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ABSTRACT

Modern Deep Learning Training (DLT) schedulers in GPU datacen-
ters are designed to be very sophisticated with many configurations.
These configurations need to be adjusted delicately as they can sig-
nificantly affect the scheduling performance. Existing schedulers
require the datacenter operator to tune the configurations only
once before they are deployed, based on the historical workload
traces. Unfortunately, workloads in a datacenter would experience
dynamic changes and deviate a lot from the historical ones over
time, making the pre-determined configurations less effective.

To address this dilemma, we design AutoSched, a framework
that can automatically, efficiently, and dynamically adjust the con-
figuration parameters of DLT schedulers. Motivated by our charac-
terization analysis of real-world DLT workloads and existing sched-
ulers, we introduce two innovative system designs. (1) We develop
a Generation Engine to produce workloads that can reveal the future
trace pattern, which facilitates accurate configuration tuning. (2)
We design a Search Engine to reduce the exorbitant overhead of con-
figuration tuning.AutoSched is general and can be integrated with
off-the-shelf schedulers.We showcase howAutoSched strengthens
three representative DLT schedulers and evaluate them on varying
DLT traces. Extensive experiments demonstrate that AutoSched
improves the performance of state-of-the-art schedulers by up to
46% with 132× configuration tuning latency reduction.
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1 INTRODUCTION

The widespread adoption of deep learning (DL) technology has
motivated many IT companies to build datacenters with GPUs to
handle the high demands for DL training (DLT) workloads. In such a
large GPU datacenter, a scheduler is required to manage these work-
loads and allocate computing resources to them. Over the years,
a variety of scheduling systems have been proposed to achieve
different performance objectives, e.g., latency reduction [16, 21, 32],
fairness [10, 43, 46], resource utilization improvement [42]. DLT
schedulers typically feature a multitude of configuration param-
eters, exerting a substantial impact on their performance. For in-
stance, KubeFlow [25], a production-level DLT scheduler, exposes
parameters metric and target to help autoscale GPU resources
for cost-effectiveness. Bad parameter values of these critical config-
urations might fail to scale up resources [1, 2].

Now it is a common practice for a datacenter operator to stati-
cally pre-determine the optimal configuration parameters for his
DLT scheduler and then deploy it in production. However, the dat-
acenter environment (e.g., resource utilization, job load) changes
significantly over time [12, 14, 18, 41] (as shown in Figure 1), and
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Figure 1: Changing (a) cluster utilization and (b) workload

submission pattern of Helios trace [18] in one day.

fixed configuration parameters would result in poor scheduling per-
formance. Therefore, it is crucial to have an efficient system, that
dynamically and automatically tunes the scheduling configuration
parameters, to adapt to the environment changes. This is missing in
today’s GPU datacenter design or development.

To achieve such an adaptive configuration, there are generally
two strategies. (1) The cluster operator can manually adjust the
configuration parameters at regular time intervals. This has been
realized in conventional software systems [20, 37, 38]. In a large-
scale GPU datacenter, reconfiguring the DLT scheduler each time
involves tuning a substantial number of parameters, which requires
great expertise and effort. Moreover, an improper parameter value
can lead to a considerable performance decline. (2) Recent research
including SelfTune [24] and Oppertune [35] proposes to adopt ma-
chine learning (ML) models to automate the configuration tuning
for conventional datacenter schedulers. Although these automated
methods ease the burden of datacenter operators, they exhibit two
key limitations when applied to DLT schedulers. First, they per-
form configuration tuning on obsolete workload traces that are
normally minutes long at most. In contrast, the duration of a DLT
workload can be up to dozens of days, which introduces delays in
the trace acquisition. The obsolete traces thus misguide the con-
figuration tuning, leading to inefficient configuration parameters.
Second, these methods necessitate multiple rounds of configuration
sampling to assess the performance objectives. A DLT scheduler
typically has an expansive configuration parameter space, which
demands more sampling rounds to identify the optimal results with
unacceptable overhead. The long duration of DLT workloads brings
longer performance measurement time, further exacerbating the
tuning overhead.

We propose AutoSched, a framework that adaptively self-tunes
the configurations of off-the-shelf DLT schedulers in large-scale
GPU datacenters, to achieve near-optimal scheduling performance.
AutoSched consists of two innovative system designs to address
the above-mentioned limitations. First, to handle the obsolete trace
issue, we introduce aGeneration Engine to craft more realistic future
workloads. In Section 2.1, we show that a DLTworkload trace can be
decomposed into a periodic and bursty component. Therefore, our
Generation Engine comprises a global generator and local predictor
to handle these two components separately. For periodic workload
submissions, the global generator searches for the best match from
historical traces as future-arrival workloads. For bursty workload
submissions, the local predictor reacts by estimating the duration of
existing-unfinished workloads at the time of trace collection at reg-
ular intervals. We combine existing-unfinished and future-arrival
workloads to unveil the future time-resource dynamics of the GPU
datacenter for subsequent configuration tuning.

Second, to handle the tuning overhead issue, we design a Search
Controller with three innovative techniques. (1) Instead of running
DLT workloads on actual GPUs with high cost, we implement
a trace simulator to efficiently approximate the performance ob-
jectives with specified configuration parameters. Thus, the entire
configuration tuning process does not require actual GPU resources.
(2) We develop a causal tuner to early terminate unnecessary perfor-
mance measurements with poor configuration parameters. (3) We
further design a trace aggregator to group similar workloads, which
significantly reduces the number of workloads under evaluation
without compromising the tuning performance.

AutoSched can be directly integrated with existing DLT sched-
ulers. We evaluate it on three representative systems: Tiresias [16],
Themis [28], and Lucid [19]. Our evaluation encompasses three
production-level DLT workload traces: Philly [23], Helios [18], and
PAI [41]. Compared with state-of-the-art self-configured method
SelfTune [24], AutoSched expedite the job completion time (JCT)
by up to 1.36× and 1.46 × for Tiresias and Lucid respectively, and
promotes the fairness by 1.12× for Themis across various workload
traces. Additionally, AutoSched accelerates configuration tuning
up to 132×. Our contributions are summarized as follows:
• We uncover the importance of dynamic configuration tuning
in optimizing DLT schedulers, and design the first adaptive
self-configured framework to fill this gap.

