
Ymir: A Scheduler for Foundation Model Fine-tuning Workloads
in Datacenters

Wei Gao
gaow0007@e.ntu.edu.sg

S-Lab, Nanyang Technological
University
Singapore

Weiming Zhuang
weiming001@e.ntu.edu.sg

Nanyang Technological University
Singapore

Minghao Li
minghao002@e.ntu.edu.sg

Nanyang Technological University
Singapore

Peng Sun
sunpeng1@sensetime.com

Sensetime & Shanghai AI Lab
China

Yonggang Wen
ygwen@ntu.edu.sg

Nanyang Technological University
Singapore

Tianwei Zhang
tianwei.zhang@ntu.edu.sg

Nanyang Technological University
Singapore

ABSTRACT

The breakthrough of foundation models makes foundation model
fine-tuning (FMF) workloads prevalent in modern GPU datacenters.
However, existing schedulers tailored for model training do not
consider the unique characteristics of FMs, making them inefficient
in handling FMF workloads. To bridge the gap, we propose Ymir,
a scheduler to improve the efficiency of FMF workloads in GPU
datacenters. Ymir leverages the shared FM backbone architecture
to expedite FMF workloads from two aspects: (1) Ymir investigates
the task transferability among different FMF workloads and auto-
matically merges FMF workloads with the same FM into one to
improve the cluster-wide efficiency via transfer learning. (2) Ymir
reuses the fine-tuning runtime of FMF workloads to reduce the
significant context switch overhead. We conduct 32-GPU physical
experiments and 240-GPU trace-driven simulations to validate the
effectiveness of Ymir. Ymir can reduce the average job completion
time by up to 4.3 × compared with existing state-of-the-art sched-
ulers. It also promotes scheduling fairness by fully exploiting the
task transferability. More supplementary materials can be found
on our project website https://sites.google.com/view/ymir-project.

CCS CONCEPTS

• Computing methodologies → Distributed computing

methodologies.

KEYWORDS

Foundation Model Fine-tuning, Cluster Management System

ACM Reference Format:

Wei Gao, Weiming Zhuang, Minghao Li, Peng Sun, Yonggang Wen, and
Tianwei Zhang. 2024. Ymir: A Scheduler for Foundation Model Fine-tuning
Workloads in Datacenters. In Proceedings of the 38th ACM International
Conference on Supercomputing (ICS ’24), June 04–07, 2024, Kyoto, Japan.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3650200.3656599

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS ’24, June 04–07, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656599

1 INTRODUCTION

Foundation models (FMs) have pushed the state-of-the-art per-
formance envelope across a wide range of artificial intelligence
tasks [6, 20, 21, 56, 63]. An FM is a machine learning model
(commonly large-scale in parameters) trained over massive data
and adaptable to various downstream tasks [12]. The fine-tuned
FMs have shown impressive performance in many downstream
tasks [14, 64, 65], leading to an increasing of foundation model
fine-tuning (FMF) workloads in public and private GPU datacenters
[12, 23]. To meet the growing resource demand of FMF workloads,
it is crucial to improve their efficiency from datacenter perspective.

Compared with conventional deep learning training (DLT) work-
loads, FMF workloads exhibit several distinct characteristics. First,
FMs typically have substantial parameter sizes. Hence, FMF work-
loads demand predominant GPU memory [14, 54, 65]. Second, FMF
workloads tend to require multiple GPUs for distributed execu-
tion to support large-scale models [23, 33, 54], which consequently
increases the time needed to initiate the distributed execution run-
time. Therefore, FMF workloads have much higher context switch
overhead than general DLT workloads [5, 37, 75]. Third, FM users
adopt a limited number of common FMs (e.g., RoBERTa [48], Vi-
cuna [19]), as observed in [2]. Figure 1 shows the distribution of FM
downloads in HuggingFace Model Hub [1]. The top 10 downloaded
FMs account for 83% and 89% of the top 100 vision and language
FMs, respectively. Also, existing commercial FM services (e.g., Ope-
nAI [2]) only release a few FMs for public access. Due to the high
expense of building an FM from scratch, it is cost-efficient to reuse
existing FMs instead of providing diverse FMs for different tasks.
Accordingly, it is common to see many FMF workloads share the
same backbone architecture in a GPU datacenter.

Previous studies have proposed many efficient schedulers to op-
timize DLT workloads [16, 36, 50, 59, 62, 86]. They consider two
prominent advanced practices. The first is to co-locate DLT work-
loads on the same GPUs to reduce the long queuing delay [16, 86].
However, the job colocation might cause out-of-memory issues
for FMF workloads due to their vast GPU memory consumption.
The second one is to dynamically scale up the allocated GPUs to
improve the job throughput [36, 59, 62]. The frequent GPU alloca-
tion adjustment aggravates the context switch overhead and could
yield significant job progress delays for FMF workloads. Some stud-
ies [7, 29] aim to reduce the context switch overhead but only

https://sites.google.com/view/ymir-project
https://doi.org/10.1145/3650200.3656599
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3650200.3656599

ICS ’24, June 04–07, 2024, Kyoto, Japan Wei Gao, Weiming Zhuang, Minghao Li, Peng Sun, Yonggang Wen, and Tianwei Zhang

40 60 80 100
% of total downloads

100

101

102

To
p

K

83%

vision

40 60 80 100
% of total downloads

100

101

102

To
p

K

89%

language

Figure 1: Proportion (𝑥-axis) of accumulated Top-K (𝑦-axis)

FM downloads (top 10 in blue) to the top 100 downloads of

vision (left) and language (right) FMs in HuggingFace [1].

for inference workloads. In summary, little systematic efforts are
dedicated to accelerating the FMF workloads in GPU datacenters.
Given the shared architecture of FMs, this gap could be bridged
by (1) reusing weights across tasks to expedite fine-tuning through
transfer learning; (2) reusing the fine-tuning runtime to reduce
the context switch overhead in scenarios where FMF workloads
primarily differ in model weights and task-specific datasets.

We propose Ymir, an elastic scheduling system to capitalize on
these opportunities presented by the same backbone architecture
to accelerate FMF workloads. Ymir consists of three key designs
for FMF workload scheduling. First, we devise YmirEstimator to
estimate the execution time of FMF workloads with and without
task merging. Task merging indicates merging two workloads into
one and subsequently fine-tuning it via transfer learning. It in-
volves two decisions: determining which tasks to combine and
selecting the appropriate transfer learning modes (illustrated in
§ 2.1). Specifically, YmirEstimator profiles each new workload’s
statistical information (e.g., loss, gradients). Based on the profiled
information, YmirEstimator predicts the execution time to reach
the model convergence for FMF workloads under various resource
allocations and task merging scenarios.

Second, we develop YmirSched to automate the task merging and
resource allocations for FMF workloads to improve cluster-wide
efficiency. Task merging can expedite the model convergence, how-
ever, randomly combining tasks might not necessarily yield speedup
and could even result in a degradation of model accuracy1. Ymir
introduces speedup gain to quantify the reduction in execution time
resulting from various task merging scenarios, thereby mitigating
the risk of poor task merging choices. In each scheduling inter-
val, YmirSched leverages the estimation results of YmirEstimator
to compute the speedup gain. Then, YmirSched incorporates the
speedup gain into the FMF workload scheduling objective, favoring
task merging with higher speedup gains. Through optimizing this
objective, YmirSched determines how to merge tasks and allocate
GPUs for cluster-wide workloads.

Third, we implement YmirTuner to reduce the context switch
overhead by reusing the fine-tuning runtime. YmirTuner comprises
twomodules, the task constructor and the pipeline switch to facilitate
the context switch between FMF workloads. The task constructor
provides a universal implementation to different FM fine-tuning al-
gorithms [31] and allows only modification of task-specific datasets,
model weights, and other hyper-parameters to perform the context
switch. The pipeline switch pipelines the dataset preparation and
1For the sake of simplicity, we use accuracy as a universal term to denote any perfor-
mance evaluation metric, such as F1 score or BLEU score.

parameter transfer with the model execution to hide the context
switch overhead. Moreover, the pipeline switch tailors the pipeline
concept to data- and pipeline-parallel FMF workloads respectively,
ensuring the context switch that takes no more than one minute.

We implement Ymir atop transformers library [85], PyTorch [58]
and Kubernetes [15]. It is deployed in a cluster of 8 servers and 32
Tesla V100-32GB (A100-80GB for Vicuna-7B) GPUs. We evaluate
Ymir over ViT, RoBERTa and Vicuna using 9 vision, 9 language un-
derstanding, and 9 language generation datasets. Compared with ex-
isting DLT schedulers (e.g., Pollux [62], Optimus [59], Tiresias [26]),
Ymir achieves 1.1 - 4.3× job completion time (JCT) speedup across
various FMs. Large-scale simulation in a cluster with 240 GPUs
demonstrates the scalability of Ymir. Also, comprehensive simu-
lation experiments are conducted to disclose the impact of each
component in Ymir. Our contributions are as follows:
• We present Ymir, a scheduler to exploit the shared backbone
architecture to optimize FMF workloads.

• We automate the task merging and resource allocations for FMF
workloads.

• We reuse the fine-tuning runtime of FMF workloads to enor-
mously reduce the context switch overhead.

• We implement and evaluate Ymir with representative FMs and
datasets to demonstrate its efficiency.

2 BACKGROUND AND MOTIVATION

We begin with an in-depth exploration of task transferability, fol-
lowed by characterizing FMF workloads.

