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Abstract— Deploying a safe mobile robot policy in sce-
narios with human pedestrians is challenging due to their
unpredictable movements. Current Reinforcement Learning-
based motion planners rely on a single policy to simulate
pedestrian movements and could suffer from the over-fitting
issue. Alternatively, framing the collision avoidance problem
as a multi-agent framework, where agents generate dynamic
movements while learning to reach their goals, can lead to
conflicts with human pedestrians due to their homogeneity.

To tackle this problem, we introduce an efficient method that
enhances agent diversity within a single policy by maximizing
an information-theoretic objective. This diversity enriches each
agent’s experiences, improving its adaptability to unseen crowd
behaviors. In assessing an agent’s robustness against unseen
crowds, we propose diverse scenarios inspired by pedestrian
crowd behaviors. Our behavior-conditioned policies outperform
existing works in these challenging scenes, reducing potential
collisions without additional time or travel.

I. INTRODUCTION

Mobile robots are increasingly used in various applica-
tions ranging from industrial automation, service delivery, to
agriculture applications [1]. The ability of these robots to ma-
neuver and navigate in complex and dynamic environments
is crucial for their successful deployment. One key aspect of
mobile robot navigation is local motion planning, which aims
to find a feasible and safe path for the robot to follow in its
immediate vicinity. This task is particularly challenging, as it
needs to ensure safe, efficient, and smooth robot movements
in the presence of dynamic obstacles (i.e., pedestrians) in the
environment. To address this issue, Reinforcement Learning
(RL) has been introduced to achieve local motion planning,
which exhibits the high ability to handle more complex
scenarios and increased levels of uncertainty [2]–[6].

For RL-based methods, the environment is crucial as it
shapes the agent’s understanding of the environment to train
an optimal policy. Particularly, the scenes in the environment
should fully reflect the inherent diversity and unpredictability
of pedestrians’ movements. For example, on the footpaths,
human pedestrians may walk at different speeds or behave
differently depending on their social norms. If their behaviors
are not modeled comprehensively, it is challenging for the
robot agent to learn a robust policy which works well against
diverse and unseen crowd behaviors.

Various approaches have been proposed to generate pedes-
trian movements for training RL-based local motion plan-
ning policies, which can be classified into two categories.

Fig. 1: A human may take diverse strategies to reach
the same predefined goal (left). We propose a behavior-
conditioned policy to integrate such diversity into the
robot agent (right). This diversity enriches the agent
with a more varied range of experiences when learning
in a multi-agent framework, and improves its ability to
generalize in unseen crowd behaviors.
Unfortunately, both suffer limitations. The first category
involves single-agent approaches. One simple approach is
to assign pedestrians’ waypoints from a dataset [7], which
doesn’t enable interactions between robots and pedestrians,
limiting their influence on each other. To address this,
some works manually design pedestrians’ behaviors based
on crowd density [8], [9], or use fixed non-learning-based
algorithms to control pedestrians [4], [10]–[12]. However,
these approaches may lead to agents overfitting due to limited
diversity in generated pedestrian movements.

The second approach frames local motion planning as a
decentralized multi-agent collision avoidance task [3], [5],
[13]. Each agent is linked to a single policy to reach its goal,
learning to avoid collisions and adapting dynamically during
training. This strategy offers two advantages: (1) it doesn’t
require explicit specification of each pedestrian’s behavior to
avoid bias; (2) it’s highly sample-efficient due to bootstrap-
ping, as every agent’s trajectory can update the same model.
However, these solutions face practical challenges when
applied to scenarios with diverse or unforeseen dynamics.
The learned policy assumes homogeneous behaviors among
multiple robots upon deployment, posing a challenge for
navigating in scenarios with varied crowd behaviors where
such assumptions don’t hold.

