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Abstract
Diffusion models have achieved remarkable suc-
cess in generating high-quality images. Recently,
the open-source models represented by Stable Dif-
fusion (SD) are thriving and are accessible for
customization, giving rise to a vibrant commu-
nity of creators and enthusiasts. However, the
widespread availability of customized SD models
has led to copyright concerns, like unauthorized
model distribution and unconsented commercial
use. To address it, recent works aim to let SD mod-
els output watermarked content for post-hoc foren-
sics. Unfortunately, none of them can achieve
the challenging white-box protection, wherein the
malicious user can easily remove or replace the
watermarking module to fail the subsequent veri-
fication. For this, we propose AquaLoRA as the
first implementation under this scenario. Briefly,
we merge watermark information into the U-Net
of Stable Diffusion Models via a watermark Low-
Rank Adaptation (LoRA) module in a two-stage
manner. For watermark LoRA module, we de-
vise a scaling matrix to achieve flexible message
updates without retraining. To guarantee fidelity,
we design Prior Preserving Fine-Tuning (PPFT)
to ensure watermark learning with minimal im-
pacts on model distribution, validated by proofs.
Finally, we conduct extensive experiments and
ablation studies to verify our design. Our code is
available at github.com/Georgefwt/AquaLoRA.

1. Introduction
With the flourishing development of generative AI and cross-
modal visual and language representation learning (Radford
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et al., 2021; Yuan et al., 2021), text-based image editing
methods (Wei et al., 2022; 2023; Brooks et al., 2023) and
text-to-image (T2I) synthesis models (Ramesh et al., 2022;
Saharia et al., 2022; Rombach et al., 2022) have gained pop-
ularity due to their convenient interactions and high-fidelity
synthetic results. As a standout in the realm of T2I models,
the universe of Stable Diffusion is thriving, fueled by its
complete open-source nature. Various versions of models
(e.g., v1, v2, XL, etc.) and customized technologies (Ruiz
et al., 2023; Gal et al., 2022) are constantly emerging, pro-
viding immense enjoyment and have fostered active commu-
nities (e.g., Civitai, prompthero, Patreon) where users can
exchange or sell their customized Stable Diffusion models.

This ease of sharing raises copyright concerns, such as the
unconsented use of generated images and redistribution of
customized models for profit, potentially compromising the
interest of original creators. The official repository of Stable
Diffusion models offers some ad-hoc image watermarking
methods (Rahman, 2013; Zhang et al., 2019) as a makeshift
protection. Afterward, additional efforts (Wen et al., 2023;
Fernandez et al., 2023) propose intergrated watermarking,
namely, integrating the watermarking process more intri-
cately with the generation process, including factors like
initial noise and the VAE decoder. All the above watermark-
ing approaches are illustrated in Figure 1. In this paper, we
consider a more challenging protection scenario, namely,
white-box protection, wherein adversaries have full ac-
cess to the watermarked SD models. Because SD models
are wildly open-source, it’s easy for adversaries to bypass
watermarking by changing the sampling strategy or replac-
ing the VAE, making all current watermarking protection
ineffective.

To remedy it, we propose the insight that watermarking
should be coupled with the most crucial component of Sta-
ble Diffusion. Thus, we suggest embedding the watermark
directly into U-Net, the most central structure containing
essential knowledge. In such a mechanism, the disruption
of watermarking is accompanied by a significant drop in
generation fidelity. Besides, there are three additional re-
quirements: 1) Fidelity: high visual quality between the
watermarked generated image and the watermark-free one,
2) Robustness: the watermark shall be robust against differ-
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Figure 1. Illistration of different watermark placement with the Stable Diffusion model. Our watermark is embedded within the core
structure of the diffusion model, the U-Net.

ent image distortions and generation configurations, and 3)
Flexibility: for large-scale and multi-user deployments, it is
essential to have a large watermark capacity, while ensuring
that the embedding and extraction processes for each user
do not incur additional training overhead.

To satisfy the above requirements, we propose AquaLoRA,
a two-stage watermarking framework, consisting of latent
watermark pre-training and watermark learning with prior
preserving. In the first stage, we transfer the philosophy
of image watermarking to the latent space of Stable Diffu-
sion to create a watermark pattern suitable for the U-Net to
learn. We thoroughly consider the robustness of the water-
mark and propose the Peak Regional Variation Loss (PRVL)
to enhance fidelity further. The trained secret encoder is
private as a confidential codebook. In the second stage,
we introduce a prior preserving fine-tuning (PPFT) method
that allows the watermark pattern from the previous stage
to be learned by U-Net, while minimally perturbing the
original knowledge of the model. To achieve integrated wa-
termarking, we propose Watermark LoRA, which represents
watermark information by a scaling matrix, and merge it
into the original model weights so that it cannot be easily
removed. Moreover, Watermark LoRA is trained with differ-
ent watermark information, inherently satisfying flexibility
requirements. Finally, we adopt a coarse type adaption to
enhance performance further. The proposed AquaLoRA
shows good adaptability on different customized Stable Dif-
fusion models.
Our contributions can be summarized as follows:

• We point out the necessity for white-box protection to
Stable Diffusion model and propose AquaLoRA as the
first implementation of a white-box protection water-
mark for current customized Stable Diffusion models.

• We apply a two-stage design. The distortion layer in the
first stage guarantees the robustness of our method; the
proposed scaling matrix for Watermark LoRA module
strategy grants our scheme’s flexibility; more impor-
tantly, the well-devised prior preserving fine-tuning

method and PRVL substantially enhances the fidelity.

• Sufficient experiments and ablations prove that our
watermark meets all the previously mentioned require-
ments as well as the effectiveness of proposed designs.