• We design the Generation Engine to produce DLT traces for
efficient configuration tuning of DLT schedulers.

• We design the Search Controller with trace simulator, causal
tuner and trace aggregator to reduce the tuning overhead.

• We show the superiority of AutoSched on three representative
DLT schedulers with a variety of DLT traces.

2 BACKGROUND AND MOTIVATION

2.1 Characterization of DLT Workloads

We perform DLT workload trace analysis to unveil their unique
characteristics, which guide us to design AutoSched.
Long Execution. Figure 2(a) presents the cumulative density func-
tions (CDFs) for the job duration distributions from different large-
scale GPU datanceters, including Microsoft (Philly), SenseTime
(Helios) and Alibaba Cloud (PAI). We observe that the job duration
in these traces varies widely, ranging from seconds to dozens of
days. The prolonged use of GPU resources could contribute to a
delay in obtaining accurate DLT traces for configuration tuning.
HighResourceDemand.ADLT job could request up to thousands
of GPUs [18, 23, 41]. Such intensive resource demands account for
a significant portion of GPU datacenter capacity. Moreover, these
jobs with high GPU demands usually have long execution time.
We introduce a metric service, which is denoted as the product
of the requested number of GPUs and execution time. Figure 2(b)
illustrates the distribution of the service with different numbers of
requested GPUs in Helios using the violin plot. The peak/median
service usage presents a growing trend with increased requested
GPUs. This phenomenon is also observed in Philly and PAI. The
elevated service usage of individual DLT workloads may lead to a
resource shortage in the GPU datacenter.
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Figure 2: Characterization of DLT workloads. (a) CDF (𝑦-axis) of the job duration (𝑥-axis) in different traces; (b) Violin plots of

the service (𝑦-axis) over different GPU requests (𝑥-axis) in Helios; (c) Periodic and bursty arrival (number of requests per hour,

𝑦-axis) in Helios over time (𝑥-axis); (d) CDF (𝑦-axis) of the task recurrence (𝑥-axis).

Table 1: The primary configurations of mainstream DLT schedulers in different modules.

Scheduler Tiresias [16] Themis [28] Astrenea [43] Gavel [30] Chronus [14] Lucid [19]

Admission N/A N/A N/A N/A profiler capacity profiler capacity
Scheduling queue, priority lease term lease term queue, lease term lease term priority
Placement pack limit threshold N/A N/A threshold threshold

Admission
Module

Job
Submitted

Waiting Queue

Workload
Module

Round

Placement
Module

Scheduling
Module

job job job

Figure 3: The common workflow of existing DLT schedulers.
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Periodic and Bursty Job Submissions. A DLT trace exhibits
both periodic and bursty job submission patterns. To demonstrate
this, we analyze the Helios trace of seven days in Figure 2(c). We
utilize the Fast Fourier Transform (FFT) to extract the periodic
submission patterns (top). The estimated period is roughly 23 hours,
reflecting the users’ repeated daily behaviors. We also obtain the

bursty submission patterns by subtracting the periodic job requests
from the original ones (bottom). We observe a datacenter may also
experience busty job submissions in unpredictable moments.
Recurrence. Numerous DLT trace analysis [12, 18, 26, 41] reveal a
recurrent pattern in job submissions. We denote task recurrence as
the number of jobs that share the same task semantics, e.g., training
for the same model. The PAI trace contains fine-grained user and
programming information, allowing us to identify recurring DLT
workloads. Figure 2(d) presents the CDF of task recurrence on the
PAI trace. We observe that approximately 60% of jobs repeat more
than ten times in the trace. Other DLT trace analyses [18, 23] also
confirm the prevalence of such workloads. The recurring DLTwork-
loads primarily arise from hyper-parameter tuning and debugging
purposes [12, 41, 42], and they often have similar job duration and
resource usage. This provides opportunities to predict the charac-
teristics of future workloads, facilitating the configuration tuning
design (Sections 3.2.2 and 3.3.2).

2.2 DLT Scheduler

Workflow. Inspired by previous work [4], we analyze the typical
workflow of existing DLT schedulers as illustrated in Figure 3. A
DLT scheduler normally adopts a round-based policy, wherein re-
source allocations are adjusted at fixed intervals. It contains four
key modules. First, the Admission Module analyzes and validates the
newly-submitted jobs, and forwards the qualified jobs to the wait-
ing queue. Second, the Scheduling Module determines the resource
allocations for the workloads to be scheduled in each round. Third,
the Placement Module assigns GPU resources to each workload that
gets scheduled. Fourth, theWorkload Module monitors necessary
performance metrics (e.g., preemption overhead, throughput), pos-
sibly preempts running workloads for incoming ones, and adjusts
resource allocations. Such modularized design not only facilitates
the analysis of configurations but also enables the generalization
of our findings to new DLT schedulers.
Configurations. We analyze some key configurations of main-
stream DLT schedulers designed for large-scale GPU datacenters
in Table 1. Many schedulers share similar types of configurations



ICS ’24, June 04–07, 2024, Kyoto, Japan Wei Gao, Xu Zhang, Shan Huang, Shangwei Guo, Peng Sun, Yonggang Wen, and Tianwei Zhang

across these modules. We summarize three features of these config-
urations. First, a DLT scheduler usually incorporates a hybrid of
numerical (e.g., pack limit) and categorical (e.g., priority) config-
uration parameters, consequently increasing the complexity of con-
figuration tuning. Many configuration tuning algorithms [13, 39]
are solely designed for singular data types.