In this paper, we propose a novel sample-efficient multi-
agent framework to enhance behavior diversity among
agents. Diverse movements induced by different agents en-
rich experiences and enhance robustness to unpredictable
behaviors in unseen or challenging scenarios. Our framework



introduces the concept of behaviors conditioned on a policy.
These behaviors, randomly sampled as token embeddings by
each agent at the start of each training episode, incentivize
agent diversity. We assign intrinsic rewards for agents to take
varied actions for every state conditioned on the sampled
behavior. These rewards are based on a discriminator capable
of identifying behavior from a state-action pair. With this
approach, we can train robust RL policies for local motion
planning in highly complex environments.

We perform comprehensive simulation experiments to
evaluate the robustness of our framework on a diverse set
of unseen pedestrians’ behaviors. Simulation results show
that the proposed behavior-conditioned policy is more robust
while having the same number of updates.

II. PRELIMINARIES

A. RL-based Local Motion Planning

Local motion planning is a sequential decision-making
task that can be formulated as a Markov Decision Process
(MDP), defined by a tuple M = ⟨S,A,P,R,γ⟩. Here, S is the
state space, A is the action space, P is the state-transition
model, R is the reward function, and γ is a discount factor.

A general form of the states is s= [senv,srobot ,sgoal ], where
senv, srobot and sgoal contain information about the observed
environment, robot and goal respectively. Similar to [5], we
choose a realistic representation that uses distance readings
from a 2D laser range finder to sense the environment senv.
We consider the sensor noise and obstacle occlusions, and
make no assumptions about the shape, size, and number of
obstacles, which are more closely aligned with the real world.
srobot reveals the state of the robot, usually the velocities
and optionally the position. sgoal is represented by either the
relative or absolute goal position.

The action space A is the set of permissible velocities in
either the continuous or discrete space. The reward R can be
normally represented as follows:

rt =


rgoal if ∥pt −g∥< dcol ,

rcol else if collision ,

rstep · (∥pt−1−g∥−∥pt −g∥) otherwise,

where rgoal is the reward for reaching the desired goal, rcol is
the penalty for collision, rstep is the dense reward for getting
closer to the goal, dcol is the distance threshold for reaching
the goal, p and g are positions of the robot and goal.

In this MDP, we aim to use RL to find a policy πθ

parametrized by θ , which maps states to actions and max-
imizes the expected sum of discounted rewards, J(θ) =
E
[
∑

T
t=0 γ t · rt

]
, where T is the length of an episode.

B. Pedestrian Modelling

In local motion planning, the movement of dynamic obsta-
cles, often represented by human pedestrians, is a crucial en-
vironmental factor. Each pedestrian’s behavior significantly
influences the environment and how the robot agent learns
within the RL framework. Existing approaches to modeling
pedestrians can be classified into two categories.

Single-agent approaches. In these approaches, only a single
robot agent learns to navigate within the crowd, while pedes-
trians are typically modeled using non-learning-based algo-
rithms. Some examples of the non-learning-based algorithms
include Velocity Obstacles [14], Social Forces [4], [10]–
[12] and physics inspired movements [15]. One common
drawback to these approaches is that the RL-agent might
overfit to the chosen pedestrian behaviors during training.
Multi-agent approaches. The main idea of the multi-agent
framework [3], [5], [13], [16]–[20] is to control multiple
agents with a single policy. In this setup, agents must learn
to avoid each other to reach their goals, leading to the
emergence of dynamic movements during the course of
training. One consequence under this framework is that the
agents converge to homogeneous behaviors as all agents
boot-strap to a single policy.

C. Behavior Diversity in RL

To address the above homogeneity concern, various ap-
proaches were proposed to increase agent behavior diversity.
For single-agent scenarios, one popular solution [21] is to
maximize the entropy of the policy in addition to the reward,
to learn different behaviors to achieve the goal . Eysenbac et
al. [22] introduced DIYAN to increase the diversity of agent
behaviors by maximizing the mutual information between
skills and states, resulting in better state exploration.