2. Related Work
2.1. Stable Diffusion Models

Stable Diffusion has gone viral due to its powerful gener-
ative capabilities and its open-source nature. The overall
pipeline of Stable Diffusion follows that of latent diffusion
(Rombach et al., 2022), mapping images into latent space
and performing diffusion in the latent space of a VAE, which
significantly reduces the computation cost. It can be con-
sidered a representative example of latent diffusion. Many
novel application scenarios have emerged from Stable Dif-
fusion, where customization is a key factor. People can
make the model “learn” entirely new styles and characters,
enabling personalized generation.

Textual Inversion (Gal et al., 2022), one of the earliest meth-
ods in this field, can be considered a form of prompt opti-
mization. Users represent the target content with a special
token and continuously optimize the embedding of this to-
ken using target images.

Fine-tuning, as compared to prompt optimization, enables
the most extensive customization of various generated con-
tent by adjusting the entire model. Dreambooth (Ruiz et al.,
2023) is one of the fine-tuning techniques that involves a
unique way for a diffusion model to learn a special subject
using a small number of specific images. With increasing un-
derstanding and recognition of fine-tuning diffusion models,
fine-tuning methods are being increasingly used to intro-
duce more preferences into diffusion models, altering the
model’s style and even domain. LoRA, originally designed
for fine-tuning Large Language Models, has proven effec-
tive for diffusion model fine-tuning as well. It’s important
to note that LoRA is essentially a fine-tuning method and is
not limited to personalized generation. In our work, we use
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LoRA to learn watermark patterns for watermarking.

2.2. Watermarking Generative Models

With the popularity of generative models, there is a growing
recognition of the importance of adding watermarks to AI-
generated content or the corresponding generative models.
The simplest makeshift is directly watermarking generated
images. Especially, Stable Diffusion official repository sug-
gests watermarking techniques like DWT-DCT, DWT-DCT-
SVD (Rahman, 2013), and RivaGAN (Zhang et al., 2019).
Unfortunately, removing the post-generation watermark can
be achieved by merely altering a few lines of code. Some
approaches (Yu et al., 2021; Zhao et al., 2023d) suggest
embedding watermarks in the entire training set, resulting in
the generated models being able to effectively incorporate
watermarks into all images they generate. However, for
large-scale diffusion models, this approach is infeasible, as
these large models are trained on massive datasets.

Afterward, some works try to integrate the watermarking
process with the generation process. For example, Stable
Signature (Fernandez et al., 2023), focusing on the Varia-
tional Autoencoder (Kingma & Welling, 2013) in Stable
Diffusion Models, embeds watermarks in the VAE decoder,
showing strong performance and removing the need for
post-generation watermarking. Another study (Xiong et al.,
2023) also modifies the VAE decoder structure by introduc-
ing a “Message Matrix”, allowing for easy message updates
without re-training the model. However, both methods are
vulnerable in white-box scenarios, especially if a clean VAE
decoder is available publicly. Additionally, Tree-ring (Wen
et al., 2023) targets the sampling process of the Diffusion
model. They skillfully utilize the inherent properties of the
diffusion model, placing a watermark pattern on the model’s
initial noise. It requires using a deterministic sampler, such
as DDIM (Song et al., 2020), during image generation. This
method uses DDIM inversion for watermark extraction, de-
tecting watermarks by reverting images to their initial noise.
The downside is that it requires the model owner to con-
trol the model users’ sampling process, typically through an
API. Similarly, in a white-box scenario, users can control the
model’s sampling process, making this method ineffective.

As shown in Figure 1, our method adds the watermark to
U-Net, utilizing its uniqueness to achieve watermarking in
white-box scenarios.

3. Preliminaries
Latent Diffusion Model. LDMs incorporate a conditional
denoising model, represented as ϵθ(zt, t, c), which is capa-
ble of generating images conditioned on a specific text c.
zt denotes the latent representation at a specific timestep t
within the range of {1, ..., T}.

During the training stage, a loss Lsimple is leveraged to
compel LDM to denoise the latent representations zt :=√
ᾱtz0 +

√
1− ᾱtϵ as follows:

Lsimple = Ez0,ϵ,t,c

[
∥ϵθ (zt, t, c)− ϵ∥22

]
, (1)

where αt represent the parameters of the diffusion process,
ϵ is sampled from the Gaussian distribution N (0, I), and
ϵθ(zt, t, c) is implemented as a text-conditional U-Net.

Low-Rank Adaption. LoRA is a method designed for
efficiently adapting large-scale language and vision models
to new tasks(Hu et al., 2021). The key principle of LoRA
is that the weight updates, denoted as ∆W, to the original
model weights W ∈ Rn×m during fine-tuning exhibit a
low intrinsic rank. Consequently, the update ∆W can be
represented as the product of two low-rank matrices A ∈
Rm×r and B ∈ Rr×n, where ∆W is computed as A×B.
In the training process, only the matrices A and B are
updated, while original weights W remain unchanged.

During the inference, the forward computation is repre-
sented by Wx+ABx, x is the output of the former layer in
the neural network. LoRA can seamlessly integrate into the
original model using the formula Wupdated = W+ α ·AB,
with α usually set as 1.

In this paper, the proposed AquaLoRA (i.e., watermark
LoRA) is specifically designed for integrating watermark
information with the target U-Net module.

4. AquaLoRA
4.1. Overview

Figure 2 provides an overview of our method. Our approach
is generally divided into two stages: latent watermark per-
taining and prior preserving fine-tuning. The purpose of the
latent watermark pre-training stage is to train a latent water-
mark scheme as a sort of codebook. In the prior preserving
fine-tuning stage, this latent watermark pattern is learned
by our proposed AquaLoRA through fine-tuning, which can
be easily integrated into the model weights. For practical
application, we can fine-tune AquaLoRA on checkpoints
of various coarse types to create domain-specific versions,
which can further boost performance.

