT FHIPE algorithms below [23]:

• Setup(1κ, 1l) → (pk,msk) : It takes the security param-
eter 1κ and dimension 1l as input, and outputs the public
key and the master secret key (pk,msk);

• Enc(pk,x)→ ctx : It takes a public key pk, a message
x ∈ Zl

p as input, and outputs a ciphertext ctx;
• KeyGen(msk,y)→ dky : It takes a master secret key msk

and a weight vector y ∈ Zl
p as input, and outputs a

decryption key dky.
• Dec(dky, ctx)→z : It takes a master public key mpk,

a decryption key dky and a ciphertext ctx as input, and
outputs the original inner product result z.

1) Correctness: For all κ, l ∈ N, x,y ∈ Zl
p, we require

Pr[Dec(dky, ctx) = ⟨x,y⟩] = 1− negl(κ),

where (pk,msk) ← Setup(1κ, 1l), dky ← KeyGen(msk,y),
and ctx ← Enc(pk,x). As state in [23], it requires the above
holds when ⟨x,y⟩ ∈ B where B ⊆ Zp.

2) Security: As shown in Fig. 2, we define the simulation-
based security via the following two experiments for
any security parameter κ, any PPT simulator S :=

(S̃etup, Ẽnc, K̃eyGen), any PPT stateful adversary A.
An FHIPE is CPA-SIM secure if there exists a PPT sim-

ulator S := (S̃etup, Ẽnc, K̃eyGen) such that for all PPT
adversaries A, we have

AdvCPA-SIM
FHIPE,A(κ) := |Pr[1← RealCPA-FE

A (1κ)]−
Pr[1← IdealCPA-FE

A,S (1κ)]| = negl(κ)

IV. IMPROPER UTILIZATION OF IPFE IN PPDE

This section provides an overview of a foundational work
called Primal [18], which is based on PPDE via IPFE, and
discusses its structural details. We identify security vulnera-
bilities due to IPFE’s improper application within the PPDE
context, leading to potential exploits by an honest-but-curious
cloud or shopper, enabling the launch of three types of attacks:

• A1. exploitation of simultaneous equations through Gaus-
sian elimination to deduce the seller’s input data.



• A2. collusion between the cloud and the shopper to
execute a ”Mix-and-Match” attack, enabling the training
of an encrypted Machine Learning (ML) model without
the required payment.

• A3. inference of the original data by leveraging the master
secret key.

Such attacks could expose more information about the seller’s
data and the shopper’s model than a semi-honest cloud should
access. We detail these attacks in Section IV-B to IV-D.

A. Review of PPDE via IPFE

The initial PPDE scheme primarily involves the following
procedures (see Figure 1): The data seller encrypts the sale
data using a public key and sends it to the cloud. The
data shopper encrypts the model using random masking and
generates decryption keys with the IPFE.KeyGen algorithm.
The cloud server, using decryption keys and random masks,
separately computes outputs of the first layer and subsequent
layers of the model, eventually obtaining masked prediction
results which are then sent to the shopper for unmasking.

B. Attack 1: Data Inference

In the PPDE via IPFE, the cloud could potentially infer the
seller’s private data through the first hidden layer computation,
failing to uphold the security guarantees in a PPDE scenario.
For example, when the first hidden layer is a fully-connected
layer, the seller’s data (x1, x2, x3) encrypted by IPFE.Enc, and
the layer RW1 disguised with random numbers is encrypted
by IPFE.KeyGen. Although at first, it may seem the masked
model is hidden in ski, the reality is different. After the IPFE
decryption, the inner-product results are exposed, enabling the
derivation of the seller’s input data, as is shown in Fig. 3.