In the multi-agent scenario, some work increases the
behavior diversity of multiple agents in the Centralized
Training with Decentralized Execution (CTDE) framework
[23]–[25]. When agents are assigned different tasks, each
agent gets a distinct policy respectively, which shares a
common critic network. With multiple policies, several ideas
have been proposed to generate diverse behaviors among
agents [26]–[28]. However, this comes at the expense of
sample efficiency since each agent only updates its own
policy instead of a unified policy.

III. APPROACH

We present our approach to learning robust agents through
behavior diversity. Instead of using multiple policies to create
diversity as in CTDE, we opt for a more sample-efficient
method by using only a single policy. We first formulate
the agent behaviors, and how they can be used to generate
diversity among agents (Section III-A). Then we explain how
the behaviors and diversity can be integrated together within
a single policy (Section III-B). Finally, we describe how to
train a behavior-conditioned policy in an end-to-end manner
with all the integrated components (Section III-C).

A. Agent Behavior

In Figure 1, people’s approaches to walking towards a goal
can vary: some prioritize speed with a longer path, while
others choose a shorter route at a slower pace. When avoiding
moving obstacles, some turn left, while others turn right.
Although individuals may have unique behaviors, there can
be similar patterns. We formalize this with discrete behavior



tokens z ∈ [0,1, . . . ,M−1], where M is the total number of
distinct behaviors. Each token represents a distinct pedestrian
behavior, and different agents may share the same token.

To foster diversity amongst different agents, our goal is
to assign different behavior tokens to different agents to
exhibit distinct behaviors. In other words, for every state s,
agents should perform different actions a depending on the
assigned z. More formally, this idea can be formalised using
information theory by maximizing the mutual information
I((S,A);Z), where (S,A) is the joint distribution of S and
A. Z ∼ p(z), S, and A represent the random variables for
behavior, state, and action respectively. Additionally, the
diverse actions performed for different z should arise for
every state instead of exploiting only certain states. For this,
we minimize I(S,Z) as a regularizer. In sum, we maximize

F (θ)≜ I((S,A);Z)− I(S;Z)

= (H[Z]−H[Z | S,A])− (H[Z]−H[Z | S])
=−H[Z | S,A]+H[Z | S],

(1)

where H is the Shannon entropy. The first term implies it is
easy to infer the behavior z given any (s,a). This makes sense
intuitively as it means the agents are distinguishable due to
their diverse behaviors and not behaving in a homogeneous
way. The second term implies that the agents’ behavior
should not be distinguishable exclusively given s. It is
intractable to compute p(z|s) and p(z|(s,a)) by integrating all
states, actions, and skills. So we approximate the posteriors
with learned discriminators qφ (z|s) and qψ(z|(s,a)). We
instead optimize the variational lower bound derived using
Jensen’s Inequality [29]:

F (θ) =−H[Z | S,A]+H[Z | S]
= Ez∼p(z),s∼π(z)[log p(z | s)]
−Ez∼p(z),s∼π(z),a∼π(s,z)[log p(z | s,a)]
≥ Ez∼p(z),s∼π(z)[logqφ (z | s)]
−Ez∼p(z),s∼π(z),a∼π(s,z)[logqψ(z | s,a)]

≜G(θ),

where s ∼ π(z) means to first sample the action a from π

followed by sampling the environment to get the state s. It is
non-trivial to directly optimize θ via maximizing the lower
bound G(θ) since s∼ π(z) has to be sampled through a non-
differentiable simulator. Below we introduce how to optimize
θ using an intrinsic reward alongside the RL objective.