Second, the configurations of a DLT scheduler exhibit intricate
dependencies. Figure 4(a) shows the relationships among the con-
figurations of Tiresias. The value of queue determines how many
queue thrs are tuned simultaneously. The dependency poses a sig-
nificant barrier to tuning each configuration independently. Decou-
pling the configuration dependency would result in an exponential
increase in the configuration parameter space.

Third, many configurations of a DLT scheduler play a trade-off
role in workload scheduling. For example, profiler capacity is a
configurable parameter in the AdmissionModule. A large profiler
capacitymight increase the reserved resources for workload profil-
ing, leading to low cluster GPU utilization and delayed execution of
workloads. A small profiler capacity might cause a long queu-
ing delay for newly-submitted workloads in the Admission Module.
Experienced operators can analyze the queuing delays and GPU
utilization to configure profiler capacity appropriately. Though
obscured by the performance objectives, the prevalent trade-off be-
comes apparent through the analysis of intermediate performance
metrics (e.g., cluster utilization and queuing delay). These metrics
serve as a scaffold, revealing the impact of each configuration on
specific intermediate performance aspects. Understanding this rela-
tionship enables optimized configuration tuning.

2.3 Existing Solutions for Configuration Tuning

We quantitatively discuss the limitations of existing solutions for
configuration tuning, using the Tiresias scheduler on the Helios
trace as an example.
Fixed Configuration. We first consider the fixed configuration
case. We conduct an exhaustive search for the optimal configura-
tion parameters on a sub-trace of one week and apply them for
future scheduling (“fixed”). Meanwhile, we also consider a “histor-
ical adaptive” case as a baseline, where we adaptively adjust the
configuration every hour by searching for the optimal parameters
from the previous hour. We use SelfTune [24], a state-of-the-art
adaptive configuration method, to search and adjust the config-
urations every hour. Figure 4(b) presents the average JCT ratio
between the fixed and historical adaptive cases across different
weeks. We observe that the maximum JCT with the fixed config-
uration could be as high as 3.8× than the historical adaptive one.
This underscores the inefficiency of fixed configurations for DLT
schedulers and leaves a substantial optimization space for adaptive
configuration tuning.
Adaptive Configuration. Next, we demonstrate the historical
adaptive configuration is still not the optimal strategy from two
perspectives. First, obsolete workload traces could mislead the adap-
tive configuration algorithm to yield sub-optimal scheduling per-
formance. To verify this, we choose the “futuristic adaptive” case
as the baseline, where we adjust the configurations every hour
based on the future workloads in this hour. Note that this baseline
represents the ideal solution, which cannot be achieved in practice.
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Figure 5: The onlineworkflow of AutoSched. It contains two

key components: (1) The Generation Engine yields realistic
workload traces; (2) The Search Controller efficiently searches

the optimal configurations with the generated traces.

Figure 4(c) shows the JCT ratio between historical (SelfTune) and
futuristic adaptive solutions. The configurations from the historical
workloads in SelfTune can lead to a 1.4× JCT slowdown, indicating
that historical traces are not appropriate for configuration search.

Second, a DLT scheduler normally involves numerous configu-
ration parameters, and assessing the scheduling performance for
each set of parameters requires several minutes. Hence, existing
historical adaptive configuration methods suffer from high tuning
overhead. Figure 4(d) shows the configuration search latency at
each iteration using SelfTune. Here, each iteration indicates the
process of tuning configurations on an hour-length evaluated trace.
Despite its low sample complexity, SelfTune takes tens of minutes
to search for configuration parameters, even though it can achieve
efficient configurations in a few iterations.

3 FRAMEWORK DESIGN

We introduce AutoSched, an adaptive self-configured framework
for DLT schedulers. We begin with the overview of AutoSched,
followed by the detailed descriptions of two key components: Gen-
eration Engine and Search Controller.

3.1 Overview

AutoSched consists of an offline and online phase. In the offline
phase, the datacenter operator providesAutoSchedwith the config-
uration parameter space and constraints (i.e., configuration depen-
dency), as well as the desired performance objectives. AutoSched
utilizes the historical workloads to train a local predictor that can
estimate the duration of existing-unfinished workloads. Besides, the
datacenter operator defines the intermediate performance metrics
to help construct the causal performance predictor.

In the online phase, Figure 5 illustrates the runtime workflow of
AutoSched. The Generation Engine first uses the global generator
and local predictor to generate workloads for configuration tuning
(❶). The Search Controller adopts the trace simulator, causal tuner,
and trace aggregator to quickly tune configuration. It then identifies
the optimal configuration parameters and notifies the Scheduler
Controller (❷). The Scheduler Controller reconfigures the sched-
uler with the optimal configurations (❸). Besides, it continuously
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monitors the datacenter and workload status (❹). The Scheduler
Controller streams the information to a workload repository that
follow prior trace studies [18, 23] to store historical workloads and
relevant attributes for the Generation Engine (❺). The implementa-
tion details of the Scheduler Controller are in Section 4.3. We detail
the design of the Generation Engine and Search Controller below.

3.2 Generation Engine

The Generation Engine aims to produce DLT workloads for configu-
ration tuning. As discussed in Section 2.3, historical DLT workloads
are insufficient to reveal future job load and GPU resource usage,
thus misguiding configuration tuning. To address this limitation,
the Generation Engine considers two scenarios of workloads: future-
arrival workloads and existing-unfinished workloads, as shown in
Figure 6. In particular, we employ a global generator to create future-
arrival workloads and a local predictor to estimate the duration of
existing-unfinished workloads at the time of trace generation.

3.2.1 Global Generator. The global generator leverages the peri-
odic job arrival pattern observed in DLT traces to generate future-
arrival workloads.While TraceGen [8] utilizes a generativemachine
learning model to create realistic workloads, it requires millions of
historical workloads for training. In light of this, we choose a more
lightweight approach to generate future-arrival workloads.