2.1 Task Transferability

As a core idea of Ymir, we provide a thorough exploration of task
transferability. Task transferability refers to the ability of a model,
initially trained on one task, to be used in another related but
different task. In the context of FMs, downstream models sharing
the same FM can expedite training convergence. Here, we discuss
the transfer learning modes and benefits of task transferability.
Transfer Learning Modes. Recent theoretical [77] and empir-
ical [4, 61, 69, 84, 87] analysis from transfer learning show that
task transferability can improve the accuracy of FMs on down-
stream tasks. Unlike their focus on model accuracy, we consider
how transfer learning expedites training convergence. By investi-
gating existing transfer learning studies [3, 10, 22, 34, 55, 76, 76, 80],
we identify three predominant transfer learning modes to acceler-
ate FMF workloads, as illustrated in Figure 2. (1) Normal transfer:
this is the conventional solution, where the downstream model
for each task is fine-tuned on a given dataset from the pre-trained
weights of the FM. (2) Temporal transfer : a new task 𝐵 is fine-tuned
from the FM fine-tuned previously on another task 𝐴. We denote
this mode as 𝐴 ↦→ 𝐵. (3) Spatial transfer: both task 𝐴 and 𝐵 are
fine-tuned together using a multi-task learning scheme. We denote
this as 𝐴∥𝐵. §9 further discusses the extension of these modes.
Benefits of Task Transferability. Compared to normal transfer,
temporal and spatial transfer can better leverage the knowledge
from other tasks [10, 80]. Figure 3 compares the validation accuracy
during training in different transfer learning modes. Figure 3(a)
shows that temporal transfer reduces the number of epochs to

Ymir: A Scheduler for Foundation Model Fine-tuning Workloads in Datacenters ICS ’24, June 04–07, 2024, Kyoto, Japan

TaskA

TaskA TaskBTaskA TaskBTaskA TaskB

TaskB TaskA TaskB TaskA TaskB

(a) Normal

TaskA

TaskA TaskBTaskA TaskBTaskA TaskB

TaskB TaskA TaskB TaskA TaskB

(b) Temporal

TaskA

TaskA TaskBTaskA TaskBTaskA TaskB

TaskB TaskA TaskB TaskA TaskB

(c) Spatial

Figure 2: Illustration of different transfer learning modes. (a)

Normal transfer: the downstream model is fine-tuned from

the pre-trainedweight (blue trapezoid). (b) Temporal transfer:

task B is fine-tuned from the FM fine-tuned previously on

another task A. (c) Spatial transfer: both task A and B are

fine-tuned together.

2 4 6 8 10
Epoch

80

85

90

Ac
cu

ra
cy

 (%
)

w/o temporal
w/ temporal

(a) STSB ↦→ QQP

2 4 6 8 10
Epoch

85

90

95

100

Ac
cu

ra
cy

 (%
)

w/o spatial
w/ spatial

(b) FOOD101 ∥ ImageNet75

Figure 3: Transfer learning performance: (a) QQP accuracy

in temporal transfer learning on RoBERTa-Base; (b) Ima-

geNet75 accuracy in spatial transfer learning on ViT-Base.

fine-tune the QQP dataset [81] by 2.3× when the FM is previously
fine-tuned on the STSB dataset [81]. Similarly, Figure 3(b) shows
that spatial transfer reduces the number of epochs to fine-tune
the ImageNet75 dataset [68] by 2.0× when the FM is fine-tuned
together on the FOOD101 dataset [13]. The speedup benefits stress
the need for an automated approach to identify task combinations
and transfer learning modes for cluster-wide workloads.

2.2 Characterization of FMF Workloads

FMF workloads possess some unique characteristics. We demon-
strate them with three representative FMs (ViT-Base, RoBERTa-
Base, Vicuna-7B) and corresponding datasets discussed in §7.1 on a
server of 4 A100-80GB GPUs.
Exorbitant Context Switch Overhead. Figure 4(a) illustrates the
measured context switch overhead for RoBERTa, ViT, and Vicuna-
7B on STSB [81], CIFAR100 [41], and SAMSUM [25]. The overhead,
mainly attributed to weight loading and dataset preparation, sur-
passes one minute. This high overhead hinders scaling up GPUs to
improve the job throughput.
Smooth Loss Curve. Prior works [26, 50] emphasize that loss
curves may not always exhibit smooth decreases, and curve fitting
techniques may not extrapolate the relationship between loss and
iteration. Fortunately, current ML studies [30, 39, 49] point out FMs
possess well-behaved loss curves. In Figure 4(b), we use the same
dataset in context switch overhead measurement and present the
normalized training loss across training epochs. The training loss is
normalized to the maximum loss observed throughout the training.
The normalized loss exhibits relatively smooth, even in the early
stages of training. Also, one study [79] provides theoretical evidence
that a well-initialized model (e.g., FM) presents smooth loss curves

RoBERTa ViT V7B
0

30
60
90

120

Sw
itc

h
O

ve
rh

ea
d

 (S
ec

on
ds

) Others

Weights

Dataset

(a) Context Switch

0 2 4 6 8 10
0.0

0.5

1.0

N
or

m
al

iz
ed

 L

os
s

RoBERTa
ViT
V7B

(b) Loss Curve

Figure 4: (a) Breakdown of context switch overhead across

FMs. (b) Normalized training loss (𝑦-axis) versus epoch (𝑥-

axis) across various FMs.

RoBERTa ViT V7B
2 1

20

21

22

23

TT
A

Sp
ee

du
p

(a) Temporal Transfer

RoBERTa ViT V7B
2 1

20

21

22

23

TT
A

Sp
ee

du
p

(b) Spatial Transfer

Figure 5: The TTA speedup box plot of (a) temporal transfer

and (b) spatial transfer across various FMs.

for downstream tasks. Followed by prior studies [59, 93], we can
adopt curve fitting techniques to predict model convergence.
Pervasive Task Transferability. Task transferability provides
new opportunities to optimize FMF workloads in a datacenter:
workloads sharing the same FM can be combined to enhance the
performance and cluster efficiency, even for different tasks with
different datasets. Task transferability manifests pervasive across
diverse FMs and tasks. For FMs, previous studies [12, 14, 65] em-
phasize their remarkable ability to adapt to various tasks. FM de-
velopers strategically optimize their models across a spectrum of
tasks, enhancing the generalization and transferability of FMs. Con-
sequently, robust task transferability is a common phenomenon
within FMs. For tasks, recent ML studies [3, 55, 73, 80, 84] have
analyzed transferability between numerous language and vision
tasks. Their findings reveal that over 50% of task combinations can
benefit from spatial or temporal transfer learning. To present this,
we compute the Time-To-Accuracy (TTA) metric, which is defined
as the time required to achieve the target accuracy on a task. We
utilize the targeted accuracy of our evaulated FMF tasks, and mea-
sure the TTA of various task combinations for different FMs. In
Figure 5(a), we illustrate the box plot of relative TTA speedup for
temporal and spatial transfer, in comparison to normal transfer.
Both temporal and spatial transfer can speedup FMF workloads
up to 10 ×. Furthermore, more than half of the task combinations
exhibit positive speedup (≥ 1). This underscores selecting optimal
task combinations and transfer learning modes can expedite FMF
workloads significantly.

Indeed, users have a desire to share task-specific model pa-
rameters with the ML community. Every day, hundreds of new
task-specific models built upon representative FMs are released on
HuggingFace [1]. ModelKeeper [42] and Sommelier [28] harness
the potential of model sharing to expedite model training in GPU
datacenters. Naturally, task transferability opens a new venue to
expedite training progress for cluster-wide FMF workloads.

ICS ’24, June 04–07, 2024, Kyoto, Japan Wei Gao, Weiming Zhuang, Minghao Li, Peng Sun, Yonggang Wen, and Tianwei Zhang

YmirEstimator
Profiling Time

Prediction
Task Merging &
Context switch

YmirSched

(1GPU)

Request

YmirTuner

Task
instantiation

GPU Pool

Resource
Allocation

Desired
Weights

Ymir

Figure 6: Workflow of Ymir. It comprises three key designs:

(1) YmirEstimator estimates the execution time of FMF work-

loads; (2) YmirSched determines the task merging scenarios

and resource allocations; (3) YmirTuner provides efficient

context switch for FMF workloads.

3 YMIR OVERVIEW

We introduce Ymir, a scheduler for FMF workloads to unleash the
potential of task transferability of FMs and improve the cluster-
wide efficiency and scheduling fairness. We discuss the system
assumptions and workflow below.
System Assumptions.We make several assumptions about our
system. (1) We assume all FMF workloads share the same FM back-
bone in the GPU datacenter, as discussed in §1. We discuss extend-
ing Ymir to multiple FMs in §9. (2) A task is denoted as a (dataset,
objective function) pair. The same dataset might be employed with
different objective functions, which could be considered various
tasks. (3) We focus on the widely adopted data-parallel and pipeline-
parallel mechanisms in FMF workloads. Other parallelism schemes
can be easily integrated into Ymir.
System Workflow. Ymir contains three key components:
YmirEstimator is responsible for predicting the execution time
of FMF workloads with different task merging scenarios, includ-
ing task combinations and transfer learning modes; YmirSched
automates the efficient task merging and resource allocations for
cluster-wide workloads; YmirTuner improves the efficiency of FMF
workloads with lightweight context switch mechanisms.

Figure 6 shows the workflow of Ymir. First, a user submits an
FMF request to Ymir in a YAML format. The YAML file specifies
a list of system parameters, as presented in Table 1. (❶). Then,
YmirEstimator demands resources (e.g., 1 GPU) for each new work-
load from YmirSched for profiling, collecting relevant statistical
information (e.g., loss, gradient) (❷). YmirEstimator utilizes pro-
filing results to perform time prediction for each new workload
and send prediction results to YmirSched (❸). Second, YmirSched
decides how to merge tasks and makes the resource (re-)allocations
for cluster-wide workloads (❹). Third, YmirTuner receives task
merging decisions and instantiates the FMF workloads based on
transfer learning modes and other hyperparameters (❺). It also
pipelines the context switch to reduce corresponding overhead.
YmirSched places FMF workloads on appropriate GPUs (❻). Lastly,
Ymir returns the desired model weights to the user when the FMF
workload is finished (❼).

4 YMIRESTIMATOR

YmirEstimator consists of three components to estimate the execu-
tion time of FMF workloads over various task merging scenarios
with profiling results, as shown in Figure 7. First, transferability

Table 1: Description of System Parameters in Ymir.

Parameters Description

Model The model name.

Dataset
A path (e.g., AWS S3) where training
and evaluation samples are stored.

Hyperparam batch size, learning rate, optimizer, etc.

Target
The job completion criteria, including a
maximum number of iterations and an
accuracy target2.

Sharing
Whether to share parameters with other
tasks.

Pipeline Whether to adopt pipeline parallelism.