B. Behavior-Conditioned Policy
First, we incorporate the idea of behaviors into our policy

where we condition our policy on the agent’s behaviors.
Each agent, i, sample their actions from a shared behavior-
conditioned policy as a∼ πθ (·,si

t |zi), for behavior token ID
zi at timestep t. Each behavior token maps to an embed-
ding in the policy network, enabling the policy to generate
distinct behaviors for agents. To maximize such diversity,
we introduce an intrinsic pseudo-reward rint motivated from
maximizing G(θ) derived previously:

rint
t = log[qψsa(z | st ,at)]− log[qψs(z | st)]. (2)

EnvironmentBehavior-conditioned Policy 

Discriminator Discriminator

Learnable

Fixed Distribution

Fig. 2: Our framework for behavior-conditioned policy.
An intrinsic reward is computed based on discriminators
qψ and qφ , which encourages the diversity by indirectly
maximizing the lower variation bound G(θ)

Maximizing the intrinsic pseudo-reward through reinforce-
ment learning allows maximizing G(θ) despite sampling
s ∼ π(z) from a non-differentiable simulator. In Eqn. (2),
at is sampled from a policy conditioned on behavior rather
than a default policy, as generating diverse actions requires
knowledge about z. The proposed intrinsic reward promotes
action diversity while learning the main task. Overall, our
intrinsic reward shares some similarity to DIAYN [22] in
which both use token-conditioned policies. However, the dif-
ference is that our method encourages agents with different
tokens to generate diverse actions for a given state instead
visiting diverse states. Figure 2 shows an overview of the
interaction between the behavior-conditioned policy and the
discriminators.

C. Training Procedure

We adapt the training procedure from [5], alternating
between sampling trajectories and updating the policy via
the PPO algorithm [31]. Each agent uses an identical policy
to collect data until a batch is gathered. Algorithm 1 outlines
the training details. Key differences from [5] are highlighted
in blue: (1) At each episode start, agent i samples a new
behavior token zi ∼ pM(z), with pM(z) being a discrete
uniform distribution with M behaviors (Line 6). This token
is mapped to a 32-dimensional continuous embedding. (2)
Agents sample from a policy conditioned on zi (Line 7),
allowing for varied actions based on behavior. (3) Intrinsic
rewards for each agent are computed using discriminators
qψsa and qψs , parameterized by ψsa and ψs respectively, based
on Eqn. (2). These rewards are added to the task reward in the
replay buffer (Line 8). (4) We optimize discriminators qψsa

and qψs with cross-entropy loss (Line 25) using the Adam
optimizer [32]. Adding one standard deviation of Gaussian
noise to discriminator inputs helps prevent overfitting. The
loss is computed between predicted behavior tokens ẑ from
on-policy samples and ground truth behavior.



Algorithm 1 Behavior-conditioned policy for N agents
1: Initialize policy network πθ , value function Vφ , discriminators

qψsa and qψs

2: Require: hyper-parameters α,γ,λ ,ε,M
3: while not converged do
4: // Collect data in parallel
5: for i = 1,2, . . . ,N do
6: Sample behavior zi ∼ pM(z)
7: Sample behavior-conditioned policy πθ (·,st |z) for Ti

timesteps, collecting {si
t+1,a

i
t ,r

i
t} where t ∈ [0,Ti]

8: Modify reward by adding bonus intrinsic reward ri
t ←

ri
t +α

{
log[qψsa(z | (si

t ,a
i
t)])− log[qψs(z | si

t)]
}

9: Compute advantages using GAE [30] Âi
t =

∑
Ti
l=0(γλ )l(ri

t + γVφ

(
st+1

i

)
−Vφ

(
si
t
)
)

10: end for
11: πold ← πθ

12: // Update Policy, Value Functions and Discriminators
13: for j = 1 to epochπ do
14: Compute Ratio kt =

πθ (ai
t |oi

t)
πold (ai

t |oi
t)

15: LPPO clip(θ) = ∑
Tmax
t=1 min

(
kt Âi

t ,clip(kt ,1− ε,1+ ε) Âi
t
)

16: Update θ using Adam w.r.t. LPPO clip(θ)
17: end for
18: for j = 1 to epoch v do
19: LV (φ) =−∑

N
i=1 ∑

Ti
t=1

(
∑t ′>t γt ′−tri

t ′− Vφ

(
si
t
))2

20: Update φ using Adam w.r.t. LV (φ)
21: end for
22: for j = 1 to epoch d do
23: LD(ψsa) =−∑