𝑥1

𝑥2

𝑥3

Input Data Ԧ𝑥

IPFE.Enc

Ԧ𝑐

𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

𝑤31 𝑤32 𝑤33

Parameter Matrix 𝑊1

IPFE.KeyGen

Mat Transformation

By using 𝑅1

𝑟1𝑤11 𝑟1𝑤12 𝑟1𝑤13

𝑟2𝑤21 𝑟2𝑤22 𝑟2𝑤23

𝑟3𝑤31 𝑟3𝑤32 𝑟3𝑤33

𝑅𝑊[𝑖] = 𝑅1 𝑖 ∗ 𝑊1 𝑖 [: ]

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

𝑟1𝑤11 𝑟1𝑤12 𝑟1𝑤13

𝑟2𝑤21 𝑟2𝑤22 𝑟2𝑤23

𝑟3𝑤31 𝑟3𝑤32 𝑟3𝑤33

⋅ =

𝑑1

𝑑2

𝑑3

𝑥1

𝑥2

𝑥3

Known Known

𝐑𝐖1 Input Data 𝒙 IPFE Results

Fig. 3. A1 Attack

C. Attack 2: Collusive Training

The shopper and the cloud may make huge benefit by
complicitly training the model without paying for the seller’s
data. Let us start from an example. The cloud has the seller’s
encrypted data and the shopper has the master secret key,
which can be used to train any models with any encrypted
data. The cloud can prepare two original models, one for
privacy-preserving data evaluation and another for training the
encrypted model. After data evaluation, the cloud can use the
desired encrypted data for the shopper to training the other
clean model under ciphertext. The model can be decrypted by
the shopper once the training process is finished. This scenario
allows the cloud and the shopper to bypass payment for the
sellers’ data.

D. Attack 3: Master Secret Key Misuse

Holding the master secret key msk, the shopper can infer
or manipulate more of the sellers’ data. The msk allows the
generation of the decryption key dky at will. By specifying
the corresponding y, the privacy of the data seller can be
compromised through the computed inner product result. For
example, y = (0, 0, ..., yt = 1, ..., 0, 0), then the inner product
result is ⟨x,y⟩ =

∑n
i=1 xiyi = xt. Such actions can lead to

inference of the original user data.
In summary, the use of IPFE in PPDE cannot ensure the

desired privacy due to the aforementioned potential attacks.
Such information leakage could occur even with a provably
secure IPFE scheme as all the decryption key and ciphertext
manipulations are permitted by the functionality of IPFE.

V. OUR FRAMEWORK

In this section, we highlight the design challenges inherent
to PPDE via IPFE, describe our threat model, and propose
our solution to these issues. This includes a new FE variant
termed labeled-FHIPE, which we apply to PPDE, and provides
a detailed outline of this privacy-preserving structure.

A. Challenges

The innate properties of IPFE render it unsuitable for
directly addressing the issues associated with PPDE. The
specific challenges stem from the following factors:
• Excessive Information Exposure in IPFE: Due to the

involvement of weight y in inner-product computations in
the decryption algorithm, IPFE cannot achieve function-
hiding or avoid weight leakage.

• Permissiveness of “Mix-and-Match” in IPFE: IPFE de-
cryption can utilize mismatched decryption keys as long as
the keys correspond to the same data length [19], a feature
which can unintentionally expose data control in PPDE.

• Centralized Control in IPFE: Generally, IPFE necessitates
a central TTP for key distribution and functional decryption
key generation. Yet, current PPDE schemes [18] delegate the
responsibility of master secret key generation and manage-
ment to data shoppers, which, despite decentralizing control,
invariably increases the shopper’s attack potential.

B. Threat Model and Design Goals

In our study, we consider a typical cloud-based data market-
place model, comprising the following key entities: a Trusted
Third Party (TTP), semi-honest data sellers, potentially col-
luding data shoppers, and an untrusted, though honest-but-
curious, cloud.