4.2. Latent Watermark Pre-training

Watermark Scheme Design. In this stage, we aim to train
an image watermark that is easily learned by the U-Net
model. To achieve this goal, we first examine the challenges
posed by existing image watermarks when it comes to dif-
fusion models. We have identified two primary reasons for
these challenges: 1) The watermark information tends to be
disrupted or even lost when it is transformed into the latent
space by the VAE encoder. This makes it extremely difficult
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Figure 2. The overall framework of our method. (a) The first stage is latent watermark pre-training. In this phase, we jointly train a
watermark secret encoder Es and decoder Ds at the latent level. (b) After latent watermark pre-training, we employ our proposed prior
preserving fine-tuning (PPFT) strategy to train AquaLoRA, which can be merged into any fine-tuned model weights, offering protection.
Coarse type adaptation is omitted here, as it follows the same PPFT strategy.

for the diffusion model to effectively learn the watermark.
This can be verified by calculating the extraction accuracy
of the watermark from the image reconstructed by the VAE.
2) previous work (Cui et al., 2023) introduced the concept of
pattern uniformity, defined as the consistency of watermarks
injected into different samples. It has been observed that the
higher the watermark’s consistency, the more conducive it
is for the watermark to be learned effectively. For a cover-
agnostic watermark, the consistency is naturally the highest.
Thus, we set our design goal: a cover-agnostic watermark
that is prominent in the latent space.

Training Pipeline Design. As analyzed above, we aim
to train a cover-agnostic watermark that is prominent in
the latent space. As shown in Figure 2(a), in this stage, the
trained secret encoder Es will be utilized in the next training
stage, acting as a sort of codebook that is secured, while the
secret decoder Ds will serve as the final watermark extractor.
The process of watermark embedding and extraction adheres
to the conventional encoder-decoder structure, but with the
distinction that the watermark is injected in the latent space
of a VAE. Here, we adopt a simple addition operation as the
watermarking embedding process:

Iw = Di(Es(s) + Ei(Io)), (2)

where Ei and Di are the VAE encoder and decoder of the
latent diffusion, respectively. Io is the original image and s
is secret (i.e., watermark). Architecture for secret encoder

Es is inspired by (Bui et al., 2023), and more details can be
found in Appendix B.1. For the secret decoder, we adopt
EfficientNet-B1(Tan & Le, 2019) to directly retrieve wa-
termark information from the watermarked image, denoted
as Iw. This process involves computing the Binary Cross-
Entropy Loss (BCELoss) with the original information.

To ensure visual consistency, we calculate the LPIPS loss
(Zhang et al., 2018) between the watermarked image Iw and
reconstructed image Ir. We do not calculate it between Iw
and Io because the image already suffers from quality loss
due to compression by the VAE encoder and reconstruction
by the decoder. We do not expect the watermark to learn
image restoration, as it would increase the training difficulty.
Moreover, to reduce artifacts produced by the watermark
and enhance fidelity, we designed the Peak Regional Vari-
ation Loss (PRVL). The detailed design of PRVL can be
found in the Appendix B.2.

Overall, our training objective can be summarized below,
where λ and µ are coefficients:

LTotal = LBCE + λLLPIPS + µLPRVL. (3)

4.3. Watermark Learning with Prior Preserving

This stage integrates the previously generated watermark
pattern into U-Net. To accomplish this, we leverage the
remarkable adaptability and straightforward integration ca-
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pabilities of LoRA, thanks to its minimal perturbation of the
model’s prior settings.

4.3.1. SCALING MATRIX FOR REPRESENTING SECRET

To achieve flexibility, allowing arbitrary changes to the em-
bedded secret during utilization, we need to add a structure
to LoRA that introduces a new condition on secret s. To
this end, we modify the structure of LoRA by introducing a
scaling matrix. The computation formula for LoRA can be
then written as ∆W = A× S×B, where A ∈ Rn×r and
B ∈ Rr×m, S ∈ Rr×r as the scaling matrix. When S is an
identity matrix, the computation yields the same result. As
shown in Figure 2(b), by relaxing the constraints, we create
space to introduce a secret message into LoRA.

Then, we explored the use of learnable embeddings to design
a mapper that transforms a secret of length l into a vector
of length r. Specifically, for the i-th bit of a secret, we
use a embedding vector Ii and 0 to represent the binary
states 1 and 0, with Ii,0 ∈ Rr. The mapping function
fi : {0, 1} → Rr is then defined by

fi(bi) =

{
Ii, if bi = 1,

0, otherwise.
(4)

For a given secret s = {b0, b1, . . . , bl}, the scaling matrix S
is constructed as

S = diag

(
1 +

1√
l

l∑
i=1

fi(bi)

)
. (5)

In each iteration of the training, we use a batch of random se-
crets for the forward pass. In application, when adding a wa-
termark to the model, for a target secret, we pass the secret
through the aforementioned mapper to obtain the scaling ma-
trix S. We then calculate the final ∆W and merge it into the
model weights by calculating Wwatermarked = W + α∆W.

In the default setting, Ii is initialized using a standard nor-
mal distribution. Considering that it is beneficial to max-
imize the difference between vectors, we propose using
orthogonal initialization. That is, for any Ij , Ik, j, k ∈ [0, l],
we have Ij · Ik = 0. Experiments show that this leads to fur-
ther improvement in performance. The comparison results
of these initialization methods can be found in Table 5.