N
i=1 ∑

Ti
t=1

(
zi · log

(
qψsa(s

i
t ,a

i
t)
))

24: LD(ψs) =−∑
N
i=1 ∑

Ti
t=1

(
zi · log

(
qψs(s

i
t)
))

25: Update ψsa, ψs using Adam w.r.t. LD(ψsa), LD(ψs)
26: end for
27: end while

IV. EXPERIMENTS

We conduct comprehensive experiments to demonstrate
the effectiveness of our method over previous solutions. We
simulate these experiments with new crowd behaviors not
encountered during agent training.

A. Experimental Setup
Implementation. We simulate a large-scale group of robots
using Stage [33], a popular robot simulator widely used
in multi-agent research. Each agent is initialized as a non-
holonomic differential drive robot (0.5m× 0.5m) equipped
with a 2D-laser scanner to sense its surroundings. The 2D
laser is set to 360 degrees FOV with a max range of 10m.

Hyper-parameter Value
Discount Factor γ 0.99
PPO Smoothing λ 0.95
PPO Clip Value ε 0.1
# Epoch for Policy Network 3
# Epoch For Value Network 3
# Epoch for Discriminators 1
Advantange Weight α 0.1
PPO Learning Rates 0.00005
Discriminators Learning Rates 0.00005
Epochπ , Epochd , Epochv 3

TABLE I: Hyper-parameters
in our implementation.

For agent states, rewards
and neural network ar-
chitecture, we follow the
same setup as [5]. We
make one change to the
NN backbone by adding
a behavior embedding de-
rived from the behavior to-
ken, z, for the neural net-
work input. Each discrim-
inator is modeled with a
two-layer feed-forward network with 128 hidden units and
ReLU activations [34]. Table I lists the hyper-parameter
settings.

Fig. 3: The discriminator loss and reward curves.

Training Setup. We train agents in a realistic, heavily
trafficked 20m×20m room. Random goals are placed at least
10m away from the agents’ initial positions. A crash event
is registered if laser-scan values fall below 0.5m.
Testing Setup. To evaluate the robustness of our policy in
unseen crowd behaviors, we propose a novel set of testing
conditions with the criteria that the movements of the other
agents must be unique and not encountered during training.
Also, we omit static obstacles as we focus on dynamic obsta-
cle avoidance. In these environments, our agent interacts with
other agents which exhibit dynamic movements beyond our
control. For clarity, we refer to other agents as pedestrians for
the remainder of this section. In total, we design six different
pedestrian setups to be evaluated for each study:

1) Non-homogeneous (NH): To achieve non-
homogeneous behaviors, each pedestrian utilizes
a distinct policy instance, initialized with a unique
seed, to generate varied experiences during training.

2) Invisible (IN): Similar to 1), but our robot is invisible
to pedestrians achieved by lowering our agent’s height
below the pedestrians’ sensors. This reflects the non-
reactive individuals in the real world.

3) Variability (VA): Similar to 2), pedestrians are invisible
but receive random speed multipliers (0.5-1.5) at each
episode start, representing real-world walking speed
variability.

4) Sub-optimal (SO): Similar to 1), but the policy is
trained for half the period (2.5k updates instead of 5k),
simulating sub-optimal walking trajectories.

5) Velocity-obstacle (VO): We utilizes ground truth posi-
tions of all pedestrians to compute permissible veloc-
ities, following the method in [35].

6) Social force (SF): We use a force-based system to
anticipate pedestrian movements following [36], and
utilize ground positions for prediction similar to VO.

We consider a mixture of learning-based (NH,IN,VA,SO)
and non-learning based (VO,SF) policies. Four of them
(IN,SO,VO,SF) are challenging with the non-reactive pedes-
trians. All evaluations are repeated for 1000 episodes. If not
stated explicitly, we set the number of robots N = 5 (1 agent
and 4 pedestrians) and number of behaviors M = 5. Agents,
pedestrians and goals are spawned similarly to training.
During testing, each agent utilises a fixed behavior token,
z = 0 for all episodes. Our primary metric is the ‘success
rate’, without further classifying the non-successful episodes,
as collisions are the primary reason instead of timeouts.