TTP, assumed to be reliable and non-colluding, holds the
master key pair and oversees key distribution and function-
derived secret key generation. The TTP model is widely rec-
ognized as the underlying infrastructure in numerous existing
cryptosystems [21], [24], especially for FE-based systems
[20], [25]. Data sellers upload their data to the cloud for
sale, seeking maximum profit without launching data poison-
ing attacks, though they may unintentionally possess some
irrelevant or mislabeled data [18]. The data shopper aims
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to acquire valuable sellers’ data from the cloud to enhance
their machine learning model, retrieving auxiliary information,
like prediction values, for data evaluation, and may collude
with the cloud to train the model without purchasing the
seller’s private data. The cloud, assumed to be honest-but-
curious, adheres to the predefined protocol but may exploit
the shopper’s model and sellers’ data for profit, and could
also collude with the data shopper to train a model without
compensating sellers.

Our central goal is to address the security vulnerabilities in
the extant leading PPDE scheme and develop a novel PPDE
framework capable of ensuring robust security even under
potential collusions between the cloud and shoppers.

C. Method Overview

In order to address the aforementioned objectives, we pro-
pose the following innovative strategies as follows:

New Variant of FE. We build upon FHIPE, which aptly
addresses A1 by allowing the cloud to calculate the first layer
output without needing knowledge of the encrypted model
parameters y. To tackle A2, we introduce a novel FE variant
known as labeled-FHIPE. In this scheme, the seller encrypts
their valuable data into a ciphertext ctx,ℓ using a label ℓ.
Concurrently, TTP generates a label-bound decryption key
dky,ℓ. Only one with a ciphertext and decryption key with
matching labels can compute the inner product. Section V-D
offers a specific construction for the labeled-FHIPE.

Enhanced PPDE. Utilizing labeled-FHIPE, we put forth
a new PPDE framework that engages TTP for managing
the master secret key. This addresses A3 by restricting the
data shopper’s information access and reducing their potential
attack capability. It is important to note that our framework
retains all advantages offered by the original PPDE. The
specifics of our scheme will be elaborated on in Section V-E.

D. Labeled-FHIPE

Here we presents a labeled-FHIPE scheme from SXDH
assumption under random oracle model. We start from FHIPE
where the seller encrypts data x; TTP issues a key for
y; decryption recovers z = ⟨x,y⟩. To further prevent the
decryptor (i.e., the cloud) colluding with shoppers and launch

a mix-and-match attack, we let the seller embed a fresh label
h := H(l) · sk ∈ G into its ciphertext so that only decryption
key with the same label can decrypt the ciphertext correctly,
where sk ∈ Zp is a random secret key and H(·) := Label →
G. In particular, the data seller encrypts x∥h instead of x;
TTP issues a key for y∥h−1 instead of y; decryption obtains
z′ = ⟨x∥h,y∥h−1⟩ − 1 = ⟨x,y⟩. In the proof, we will use h
as a label vector that binds x and y; for this, we also introduce
one more dimension for the security proof.

1) Algorithms: Let (Setup0,KeyGen0,Enc0,Dec0) be the
FHIPE scheme in [23], our labeled-FHIPE is as follows:

• Setup(1κ,PG, [M]1) : Output sk ←$ Zp and
(pk,msk)← Setup0(1

κ,PG, [M]1).
• Enc(t ∈ Zm

p , l ∈ ℓ) : Output ctMt,l ← Enc0(tl ∈ Zm
p ).

All intermediate results Mt = x ∈ Zn
p are replaced by

x∥hl ∈ Zn+1
p , where hl := H(l) · sk ∈ G.

• KeyGen(msk,y ∈ Zn
p , l ∈ ℓ) → dky,l : Output dky,l ←

KeyGen0(msk,y∥h−1
l ∈ Zn+1

p ), hl := H(l) · sk ∈ G.
• Dec(ctx,l, dky,l) : Compute z0 ← Dec0(ctx,l, dky,l), and

output z = z0 − 1.
2) Label Correctness: Because x, y ∈ Zn

p are bound to h
and h−1, correct decryption is only possible when x is labeled
with the inverse of the label of y: z′ = ⟨x∥h,y∥h−1⟩ − 1 =
⟨x,y⟩. This immediately verifies the label’s correctness.