4.3.2. PRIOR PRESERVING FINE-TUNING

Here, we introduce our specially designed fine-tuning
method to ensure fidelity while learning the watermark
into AquaLoRA. For a fixed secret, our watermark is cover-
agnostic and can be formalized as a specific fixed offset ∆zw
to the distribution. The most naive approach to teaching a
Diffusion Model to learn a fixed offset would be to find an
Image-Caption dataset and simply use the Diffusion Model’s

training loss (Equation 1). However, this method has a se-
rious issue: the data distribution of the Diffusion Model
uncontrollably shifts closer to that of the Image-Caption
dataset during training, resulting in significant changes in
the generated outputs.

To address this issue, we analyze this problem and pro-
pose prior preserving fine-tuning (PPFT), as illustrated in
Figure 2(b), which solves this issue well. Let us denote
the noise prediction result of the model at input timestep
t as ϵpred. The corresponding equation can be formalized
as: ϵϑ(zt, t, c) = ϵpred. Following the Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020), we express
zt as: zt =

√
ᾱtz0 +

√
1− ᾱtϵ.

The learning target of DDPM is ϵ. By setting the learning
target as ϵ, the model will try to fit the distribution of the
training data, which directly leads to a distributional shift.
The target distribution we pursue is not the distribution
of the dataset, but rather the intrinsic distribution of the
model itself, augmented by an offset. Therefore, the best
estimation should come from the predictions of the original
model ϵpred, rather than the actual added noise. Based on
this observation, we begin our derivation with the evidence
lower bound (ELBO), advancing towards the formulation
of the final expression of LPPFT. For a comprehensive
understanding of this derivation process, please refer to the
detailed explanation provided in Appendix E.

Finally, our prior preserving loss can be formalized as:

LPPFT(θ) := Et,c,z0,ϵ

[ ∥∥ϵθ (√ᾱt(z0 +∆zw)

+
√
1− ᾱtϵ, t, c

)
− ϵϑ

(√
ᾱtz0 +

√
1− ᾱtϵ, t, c

)∥∥2 ],
(6)

where θ represents the parameters of the fine-tuned model,
ϑ denotes the parameters of the original model, which are
frozen, and z0 is the latent of the image from the training
dataset.

The pseudo-code of prior preserving diffusion fine-tuning is
presented in Algorithm 1.

4.3.3. COARSE TYPE ADAPTION FOR DIVERSE MODELS

We aim to safeguard customized Stable Diffusion Mod-
els, which may deviate from the original Stable Diffusion
v1.5 model in terms of their distribution. Notably, certain
models, such as those designed in an anime-cartoon style,
exhibit significant distribution disparities that can lead to a
decline in performance. To address this issue, we propose
a straightforward yet highly effective solution: fine-tuning
our AquaLoRA on various coarse types. This approach
allows us to create specialized AquaLoRAs tailored for dif-
ferent model types, thereby minimizing the distribution gap.
These types don’t need to be very specific, and all types
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Table 1. Comparison between our method and previous watermarking methods. The capacities of DwtDctSvd, RivaGAN, StableSignature,
and our method are 64bit, 32bit, 48bit, and 48bit, respectively. We control the FPR at 10−6 and evaluate the TPR. As Tree-ring is a
zero-bit watermark, the bit accuracy can’t be calculated here. Adv. (Adversarial) here refers to the average performance when images are
under different distortions. The top-2 results of the robustness metrics have been emphasized.

METHOD
INTEGRATED

WATERMARKING
WATERMARKING

FLEXIBILITY
WHITE-BOX
PROTECTION

FIDELITY ROBUSTNESS

FID ↓ DREAMSIM↓ BITACC.↑ BITACC.(ADV.)↑ TPR ↑ TPR (ADV.) ↑

NONE – – – 24.26 – – – – –

Post-diffusion
DWTDCTSVD ✗ ✓ ✗ 23.84 0.017 100.0 70.55 1.00 0.356
RIVAGAN ✗ ✓ ✗ 23.26 0.023 98.78 84.19 0.983 0.630
STABLESIG. ✓ ✗ ✗ 24.77 0.018 98.30 77.01 0.993 0.580

During diffusion
TREE-RING ✓ ✓ ✗ 24.91 0.301 – – 1.00 0.810
OURSSD ✓ ✓ ✓ 24.88 0.201 95.79 91.86 0.990 0.906
OURSCUSTOMAVG ✓ ✓ ✓ – 0.204 94.81 90.27 0.976 0.861

Algorithm 1 Prior Preserving Fine-tuning Algorithm
1: Input: Pre-trained frozen model ϑ, AquaLoRA ∆θ,

Pre-trained secret encoder Es, diffusion model VAE en-
coder Ei. An image-caption dataset with paired images
and captions.

2: Output: Fine-tuned AquaLoRA ∆θ
3: for image x0, c in Dataset do
4: z0 ← Ei(x0)
5: s← random secret
6: θ(s)← ϑ+∆θ(s)
7: ∆zw ← Es(s)
8: t ∼ Uniform({1, . . . , T})
9: ϵ ∼ N (0, I)

10: zt ←
√
ᾱtz0 +

√
1− ᾱtϵ

11: zubt ←
√
ᾱt(z0 +∆zw) +

√
1− ᾱtϵ

12: Take gradient descent step on
∇∆θ

∥∥ϵθ(s) (zubt , t, c
)
− ϵϑ (zt, t, c)

∥∥2
13: end for
14: return ∆θ

can be seen in Appendix 13. In application, our goal is to
select the AquaLoRA with the closest distribution, and we
simply use the corresponding coarse type to measure the
gap. This strategy effectively enhances performance. The
effectiveness can be found in the ablation section 5.4.