Transferability
Estimator

Iteration
Estimator

A B A → B A || B

5K 4K 3K 3K

YmirEstimator
Time

Estimator

GPU A B A → B A || B

1 600s 600s 450s 450s

2 400s 360s 270s 240s

Tranfer
Gain

TaskA

TaskB

Convert
to vector

Profiling Transfer
Gain Iteration

Prediction
Time

Figure 7: The workflow of YmirEstimator. It contains three

components: (1) The transferability estimator estimates the

transfer gain between new requests and other FMF requests;

(2) The iteration estimator estimates the number of iterations

needed to reach the target accuracy in different transfer learn-

ing modes; (3) The time estimator estimates the execution

time of new FMF requests.

Table 2: Prediction accuracy of YmirEstimator

Model Transferability Iteration (APE) Iteration-Transfer (APE)

Pearson’s r ↑ MAPE (%) ↓ ACC (%) ↑ Max (%) ↓ Mean (%) ↓ Max (%) ↓ Mean (%) ↓
ViT-Base 0.439 15.53 97.2% 8.13 5.69 26.8 15.35
RoBERTa-Base 0.791 16.76 98.6% 24.75 8.27 31.61 13.67
Vicuna-7B 0.568 18.05 98.6% 22.3 11.3 32.9 11.07

estimator computes the transferability score and predicts the trans-
fer gain (defined in Eqn. 1) between the new workload and other
FMF workloads. Then, iteration estimator uses the transfer gain to
predict the number of iterations (defined in Eqn. 2) that reach the
target accuracy in different learning modes. Last, time estimator
estimates the execution time by multiplying the number of itera-
tions with the time estimated for each iteration under any resource
allocations (defined in Eqn. 5). The estimation process is performed
only once for each new workload, significantly reducing the com-
putational overhead and improving efficiency. We emphasize that
the YmirEstimator’s design is highly modularized, and its com-
ponents can be replaced with other techniques that perform the
same functions. Below, we present the technical details of each
component.

4.1 Transferability Estimator

This component estimates the transfer gain for each joint transfer
learning mode (§ 4). Given two tasks 𝐴 and 𝐵, the transfer gain
from 𝐴 to 𝐵 is calculated as follows:

𝐺𝐴,𝐵 =
𝑃𝐴,𝐵 − 𝑃𝐵

𝑃𝐵
, (1)

𝑃𝐴,𝐵 is the performance (e.g., accuracy) of 𝐵 when jointly fine-tuned
with 𝐴, while 𝑃𝐵 is the performance of 𝐵 when fine-tuned alone. If

Ymir: A Scheduler for Foundation Model Fine-tuning Workloads in Datacenters ICS ’24, June 04–07, 2024, Kyoto, Japan

joint fine-tuning improves the performance of 𝐵, 𝐺𝐴,𝐵 is positive.
Otherwise, it is negative or zero.

A straightforward way to obtain the transfer gain is to fine-tune
the tasks in different learning modes, measure the performance,
and compute 𝐺𝐴,𝐵 with Eqn. 1. This is computationally expensive
and impractical in workload scheduling. Instead, inspired by pre-
vious works [3, 10, 55, 80], we adopt statistical information and
ML techniques to predict the transfer gain. As Ymir requires the
least computation overhead and satisfactory prediction accuracy,
we empirically find that Task2Vec [3] is the most suitable technique
(discussed in §7.5). Its underlying principle is that tasks with high
gradient similarity exhibit high transferability. We make two modi-
fications over Task2Vec to adapt to our scenario. First, Task2Vec
only considers the temporal transfer learning and provides the
corresponding transferability score 𝑆 (𝐴, 𝐵) from tasks 𝐴 to 𝐵. We
extend this metric to spatial transfer learning: we compute the
bidirectional transferability scores 𝑆 (𝐴, 𝐵) and 𝑆 (𝐵,𝐴) and take
their average as the final transferability score for spatial transfer
learning.

Second, we take the transferability score 𝑆 (𝐴, 𝐵) as input to
predict the transfer gain𝐺𝐴,𝐵 . Table 2 (Transferability) shows the
Pearson correlation between 𝑆 (𝐴, 𝐵) and 𝐺𝐴,𝐵 for different FMs.
The high linear correlation between these two metrics suggests the
feasibility of using linear regression to predict the transfer gain
from the transferability score.
Error Analysis. In Table 2 (Transferability), we choose two
metrics to evaluate transferability estimator by considering various
task combinations across different transfer learning modes: (1) The
mean absolute percentage error (MAPE) between the transfer gain
and estimated gain using the transferability score; (2) We categorize
the transfer gain estimation into two classes: positive (𝐺𝐴,𝐵 ≥ 0)
and negative (𝐺𝐴,𝐵 < 0) transfer, and then report the classification
accuracy (ACC). The low MAPE and high accuracy across different
FMs indicate that transferability estimator is a general and practical
approach for estimating the transfer gain.
Sensitivity Analysis.We further analyze the impact of transfer-
ability estimator’s errors on the JCT speedup performance brought
by task merger (as discussed in §5.1). Specifically, we add random
noise with the scale following a uniform distribution over [−1, 1]
on the prediction results of transferability estimator. Figure 8 (a)
presents the JCT speedup compared to the case without task merger.
Even when the added noise scale is up to 40%, the JCT speedup
brought by task merger is still larger than 1. Despite potential devia-
tions in estimation accuracy, the overall performance improvement
remains satisfactory.

4.2 Iteration Estimator

This component estimates the number of iterations required for
joint fine-tuning to reach (or exceed) the same validation accuracy
as the normal transfer. It estimates the training loss curve using
the predicted transfer gain𝐺𝐴,𝐵 for different joint transfer learning
modes. Then, following previous works [9, 93], it identifies the
minimum number of iterations that makes the training converge.
Formally, for task 𝑖 , the number of iterations 𝐾𝑖 is estimated as
follows:

𝐾𝑖 = arg min
𝑘

1(L𝑖 (𝑘) − L𝑖 (𝑘 + 1) ≤ 0.001), (2)

0 5 10 20 30 40 50
Added Noise Scale (%)

1.0

1.5

2.0

JC
T

Sp
ee

du
p R-B V-B V7B

(a) Transferability Estimator

0 5 10 20 30 40 50
Added Noise Scale (%)

1.0

1.5

2.0 R-B V-B V7B

(b) Iteration Estimator

Figure 8: Sensitivity analysis of Transferability Estimator (a)

and Iteration Estimator (b) on JCT speedup between w/ and

w/o task merger.

where 1 is the indicator function and L𝑖 (𝑘) is the training loss
value at the 𝑘𝑡ℎ training step.

It is challenging to obtain the training loss L𝑖 (𝑘) efficiently. The
smoothing loss curve of FMF workloads motivates us to adopt a
curve function proposed by Optimus [59] to characterize the job
progress and training loss for DLT workloads. FMF workloads com-
monly use the Adam optimizer [40], which has a faster convergence
rate than SGD. We introduce an additional second-order term 𝑘2 to
characterize better the job progress and normalized training loss of
FMF workloads:

L𝑖 (𝑘) =
1

𝛽𝑖,3 · 𝑘2 + 𝛽𝑖,2 · 𝑘 + 𝛽𝑖,1
+ 𝛽𝑖,0, (3)

where 𝛽𝑖,3, 𝛽𝑖,2, 𝛽𝑖,1, and 𝛽𝑖,0 are learnable non-negative coefficients.
We empirically observe that our adopted curve-fitting technique
performs better than Optimus. Also, the user can provide appropri-
ate fitting functions based on their experience.

We can use loss traces during profiling to fit Eqn. 3 and obtain a
general set of 𝛽𝑖,3, 𝛽𝑖,2, 𝛽𝑖,1, and 𝛽𝑖,0 for each task 𝑖 . Specifically, we
assume the joint transfer learning task follows a similar training loss
convergence pattern as normal transfer, as investigated by previous
studies [39, 49]. This is empirically validated in Table 2 (Iteration-
Transfer) as well. Then, we use the estimated transfer gain𝐺𝐴,𝐵 to
derive the normalized loss curve as L𝐴,𝐵 (𝑘) = L𝐵 (𝑘)

(1+𝐺𝐴,𝐵) for either
spatial or temporal transfer learning from task 𝐴 to 𝐵. A higher
𝐺𝐴,𝐵 can reduce the number of training iterations using spatial
or temporal transfer learning. Lastly, we use this loss to estimate
𝐾𝐵 . For temporal transfer learning from tasks 𝐴 to 𝐵, we calculate
𝐾𝐴 ↦→𝐵
𝐵

with L𝐵 (𝑘) with Eqn. 2. For spatial transfer learning, the
estimated number of iterations is

𝐾
𝐴∥𝐵
𝐴

= 𝐾
𝐴∥𝐵
𝐵

= max(𝐾𝐴𝑀𝐴

𝐷𝐴
,
𝐾𝐵𝑀𝐵

𝐷𝐵
) · 𝐷𝐴 + 𝐷𝐵

𝑀𝐴 +𝑀𝐵
, (4)

where for a task 𝑖 , 𝐾𝑖 is obtained from Eqn. 2 with L𝑖 (𝑘),𝑀𝑖 is the
global batch size, and 𝐷𝑖 is the training set size.
Error Analysis. We report the mean/max absolute percentage
error (APE) for different FMs with normal transfer in the fifth
and sixth columns of Table 2 (Iteration). We use transfer gain to
predict corresponding training iterations for both temporal and
spatial transfer learning. The prediction error of iteration estimator
for both temporal and spatial transfer learning modes are presented
in the seventh and eighth columns of Table 2 (Iteration-Transfer).
The estimation error of Iteration-Transfer is typically larger than
Iteration, resulting from the accumulated estimation error brought
by transferability estimator. The maximal prediction APE is within

ICS ’24, June 04–07, 2024, Kyoto, Japan Wei Gao, Weiming Zhuang, Minghao Li, Peng Sun, Yonggang Wen, and Tianwei Zhang

an acceptable range (40%). Our iteration estimator performs well in
estimating the number of iterations needed.
Sensitivity Analysis.We use the similar technique as transferabil-
ity estimator to analyze the sensitivity of iteration estimator’s error
in Figure 8 (b). Our findings indicate that the JCT speedup gradually
decreases with the increased noise scale. When the noise scale is
up to 40%, task merger still decreases the JCT. Moreover, Vicuna
can benefit from the added noises to a certain degree, which might
result from the internal prediction error of our iteration estimator.