In detail, we analyze the historical workloads in the workload
repository based on the number of requests per 5 minutes, and then
adopt FFT to extract the periodic workload submission. To generate
future-arrival workloads, we choose the trace from the past hour
(i.e., 12 points with each point representing the number of requests
per 5 minutes) as a reference segment. Subsequently, we search
the workload repository for the most similar trace, measuring the
similarity between the two trace segments using relative percentage
error. The identified trace is directly replicated and utilized as future-
arrival workloads.

Our global generator has two merits: (1) compared with directly
using historical workloads, the global generator takes advantage of
the periodic submission patterns of DLT workloads and generates
traces that can reveal the future workload submission density; (2)
compared with the ML-based trace generation approach [8], the
global generator is simple and transparent to datacenter opera-
tors. Our empirical studies in Section 5.2 demonstrate that we can
generate future-arrival workloads with high accuracy.

3.2.2 Local Predictor. This component is used to predict the dura-
tion of existing-unfinished workloads, which entails future usage
of GPU resources at the time of trace generation. Hence, it is crucial

to incorporate such information into the generated workloads for
configuration tuning. When confronted with bursts of submissions
at an unpredictable moment, AutoSched adopts the local predictor
to predict the duration, enabling prompt configuration tuning.

The design of the local predictor is underpinned by the recur-
rence pattern observed in DLT workload traces, as detailed in
Section 2.1. When training DL models, developers often prema-
turely stop the workload execution or oversubscribe the number
of training iterations required [18, 41]. Consequently, building a
performance model to accurately predict the job duration at scale
is impractical [18, 41]. Instead, the local predictor concentrates on
predicting the range of duration, which is a comparatively more
tractable problem.

We engineer relevant input features, as outlined in Table 2, to
facilitate the efficiency of the local predictor. Specifically, the local
predictor inputs the temporal features and GPU requests from re-
cent 𝑘 arrival workloads, recent 𝑘 finished workloads, and the query
workload. It classifies the duration of query workload into a small
number of ranges: [0, 𝑡1), [𝑡1, 𝑡2), ..., [𝑡𝑛,∞). Prior works [12, 18]
adopt similar attributes to predict the job features for better sched-
uling performance. We choose the decision tree (DT) to predict the
job duration range because DT offers high accuracy with minimal
latency overhead (discussed in Section 5.2). With the job duration
range, the Search Controller samples a value from the historical
duration distribution that satisfies the predicted duration range,
and assigns such value as the predicted duration for this workload.

Table 2: The features used by the local predictor to predict

the job duration range.

Name Features

Recent Arrivals arrival time, execution time until now,
GPU request of recent 𝑘 newly-submitted jobs

Recent Completions arrival time, finished time, duration,
GPU request of recent 𝑘 finished jobs

Job Attribute arrival time, execution time until now,
GPU request of querying job

3.3 Search Controller

We follow the modularized scheduler design philosophy [4] to
implement a trace simulator, aiming at evaluating the scheduling
performance of each configuration. The trace simulator produces
outputs that comprise performance objectives and intermediate
performance metrics. These outputs are transformed into reward
values and auxiliary reward values, aligning with the principles of
reinforcement learning (RL)-based configuration tuning algorithms.
The trace simulator obviates the necessity for actual execution on
GPUs. As the overhead of configuration tuning is proportional
to the number of configuration sampling iterations and the cost
of performance evaluation, we develop a causal tuner and trace
aggregator to reduce these two terms, respectively.

3.3.1 Causal Tuner. Configuring a DLT scheduler introduces a
trade-off on intermediate performance metrics, which helps identify
the root cause of performance degradation. We desire to explicitly
model the intricate dependency of configuration parameters with
these intermediate performance metrics. To accomplish this, we
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construct a causal performance model, providing an automatic and
explicit representation of the trade-off effects. Subsequently, we
elaborate on how to utilize the learned causal structure to expedite
configuration tuning.
Causal Performance Model. This model takes the configuration
parameters as input and outputs the performance objectives. The
causal structure is a Directed Acyclic Graph (DAG) to uncover
the causality between configurations and performance objectives.
Figure 7 presents an example of the Tiresias scheduler. Here, we
consider a three-layer causal structure: configurations, intermediate
performance metrics, and performance objectives. The intermediate
performance metrics bridge the configurations and performance
objectives, explaining the performance contributions of each pa-
rameter to the performance objectives. A constraint is added for the
causal performance model: there is no casual dependency among
configurations and performance objectives for simplicity unless the
datacenter operator clarifies it.

The construction of the causal performance model takes three
steps. First, the datacenter operator determines the intermediate
performance metrics according to his expertise, and a fully con-
nected graph is constructed as the skeleton of the casual perfor-
mance model. Second, training samples are gathered by utilizing
the historical workloads and simulator to collect the intermedi-
ate performance metrics and performance objectives. Third, Fast
Causal Inference (FCI) [36] is adopted to learn the causal structure.
Configuration Tuning with Causal Performance Model. The
causal performance model is constructed from the fixed workloads.
It reuses the learned causality knowledge and maintains its predic-
tion accuracy when the datacenter environment changes moder-
ately [34]. The causal performance model is updated continuously
with the generated workloads to effectively adapt to the dynamic
environment.

We incorporate the causal performance model into configuration
tuning, as detailed in Algorithm 1. It is an iterative process, con-
taining six key steps. (1) Sampling (Line 5): we adopt BlueFin [24]
to perform configuration sampling because it can effectively tune
various data types (e.g., category, numerical) of configuration pa-
rameters. (2) Projection (Line 6): we project sampled configurations
to satisfy the dependency constraints specified by the datacenter
operator. (3) Rejection (Line 8-9): we adopt the causal performance
model to predict the performance objectives of sampled configu-
ration parameters, and reject unnecessary performance measure-
ments. We also introduce an exploration parameter 𝜖 to ignore
the rejection step and explore new configurations. (4) Measure-
ment (Line 10): we deploy configurations and measure relevant
performance metrics. (5) Update (Line 11-13): we update the causal

Algorithm 1 Configuration Tuning with Causal Model.
1: Input: categorical and numerical parameters𝐶 , constrain rules

W, exploitation parameter 𝜖 ∈ (0, 1), causal Model CM, maxi-
mum iterations 𝑇 .