5. Experiments
5.1. Experiment Setup

Datasets. During the latent watermark pre-training process,
we use the COCO2017 (Lin et al., 2014) dataset and ran-
domly select 10,000 images from the training set to train the
latent watermark. In the Prior Preserving Fine-tuning stage,
to better avoid distribution shifts, we leverage captions for
10,000 images from the COCO train set used before, along
with 10,000 prompts from Stable-Diffusion-Prompts (Gus-

tavosta). Besides, the generation process employs the dpm-
solver (Lu et al., 2022) multistep scheduler, sampling in
30 steps and a default guidance scale of 7.5, to generate
corresponding images as our training set.

Implement Details. We use Stable Diffusion v1.5 as the
base model. The number of embedded bits we designed is
48 bits. During latent watermark pre-training stage, we set
λ = 5, µ = 0.5, and adopt the AdamW optimizer with a
learning rate of 1×10−3, weight decay 1×10−4, training for
40 epochs. In this phase, we introduce a distortion layer for
robustness enhancement. Details of the distortion layer can
be found in Appendix C.1. The training strategy is discussed
in Appendix B.1. In the PPFT stage, we use a LoRA with a
rank of 320 by default as the base of our AquaLoRA. Our de-
sign generally follows the Kohya ss style (bmaltais), includ-
ing LoRA on the feedforward network in TransformerBlock
and the conv layer in the ResBlock structure. We also use
the AdamW optimizer in this stage, with a learning rate of
1× 10−4, training for 30 epochs.

In the sampling phase, adjusting the α value allows for an
easy trade-off between fidelity and watermark extraction
accuracy. We choose α = 1.05, experiment can be found in
the Appendix H.1.

5.2. Fidelity

Table 1 presents the comparison results of our method with
other baseline methods. For evaluation metrics for fidelity,
we adopt the Fréchet Inception Distance (FID) (Heusel
et al., 2017) calculated on the COCO2017 validation set,
which comprises 5,000 images, to assess image quality. Fur-
thermore, we also leverage DreamSim (Fu et al., 2023), a
method that gauges the similarity between images, offer-
ing results more in line with human judgment compared
to CLIP (Radford et al., 2021) and DINO (Caron et al.,
2021). We include this metric because it better represents
the similarity in semantics and layout than FID.
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Figure 3. A comparison between the Tree-ring watermark and our
proposed AquaLoRA. The image is generated under the same
diffusion configurations and the same random seed.

We categorize methods by their timing of watermark
application—post-diffusion or during diffusion. Post-
diffusion methods, applying watermarks after image genera-
tion, produce minimal pixel-level differences, reflected in a
low DreamSim. In contrast, methods that add watermarks
during diffusion experience an amplification of watermark
differences due to the iterative denoising process, leading
to relatively large changes in the final generated output.
Importantly, this does not imply a significant decrease in
generation quality, as indicated by only a negligible rise in
FID (see Table 1).

In Figure 3, we also provide some visual examples of water-
marked images generated by the tree-ring watermark (Wen
et al., 2023) and our AquaLoRA. It can be observed that our
results and the original images share very similar layouts
and consistency in the main content, despite some differ-
ences in detail. More visual results can be found in the
Appendix J.

5.3. Robustness

5.3.1. ROBUSTNESS AGAINST DISTORTIONS

We evaluated the performance of our method under default
settings and various image distortion conditions. For cus-
tomized SD models, we downloaded 25 checkpoints from
Civitai, and generated 100 images for each checkpoint, cal-
culating the average results for evaluation. Details of 25
checkpoints can be seen in the Appendix I. We utilized parti-
prompts (Yu et al., 2022), from which we removed prompts
categorized as “basic” as they are too short. Considering
our intention to test 25 models, we randomly selected 100
prompts. For evaluating stable signature, we used these
100 prompts with 10 random seeds to generate 1,000 im-
ages. Similarly, for traditional image watermark methods,

we sampled 1,000 images from the clean SD model, added
image watermarks, and calculated accuracy. We referred
to the design from (Fernandez et al., 2023) and used true
positive rate (TPR), controlling false positive rate (FPR) at
10−6 as an evaluation metric. Additional explanations about
these metrics can be found in Appendix F.

Table 2 compares AquaLoRA and other methods under
distortions. Among these transformations, the “Denoising”
leverages the diffusion model itself. It first adds noise and
then uses a clean diffusion model for denoising, allowing
for the erasing of the watermark (Zhao et al., 2023c). We
categorize it as a type of distortion because it’s already a
basic operation for various AI art tools. Detailed distortion
settings can be found in Appendix C.2.

Our method demonstrates strong resilience to various dis-
tortions, achieving the best results against “JPEG”, “Noise”
and “Denoising” while obtaining comparable robustness in
other cases. Notably, the proposed AquaLoRA is currently
the only solution for the white-box protection scenario, mak-
ing it more reliable in practical scenarios.

5.3.2. ROBUSTNESS FOR SAMPLING CONFIGURATIONS

Regular Sampling Configurations. We explored the im-
pact of various samplers, sampling steps, and Classifier-Free
Guidance (CFG) scales (Ho & Salimans, 2022) on water-
mark extraction in the denoising process in Table 3. For
samplers, we evaluate on DDIM (Song et al., 2020), DPM-
solver singlesteps, DPM-solver multisteps (Lu et al., 2022),
Euler and Heun Sampler (Karras et al., 2022), and Uni-PC
samplers (Zhao et al., 2023a). Despite different samplers,
the watermark extraction rate remained largely unaffected.
Besides, Table 3 also shows that AquaLoRA exhibits good
extraction accuracy facing different sampling step settings
and CFG scales.

Furthermore, Stable Diffusion can effectively produce im-
ages in multiple sizes. Since our watermark is trained on
a dataset of 512 × 512, there is a decrease in watermark
extraction accuracy when sampled at larger sizes. To ad-
dress this, we designed a special augmentation during the
latent watermark pre-training stage, as well as conducted
decoder-only fine-tuning after PPFT. Details can be found
in the Appendix D. Table 4 demonstrates the results of our
method’s extraction accuracy at different sampling sizes.
Despite the increase in size, extraction accuracy decreases
but remains practical.