4.3 Time Estimator

After obtaining 𝐾𝑖 from iteration estimator, the next step is to attain
the job speed under a given resource allocation. Considering the
fixed backbone architecture of FMF workloads, our time estimator
provides accurate job speed via offline profiling. We utilize a simple
yet effective method called lookup table (LUT). It accepts resource
allocations and training configurations as input and returns the
job speed of each training iteration. In particular, LUT constructs a
map S(𝑎, cfgs), where 𝑎 is the number of GPUs assigned to the job
and cfgs are the training configurations. Given such information,
we use LUT to obtain the execution time of the task 𝑖 as follows:

𝑇𝑖,𝑎 = S(𝑎, cfgs) · 𝐾𝑖 . (5)

The execution time of temporal transfer learning from tasks 𝐵 to
𝐴 and spatial transfer learning is denoted as 𝑇𝐴 ↦→𝐵,𝑎 and 𝑇𝐴∥𝐵,𝑎 ,
respectively. Their main difference is reflected in the calculation
of 𝐾𝑖 in §4.2. Specifically, cfgs include {𝑠,𝑚, 𝑎𝑚𝑝, ℓ, 𝑐𝑘𝑝𝑡, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒},
where 𝑎 is the number of GPUs assigned to the workload, 𝑠 is the
number of gradient accumulation steps,𝑚 is the local batch size
per device, ℓ is the number of frozen layers during fine-tuning, 𝑎𝑚𝑝
is a boolean value for automatic mixed-precision training, 𝑐𝑘𝑝𝑡
is a boolean value for the gradient checkpoint, and 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 is a
boolean value for parameter-efficient transfer learning. pipeline
also implies the selection of data-parallelism or pipeline-parallelism,
which will be discussed in § 6.1. Building the Look-Up Table (LUT)
offline poses a great challenge due to a large number of potential
configurations. We reduce the number of configurations needed
to profile and implement the offline profiling within 5 hours per
FM. We continuously update the LUT online to minimize the gap
between LUT and practical scenarios.
Estimation Error Handling of YmirEstimator. From the sensi-
tivity analysis of transferability estimator and iteration estimator,
Ymir achieves a satisfactory speedup, even when the prediction
of our estimators is not accurate enough. This highlights the ro-
bustness of our system. However, it is imperative to proactively
address potential estimation errors of YmirEstimator, as they could
undermine model accuracy and impede training progress. We mon-
itor the accuracy changes of merged tasks to prevent these issues.
For temporal transfer 𝐴 ↦→ 𝐵, we assess the validation accuracy
of task 𝐵 when fine-tuning task 𝐴 during the accuracy evaluation
stage. If it fails to enhance the accuracy of task 𝐵 in the first two
epochs, we disable the temporal transfer and schedule both tasks
independently. For spatial transfer, if the accuracy of either task
𝐴 or 𝐵 does not improve in the first two epochs, we decouple the
spatial transfer and schedule both tasks separately.
Overhead Analysis of YmirEstimator. The overhead of
YmirEstimator consists of the workload profiling and the ML model

estimation in the middle scheduling interval. The workload profil-
ing overhead has been discussed in §7.5. The maximal ML model
estimation overhead for ViT-B, RoberTa-B, and Vicuna-7B is 7.8,
8.6, and 11.2 seconds respectively. Overall, the estimation overhead
is acceptable compared to the FMF workload execution time (tens
of minutes).

5 YMIRSCHED

In YmirSched, we first introduce the task merger determines task
combinations and transfer learning modes. Next, we discuss how
YmirSched addresses special cases and scalability issues.

5.1 Task Merger

Fairness objective.Achieving resource allocation fairness in work-
load scheduling is critical to incentivizing users to share GPU re-
sources [50, 62]. Fairness aims to assign GPU resources evenly
across all FMF workloads. Formally, given a set of 𝑁 tasks J =

{ 𝑗1, 𝑗2, 𝑗3 ... 𝑗𝑁 } and 𝑅 available GPUs, the number of allocated GPUs
to each job 𝑎 belongs to a given set A = {0, 1, 2, 3, 4𝑚 | 𝑚 ∈ Z+}. A
fair share of GPU resources is 𝑎 = ⌈𝑅/𝑁 ⌉. From § 4.3, we obtain
the execution time𝑇𝑖,𝑎 of task 𝑗𝑖 assigned with 𝑎 GPUs. YmirSched
optimizes the following objective:

min
X

(
𝑁∑︁
𝑖=1

∑︁
𝑎∈A

𝑥𝑖,𝑎 ·
(
𝑇𝑖,𝑎

𝑇𝑖,𝑎

))
, (6)

where 𝑥𝑖,𝑎 is an element of a binary matrix X ∈ B𝑁×𝑅 , indicating
whether 𝑗𝑖 is allocated with 𝑎 GPUs; 𝑇𝑖,𝑎/𝑇𝑖,𝑎 measures the recipro-
cal of the job speedup brought by elastic training. The definition of
this objective is inspired from previous fairness schedulers [50, 62].
It minimizes the sum of the slowdown for each job (i.e., maximizes
the speedup of each job) and enforces each workload to share a
similar job speedup/slowdown.
Transfer gain and resource allocation. YmirSched considers
maximizing the speedup benefits of task merging to determine the
transfer learning modes and resource allocations. Combining two
FMF workloads with different transfer gains or allocated resources
favors different optimal modes. For a more in-depth exploration of
preferences regarding transfer learning modes, please refer to the
detailed discussion in §7.2.
Optimization problem. Considering the fairness and impact of
the transfer learning modes, YmirSched introduces the task merger

Ymir: A Scheduler for Foundation Model Fine-tuning Workloads in Datacenters ICS ’24, June 04–07, 2024, Kyoto, Japan

to optimize the following objective:

min
X,Y,Z

𝑁∑︁
𝑖=1

∑︁
𝑎∈A

𝑥𝑖,𝑎 ·
𝑇𝑖,𝑎

𝑇𝑖,𝑎︸ ︷︷ ︸
normal transfer

+

𝑁∑︁
𝑖=1

𝑁∑︁
𝑘=1,𝑘≠𝑖

∑︁
𝑎∈A

𝑦𝑖,𝑘,𝑎 · 1
TranWt(𝑖, 𝑘, ↦→, 𝑎) ·

2𝑇𝑖 ↦→𝑘,2𝑎
𝑇𝑖 ↦→𝑘,𝑎︸ ︷︷ ︸

temporal transfer

+

𝑁∑︁
𝑖=1

𝑁∑︁
𝑘=1,𝑘≠𝑖

∑︁
𝑎∈A

𝑧𝑖,𝑘,𝑎 · 1
TranWt(𝑖, 𝑘, ∥, 𝑎) ·

2𝑇𝑖 ∥𝑘,2𝑎
𝑇𝑖 ∥𝑘,𝑎︸ ︷︷ ︸

spatial transfer

, (7)

subject to:

𝑥𝑖,𝑎, 𝑦𝑖,𝑘,𝑎, 𝑧𝑖,𝑘,𝑎 ∈ {0, 1},∀𝑎 ∈ A,∀𝑖, 𝑘 ∈ Z(𝑁), (8)∑︁
𝑎∈A

𝑥𝑖,𝑎 = 1,
∑︁
𝑎∈A

𝑦𝑖,𝑘,𝑎 = 1,
∑︁
𝑎∈A

𝑧𝑖,𝑘,𝑎 = 1,∀𝑖, 𝑘 ∈ Z(𝑁), (9)

∑︁
𝑎∈A\{0}

𝑥𝑖,𝑎 +
𝑁∑︁

𝑘=1,𝑘≠𝑖
(𝑦𝑖,𝑘 + 𝑦𝑘,𝑖 + 𝑧𝑖,𝑘 + 𝑧𝑘,𝑖) ≤ 1,∀𝑖 ∈ Z(𝑁),

(10)
𝑁∑︁
𝑖=1

∑︁
𝑎∈A

𝑎 · 𝑥𝑖,𝑎 +
𝑁∑︁

𝑘=1,𝑘≠𝑖
𝑎 · (𝑦𝑖,𝑘 + 𝑦𝑘,𝑖 + 𝑧𝑖,𝑘) ≤ 𝑅 (11)

where Z(𝑁) = {1, . . . , 𝑁 }, 𝑥𝑖,𝑎 is a binary variable to denote
whether to allocate 𝑎 GPUs to 𝑗𝑖 , 𝑦𝑖,𝑘,𝑎 is a binary variable to de-
note whether to allocate 𝑎 GPUs and use temporal transfer learning
from 𝑗𝑖 to 𝑗𝑘 , and 𝑧𝑖,𝑘,𝑎 is a binary variable to denote whether to
allocate 𝑎 GPUs and use spatial transfer learning between 𝑗𝑖 and
𝑗𝑘 .3 Note that we use 2𝑇𝑖 ↦→𝑘,2𝑎 (2𝑇𝑖 ∥𝑘,2𝑎) to compute the slowdown
of the merged task. Constraint (9) ensures at most one allocation
policy for each job. Constraint (10) guarantees no overlap between
individual workload and merged workload in resource allocations.
Constraint (11) ensures the total number of allocated GPUs does
not exceed the resource capacity.

In Objective (7), we introduce TranWt to favor the task combi-
nations and transfer learning modes that lead to more significant
JCT speedup. In particular, we quantify the speedup of temporal
and spatial transfer learning modes compared to normal training as
TranWt(𝐴, 𝐵, ↦→, 𝑎) and TranWt(𝐴, 𝐵, ∥, 𝑎), respectively. For a given
resource allocation 𝑎, these two metrics can be formulated as fol-
lows:

TranWt(𝐴, 𝐵, ↦→, 𝑎) =
2min(𝑇𝐴,𝑎,𝑇𝐵,𝑎) +max(𝑇𝐴,𝑎,𝑇𝐵,𝑎)

2𝑇𝐴,𝑎 +𝑇𝐴 ↦→𝐵,𝑎
, (12)

TranWt(𝐴, 𝐵, ∥, 𝑎) =
2min(𝑇𝐴,𝑎,𝑇𝐵,𝑎) +max(𝑇𝐴,𝑎,𝑇𝐵,𝑎)

2𝑇𝐴∥𝐵,𝑎
. (13)

The numerator of each equation is the JCT of executing 𝐴 and
𝐵 with the Shortest Remaining Time First (SRTF) scheduling algo-
rithm. The denominator of Eqn. 12 is the JCT of executing 𝐴 and
then 𝐵 with temporal transfer learning; the denominator of Eqn.
3In practice, spatial transfer learning can only be applied to jobs with zero progress in
that they share the same backbone weights.