2: Output: best configuration parameters 𝐶max.
3: Initialize: BlueFin Instance BF, best performance 𝑅max = −∞,

relax factor 𝛾 = 0.95, exploitation indicator 𝑒𝑙𝑝 .
4: for 𝑡 = 1, 2, . . . ,𝑇 do

5: Sample configurations 𝐶𝑡 using BF. ⊲ Sampling
6: Project 𝐶𝑡 to 𝐶𝑡 based on constraints. ⊲ Projection
7: 𝑒𝑙𝑝 = random(0, 1) ≤ 𝜖

8: Predict the performance �̃�𝑡 = CM(𝐶𝑡 ).
9: Skip to next round if �̃�𝑡 ≤ 𝛾𝑅max and 𝑒𝑙𝑝 . ⊲ Rejection
10: Measure (auxiliary) reward 𝑅𝑡 with 𝐶𝑡 . ⊲ Measurement
11: Set reward for BF.
12: Update CM with reward and auxiliary reward.
13: Update 𝑅max, 𝐶max. ⊲ Update
14: Perform what-if analysis and identify configurations that

do not exceed the best performance.
15: Construct constraints that these configurations are fixed in

the next rounds.
16: Add constraints intoW. ⊲ Scope

performance model and configurations. (6) Scope (Line 14-16): we
utilize the causal performance model to analyze which configura-
tions contribute to performance degradation, and narrow down the
sampled configuration options in the next round.

The causal performance model improves configuration tuning
by reducing performance measurements in the rejection step and
facilitating the learning of promising configurations with fewer
samples in the scope step. Case studies in Section 5 provide an
in-depth analysis of the impact of the causal performance model.

3.3.2 Trace Aggregator. The execution time of the performance
measurement on the simulator scales with the size of evaluated
workloads. We introduce the trace aggregator to reduce the amount
of evaluated DLT workloads and expedite the simulator-based per-
formance measurement. The recurrence feature of DLT workloads
implies the prevalence of similar DL workloads. Therefore, we
group similar workloads in the trace generated by the Generation
Engine according to their key attributes, including arrival time,
job duration, and GPU request. Note that we use the remaining
duration and GPU request to group existing-unfinished workloads.

For each aggregated workload, the arrival time and GPU request
are assigned as the average arrival time and the sum of GPU re-
quests of similar workloads, respectively. Such aggregation can
preserve the service load, especially in terms of GPU time. Subse-
quently, we calibrate the duration of the aggregated workload to
ensure the same service usage between the aggregated workload
and a group of similar workloads. We also calibrate some job at-
tributes for existing-unfinished workloads. In detail, we average
time-related attributes (e.g., queuing time, running time) and sum
up service-related attributes (e.g., attained service). Our case studies
in § 5 indicate that the trace aggregator reduces the performance
measurement overhead for each configuration by up to 5.8×.
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4 IMPLEMENTATION

AutoSched is implemented as a background service to configure
the DLT scheduler. Below we present the implementation details of
the Generation Engine, Search Controller and Scheduler Controller.

4.1 Generation Engine

We set up the Generation Engine as a container instance and utilize
gRPC [15] to trigger the workload generation. In the local predictor,
we sort the jobs according to their arrival time and select the first
70% jobs as the training dataset. We adopt XGBoost 2.0.0 to train the
DT and sweep parameters to determine the best hyperparameters.
To adapt to the dynamic scheduling environments, we retrain the
DT model at an interval of one day on newly collected workloads.
Besides, the granularity of the duration categories, represented by
𝑛, 𝑡1, ...𝑡5, are 5, 5 minutes, 30 minutes, 1 hour, 2 hour, and 4 hour,
respectively. In the global generator, we provide a Python-based
implementation to bucketize the workload repository according to
the hour of workload submissions.

4.2 Search Controller

The core part of the trace aggregator is to recalibrate the attributes
of aggregated workloads, which takes less than 50 lines of code for
the implementation of each scheduler.
Trace Simulator.We implement a trace simulator, which contains
∼8,000 lines of Python code, excluding the scheduling policy. The
fidelity of simulator is validated by comparisons with the open-
source implementation of existing DL schedulers [16, 19, 28]. To
minimize the difference between actual execution and simulation,
we gather critical metrics (e.g., communication overhead, job colo-
cation interference) from historical workloads. Thus, the scheduler
provides an effective way to evaluate the scheduling performance
of each new configuration without actually running the DLT sched-
uler in a large-scale GPU datacenter.
Causal Tuner.We optimize the causal performance model based
on CausalNex 0.12.1. The causal graph is constructed in the of-
fline phase, and fine-tuned in the online phase. We modify the
open-sourced BlueFin [24] to support the projection, rejection and
update operations. We fix the interval of updating the configuration
parameters as 1 hour and the maximum number of iterations 𝑇
as 40. Nevertheless, the tuned configuration parameters might be
ineffective in the case of bursty workload submissions. The causal
tuner runs with a more fine-grained interval (e.g., 5 minutes). When
the tuned configuration outperforms the currently-adopted one by
a predefined threshold (e.g., 1.1) with regard to the performance ob-
jectives, we update the configuration parameters, ensuring timely
adjustments to accommodate the variations in the workload pat-
terns and maintain the optimal scheduling performance.

4.3 Scheduler Controller

The Scheduler Controller has two functions: (1) it provides an API
to update the configuration parameters for various DLT schedulers;
(2) it monitors schedulable workloads and stores them into the
workload repository.

5 EVALUATION

We evaluate how AutoSched facilitates the configuration tuning
of three state-of-the-art DLT schedulers.