3) Label Security: We prove the following theorem by
showing that our proposed labeled-FHIPE scheme achieves
label security (LS). Technically, the theorem shows that LS
relies on the security of the underlying FHIPE scheme. By
using the scheme from [23], we obtain a scheme with LS
based on the SXDH assumption under random oracle model.

Theorem 1: Assume (Setup0,KeyGen0,Enc0,Dec0) is a se-
cure FHIPE. Our scheme achieves semi-adaptive label security,
where the adversary sends its challenge x before querying any
secret keys, but after receiving the public key. Formally, for
all p.p.t. adversary A, there exists a p.p.t. adversary B with

AdvLabeled-FHIPE
A (κ) ≤ AdvFHIPE

B (κ).

Proof 1: We prove the theorem via a game sequence G0,
G1, G2 with G0 ≈c G1 ≈c G2. Each step is standard, and
we only present games and sketch the proof for indistinguisha-
bility between two adjacent games. In the following, we use
AdviA to denote the advantage of A in Gi for all i ∈ {0, 1, 2}.

G0: This is the real game with b← {0, 1} being the secret
bit. Apart from pk, adversary A gets challenge ciphertext:

ctMt,l ← Enc0(pk, tl), ∀l,

, where hl := H(l) ∈ G and Mtl = x∥hl, and a decryption
key for single function y:

dky,l ← KeyGen0(msk,y∥h−1
l ), ∀l.

We can get AdvLabeled-FHIPE
A (κ) = Adv0A for all A.

G1: This game is identical to G0 except that we replace
the hash function H that is evaluated in every random-oracle
query l, with a random function RF := z ←$ Zp. We have
G1 ≈c G0 and Adv1A(κ) = Adv0A(κ).



Initialization phase: TTP runs Setup algorithm of labeled-FHIPE to generate a master secret key msk for the system
and a pair of public and secret key (pk, sk) for a data seller. Then the shopper randomly chooses numbers Ri from
corresponding linear space associated with i-th layer, where each coefficient of Ri are from Zp, i ∈ {1, 2, ..., n} and n
is the total layer number. To be specific, we use Ri to denote vector or matrix of random numbers used to mask the i-th
fully-connected hidden layer and the i-th convolutional hidden layer, respectively.
Feed Forward phase:

• Data Encryption:
– Process a seller’s raw data into X according to the type of first hiding layer. If it is the fully-connected hidden

layer, X denotes a 1× n1-dimension matrix . If it is the convolutional hidden layer, it represents m1 × n1 matrix
after convolutional layer data processing (see Section II-A).

– For each row X[i] in X, the data seller encrypts it as ctX[i],l ← labeled-FHIPE.Enc(X[i], l), where l = id∥task∥stp.
Then the data seller sends every ctX[i],l to the cloud.

• First Layer Encryption:
– The data shopper masks the first hidden layer. For fully-connected hidden layer, masks parameter matrix W1 row

by row Y1[i] = R1[i] ◦W1[i], where R1[i] = (r1[i], r1[i], ...) and r1[i] ←$ Zp. For convolutional hidden layer,
mask the kernel vector k1 by Y1[i ∗ t + j] = R1[i][j] ∗ k1, where t = (I − |K′

1| + 1)/s, R1 ∈ Zt×t
p , I is the

width of input, K′
1 is the kernel matrix before data pre-processing, and s is the stride. The data shopper sends Y1

to TTP.
– The TTP hides the masked model and generates decryption keys. For each row Y1[i] in Y1, TTP computes
dkY1[i],l ← labeled-FHIPE.KeyGen(msk,Y1[i], l) and sends them to the cloud.