13 is the JCT of executing 𝐴 and 𝐵 with spatial transfer learning.
We compute TranWt(𝐵,𝐴, ↦→, 𝑎) similarly as Eqn. 12. For spatial
transfer learning, TranWt(𝐴, 𝐵, ∥, 𝑎) and TranWt(𝐵,𝐴, ∥, 𝑎) are nu-
merically equal.

Using the Integer Linear Programming (ILP) solver, we obtain a
solution to Eqn. 7, i.e., the resources allocated to each job and the
transfer learning mode. Then, we pack each workload with as few
nodes as possible to minimize the communication overhead.

5.2 Discussion

Worklod Profiling. YmirSched needs to provide profiling re-
sources for new workloads to gather statistical information.
YmirSched does not take into account joint fine-tuning for pro-
filing workloads. Additionally, the allowable resource allocations
for profiling workloads are one GPU for data-parallel workloads
and four GPUs for pipeline-parallel workloads.
Pipeline Workloads Scheduling. Following typical resource re-
quest practice of pipeline-parallel workloads [35, 54], we restrict the
resource allocation set as A = {4𝑚 |𝑚 ∈ N}, reserving entire GPU
servers for each pipeline-parallel workloads. The job throughput of
the pipeline-parallel workloads depends upon some configurations
(e.g., model partition, the number of pipelines). Given the fixed
backbone architecture, We profile these configurations offline and
use them during model execution.
Scalability. In solving the above optimization problem, the scala-
bility of YmirSched is related to the square of the number of jobs.
In practice, YmirSched can quickly filter out unnecessary task com-
binations (e.g., TranWt < 1) to reduce the number of optimization
variables. We provide further investigations in §7.2 to validate its
scalability.
Machine Failure Handling. In the event of machine failures, the
default epoch-based checkpoint allows us to resume from the latest
checkpoint. Moreover, we maintain the transfer learning modes and
restore the execution of FMF workloads until the next scheduling
interval (at most 120 seconds). The efficiency might be undermined
slightly in this scenario. We leave it as our future work.

6 YMIRTUNER

We introduce the task constructor and pipeline switch to reuse the
fine-tuning runtime of FMF workloads to improve efficiency and
mitigate the context switch overhead.

6.1 Task Constructor

Task constructor has two main functions. First, it supports three
transfer learning modes as illustrated in Figure 2. The only differ-
ence between normal and temporal transfer learning is the path
storing the initialized weights. For spatial transfer learning, task
constructor adopts the same hyperparameters (e.g., learning rate,
batch size.) to fine-tune task-specific inputs. The dataloader adopts
the annealed sampling [47] to yield the inputs.

Second, task constructor decides the configurations of data and
pipeline parallelism for high throughput. It adopts Parameter-
Efficient Transfer Learning (PETL), a common practice in fine-
tuning FMs to enable data parallelism for FMF workloads. With
PETL, we can fine-tune a small portion of task-specific parameters
instead of the entire model to reduce GPUmemory consumption. As

ICS ’24, June 04–07, 2024, Kyoto, Japan Wei Gao, Weiming Zhuang, Minghao Li, Peng Sun, Yonggang Wen, and Tianwei Zhang

such, we can also execute most fine-tuning tasks in a data-parallel
manner and take advantage of its benefits, e.g., elastic training and
performance modeling. There are different types of PETL architec-
tures [32, 33], and we choose a unified architecture proposed in [31].
Particularly, task constructor decides the steps of gradient accumu-
lation 𝑠 to alleviate the GPU memory consumption in the case of a
large batch size. Additionally, it supports pipeline parallelism when
requested by users. It profiles the optimal pipeline stage and model
partition offline and adopts them on demand. In evaluation, only
fine-tuning Vicuna-7B on ROC [53] dataset assumes the pipeline
parallelism for better throughput in consideration of large batch
size (96) and model parameter size (7 billion). § 5.2 have discussed
scheduling pipeline-parallel workloads.

6.2 Pipeline Switch

The context switch between FMF workloads exacerbates the sched-
uling flexibility and delays the job progress, especially for short-
term ones. Based on the analysis in §2.2, we consider hiding the
overhead of parameter load and data loader preparation for pipeline-
and data-parallel workloads.

First, we hide the latency between loading weights and launching
the CUDA stream to execute gradient computation for pipeline-
parallel workloads. We propose to pipeline the gradient computa-
tion of task 𝐴 and parameter transmission of task 𝐵, as illustrated
in Figure 9. Each machine maintains the entire model structure
and partial model parameters. Both 𝐴 and 𝐵 adopt the pipeline
parallelism on a 4-GPU machine, and the FM is partitioned into
four parts. For naming conventions, we use the subscript of 1-4 to
denote the partition, and the superscript 𝑓 , 𝑏, and 𝑡 to represent
the forward propagation, backward propagation, and parameter
transmission. When the context switch happens between 𝐴 and 𝐵,
we overlap the parameter store of 𝐴 and the parameter load of 𝐵
across machines. We also pipeline the gradient computation and
parameter transmission as much as possible in each machine. To
this end, we require 𝐵 to compute frommachines 4 to 1. Onmachine
4, after completing 𝐴𝑏4 , we save the partial parameters of 𝐴 subse-
quently. Next, the partial parameters of 𝐵 is loaded into machine
4, and 𝐵 𝑓1 starts execution. Note that our pipeline schemes differ
from PipeSwitch [7] in two aspects: (1) we consider the pipeline
parallelism while PipeSwitch only focuses on single-GPU tasks;
(2) the reverse direction of the model execution between task 𝐴
(machine 1 to 4) and task 𝐵 (machine 4 to 1) facilitates hiding the
latency between parameter store of task 𝐴 and parameter load of
𝑡𝑎𝑠𝑘𝐵, which PipeSwitch cannot achieve.

Second, we hide the latency between dataloader preparation and
model execution for data-parallel workloads. Dataloader prepara-
tion mainly involves spawning multiple processes for efficient data
loading and preprocessing. It does not request GPU resources and
brings less system overhead for the main process. Hence, we imple-
ment a simple handler for user signals (e.g., SIGUSR1 in UNIX) to
accomplish on-demand dataloader preparation ahead of time. For
the scheduling interval, YmirSched will notify the YmirTuner to
prepare the dataloader for preempted tasks 30 seconds ahead.

We emphasize that the benefits of our proposed pipeline switch
depend upon the PCIe bandwidth. With the increased bandwidth,
the overhead of context switching diminishes, resulting in shorter

Time
BackwardForward Idle

1

2

3

4

M
ac

hi
ne

s

D2H

𝑨𝟏
𝒇

A𝟐
𝒇

A𝟑
𝒇

𝑨𝟒
𝒇
𝑨𝟒𝒃
𝑨𝟑𝒃
𝑨𝟐𝒃
𝑨𝟏𝒃

𝑩𝟏𝒕
𝑩𝟐𝒕
𝑩𝟑𝒕

𝑩𝟒𝑻

𝑩𝟏
𝒇

𝑩𝟐
𝒇
𝑩𝟑
𝒇

𝑩𝟒
𝒇𝑩𝟒𝒃

𝑩𝟑𝒃

𝑩𝟐𝒃

𝑩𝟏𝒃

H2D

𝑨𝟒𝒕
𝑨𝟑𝒕
𝑨𝟐𝒕
𝑨𝟏𝒕

Figure 9: Pipeline model propagation and parameter trans-

mission. D2H indicates saving parameters from device (GPU)

to host (CPU). H2D indicates loading parameters from host

(CPU) to device (GPU).

execution time. Consequently, the ratio of context switch overhead
over computation time decreases, making computation time the
new bottleneck. Moreover, the pipeline switch alleviates the context
switch overhead, thereby providing a way to enhance hardware
utilization rates.

7 EVALUATION

We first present the setup of our evaluation experiments in§7.1.
Then, we perform physical and simulation experiments for three
FMs to validate the effectiveness and scalability of Ymir in §7.2.
Next, we analyze the impact of several key system components in
§7.3-7.5

7.1 Experimental Setup

Implementation. We implement YmirEstimator and YmirTunner
on transformers 2.4.1 [85] and PyTorch 1.7 [58], and YmirSched on
Kubernetes 1.18.2 [15]. The implementation only consists of 5,967
lines of Python code.
Cluster testbed. We conduct physical experiments in a cluster
of 8 GPU nodes. Each node has 4 × Tesla V100 SXM2 32 GB, 1
× 200 Gbs HDR InfiniBand, 64 CPU cores, and 256 GB memory,
connected via PCIe-III. Particularly, we evaluate Vicuna-7B on GPU
servers containing A100 SXM4 80GB GPUs due to its high GPU
memory consumption. Our physical implementation is built upon
Pollux [62].We use CephFS 14.2.8 to store checkpoints. Additionally,
we set the cluster capacity as 60 4-GPU nodes in our simulation to
demonstrate the scalability of Ymir.
FMF tasks. We evaluate Ymir on 9 vision datasets, 9 language
understanding, and 9 language generation for ViT-Base, RoBERTa-
Base, and Vicuna-7B, respectively. We have conducted a hyper-
parameter sweep to search each task’s optimal learning rate and
batch size. As we evaluate Ymir on 27 FMF different tasks, we
present a full suite of FMF tasks, including hyperparameters and
target validation metrics, in Part A of our project website.
Workloads. Our evaluation workloads are sampled from a trace
from Shanghai AI Lab where users submit extensive jobs related to
FMs. For physical evaluation, we sample 120 - 240 jobs for different
FMs and construct one workload accounting for the expensive cost.
For large-scale simulation experiments, we sample 1500 - 3000 jobs
for different FMs and construct three workloads for evaluation.
The number of sampled workloads is based on the model scale to
match the GPU time usage of our adopted trace. We follow Pollux’s

https://sites.google.com/view/ymir-project#h.dw77b5uw44tb

Ymir: A Scheduler for Foundation Model Fine-tuning Workloads in Datacenters ICS ’24, June 04–07, 2024, Kyoto, Japan

Table 3: JCT diff. between simulator and physical implemen-

tations.