M #Updates #Updates/M Pedestrian Type AvgNH IN VA SO VO SF
1 5K 5K 0.63 0.55 0.59 0.52 0.59 0.43 0.55
5 5K 1K 0.87 0.85 0.86 0.72 0.78 0.77 0.81

10 5K 500 0.80 0.75 0.82 0.72 0.76 0.69 0.76
20 5K 250 0.61 0.63 0.54 0.59 0.59 0.51 0.58
10 10K 1K 0.88 0.86 0.86 0.76 0.77 0.78 0.82
20 20K 1K 0.89 0.87 0.85 0.77 0.78 0.79 0.82

TABLE II: Impact of the number of behaviors M. Policies
are evaluated under six diverse unseen pedestrian setups.

B. Training Results

Figure 3 shows the stability of the discriminators and the
intrinsic reward during training. The discriminator loss and
intrinsic reward steadily improves until ∼ 700 updates, which
then flattens until ∼ 4000 updates, possibly due to novel
state-action exploration. Subsequently, both curves continue
to improve again until the end of training where the main
task has converged. The best advantage weight α , which
combines the task and intrinsic reward is 0.1.

Fig. 4: Agents’ varied paths
based on sampled behaviors.

Next, we investigate
if behavior-conditioned
policies exhibit differ-
ent behaviors to reach
the desired goal. We
record the behaviors of
agents starting from the
origin and reaching a
fixed goal behind a
static obstacle. The tra-
jectories of the 5 agents
can be seen in Fig-
ure 4. These agents ex-
hibit different behaviors
when conditioned on different tokens z. While passing the
obstacle, some agents are left-inclined whereas some are
right-inclined which is consistent with the motivation illus-
trated in Figure 1. Additionally, we also observe the velocity
diversity which is represented by the length of the arrow.
For example, the blue agent (z = 2) travels slightly faster
than the purple agent (z = 4) when taking a slightly longer
route. While the diversity may appear slight, deploying
it with multiple agents generates vastly different training
trajectories, enhancing agent robustness. More qualitative
examples about the diversity among dynamic obstacles are
available on https://youtu.be/EevMn2-ZNng.

C. Impact of the Number of Behaviors

We assess diversity’s impact on agent robustness and
its scalability with behavior count M. When M = 1, all
agents share the same behavior, equivalent to the baseline
policy in [5]. Our results are presented in Table II. We have
the following three observations. First, having non-reactive
pedestrians (NH,IN,VA,SO) is generally a more difficult task
with fewer successful runs. Second, adding diversity (M ̸= 1)
outperforms the default policy (M = 1) for all pedestrian
types, including the challenging non-reactive pedestrians.
This validates the effectiveness of our proposed method.
Third, the optimal number of behaviors is M = 5 and the

N Diversity Pedestrian Type AvgNH IN VA SO VO SF
5 No 0.63 0.55 0.59 0.52 0.59 0.43 0.55
5 Yes 0.87 0.85 0.86 0.72 0.78 0.77 0.81

10 No 0.41 0.38 0.42 0.37 0.31 0.28 0.35
10 Yes 0.83 0.78 0.77 0.65 0.75 0.52 0.72
20 No 0.47 0.43 0.42 0.39 0.36 0.32 0.38
20 Yes 0.58 0.50 0.58 0.47 0.42 0.49 0.50

TABLE III: Impact of the number of agents N.