5.1 Experiment Setup

DLT Traces.We choose a two-week trace in Philly from September
22 to October 6, 2017, a two-week trace in Helios from July 26 to
August 9, 2020, and a two-week trace in PAI from the 84th to the
98th day for our evaluation. Among these traces, only PAI provides
details on the cluster capacity. Taking such job load as a standard,
we vary the cluster capacity using a base-10 scale to search for a
comparable job load versus the GPU cluster capacity. Specifically,
the cluster capacities for Philly, Helios, and PAI are set as 100, 70,
and 100 8-GPU servers, respectively.
DLT Schedulers. AutoSched can work with different scheduling
systems. Without the loss of generality, we choose three main-
stream DLT schedulers: Tiresias, Themis, and Lucid. We choose
them for two reasons. First, the configurations of these DLT sched-
ulers are representative and widely adopted by other schedulers.
Second, they are designed for managing substantial DLT workloads
in large-scale GPU datacenters. AutoSched aims to enhance these
DLT schedulers through advanced configuration tuning.We employ
our trace simulator to assess the efficiency of AutoSched. The sig-
nificant performance benefits observed in the evaluation strengthen
our belief that AutoSched can deliver satisfactory performance in
a production environment.
Baselines. We consider three competitive configuration tuning
baselines compared with AutoSched. (1) Fixed: we search optimal
configurations on our evaluated bi-weekly traces and fix their us-
age in our evaluation. It is a stronger baseline than searching for
fixed configurations using historical workloads. (2) SelfTune: we
dynamically search the configurations on the historical traces. (3)
Optimal: we adopt our Search Controller on realistic future DL
workloads. This is ideal and cannot be achieved in practice.

Table 3: Test accuracy (%) and latency (seconds per 1000 sam-

ples) of various models on different DLT traces.

Algorithm Philly Helios PAI Inference Fine-tuning

XGBoost 88.21 90.41 82.68 0.0331 0.3291
LightGBM 87.78 89.93 82.92 0.0318 0.2132
RandomForest 88.08 88.19 79.06 0.0420 0.3489
MLP 85.53 86.37 61.60 0.0175 3.1740
LR 84.93 80.99 65.79 0.0030 0.1212

Table 4: Average relative percentage difference (%) and latency

(seconds per 1000 samples) of the causal performance model

on different traces.

Algorithm Philly Helios PAI Inference Fine-tuning

Causal Model 14.23 11.17 15.16 0.0927 1.4731
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Figure 8: Job request differences between the generated and

actual DLT traces over days.

5.2 Effectiveness of ML Models in AutoSched

Local Predictor.We select different ML models for the local pre-
dictor, and Table 3 presents their prediction accuracy on various
DLT traces. We also report their corresponding inference and fine-
tuning latency for 1000 samples. In general, XGBoost achieves the
best accuracy, and the inference and fine-tuning latency is accept-
able in practical systems. Besides, thanks to the interpretability
of XGBoost, we observe the strong correlation between the job
attributes of recent arrival and completed jobs and the duration of
newly arrived jobs by visualizing its results. For Helios and PAI,
we further remove the user information from the traces, and the
corresponding accuracy is degraded by 3.77% and 7.18% accuracy.
respectively. This highlights the importance of user information in
model accuracy improvement.
Global Generator. We conduct comparative analysis using two
types of DLT traces: the Original trace, which consists of raw trace
data, and the Periodic trace, derived from the Original trace through
FFT processing. The Periodic trace captures inherent periodic job
submission trends and activity bursts. For each trace type, we gen-
erate future traces and quantify the relative differences in the num-
ber of job requests between the ground-truth future arrival traces
and the generated ones. Figure 8 shows the generation based on
the original trace exhibits significant deviations and unpredictable
peak error values. The difference range observed in this case spans
from 0.6 to 2.3 across various traces. In contrast, a remarkable re-
semblance is evident between the generated and periodic traces,
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Figure 9: End-to-end performance on Tiresias.

exhibiting a significantly lower difference range of 0.3 to 1.0. This
suggests that our global generator, while straightforward in de-
sign, is highly effective in capturing the periodic arrival patterns of
future DLT workloads.
Causal Inference.We divide the DLT trace into day-length traces,
and select several segments with comparable service usage and
exhaustively evaluate various configurations to optimize the causal
performance model for different schedulers. This is conducted in
the offline phase to eliminate the high overhead of model training.
The model fine-tuning is performed in the online phase. We present
the average relative percentage difference between the prediction
result and the actual scheduling performance in our evaluation, as
well as the inference and fine-tuning time in Table 4. The causal
performance model can achieve satisfactory prediction accuracy
with acceptable inference and fine-tuning latency.

5.3 Case Study 1: Tiresias

Configurations. In the Scheduling Module, Tiresias provides three
ways to compute the priority of each job: time, service, and
Gittins Index. The priority values are discretized to prevent
continuous priorities leading to frequent job preemption. The prior-
ity discretization introduces two configurations: queue and queue
threshold. The value of queue determines the number of queue
thresholds. To reduce the long queuing delay and avoid starva-
tion, Tiresias promotes a job to the highest priority queue if it has
been waiting longer than a threshold starve limit. In the Place-
ment Module, Tiresias sets a threshold pack limit to compute the
amount of skew in parameter tensor distributions and determine
whether to implement the consolidation placement. Configuring
pack limit balances the job runtime speed slowdown and queuing
delay.
End-to-end Scheduling Performance. Figure 9 compares the
end-to-end JCT performance across various DLT traces. We normal-
ize the JCT using the Optimal baseline. We observe that SelfTune
consistently outperforms the Fixed baseline on Helios and PAI,
while showing a slightly lower performance than the Fixed base-
line on Philly. This highlights the limitation of relying solely on
an adaptive approach without considering the prediction of future
workloads when configuring DLT schedulers. AutoSched incorpo-
rates the workload prediction and achieves 1.10−1.36× JCT speedup
compared to SelfTune, demonstrating the positive effect of future
workloads. Moreover, the performance gap between AutoSched
and the Optimal baseline is relatively narrow. The Optimal baseline
adopts the same Search Controller to perform configuration tuning,
and the causal tuner in the Search Controller might skip evaluat-
ing certain configuration parameters, making AutoSched achieve
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Figure 12: Search overhead of trace aggregator on Tiresias.