Scheduler Ymir Optimus Pollux Tiresias

Average JCT Diff (%) 8.77 4.37 3.24 5.40
Tail JCT Diff (%) 10.82 0.74 6.03 3.96

Table 4: Accuracy improvement over normal transfer.

Foundation
Models

Max Min Avg

Temporal Spatial Temporal Spatial Temporal Spatial

ViT-B 2.12% 2.4% 0.24% 0.37% 1.11% 0.95%
RoBERTa-B 3.72% 1.51% 0.0% 0.9% 0.85% 1.21%
Vicuna-7B 7.59% 68.82% 2.75% 0.86% 3.72% 14.74%

workload generator to synthesize our evaluation workloads. Specif-
ically, we categorize FMF tasks based on their GPU time and set the
probability of generating these jobs on their scales. The detailed
workload synthesis can be found in Part A of our project website.
Baselines. In the physical experiments, we compare Ymir with
three schedulers, Tiresias [26], Optimus [59] and Pollux [62]. They
are all implemented atop Pollux’s official implementation. Tiresias
fixes the number of workers for each workload. Similar to Ymir,
Optimus and Pollux dynamically change the number of workers
to maximize the cluster-wide performance. However, due to the
sensitivity of FMF workloads toward batch size [44, 72], we disable
GNS [52] to tune the batch size for Pollux throughout the training4.
Besides, we also compare with Themis [50] to show how Ymir
balances fairness and efficiency. We also add preemptive SRTF to
reinforce the effectiveness of Ymir. Following Pollux’s practice, we
construct our simulator, detailed in Part A of our project website.

We set the lease term interval of Themis as 600 seconds. The
scheduling interval of Pollux and Optimus is set as 300 seconds for
the exorbitant context switch overhead. The scheduling interval of
Tiresias, Themis, and SRTF is set as 120 seconds because of their
infrequent resource re-allocations. Thanks to the pipeline switch,
Ymir adopts a short scheduling interval of 120 seconds. To show the
generality and applicability of Ymir, we choose three representative
FMs (ViT-Base, RoBERTa-Base, and Vicuna-7B). We evaluate them
on 9 vision datasets, 9 language understanding datasets, and 9
language generation datasets. More detailed descriptions of datasets
are available in Part A of our project website.
Simulator fidelity. To validate the fidelity of our simulator, we
measure the difference of average JCT and tail JCT between the
simulation and physical experiments in Table 3. The average JCT
gap is within 10%, and tail JCT difference is around 10%. This shows
our simulator can provide reliable and accurate evaluation results.
Without special explanation, we use our simulator in §7.3-7.5.

7.2 End-to-end Performance

Physical evaluation results.We adopt average JCT and 99% tail
JCT to measure the efficiency of Ymir. Figure 10 presents the perfor-
mance of Ymir and baselines over different FMs normalized to Ymir.
Additionally, Figure 10 shows the average and tail JCT (seconds) of
Ymir. Ymir can reduce 1.11 - 4.34× average JCT, and 0.89 - 3.56×
4GNS leads to NAN issues when fine-tuning Vicuna on COQAQG [67].

20

21

22

 N
or

m
.

 JC
T

719 664 2504

ViT-B RoBERTa-B Vicuna-7B
20

21

22

Ta
il

 JC
T

1886 4737 9783

Ymir Optimus Pollux Tiresias

Figure 10: Physical evaluation results over different FMs.

Table 5: The fractions of tasks participating in different trans-

fer modes in the physical experiment.

Mode ViT-B RoBERTa-B Vicuna-7B

Temporal 15% 20% 11.6%
Spatial 16.6% 7.2% 15%

tail JCT compared to baselines. Unlike discussed in [62], Pollux and
Optimus do not outperform Tiresias considerably for language FMs.
The frequent resource re-allocations might delay the job progress
and degrade the performance benefit of elastic training. Besides,
Vicuna attains better performance improvements than smaller FMs,
as they facilitate task transferability and perform well in model
generalization and transferability. §7.5 provides empirical evidence
that Vicuna enjoys the most JCT speedup brought by task merger.

We terminate FMF workloads when the accuracy reaches the
validation target or epochs. However, an important question is
whether the transfer learning would harm model performance. Ta-
ble 4 presents the maximal, minimum, and average relative accuracy
(performance) improvement of tasks fine-tuned with temporal and
spatial transfer compared to normal transfer. Vicuna can attain
maximal 68.82% accuracy improvement for the BLEU metric of
SAMSUM [25] with spatial transfer with DA [45]. The minimum
accuracy improvement is no less than zero. To summarize, both tem-
poral and spatial transfer improve model accuracy. This is in line
with previous works [4, 61, 69] that transfer learning can improve
the model performance. Moreover, the fractions of tasks partici-
pating in different transfer learning modes are shown in Table 5.
About 20-30% of workloads are assigned temporal or spatial transfer
learning modes. Different FMs present various preferences toward
transfer learning modes, and no single dominant transfer learning
mode exists.
Large-scale simulation.We use our simulator to conduct large-
scale simulation experiments. We set the cluster capacity as 60
4-GPU nodes, and vary the job load from 1 × to 2×. Specifically,
based on the model scale, we set 1 × job load as 1500 - 3000 jobs.
Figure 11 shows Ymir achieves 1.66 - 22.3× JCT speedup across
different job loads and FMs. Also, Figure 11 presents the average
JCT (seconds) of Ymir. The speedup gain of Vicuna is more sig-
nificant than that of small FMs, especially compared to Optimus.
Pollux cannot perform satisfactorily in large-scale simulation ex-
periments due to the high search cost of its adopted evolutionary
algorithm. With the increase of the job load, Ymir presents a better
JCT speedup, as a higher job load potentially brings more beneficial
task combinations and thus provides more chances to reduce the
JCT. Besides, the maximal/average of the ILP solver latency for 2 ×

https://sites.google.com/view/ymir-project#h.dw77b5uw44tb
https://sites.google.com/view/ymir-project#h.dw77b5uw44tb
https://sites.google.com/view/ymir-project#h.dw77b5uw44tb

ICS ’24, June 04–07, 2024, Kyoto, Japan Wei Gao, Weiming Zhuang, Minghao Li, Peng Sun, Yonggang Wen, and Tianwei Zhang

20 21 22 23

1.0

1.5

2.0

898

1583

3355

ViT-B
20 21 22 23

1.0

1.5

2.0

347

439

621

RoBERTa-B
20 21 22 23

1.0

1.5

2.0

1112

1417

2004

Vicuna-7B

Ymir
Optimus

Pollux
Themis

SRTF
Tiresias

Figure 11: Scheduling efficiency results over FMs and job

loads in simulation experiments.𝑥-axis is the JCTnormalized

to Ymir while 𝑦-axis is the job load.

0 1 2 3
Finish Time Fairness

0

50

100

Fr
ac

tio
n

of
 Jo

bs
 (%

)

0 1 2 3
Finish Time Fairness

Ymir Pollux Themis Tiresias

Figure 12: CDF of FTF for RoBERTa (left) and ViT (right).

jobs is 0.23/5.43 seconds using one CPU core, which does not have
significant impact on the scheduling performance.

Figure 12 compares the cumulative distribution function (CDF)
of the finish time fairness (FTF) metric between Ymir and other fair-
ness baselines (Pollux, Themis, and Tiresias) for RoBERTa-Base and
ViT-Base. We follow Shockwave’s implementation [95] to compute
FTF and draw the CDF curve under 1× job load. Our observation
is that Ymir outperforms existing fairness baselines considerably.
Note that Ymir even achieves zero FTF loss in the case of ViT-Base.
We conclude that the benefit brought by transferability can enhance
efficiency and fairness very well.

7.3 Evaluation of YmirEstimator

Time estimator. The key component of time estimator is LUT. To
evaluate its robustness, we manually add uniform random noise to
the result of LUT before reporting it.

0 5 10 20 30 40 50
Added Noise Scale (%)

1.2
1.4
1.6
1.8

JC
T

 S
pe

ed
up

R-B V-B V7B

Figure 13: Time Estimator

Figure 13 varies the degree
of the added noise (𝑥-axis) and
presents the speedup (𝑦-axis) com-
pared to Ymirwithout task merger.
Increasing estimation error has no
significant impact on scheduling
efficiency. This primarily results
from the fact that the scheduling
objective (Eqn. 6) is not sensitive

to the throughput estimation error.
Transfer learning modes. In Figure 14(a) investigates the contri-
butions of different transfer learning modes to scheduling perfor-
mance improvement over different FMs. No single transfer learning
mode dominates across all FMs. Nevertheless, when both transfer

R-B R-L V7B
1.0

1.5

2.0

JC
T

Sp
ee

du
p

1.61.5
1.7

1.31.41.4
1.2

1.71.7

w/o T&S
w/ T

w/ S
w/ T&S

(a) Transfer Learning Modes

R-B V-B V7B
1.0

1.5

2.0

1.3
1.4

1.31.3
1.5

1.3

1.5 1.5

1.8
3 6 9

(b) Number of datasets

Figure 14: Impact of key components.

learning modes are jointly considered, the scheduling performance
experiences a further enhancement. Except that temporal trans-
fer learning degrades the JCT speedup brought by spatial transfer
learning in Vicuna. This could arise from the prediction error of
our adopted estimator.