Intrinsic Reward α best
Pedestrian Type Avg DNH IN VA SO VO SF

log[q1(z | s,a)]− log[q2(z | s)] 0.10 0.87 0.85 0.86 0.72 0.78 0.77 0.81 1.10
log[q(z | s,a)] 0.01 0.88 0.77 0.86 0.70 0.75 0.72 0.78 0.48

log[q(z | s)] [22] 0.03 0.75 0.75 0.69 0.71 0.73 0.58 0.70 0.17
None 0 0.63 0.55 0.59 0.52 0.59 0.43 0.55 0

TABLE IV: Policies trained using different intrinsic re-
wards. D is a measure of action diversity between agents

effect of diversity starts to diminish as we scale to higher
values of M = 10 and 20. We hypothesize the diminishing
effect is resulted from less frequent sampling when M in-
creases. To investigate this, we increase num updates/M for
M = 10 and 20 to match M = 5 and find that the performance
of M = 10 and M = 20 could match that of M = 5, validating
our hypothesis. However, this comes at an expense of more
updates. Overall, M = 5 provides a good balance between
creating good diversity and sample efficiency.

D. Scalability

Here, we investigate the effect of increased numbers of
agents N and report the results in Table III. As the number of
agents, N, increases to 10 and 20, the scenes become more
crowded, making it harder for them to reach their goals.
This negatively affects the convergence speed, as agents get
restarted more frequently due to collisions or other obstacles.
Despite this, by adding diversity to the policy, we achieve
consistent performance improvements across all pedestrian
cases.

E. Intrinsic Rewards

In Section III-A, we formulate a cost function to promote
diversity among agents. In the formulation, we require that
diverse actions performed for different z should arise for
every state instead of exploiting only certain states. This is
achieved using a regularizer as part of the intrinsic reward
proposed in Eqn. (2). From ablation experiments reported in
Table IV, we observe that the policy trained with the intrin-
sic reward containing the regularization term, −log(q | s),
outperforms the policy without this term. The performance
improvement is consistent in all pedestrian setups including
the challenging non-reactive pedestrians. Despite this, the
policy trained without regularization still outperforms the
base policy without the intrinsic reward.

Next, we compare our method with state-space exploration
based intrinsic rewards, DIYAN, from [22] which may im-
plicitly encourage action diversity through novel state explo-
ration. However, it still lacks action diversity compared to
our proposed intrinsic reward in Eqn.(2), where the diversity
of the action is explicitly encouraged. To measure the action

https://youtu.be/EevMn2-ZNng


Metrics Policy Pedestrian Type
NH IN VA SO VO SF

Success Rate ↑
Basic 0.63 0.55 0.59 0.52 0.59 0.43
Safe 0.86 0.77 0.81 0.67 0.69 0.61
Ours 0.87 0.85 0.86 0.72 0.78 0.77

Extra Time (s) ↓
Basic 2.833 ± 2.439 3.366 ± 2.621 3.724 ± 2.219 2.511 ± 1.751 3.158 ± 2.121 2.997 ± 1.136
Safe 5.041 ± 2.356 5.102 ± 2.719 5.248 ± 2.658 5.100 ± 2.335 5.217 ± 2.454 4.813 ± 2.348
Ours 2.712 ± 2.259 2.902 ± 2.671 2.714 ± 2.427 2.336 ± 0.995 2.119 ± 1.038 2.202 ± 1.344

Extra Distance (m) ↓
Basic 4.811 ± 4.011 4.123 ± 5.637 5.717 ± 3.013 4.197 ± 5.873 5.887 ± 4.187 3.321 ± 3.899
Safe 10.099 ± 4.452 10.734 ± 5.177 16.601 ± 5.235 10.116 ± 4.182 9.870 ± 3.946 10.024 ± 4.275
Ours 3.667 ± 3.587 3.930 ± 4.024 4.262 ± 4.489 3.217 ± 2.309 2.492 ± 1.719 2.662 ± 2.112