• First Layer Computation:
– The cloud parse the ciphertexts and decryption keys as (ctXi,l, dkY1[i],l)i∈[|Y1|]. It computes the inner-product

results z1[i]← labeled-FHIPE.Dec(ctXi,l, dkY1[i],l) for i ∈ |Y1|.
– If it is the fully-connected hidden layer, we use Z1 = z⊤1 to denote a matrix with one row. If it is the convolutional

hidden layer, rearrange z1 into matrix Z1 according to Section II-A. The cloud outputs square activation Z2
1 =

Z1 ◦ Z1 to the next layer.
• Matrix Computation for the Subsequent i-th Layer:

– The cloud takes previous (i-1)-th layer output Z2
i−1 as input and do matrix computation according to layer type:

∗ Fully-connected hidden layer. The cloud flattens Zi−1 into a vector if it is a matrix. Then, it receives the
masked parameter matrix RWi = Wi ◦R′

i from the shopper, where R′
i[u][v] = ri[u]/r

2
i−1[v]. Finally, it does

matrix computation Zi = RWi × Zi−1.
∗ Convolutional hidden layer. For each row vector Zi−1[j] in Zi−1, masks the kernel by RKi[j] = R′

i[j] ◦ ki,
where ki is kernel vector of the i-th layer and R′

i[u ∗ |Ri| + v] = Ri[u][v]/Ri−1[u ∗ s : u ∗ s + |Ki|][v ∗ s :
v ∗ s+ |Ki|], and computes Zi[j] = ⟨RKi[j],Zi−1[j]⟩.

– The cloud outputs the square activation Z2
i = Zi ◦ Zi to the next layer.

• Prediction value output:
– If it is the last layer (the n-th layer), the cloud sends Z2

n to the data shopper.
– The data shopper receives Z2

n and removes the mask by Z2
n ◦R−2

n to get the prediction value.
Back Propagation phase:

• Back hidden layers computation:
– The shopper generates Mi = Ri/Ti, where Ti is a random matrix, and sends it to the cloud.
– The cloud updates parameters by RW′

i = RWi −α ∗Mi × ∂δ′

∂RWi
= R′

i × (Wi −α ∗ ∂δ
∂Wi

), where δ = Z2
n −L,

L denotes the labels, α is the learning rate, ∂δ′

∂RWi
= Ti × ∂δ

∂Wi
according to the chain rule. Here we randomize

the gradients by computing δ′ = Rr ◦ δ, where Rr represents a random vector (r1, r2, ...).
• First hidden layer computation:

– The cloud sends the gradients ∂δ′

∂Z1
to the seller.

– The shopper sends the update parameter matrix M1 = R1/T1 to the seller.
– The seller computes ∇Y1 = M1 × ∂δ′

∂Y1
and ∇Z2

1 = (α ∗ ∇Y1X
′)2, where ∂δ′

∂Y1
= (X δ′

∂Z1
)⊤ = T1 × ∂δ

∂W1
.

– The seller updates the output Z2
1 using ∇Z2

1 and starts a new training round.

Fig. 5. Our Data Evaluation Framework
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Fig. 7. Comparison of Computational Overhead for Data Encryption, Model Encryption, First Layer Computation

G2: This game is identical to G1 except that we answer
the random-oracle queries for the label l ̸= l∗ with an element
indistinguishable from a random element. In particular, the
random-oracle outputs a random number z = a · r with a
random number r ←$ Zp. This covers the results ⟨xb,y⟩ +
hl ·z−1, which results in: Adv2A(κ)−Adv

1
A(κ) ≤ AdvFHIPE

B (κ),
and we have G2 ≈c G1.

Observe that in the final game G2, all challenge ciphertexts
{⟨xb,y⟩ + hl · z−1}l ≈c Rp do not use the secret random
bit b, where Rp is a random distribution over p; namely, the
distribution of G2 is independent of b. Formally, for all A,
we have Adv2A(κ) = 0. This readily proves the theorem. □

E. PPDE from FHIPE

In this part, we apply our labeled-FHIPE to PPDE and
introduce our specific method. To address A1 and A2, we use
the labeled version of FHIPE to encrypt the data for sellers,
so that every seller’s ciphertext is labeled with a specific task
l ∈ ℓ. This ensures that the encrypted and labeled data will
not be used in training other models, even when the cloud
and the shopper collude. To address A3, we introduce TTP to
manage the master secret key rather than distribute it to the
data shoppers for encryption, avoiding privacy inference for
sellers’ valuable raw data. Instead, we establish an independent
pk for different data sellers to encrypt their data.