7.4 Impact of LUT and Pipeline Switch

Performance contribution of LUT.We compare LUT with the
throughput estimator adopted in Pollux. Table 6 (row w/ LUT)
reports the JCT of the throughput estimator normalized to that of
our LUT. We observe that LUT is more beneficial to language FMs
than vision FM. Little performance gain is shown for ViT-Base. The
efficiency of the throughput estimator depends upon the fact that
the job throughput scales linearly with the increase of the batch
size and allocated GPUs. Its effectiveness is extensively validated
in vision tasks [62], but is not satisfactory for language tasks.
Pipeline dataloader and model preparation. In this paper, we
use PETL to reduce the size of parameters to compute and commu-
nicate gradients for most FMF workloads. Hence, most FMF tasks
adopt data parallelism, and the pipeline switch between parame-
ter transfer and gradient computation is insignificant for such a
scenario. The dataloader preparation becomes a performance bottle-
neck that restricts scheduling flexibility. Ymir proactively invokes
this step to hide the data preparation to the greatest extent before
fine-tuning the next FMs. Table 6 (row w/ data pipe) shows the
JCT without the dataloader pipeline normalized to that with the
dataloader pipeline. The pipeline dataloader brings 1.1 - 1.7× JCT
speedup.
Pipeline parameter transfer and model execution. We pro-
pose to execute the context switch between two pipeline parallelism
workloads in a pipelined way. This pipeline context switch can con-
siderably reduce the exorbitant time cost of the context switch.
This technique is not applicable to all FMF tasks. We mainly ex-
amine how this pipeline practice benefits to fine-tuning Vicuna on
ROC [53]. It does not bring apparent cluster-wide JCT speedup but
reduces around 4% JCT for tasks fine-tuning Vicuna on ROC.

7.5 Impact of Transferability Estimation

Impact of transferabilitymetrics.We categorize existingmetrics
for task transferability estimation into probability-based, feature-
based, and gradient-based methods. (1) LEEP [55] is a representative
probability-based method incorporating the entire dataset to esti-
mate the data distribution accurately. The computation overhead
of LEEP scales with the dataset size. The estimation accuracy of
probability-based methods closely correlates with the number of
classes [11]. Hence, LEEP fails to perform regression and generation

Ymir: A Scheduler for Foundation Model Fine-tuning Workloads in Datacenters ICS ’24, June 04–07, 2024, Kyoto, Japan

Table 6: Speedup brought by LUT and Pipeline Switch.

ViT-B RoBERTa-B Vicuna-7B

w/ LUT 1.03 1.56 1.29
w/ data pipe 1.12 1.22 1.75

Table 7: Performance of various transferability metrics.

FM LEEP [55] Task2Feat [80] Task2Vec [3]

Speedup Max (s) Speedup Max (s) Speedup Max (s)

ViT-Base 0.85 30.50 1.26 5.87 1.30 24.63
RoBERTa-Base 0.74 202.46 1.12 923.46 1.57 75.64

Vicuna-7B - - 0.99 838.03 1.72 102.85

tasks (e.g., Vicuna). (2) Task2Feat [80] is a feature-based method
that extracts the penultimate layer’s features over the entire dataset
and designs various metrics to measure the similarity between
tasks. Hence, the computation overhead is exorbitant when the
number of examples is enormous. (3) Our adopted Task2Vec [3] is
a gradient-based method, which adopts a subset of the dataset to
quantify the transferability between tasks. We compare the speedup
brought by task merger using three task transferability estimation
metrics in Table 7, and find Task2Vec achieves the best JCT speedup
over different FMs. Task2Feat falls behind on JCT speedup. LEEP
has adverse effects on cluster-wide efficiency for ViT-Based. The
maximal profiling overhead of various metrics is shown in Table 7,
and Task2Vec considerably reduces the overhead compared to other
baselines on language FMs. Overall, Task2Vec is a suitable metric
for transferability estimation.
Sensitivity to the number of datasets.We vary the number of
datasets from 3 to 9 and present the JCT speedup between Ymir
with and without using task merger in Figure 14(b). Our observa-
tion is that task merger can attain at least 1.3 × JCT speedup over
different numbers of datasets and FMs. We acknowledge the JCT
speedup brought by task merger correlates with the intrinsic task
transferability. Our sensitivity analysis demonstrates that the per-
formance improvement brought by task merger does not arise from
our cherry-picking datasets.

8 RELATEDWORKS

Transfer learning. Initially, this technique aims to transfer the
weights of a pre-trained model to downstream tasks to reduce the
training time and data [88]. Many works adopt heuristic meth-
ods [3, 10, 55, 80, 89] to determine the optimal pre-trained model
for initialization based on the task similarity. Additionally, some
works estimate the performance of different transfer learning
modes [3, 10, 22, 34, 55, 76, 80, 89], as discussed in § 2.1. Other
works [18, 82, 83] morph a well-trained model to a new one to
warm start the training. The advancements in transfer learning can
be leveraged to further improve Ymir.
DLT schedulers. Recent efforts of DLT schedulers primarily fo-
cus on effective resource allocations towards data-parallel train-
ing [9, 16, 26, 36, 38, 59, 62, 86, 95]. Nevertheless, existing DLT
schedulers cannot adapt to FMF workloads because they overlook
the optimization opportunities presented by the unique character-
istics of FMF workloads. While Titan [24] focuses on scheduling

pipeline-parallel FMF workloads in GPU data centers, it lacks a sys-
tematic solution to exploit task transferability to enhance overall
cluster-wide efficiency. Ymir automates task merging scenarios and
optimizes resource allocations. Furthermore, Ymir contributes to re-
ducing context switch overhead for both data- and pipeline-parallel
workloads.
Fine-tuning FMs. Recent advances in model fine-tuning are pri-
marily limited to individual jobs from the algorithm and system per-
spectives. Many PETL architectures have been proposed to improve
the model accuracy on language tasks [27, 32, 33, 43, 60, 91, 94] and
vision tasks [17, 57, 74, 90]. Apart from [31], Ymir can utilize an-
other unified PETL architecture called Unipelt [51], which learns to
activate the PETL architectures for downstream tasks. These works
can attain competitive model accuracy compared to fine-tuning all
the parameters. Apart from the algorithmic innovations, several
systemworks [8, 23, 66, 70] provide efficient pipeline parallelism for
FMF workloads. Different from these single-workload optimization,
Ymir optimizes cluster-wide FMF workloads.

9 DISCUSSION

Extensions to other transfer learning modes. Ymir considers
combining at most two tasks. Intuitively, jointly fine-tuning more
tasks can increase the potential benefit of transfer learning, but
the lack of ML studies to estimate transfer gains when combining
multiple tasks (≥ 3) impedes combining more tasks. Moreover, our
empirical results have shown that merging two tasks can yield
sufficiently good results.
Managing multiple FMs. This paper mainly evaluates the sce-
nario with one FM. There can be numerous FMs in the datacenter
for fine-tuning. Then, we can adopt a load-balancing policy to deter-
mine the GPU quotas for each FM, and more sophisticated designs
can be our future work. Nevertheless, our empirical results have
demonstrated the potential of Ymir in improving the efficiency.
Catastrophic forgetting. Temporal transfer learning is susceptible
to the catastrophic forgetting issue. Fortunately, manyworks [46, 78,
92] point out that PETL can effectively avoid catastrophic forgetting.
Empirically, our adopted Task2Vec metric can identify positive
temporal transfer to mitigate catastrophic forgetting.
Privacy concerns. Ymir merges FMF workloads from different
users to achieve high efficiency. Although Ymir does not directly
share datasets but just parameters, there is still a potential privacy
threat from malicious users, e.g., membership inference [71]. To
handle this, Ymir allows users to disable sharing parameters.

10 CONCLUSION

This paper presents Ymir, a novel scheduler tailored for FMF work-
loads in GPU clusters. We propose YmirEstimator and YmirSched to
determine the optimal transfer learning modes and resource alloca-
tions. We design YmirTuner to improve the efficiency of individual
FMF workloads with PETL architectures and pipeline schemes. Our
extensive experiments demonstrate that Ymir outperforms existing
DLT schedulers in job efficiency and resource allocation fairness.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments.
The research is supported under the RIE2020 Industry Alignment

ICS ’24, June 04–07, 2024, Kyoto, Japan Wei Gao, Weiming Zhuang, Minghao Li, Peng Sun, Yonggang Wen, and Tianwei Zhang

Fund - Industry Collaboration Projects (IAF-ICP) Funding Initia-
tive, as well as cash and in-kind contribution from the industry
partner(s).

REFERENCES

[1] 2022. HuggingFace Model Hub. https://huggingface.co/models?sort=downloads..
[2] 2022. OpenAI Fine-tuning Service. https://beta.openai.com/docs/guides/fine-

tuning..
[3] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran,

Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona. 2019.
Task2vec: Task embedding for meta-learning. In CVPR. 6430–6439.

[4] Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, San-
ket Vaibhav Mehta, Honglei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni, et al.
2021. Ext5: Towards extreme multi-task scaling for transfer learning. arXiv
preprint arXiv:2111.10952 (2021).

[5] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee, and
Nipun Kwatra. 2022. Varuna: scalable, low-cost training of massive deep learning
models. In Eurosys. 472–487.

[6] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.
wav2vec 2.0: A framework for self-supervised learning of speech representations.
Neurips 33 (2020), 12449–12460.

[7] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch: Fast Pipelined
Context Switching for Deep Learning Applications. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’20).

[8] Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth
Goyal, Myle Ott, Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam
Sheiffer, Anjali Sridhar, and Min Xu. 2021. FairScale: A general purpose modular
PyTorch library for high performance and large scale training.

[9] Zhengda Bian, Shenggui Li, Wei Wang, and Yang You. 2021. Online evolutionary
batch size orchestration for scheduling deep learning workloads in GPU clusters.
In SC.

[10] Daniel Bolya, Rohit Mittapalli, and Judy Hoffman. 2021. Scalable Diverse Model
Selection for Accessible Transfer Learning. Neurips 34 (2021), 19301–19312.

[11] Daniel Bolya, Rohit Mittapalli, and Judy Hoffman. 2021. Scalable Diverse Model
Selection for Accessible Transfer Learning. Neurips 34 (2021), 19301–19312.

[12] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[13] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101 – Mining
Discriminative Components with Random Forests. In ECCV.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Neurips.

[15] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes: Lessons Learned from Three Container-
Management Systems over a Decade. Queue (2016).

[16] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra,
and Srinidhi Viswanatha. 2020. Balancing Efficiency and Fairness in Heteroge-
neous GPU Clusters for Deep Learning. In Proceedings of the Fifteenth European
Conference on Computer Systems (EuroSys ’20).

[17] Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Wei Ye, Jindong Wang, Guosheng
Hu, and Marios Savvides. 2022. Conv-Adapter: Exploring Parameter Efficient
Transfer Learning for ConvNets. arXiv preprint arXiv:2208.07463 (2022).