better JCT performance on Philly. Overall, AutoSched shows ad-
vantages in improving JCT performance for Tiresias across different
scenarios.
Similarity Metric Selection. In our global generator, we utilize
the absolute difference (Manhattan distance) between the reference
segment (recent past hour) and historical traces. This similarity
metric is straightforward and intuitive, yielding promising empiri-
cal results in our evaluation. Although we explored various other
similarity metrics, the average JCT results reported in Table 5 reveal
that both Manhattan and Euclidean metrics demonstrate compara-
ble performance. However, both Cosine and Pearson metrics exhibit
a performance drop of over 5%. In summary, our adoption of the
Manhattan distance metric demonstrates satisfactory performance.

Table 5: Avg. JCT across various similarity metrics.

Metrics Philly Helios PAI Metrics Philly Helios PAI

Manhattan 2.851 3.082 2.988 Euclidean 2.853 3.089 2.978
Pearson 2.996 3.160 3.151 Cosine 3.108 3.195 3.155

Impact of Search Controller.We explore the impact of the Search
Controller on the scheduling performance and search overhead.
Figure 10 analyzes the influences of the trace aggregator and the
causal tuner on the average JCT of AutoSched. Particularly, “w/o
Search Controller” refers to the absence of the Search Controller,
“w/ Causal Tuner” refers to only enabling the causal tuner in the
Search Controller, “w/ Trace Aggregator” refers to only enabling the
trace aggregator in the Search Controller, and “w/ Search Controller”
refers to enabling both the causal tuner and trace aggregator to-
gether. Note that we reduce the number of configuration tuning
iterations to 10 for “w/o Search Controller” because of its enormous
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Figure 15: Search overhead of causal tuner on Themis.

configuration tuning overhead. AutoSched searches the configu-
ration parameters on the future workload prediction rather than
realistic future workloads; the Search Controller does not always
bring negative scheduling performance. Furthermore, with more
configuration tuning iterations, the Search Controller even further
improves the scheduling performance of Tiresias.

Figure 11 illustrates how the causal tuner reduces the overhead
of configuration tuning across various DLT traces. Specifically, we
disable the trace aggregator and report the violin plot of tuning
overhead across different iterations of configuration search. The
causal tuner reduces the overhead to 9.5-22.7×, bringing it down
from thousands of seconds to mere hundreds of seconds. Further-
more, in Figure 12, we compare the configuration tuning overhead
of AutoSched with and without the trace aggregator while en-
abling the causal tuner in both scenarios. The trace aggregator
further expedites the configuration tuning to 2.6-5.8×, maintaining
the overhead within one hundred seconds, with the majority com-
pleting within half a minute. Overall, the Search Controller reduces
the configuration overhead up to 132 ×.
Causal Graph. The learned causal graph of Tiresias is shown in
Figure 7, which aligns with our expectation. The causal graph acts
as an experienced expert to help the causal tuner quickly identify
the most important configurations to tune. In the configuration
tuning, the causal graph often constrains the search space into
queue-related configurations, demonstrating the importance of
queue-related configurations and curbing the configuration tuning
space for AutoSched.
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Figure 16: Search overhead of trace aggregator on Themis.
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graph; (b) Comparison between lease term and job load
across different iterations of configuration search.

5.4 Case Study 2: Themis

Configurations. Themis [28] defines a metric called finish time
fairness (𝜌) and aims to maximize the number of jobs with 𝜌 ≤ 1.
In its Scheduling Module, Themis introduces a configuration lease
term to indicate an exclusive GPU resource usage for a fixed period.
Like Tiresias, Themis provides two choices to compute the lease
term: time and service. We denote this configuration option as
priority. A DLT workload with lease expiry needs to participate
in resource re-allocations. A large lease term sacrifices the fair-
ness, but a small lease term incurs high preemption overhead.
At each scheduling round, Themis utilizes a parameter fraction
𝑓 to trade off fairness and efficiency. Specifically, it selects (1 − 𝑓 )
fraction of workloads with the largest 𝜌 and prioritizes the resource
allocations for them. A small fraction incentivizes the fast com-
pletion of short-term jobs and reduces resource contention. A large
fractionminimizes the maximum 𝜌 among DLT jobs to implicitly
enforce fairness. In the Placement Module, Themis introduces a
similar threshold thr as Tiresias to determine whether to relax the
consolidation placement constraint for workloads.
End-to-end Scheduling Performance. Figure 13 compares the
CDF of finish-time fairness (FTF) amongAutoSched and three base-
lines across various DLT traces. As discussed in a prior study [12],
maximizing fairness is more difficult than minimizing the JCT with
the oracle future knowledge. The performance gap between Self-
Tune and Optimal is limited, leaving less improvement space. Nev-
ertheless,AutoSched attains (1.07−1.12×) improvement compared
to Fixed baselines in terms of the number of jobs with 𝜌 ≤ 1.
Impact of Search Controller. We investigate the effect of the
Search Controller on the FTF performance and configuration over-
head. Figure 14 reports the ratio of jobs with 𝜌 ≤ 1. The Search
Controller reduces FTF by 4% and 5% on Philly and PAI, respectively.
Improving FTF is more challenging than reducing JCT, making the
Search Controller’s impact on the FTF performance pronounced.
Following the evaluation approach of Tiresias, we present how
the causal tuner and trace aggregator expedite the configuration
tuning in Figures 15 and 16 respectively. The causal tuner reduces
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Figure 18: End-to-end performance on Lucid.
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Figure 20: The search overhead analysis of (a) the causal tuner

and (b) the trace aggregator on Lucid.

the configuration tuning overhead to 4.8-5.5×. The trace aggregator
further brings 1.9-3.9× configuration tuning reduction. In conclu-
sion, the Search Controller effectively reduces the configuration
tuning overhead while maintaining an acceptable degradation in
the FTF performance of AutoSched on Themis.
CausalAnalysis. Figure 17(a) visualizes the causal graph of Themis.
In our evaluation, the causal graph constraints tune configurations
for lease term many times. Specifically, Figure 17(b) depicts the
dynamic changes in the lease term and job load throughout
various configuration search iterations. The job load is the ra-
tio of the total GPU requests to the number of jobs. We observe
fluctuations in the lease term corresponding to variations in the
job load. In the high job load, AutoSched configures relatively
small lease term while setting a large one for the low job load.
The fixed lease term is not an efficient choice for maintaining the
FTF performance of Themis.