Apart from the new design goal proposed in this paper, the
introduction of the labeled-FHIPE and TTP achieves those
desirable security requirements in PPDE that have not been
met in prior work. Our framework runs among TTP, data
sellers, data shoppers, and a cloud. Our privacy-preserving data
selection contains the following three steps:

Step 0 (Initialization): TTP initializes the system param-
eters and generates the pair of public key and master secret
keys (pk,msk) and secret key sk for data seller.

Step 1 (Feed Forward): The data seller encrypts selling
data X into ctX,l using the label-FHIPE.Enc algorithm and
task label l, then sends this to the cloud. Concurrently, the
data shopper sends the masked first layer parameter matrix Y1

to TTP and generates decryption keys dkY1,l. Parameters Wi

or ki of subsequent layers are encrypted into RWi or RKi

by multiplying them with random matrices Ri for layers 2
through n, where n is the final layer number, and are then
sent to the cloud. The cloud progressively computes Zi under
the mask to finally obtain the masked prediction values Zn.

Subsequent to the convolutional layer, a pooling layer is
often introduced. Here, we consider a mean pooling layer
with pooling window size of sp, whose feature map, denoted
as Pi+1, is computed by feeding the output Zi from the
convolutional layer into it. The mean pooling layer can be
computed as follows:

Pi+1[j][k] =
1

s2p

i·sp+sp−1∑
x=j·sp

k·sp+sp−1∑
y=k·sp

Zi[x][y].

Step 2 (Data Selection): The data shopper receives Zn

and unmasks it by computing hadamard product Zn ◦ R−2
i .

After obtaining the original prediction values, the shopper then
applies active learning to evaluate data informativeness.

In the privacy-preserving data validation, the shopper re-
quires the cloud retrain its model with the selected data. Then,
it can observe the prediction performance of the retrained
model to estimate the quality of the selected data. The process



TABLE I
COMPUTATION COMPARISON

Model Scheme Data Enc. (s) Model Enc. (s) First Layer (s) Sub. Layer (s) Back Prop. (s) Total (s)

Mnist
Primal 3.594 0 72.331 0.004 0.024 75.953

Stanford 0.414 0.404 120.960 0.004 0.022 121.804
Ours 0.263 (13.67×) 0.724 6.981 (10.36×) 0.004 0.024 7.996 (9.50×)

Cifar10
Primal 10.514 0 215.360 0.006 0.031 225.911

Stanford 1.071 0.120 312.959 0.006 0.031 314.187
Ours 0.372 (27.30×) 0.410 19.243 (11.19×) 0.006 0.033 20.064 (11.26×)

SVHN
Primal 9.978 0 211.127 0.006 0.035 221.146

Stanford 1.171 0.114 311.456 0.005 0.037 312.783
Ours 0.312 (31.98×) 0.420 19.213 (10.99×) 0.006 0.020 19.971 (11.07×)

of the privacy-preserving data validation includes an additional
step, back propagation.

Step 3 (Back Propagation): We use the mean square error
function as the cost function and computes the gradients of the
last layer as δ = Z2

n−L for prediction value Z2
n and labels L.

Then the cloud computes the gradients of each hidden layer
and update all parameters according to randomized gradients
δ′. Since the parameters of the first hidden layer and back
layers are encrypted and masked by two methods, the cloud
updates parameters in two forms.

Our complete framework is provided in Fig. 5.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

Baseline. We set Primal [18] and Stanford as our baselines.
In particular, Primal is the basic IPFE-based PPDE scheme
but suffers from several security issues. Stanford is a scheme
formed on the basis of our PPDE framework by replacing our
labeled-FHIPE scheme with the FHIPE proposed by Stanford
researchers in [26].