[18] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. 2015. Net2net: Accelerating
learning via knowledge transfer. arXiv preprint arXiv:1511.05641 (2015).

[19] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with
90%* ChatGPT Quality. https://lmsys.org/blog/2023-03-30-vicuna/

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL ’19).

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[22] Kshitij Dwivedi and Gemma Roig. 2019. Representation similarity analysis
for efficient task taxonomy & transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 12387–12396.

[23] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf Schuster.
2021. Fine-tuning giant neural networks on commodity hardware with automatic
pipeline model parallelism. In USENIX ATC.

[24] Wei Gao, Peng Sun, Yonggang Wen, and Tianwei Zhang. 2022. Titan: a scheduler
for foundation model fine-tuning workloads. In ACM SoCC. 348–354.

[25] Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. 2019.
SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Sum-
marization. In Proceedings of the 2nd Workshop on New Frontiers in Summa-
rization. Association for Computational Linguistics, Hong Kong, China, 70–79.
https://doi.org/10.18653/v1/D19-5409

[26] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU Cluster
Manager for Distributed Deep Learning. In NSDI.

[27] Demi Guo, Alexander M Rush, and Yoon Kim. 2020. Parameter-efficient transfer
learning with diff pruning. arXiv preprint arXiv:2012.07463 (2020).

[28] Peizhen Guo, Bo Hu, and Wenjun Hu. 2022. Sommelier: Curating DNN Models
for the Masses. In ICDM. 1876–1890.

[29] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-
scale preemption for concurrent {GPU-accelerated}{DNN} inferences. In OSDI.
539–558.

[30] Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2019. Visualizing and understanding
the effectiveness of BERT. arXiv preprint arXiv:1908.05620 (2019).

[31] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham
Neubig. 2022. Towards a Unified View of Parameter-Efficient Transfer Learning.
In ICLR.

[32] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In ICML. PMLR, 2790–2799.

[33] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[34] Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, and Ying Wei. 2022.
Frustratingly easy transferability estimation. In ICML. 9201–9225.

[35] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Neurips
(2019).

[36] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and KyoungSoo
Park. 2021. Elastic Resource Sharing for Distributed Deep Learning. In NSDI.

[37] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury.
2023. Oobleck: Resilient Distributed Training of Large Models Using Pipeline
Templates. In SOSP. 382–395.

[38] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In USENIX ATC.

[39] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[40] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[41] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[42] Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and Mosharaf Chowdhury. 2023.
ModelKeeper: Accelerating DNN Training via Automated Training Warmup. In
NSDI.

[43] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).

[44] Conglong Li, Minjia Zhang, and Yuxiong He. 2022. The Stability-Efficiency
Dilemma: Investigating Sequence Length Warmup for Training GPT Models. In
Neurips.

[45] Junyi Li, Tianyi Tang, Gaole He, Jinhao Jiang, Xiaoxuan Hu, Puzhao Xie, Zhipeng
Chen, Zhuohao Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2021. TextBox: A Unified,
Modularized, and Extensible Framework for Text Generation. In ACL. 30–39.

[46] Yingting Li, Ambuj Mehrish, Rishabh Bhardwaj, Navonil Majumder, Bo Cheng,
Shuai Zhao, Amir Zadeh, Rada Mihalcea, and Soujanya Poria. 2023. Evaluating
parameter-efficient transfer learning approaches on sure benchmark for speech
understanding. In ICASSP. IEEE, 1–5.

[47] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-
task deep neural networks for natural language understanding. arXiv preprint
arXiv:1901.11504 (2019).

[48] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[49] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu.
2023. Full Parameter Fine-tuning for Large Language Models with Limited
Resources. arXiv preprint arXiv:2306.09782 (2023).

https://huggingface. co/models?sort=downloads.
https://beta.openai.com/docs/guides/fine-tuning.
https://beta.openai.com/docs/guides/fine-tuning.
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/D19-5409

Ymir: A Scheduler for Foundation Model Fine-tuning Workloads in Datacenters ICS ’24, June 04–07, 2024, Kyoto, Japan

[50] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair
and Efficient GPU Cluster Scheduling. In NSDI.

[51] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei
Han, Wen-tau Yih, and Madian Khabsa. 2021. Unipelt: A unified framework
for parameter-efficient language model tuning. arXiv preprint arXiv:2110.07577
(2021).

[52] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. 2018. An
empirical model of large-batch training. arXiv preprint arXiv:1812.06162 (2018).

[53] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv
Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A Corpus and
Cloze Evaluation for Deeper Understanding of Commonsense Stories. In ACL.
839–849.

[54] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021. Ef-
ficient large-scale language model training on GPU clusters using megatron-LM.
In SC.

[55] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. 2020.
Leep: A new measure to evaluate transferability of learned representations. In
International Conference on Machine Learning. PMLR, 7294–7305.

[56] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[57] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. 2022. Parameter-

efficient image-to-video transfer learning. arXiv e-prints (2022), arXiv–2206.
[58] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Neurips, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett (Eds.). 8024–8035.

[59] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.
Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters.
In Eurosys.

[60] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna
Gurevych. 2020. AdapterFusion: Non-destructive task composition for transfer
learning. arXiv preprint arXiv:2005.00247 (2020).

[61] Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna Gurevych. 2021. What to
pre-train on? efficient intermediate task selection. arXiv preprint arXiv:2104.08247
(2021).

[62] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,
Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P. Xing. 2021. Pollux:
Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning. In OSDI.

[63] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In ICML. 8748–8763.

[64] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning. PMLR, 8748–8763.

[65] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[66] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over 100
billion parameters. In KDD. 3505–3506.

[67] Siva Reddy, Danqi Chen, and Christopher D. Manning. 2019. CoQA: A Con-
versational Question Answering Challenge. Transactions of the Association for
Computational Linguistics 7 (2019), 249–266.

[68] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
IJCV (2015), 211–252.

[69] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika,
Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al.
2021. Multitask prompted training enables zero-shot task generalization. arXiv
preprint arXiv:2110.08207 (2021).

[70] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[71] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In SP. 3–18.

[72] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob
Uszkoreit, and Lucas Beyer. 2021. How to train your vit? data, augmentation, and
regularization in vision transformers. arXiv preprint arXiv:2106.10270 (2021).

[73] Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, HuadongWang,
KaiyueWen, Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and Jie Zhou.

2022. On Transferability of Prompt Tuning for Natural Language Processing. In
NAACL. 3949–3969.

[74] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022. Vl-adapter: Parameter-efficient
transfer learning for vision-and-language tasks. In CVPR. 5227–5237.

[75] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia
Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bamboo: Making Pre-
emptible Instances Resilient for Affordable Training of Large {DNNs}. In NSDI.
497–513.

[76] Anh T Tran, Cuong V Nguyen, and Tal Hassner. 2019. Transferability and
hardness of supervised classification tasks. In ICCV. 1395–1405.

[77] Nilesh Tripuraneni, Michael Jordan, and Chi Jin. 2020. On the theory of transfer
learning: The importance of task diversity. Neurips 33 (2020), 7852–7862.

[78] Steven Vander Eeckt and Hugo Van Hamme. 2023. Using adapters to overcome
catastrophic forgetting in end-to-end automatic speech recognition. In ICASSP.
IEEE, 1–5.

[79] Tom Viering and Marco Loog. 2022. The shape of learning curves: a review.
TPAMI (2022).

[80] Tu Vu, TongWang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler,
Andrew Mattarella-Micke, Subhransu Maji, and Mohit Iyyer. 2020. Exploring
and predicting transferability across NLP tasks. arXiv preprint arXiv:2005.00770
(2020).

[81] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[82] AbdulWasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos. 2020.
Mothernets: Rapid deep ensemble learning. Proceedings of Machine Learning and
Systems (2020), 199–215.

[83] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. 2016. Network
morphism. In International conference on machine learning. PMLR, 564–572.

[84] Orion Weller, Kevin Seppi, and Matt Gardner. 2022. When to Use Multi-Task
Learning vs Intermediate Fine-Tuning for Pre-Trained Encoder Transfer Learning.
arXiv preprint arXiv:2205.08124 (2022).

[85] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In EMNLP. 38–45.

[86] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In OSDI.

[87] Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021. Crossfit: A few-shot learning
challenge for cross-task generalization in nlp. arXiv preprint arXiv:2104.08835
(2021).

[88] Jason Yosinski, Jeff Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable
are features in deep neural networks? Neurips 27 (2014).

[89] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. 2021. Logme:
Practical assessment of pre-trained models for transfer learning. In International
Conference on Machine Learning. PMLR, 12133–12143.

[90] Bruce XB Yu, Jianlong Chang, Lingbo Liu, Qi Tian, and Chang Wen Chen. 2022.
Towards a Unified View on Visual Parameter-Efficient Transfer Learning. arXiv
preprint arXiv:2210.00788 (2022).

[91] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. Bitfit: Simple
parameter-efficient fine-tuning for transformer-based masked language-models.
arXiv preprint arXiv:2106.10199 (2021).

[92] Guangtao Zeng, Peiyuan Zhang, and Wei Lu. 2023. One Network, Many
Masks: Towards More Parameter-Efficient Transfer Learning. arXiv preprint
arXiv:2305.17682 (2023).

[93] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. 2017. SLAQ:
Quality-Driven Scheduling for Distributed Machine Learning. In ACM SoCC.

[94] Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hinrich Schütze. 2020. Masking
as an efficient alternative to finetuning for pretrained language models. arXiv
preprint arXiv:2004.12406 (2020).

[95] Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman, and Aditya
Akella. 2023. Shockwave: Fair and Efficient Cluster Scheduling for Dynamic
Adaptation in Machine Learning. In NSDI.

https://arxiv.org/abs/2303.08774

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Task Transferability
	2.2 Characterization of FMF Workloads

	3 Ymir Overview
	4 YmirEstimator
	4.1 Transferability Estimator
	4.2 Iteration Estimator
	4.3 Time Estimator

	5 YmirSched
	5.1 Task Merger
	5.2 Discussion

	6 YmirTuner
	6.1 Task Constructor
	6.2 Pipeline Switch

	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-end Performance
	7.3 Evaluation of YmirEstimator
	7.4 Impact of LUT and Pipeline Switch
	7.5 Impact of Transferability Estimation

	8 Related Works
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