Average Speed (m/s) ↑
Basic 0.919 ± 0.096 0.927 ± 0.088 0.917 ± 0.87 0.922 ± 0.068 0.920 ± 0.079 0.910 ± 0.087
Safe 0.810 ± 0.091 0.795 ± 0.098 0.779 ± 0.100 0.811 ± 0.084 0.811 ± 0.084 0.786 ± 0.097
Ours 0.957 ± 0.059 0.955 ± 0.061 0.942 ± 0.076 0.960 ± 0.057 0.966 ± 0.039 0.965 ± 0.043

TABLE V: Comparisons with baseline methods using different metrics averaged across 1000 episodes.

diversity, we also introduce a new metric, D , using the KL
divergence of action distributions between pairwise agents:

D =
1

|τ|Ni ̸= j
∑
s∈τ

∑
i ̸= j

KL(π(a|s,z = i)∥π(a|s,z = j))

where τ denotes a trajectory. Specifically, we collect a
trajectory of 1000 steps using the trained policy with no
intrinsic reward. From Table IV, our proposed method
achieves higher action diversity D than the state-space
exploration based intrinsic rewards. Also, we observe that
higher values of D get translated into higher robustness in
unseen crowd behaviors, achieving a greater success rate.

F. Comparisons with Prior Work

We quantitatively compare our proposed behavior-
conditioned policy with existing solutions to demonstrate its
robustness. In particular, we set up the baseline method as
described in [5], equivalent to our proposed method with
M = 1. Additionally, we added a safe policy proposed in [10],
which uses safety zone rewards to encourage safe behaviors,
which could crash less in unseen crowd movements. For our
proposed method, we utilize the model trained with M = 5
and N = 5. Table V shows the comparison results against
different metrics across 1000 episodes. Each metrics (success
rate, extra time, extra distance, average speed) are similarly
defined like in [5].

Our proposed method consistently outperforms others
across various pedestrian types, suggesting robust strategies
for handling diverse crowd behaviors effectively. While the
safe policy achieves a higher success rate than the base pol-
icy, it slightly falls short of our proposed policy. Collisions
primarily contribute to non-successful episodes, surpassing
timeouts. The safe policy with a safety buffer performs well
in reactive setups (NH, VA), closely matching our policy’s
results. However, it struggles in non-reactive setups (IN,
SO, VO, SF). The conservative behavior of the safe policy
reduces collisions but increases time and distance compared
to our proposed policy, sacrificing other metrics. Specifically,
both time and distance taken by the safe policy are more than
double those of our proposed policy.

G. Realistic Deployment

To validate our method in a more realistic setup, we
deploy our best performing policy (N = 5, M = 5) on a

Fig. 5: Testing our method in Gazebo with more realistic
scenarios. Map settings: (Left) Warehouse (Right) Hospital

Jackal robot in Gazebo simulator [37]. We utilize two maps
(warehouse and hospital) from Arena-ROSNAV-3D [38] as
seen in Figure. 5. For each episode, we randomly assign
the start and goal position with 3 to 8 pedestrians within
an open area of each map (∼ 10m×10m). The pedestrians
movements are simulated using the social force model [36].

Diversity Warehouse Hospital
No 0.40 0.37
Yes 0.81 0.69

TABLE VI: Success rate out
of 100 episodes

Table VI shows the
success rate from 100
episodes with and without
the diversity consideration.
Our method proves to be
equally effective for realis-
tic scenes, outperforming the baseline method when diversity
is used during training. More qualitative examples for real-
istic scenes are available on https://youtu.be/EevMn2-ZNng.

V. CONCLUSION

This paper introduces a framework to increase an agent’s
ability to generalize to unseen crowd behaviors by utiliz-
ing diverse behaviors in a sample-efficient manner. Adding
diversity in a multi-agent framework implicitly provides
each agent with a more varied range of experiences, hence
increasing its generalizability of unseen crowd behaviors.
We demonstrate the robustness of the proposed method in
an extensive set of evaluation scenes containing challenging
pedestrians’ behaviors. We also validate the scalability of our
solution and practicality in realistic scenes. Our experiments
also demonstrate that our method improves the success rates
without negatively affecting other important metrics.
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