Dataset and Model Architecture. To evaluate the perfor-
mance of our framework, we used two convolutional neural
networks (CNNs) with publicly available datasets, MNIST
[27], SVHN [28], and CIFAR10 [29].

Our Toy CNN (Model 1) is composed of two convolutional
layers. The first layer contains 4 channels with 5× 5 kernels
and a stride of 2, followed by a 2× 2 mean pooling operation
with a stride of 2. The second layer contains 4 channels with
2× 2 kernels and a stride of 1. A fully connected layer with
100 × 10 units and a Square activation function completes
the network, bringing the total parameters to 1,182. An initial
learning rate of 0.001 was used during training.

The network for the CIFAR10 and SVHN datasets, Model
2, consists of three convolutional layers. The first, second, and
third layers contain 64, 128, and 256 channels, respectively,
each with 3× 3 kernels, a stride of 1, and padding of 1. Each
layer is followed by a 2 × 2 mean pooling operation and a
square activation layer. A fully connected layer with 4096 ×
10 units and a square activation function is included, totaling
411, 786 parameters. Training this model involved common
hyperparameters including an initial learning rate of 0.001 and
a batch size of 64, following standard practices in the field.

Cryptosystem Implementation. Our cryptosystem is writ-
ten in Go, based on the opensource functional encryption

library GoFE [30]. Our implementation uses a hybrid design,
where the underlying performance-intensive mathematical op-
erations are implemented in go modules, i.e., the GoFE library,
while the neural networks can be written in a readable, high-
level language. Thus, we can implement different schemes in
a unified platform for easier comparison.

Experimental Environment. We measure the computation
time for two phases: Feed Forward Phase and Back Prop-
agation Phase. We omit the initialization phase, which is
considered a one-time cost. Our experiment was performed
on a 64-bit Windows 10 laptop equipped with Intel Core i7-
7700HQ CPU (2.80GHz) and 16GB RAM.

B. Precision Choice on Accuracy and Loss

Since we use labeled-FHIPE in our approach, it only
supports integer operations under ciphertext. We utilized our
scheme to test the impact of different encryption precisions on
accuracy and loss using three datasets, as shown in Fig. 6. To
minimize the influence of encryption precision on the model
during data evaluation, we chose an encryption precision
of 14 (where seller data and shopper model parameters are
multiplied by 214 and rounded to the nearest integer) in
the following experiments. As shown in Fig. 6, the model
accuracy at this precision is nearly identical to that achieved
under plaintext training. In the experiment, after an adequate
number of training iterations, all three datasets have achieved
an accuracy exceeding 90%. This verifies the performance of
our models.

C. Computation Overhead

We compared the computational overhead of our approach
with the Primal and Stanford schemes.

Since all the PPDE schemes employ FE encryption in the
first layer and protect the subsequent layers using random
masking techniques, we record the computational overhead for
each scheme. This includes the cost of encrypting data by the
data seller, the encryption cost of the model, the computation
cost of the first layer, and the encryption and computation time
for the subsequent layers. We tested different specifications of
models with varying parameters in these layers to assess the
impact on the computational overhead.

Overall Computation Costs. Table 1 documents the time
expenditure of three strategies on three datasets and two mod-
els. Our proposed approach significantly reduces the overall



200 400 600 800 100012001400160018002000
Number of Selected Samples

0.15

0.20

0.25

0.30

0.35
A

cc
ur

ac
y

Ours
Random

(a) Data Selection on Mnist

200 400 600 800 100012001400160018002000
Number of Selected Samples

0.10

0.15

0.20

0.25

0.30

0.35

A
cc

ur
ac

y

Ours
Random

(b) Data Selection on Cifar10

200 400 600 800 100012001400160018002000
Number of Selected Samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Ours
Random

(c) Data Selection on SVHN

1000 2000 3000 4000 5000
Sample Number

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
A

cc
ur

ac
y

granularity = 10
granularity = 20
granularity = 40
granularity = 50

(d) Data Validation

Fig. 8. Performance of Data Evaluation

computational cost by a factor of 10 compared to the state-
of-the-art Primal strategy. Notably, our solution achieved con-
siderable improvements in the most time-consuming aspects
of the process—specifically data encryption and the efficiency
of first-layer computation—with enhancements ranging from
13.67 ∼ 31.98× and 10.36 ∼ 11.19×, respectively.