Different VAE Decoder. For Stable Diffusion, there are
several VAE decoders in the wild to choose from. Users
can select different VAE decoders to transform the latent
into images. We gather the VAE decoder from 3 sources:
Improved decoder sd-vae-ft mse released by StabilityAI,
the community fine-tuned popular VAE decoder ClearVAE,
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Table 2. The comparison of different methods under different distortion settings. Our method demonstrates the best performance on
average. The best results of each metric have been emphasized.

METHODS
DISTORTIONS

COLORJITTER CROP&RESIZE BLUR GAUSSIAN NOISE JPEG DENOISING DENOISING-V2 AVERAGE

Bit Accuracy (%)↑
DWTDCTSVD 88.60 49.33 99.07 69.91 84.37 53.12 49.44 70.55
RIVAGAN 95.84 98.15 98.56 91.18 92.25 58.81 54.56 84.19
STABLESIG. 96.28 97.39 90.55 71.78 85.94 48.58 48.52 77.01
OURS 93.38 91.44 95.85 93.00 94.92 87.58 86.83 91.86

TPR (FPR=10−6)↑
DWTDCTSVD 0.725 0.003 1.00 0.021 0.732 0.009 0.002 0.356
RIVAGAN 0.923 0.957 0.946 0.707 0.856 0.002 0.007 0.630
STABLESIG. 0.984 0.988 0.903 0.347 0.833 0.002 0.00 0.580
TREE-RING 1.00 0.140 0.968 0.619 0.946 1.00 1.00 0.810
OURS 0.941 0.919 0.994 0.958 0.998 0.780 0.754 0.906

Table 3. Extraction bit accuracy under different diffusion configu-
rations. Default test settings are colored by gray cells. “Consisten-
cyDec.” is an abbreviation for “ConsistencyDeccoder”.

CONFIGURATIONS BIT ACC.(%)↑ DREAMSIM↓

SAMPLER

DDIM 95.72 0.201
DPM-S 95.74 0.201
DPM-M 95.79 0.201
EULER 95.75 0.201
HEUN 95.76 0.201
UNIPC 95.63 0.200

STEPS

15 95.64 0.207
25 95.79 0.201
50 95.20 0.202
100 94.98 0.203

CFG
5.0 96.62 0.195
7.5 95.79 0.201
10.0 94.55 0.209

VAE
SD-VAE-FT-MSE 95.85 0.204
CLEARVAE 95.80 0.208
CONSISTENCYDEC. 95.32 0.206

and the ConsistencyDecoderVAE introduced in by OpenAI
(Betker et al., 2023). Our method demonstrates robustness
across these variations (see Table 3); this is because our
watermark exists within the U-Net. As long as the latent
space for U-Net and VAE remains consistent, our watermark
will appear in the final generated images.

With ControlNet and LoRA Add-on. In addition, we have
also tested the accuracy of watermark extraction in images
generated by the watermarked model when other LoRA
or ControlNet (Zhang et al., 2023) is added. Our method
demonstrates good robustness. For more details, please refer
to the Appendix G.

Fine-tuning Attack. From the attacker’s perspective, we
considered a fine-tuning attack. The experimental setup and

Table 4. Extraction bit accuracy for different output image sizes.

BIT ACC.(%)↑ WIDTH

512 576 640 704 768

HEIGHT

512 92.79 91.84 91.82 91.48 90.15
576 93.38 91.63 91.50 91.48 90.63
640 93.48 92.94 91.88 91.02 91.02
704 92.85 92.75 92.29 92.33 88.56
768 91.33 90.90 88.87 89.56 86.04

Table 5. An ablation study on the efficiency of PPFT, the initial-
ization in mapping, and the impact of LoRA’s rank. Default test
settings are colored by gray cells.

METHOD RANK BIT ACC.(%)↑ DREAMSIM↓
NAIVE DIFFUSION 320 48.11 0.330

PPFT
+ NORMAL INIT 320 95.02 (-0.77) 0.205
+ ORTHOGONAL INIT 320 95.79 (+0.00) 0.201

PPFT
+ ORTHOGONAL INIT 128 92.23 (-3.56) 0.224
+ ORTHOGONAL INIT 320 95.79 (+0.00) 0.201
+ ORTHOGONAL INIT 512 96.29 (+0.50) 0.192

results are in Appendix G.5. We demonstrated that removing
our watermark requires sacrificing the preservation of the
model’s preference.

5.4. Ablation Studies

In the ablation study, we set a fixed training length of 30
epochs and compared the final results. Table 5 shows the
results of the ablation study.

Prior Preserving Fine-tuning. We compared the differ-
ences between our proposed prior preserving fine-tuning
method and Naive diffusion training. Naive diffusion train-
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Table 6. PSNR and SSIM for Latent watermark pre-training stage
under three loss settings.

NO PRVL LOSS MSE LOSS PRVL LOSS

SSIM 0.91 0.91 0.92
PSNR 29.48 29.59 29.85
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Figure 4. Ablation Study on Coarse Type Adaption. Left: Results
for watermarked models without coarse-type adaption. Right:
Results post fine-tuning on various coarse types.

ing, while slowly improving accuracy, also caused signif-
icant changes to the generated results. We observed that
compared to our method, the loss in naive diffusion training
is two orders of magnitude larger. It is reasonable to assume
that most of the loss is used to make AquaLoRA learn the
distribution of the training dataset, rather than the pattern of
the watermark.

The Initialization of Mapper. We tested the default stan-
dard normal initialization of the mapper and proposed or-
thogonal vector initialization of the mapper. The experi-
mental results (Table 5) show that the orthogonal vector
initialization obtains the best performance.