5.5 Case Study 3: Lucid

Configurations. Lucid [19] packs jobs on the same GPUs to opti-
mize the JCT of Lucid by tuning its configurations. In the Admission
Module, Lucid configures the profiler capacity to balance the
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date frequency of Lucid’s configurations on Helios trace.

queuing delay and cluster utilization. In the Placement Module,
Lucid provides a pack knob to determine whether to pack DLT
workloads on the same GPU device. This configuration balances
the job runtime speed and queuing delay.
End-to-endPerformance. Figure 18 shows the JCT of AutoSched
and other baselines across various DLT traces. AutoSched out-
performs SelfTune by up to 1.15 - 1.17× in terms of JCT. The per-
formance gap between AutoSched and the Optimal baseline on
PAI is minor except on PAI. PAI trace contains more small and
short-term jobs, leaving more optimization space to pack jobs in
the same GPUs [41]. More accurate future traces can bring higher
performance improvement while our local predictor on PAI trace
in Table 3 is not as accurate as that on Philly and Helios, further
confirming the significance of future workload prediction.
Impact of Search Controller.We first show how the Search Con-
troller influences the scheduling performance across various DLT
traces in Figure 19. Overall, the causal tuner and trace aggregator
increase the average JCT within 5%. We further study the benefits
of the Search Controller in reducing the configuration latency. The
configuration parameter space of Lucid is relatively small compared
to that of Tiresias and Themis. The Search Controller limits the
configuration optimization space forAutoSched and always brings
negative scheduling performance. Figures 20(a) and 20(b) further
demonstrate that the causal tuner and trace aggregator can reduce
the configuration latency by up to 3.4× and 5.7× respectively.
Causal Analysis.We additionally showcase the causal graph of
Lucid in Figure 21(a). The learned causal graph implies the trade-
off effect of Lucid’s configurations. Moreover, Figure 21(b) shows
the update frequency of pack knob and profiler capacity on
Helios. With the learned causal model, the causal tuner narrows
down the scope of tuned configurations on pack knob to adapt
to changing intermediate performance metrics including queuing
delay and speed slowdown of cluster-wide workloads.

6 DISCUSSION

Limited Configuration Options. Some DLT schedulers may pos-
sess a limited number of configuration options. Our Generation En-
gine facilitates the configuration tuning, and the casual tuner also
provides transparent and explainable decisions about configuration
selection. AutoSched still contributes to such DLT schedulers.
Small-scale GPU Datacenters. A small-scale GPU datacenter
(with ≤ 32 GPUs) may constrain the impact of various configu-
ration parameters, curtailing the opportunities for optimization

through configuration tuning. Considering the constrained poten-
tial benefits achievable through configuration tuning, AutoSched
is less desirable to attain significant performance improvement.
Dependence on Trace Pattern.We adopt three DLT traces widely
embraced by current DLT schedulers [4, 19, 27]. Overall, they can
represent the general situation of DLT trace pattern. Even with
the change of trace pattern, AutoSched can reactively run config-
uration tuning as a background process, and the significant per-
formance gap between the deployed and tuned parameters will
trigger the replacement of parameters. Thus, DLT schedulers can
still benefit from AutoSched.

7 RELATEDWORKS

DLT Schedulers. The success of DL technology is propelled by
the advent of large-scale GPU datacenters. Hence, various DLT
schedulers [9, 16, 21, 31, 32, 42, 44] have been proposed to optimize
DLT workloads in GPU datacenters. They introduce configurable
innovations across different modules, as discussed in Section 2.2.
AutoSched is a framework that further strengthens these sched-
ulers by dynamically tuning their configurations.
Configuration Tuning. The optimization of system performance
through configuration tuning has long been a focal point in the
system community [17, 45]. Traditional configuration tuning sys-
tems primarily concentrate on adjusting parameters for specific
applications, such as databases [39, 40], compilers [5, 11], and stor-
age [6, 7]. Recent advancements [24, 35] shift the focus towards
automatic configuration for cluster management systems. How-
ever, their proposed tuning algorithms are specifically designed
for big data schedulers that operate at a time scale of minutes. In
contrast, AutoSched excels in optimizing the configurations of
DLT schedulers, which have significantly distinct features.
Causal Analysis in Systems. Causal analysis has been applied
in numerous system domains, such as software engineering [33],
performance debugging [3], and cloud systems [29]. Recently, Uni-
corn [22] and CAMEO [34] introduced causal performance pre-
dictors to expedite the configuration tuning systems. While these
efforts focus on relatively stable environments, our approach draws
inspiration from them and customizes causal analysis for dynamic
scheduling environments.

8 CONCLUSION

This paper presents AutoSched, a framework to automate config-
uration tuning for DLT schedulers in a large-scale GPU datacenter.
AutoSched designs the Generation Engine to yield more realistic
workloads for configuration search. Also, it develops the Search Con-
troller to mitigate the substantial search overhead by curbing the
configuration search space and reducing the performance measure-
ment overhead without sacrificing the performance. Our evaluation
on three representative DLT schedulers across different production
traces confirms the efficiency and generality of AutoSched.
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