Data Encryption, Model Encryption, First Layer Com-
putation. As depicted in Fig. 7, our method outperforms
others in terms of time efficiency for seller encryption and
first-layer computation. It’s noteworthy that the first layer
computations are the main time-consuming steps across all
schemes. Yet, our scheme is the only one showing a linear time
increase with the addition of parameters, demonstrating robust
scalability, which is also mirrored in the model’s precision.
Despite higher computational overhead in Fig. 7(b) compared
to Primal, it’s crucial to remember that Primal does not
perform model encryption, leaving privacy risks unaddressed.
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Fig. 9. Comparison of Computational Overhead for Matrix Encryption and
Computation

TABLE II
COMMUNICATION COMPARISON

Dataset Entity Primal (KB) Stanford (KB) Ours (KB)

Mnist Shopper 3,085 53,077 108,166
Data 519,535 489,955 253,764

Cifar10 Shopper 54,010,339 53,971,000 54,721,681
Data 1,304,832 1,847,040 492,570

SVHN Shopper 53,165,208 54,474,628 53,602,837
Data 1,314,478 1,847,145 980,640

Matrix Encryption and Computation. We assess encryp-
tion and computation time for subsequent layers across two
models and three schemes next. Fig. 9(a) and Fig. 9(b) show
similar computational overhead growth across all schemes for
both smaller (Model 1) and larger (Model 2) models.

In summary, our approach outperforms other approaches in
computation efficiency for data sellers and the cloud, while the

efficiency for shoppers is compromised due to first layer model
encryption. This trade-off, essential for model security, might
suggest Stanford’s scheme as an alternative when dealing with
limited computational resources.

D. Communication Overhead

We compared the main communication costs of the three
schemes across three datasets and two different models, with
an encryption precision of 14. From Tab. II, we can observe
that our proposed scheme significantly reduces communication
costs for data sellers, ranging from 1.34 to 2.05 times less
compared to the state-of-the-art Primal scheme. However, the
communication costs for data shoppers are relatively large.
This is because our scheme encrypts the first layer of the
model, resulting in ciphertext that is naturally larger than
the non-ciphertext generated by Primal. We found that our
scheme and the Stanford can complement each other in terms
of communication costs for both sellers and shoppers.

E. Performance Analysis of Data Selection and Validation

We evaluated the performance of our privacy-preserving
data selection method on three datasets and two networks.
We recorded the performance of the first 2000 data samples
using our data selection method compared to random data
selection. Fig. 8(a-c) shows the performance of the two models
on the three datasets after retraining. Our method consistently
improved the model accuracy by more than 15% across all
three datasets and two networks.

Regarding data validation, we obtained the same conclusion
as the Primal, which is that smaller granularity leads to higher
validation accuracy, as is shown in Fig. 8(d), but also results
in larger computational overhead. Therefore, shoppers should
make a trade-off between security and efficiency.

VII. CONCLUSION

This study highlights security shortcomings in the present
FE-based PPDE scheme due to IPFE misuse and presents a
redesigned PPDE strategy utilizing FE. We have introduced
labeled-FHIPE, a novel FE variant, and developed a new PPFL
framework that delegates master secret key management to
TTP. Our scheme, tested on real-world datasets, has shown to
outperform the current benchmark Primal by around 10× and
2× in computation and communication, respectively. It also
promises flexible scalability and improved security for data
evaluation services.
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