AquaLoRA Ranks. Through experimentation, we found
that a larger rank leads to higher final extraction accuracy,
but there is a diminishing marginal benefit.

Peak Regional Variation Loss. PRVL Loss plays an impor-
tant role during the latent watermark pre-training phase. We
tested the watermark’s PSNR and SSIM under three differ-
ent settings: without PRVL loss, replacing PRVL loss with
a similar-sized MSE loss, and using PRVL loss normally.
Table 6 shows the experimental results, demonstrating that
PRVL Loss yields the best results. PSNR and SSIM are
not significantly expressive for local artifacts. Hence, we
provide visual results to demonstrate the effectiveness of
PRVL loss in Figure 8 of the Appendix.

Coarse Type Adaption. As we previously mentioned, we
can fine-tune our AquaLoRA on various coarse types to
further enhance performance. In our experiments, we used
a total of 25 downloaded checkpoints, which include two
major categories: “style” and “character”. Detailed informa-

tion can be found in the Appendix I. In Figure 4, the left half
shows the bit accuracy and DreamSim of each model with
the watermark added, without coarse-type adaption, with
an average of 93.61% and 0.219. The right half displays
the results after fine-tuning, with an average of 94.81% and
0.204.

6. Discussion
Limitations. Firstly, our method faces challenges with
strong cropping and rotation due to the watermark’s lim-
ited resilience in the latent watermark pre-training stage.
Currently, the watermark pre-training and PPFT are decou-
pled. Future methods that improve watermark embedding
into the latent space could replace the first stage to enhance
performance.

Moreover, some advanced users might not only apply SD
for text-to-image generation tasks but also engage in various
editing, inpainting, and outpainting tasks. Currently, our
watermark does not adequately handle these types of model
usage.

Finally, when the output image size of the model increases,
we have a certain degree of performance degradation. We
plan to address this issue in future research.

Conclusion. In this work, we present AquaLoRA, an ef-
fective way for embedding watermarks into Stable Diffu-
sion Models. Unlike previous approaches, the watermark
exists within the U-Net structure, enabling protection in
checkpoint-sharing scenarios (e.g., in Civitai). By exploring
the structure of LoRA, we introduce a scaling matrix that
allows flexible secret modifications. Besides, we propose
a prior preserving fine-tuning algorithm that embeds wa-
termarks while ensuring minimal visual impact. Extensive
evaluations across various models and experimental settings
demonstrate the robustness of AquaLoRA. We analyze the
limitations of our method and suggest many improvements
can be made for future research. We hope our work can mo-
tivate the AI art community, moving forward into a future
where creativity thrives while still being safeguarded.
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Impact Statement
This paper underscores the necessity of implementing white-
box protection for Stable Diffusion models and presents a
practical solution. Our approach seeks to enhance the safe-
guarding of creators’ interests and promote a more struc-
tured and constructive AI art community. For example,
the proposed AquaLoRA could be applied by large-scale
platforms like Civitai, to protect the copyright of model
sharers, which is beneficial for fostering a sharing-friendly
atmosphere within the community. In addition to copyright
protection, this method can be conveniently extended to
track misuse and authenticate generated images.
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A. More Discussions
A.1. Visual Examples of Various VAE Decoders

Table 7. Quantitative comparison of visual similarity for dif-
ferent VAE decoders.

DREAMSIM ↓ SSIM ↑ PSNR ↑
SD-VAE-FT-MSE 0.013 0.82 27.54
CLEARVAE 0.033 0.80 25.99
CONSISTENCYDEC. 0.030 0.70 24.68
STABLESIG. 0.022 0.79 25.92

The customization of the SD primarily resides within the U-Net
structure. Thus, altering the VAE decoder retains the model’s
custom content intact. We tried 4 different clean VAE decoders,
namely sd-vae-ft-mse (sd-vae-ft mse), ClearVAE (ClearVAE),
ConsistencyDecoderVAE (Betker et al., 2023), and Stable Sig-
nature (Fernandez et al., 2023) to replace the original decoder.
We evaluated the sampling results by three metrics, i.e., Dream-
Sim, PSNR, and SSIM. As shown in Table 7, replacing the VAE
decoder will not degrade the functionality of SDs. Our method
selects more primary components (i.e., U-Net structure) of the
SD model to embed the watermark, replacing UNet will destroy the functionality or customization of the SD.

Moreover, we provide a visual example (see Figure 5). It can be seen that the results generated by various VAE decoders
only have very slight differences.

ClearVAE ConsistencyDecoder Stable Signaturesd-vae-ft-mseOriginal

Figure 5. Representative visual examples of Stable Diffusion generated results decoded by different VAE decoders.

A.2. Model collusion

Table 8. Expectation of extracted bits. The term
“Model1-0” refers to the positions where the watermark
bits of the first model are 0. Similarly for other terms.

EXPECTATION MODEL2-0 MODEL2-1

MODEL1-0 0.04 0.53
MODEL1-1 0.47 0.97

Users might deceive detection by aggregating their models to average
their model weights, as in Model soups (Wortsman et al., 2022),
creating a new model. Here, we merge two watermark models with
different watermark bit strings at a ratio of 0.5. We discover that the
bit at position l output by the extractor will be 0 (respectively, 1) when
the l-th bits of both models are 0 (respectively, 1), and the extracted bit
is random when their bits disagree. Table 8 displays the average values
(Expectation) of the extracted results from the merged model under
different bit settings for Models 1 and 2, proving the aforementioned
findings.
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This aligns with the findings reported by Fernandez et al. which conforms to the marking assumption. This so-called
marking assumption plays a crucial role in the literature on traitor tracing (Furon et al., 2012; Meerwald & Furon, 2012). It’s
interesting even though our watermarking process was not explicitly designed for this, it still holds.

A.3. Scaling AquaLoRA to More Bits

Although we used a 48-bit watermark in our main experiment, we also tried extending our watermark to more bits. We
increased the rank size to 512 and then tested watermarks of 64 bits and 100 bits. Table 9 shows the experimental results,
demonstrating that our method can successfully scale up to 64 bits with little performance loss. For 100 bits, there is a
moderate decrease in watermark performance, which we leave as a topic for future study.

Table 9. Performance of our method on 64-bit and 100-bit settings. Adversarial here refers to the average performance of many different
distortions.

NUMBER
OF BITS

FIDELITY ROBUSTNESS

FID ↓ DREAMSIM ↓ BIT ACC. ↑ BIT ACC.(ADVERSARIAL) ↑
64-BIT 24.53 0.229 94.47 88.36
100-BIT 24.72 0.238 90.11 83.45

A.4. Computational and Time Complexity for Training and Inference

The training phase is divided into latent watermark pre-training and prior-preserving fine-tuning. During the latent watermark
pre-training phase, we train for 40 epochs, approximately 80k steps, costing 40 GPU hours on a single A6000 40G. In PPFT,
we train for 30 epochs, about 30k steps, costing 15 GPU hours on an A6000 40G. This is acceptable for any normal-sized
academic laboratory. It’s important to note that for all customized models, we only need to pre-train a coarse-type quantity
of AquaLoRA.

During the inference phase, since LoRA has been integrated into the model weights, there is essentially 0 overhead. At
this stage, our overhead is lower than that of post-diffusion or image watermarking methods.

A.5. Inherent Shortcomings for Cover-agnostic Watermarks

Cover-agnostic watermark has inherent weaknesses. Consider if the attacker averages many latent vectors, he will estimate
the watermark signal ∆zw. However, in practice, it requires collecting a large number of in-distribution unwatermarked
samples, which remains challenging. Furthermore, the above attack can be mitigated by the following measures:

1. Dynamic watermarks: Regularly update the watermark pattern or parameters, making it difficult for attackers to track
and analyze the watermark over time.

2. Apply watermarks only to significant content, reducing the number of samples available for attackers to analyze.

B. Details in Latent Watermark Pre-training
B.1. Network Architecture of Secret Encoder and Training Strategy
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Figure 6. Network architecture for latent watermark en-
coder.

In the design of the secret encoder, we have drawn inspiration from
the model structure of RoSteALS (Bui et al., 2023). We changed
the resolution from 16 to 32 to enhance the watermark’s robustness
against cropping operations. We removed the final zero convolution
because it had a minor impact on the training process. Instead, it
tended to slow down the training speed.

Regarding our training strategy, in the initial phase of training, we
retained only theLBCE and did not use natural image datasets. Instead,
we directly used the output of the secret encoder as the input for the
VAE decoder for training, demanding accurate watermark extraction.
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Only when the average loss over 10 iterations fell below 0.1, did we introduce the natural image dataset, MSCOCO2017
trainset, into the training process. From that point on, we trained using the complete loss as mentioned in the main body.
Without this training strategy, we find that the loss can hardly decrease.

B.2. Details of the Peak Regional Variation Loss

During the training process, we found that areas with particularly strong signal features severely affect the visual quality (see
Figure 7 w/o PRVL). Although increasing the scale of LPIPS loss can suppress this effect, it also leads to overall suppression
of the watermark in invisible areas, making it difficult to improve extraction accuracy. Therefore, we specifically designed
the Peak Regional Variation Loss (PRVL) which is engineered to focus on the maximal discrepancy within a predefined
window or region. This is achieved by computing the absolute difference between the corresponding pixels of the two
images and aggregating these differences across all color channels to form a combined variation map. The loss then centers
on the region exhibiting the peak variation, identified via a convolution operation with a uniform kernel over the combined
map. This approach ensures that PRVL is not unduly influenced by widespread, low-level variations but rather emphasizes
areas of maximal discrepancy. Specifically, this loss can be formalized as follows:

V (x, y) =
1

3

3∑
c=1

|Ioc (x, y)− Iwc (x, y)| (7)

LPRVL = max
x,y

(V ∗K)(x, y). (8)

V (x, y) is a 2D tensor representing the average variation at each pixel. K represents a uniform convolution kernel used to
aggregate localized variations over a defined window size. Ic(x, y) represent an image, c is the corresponding channel and
x, y stand for position of a pixel. We show the results with and without PRVL loss in Figure 7.

Clean

w/o PRVL w/ PRVL

Figure 7. Representative examples of our latent watermark
with and without PRVL loss. The residual is amplified 10×
for visualization.

w/o PRVL MSE Loss PRVL LossOrigin

Figure 8. More ablation on PRVL Loss. We tested three different settings:
simply removing PRVL Loss from our training scheme, replacing PRVL
Loss with a similarly sized MSE Loss, and the original training scheme. It
can be observed that the watermark results from the first two settings exhibit
artifacts.

C. Details of the Distortion Settings
C.1. Distortion Simulation Layer in Training Stage

In our training, we employed JPEG, crop and resize, Gaussian blur, Gaussian noise, and color jitter as our distortion simula-
tion layers. For JPEG, we utilized the simulation layer from HiDDeN(Zhu et al., 2018) for JPEG distortion. For the other
distortions, we used RandomCrop and Resize from torchvision, initially randomly altering the width and height
within the range of [256, 512], and then resizing back to 512×512. RandomGaussianBlur, RandomGaussianNoise,
and ColorJiggle are from the Kornia library. For RandomGaussianBlur, we randomly chose a kernel size from
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[3, 9] with an intensity selection of (0, 2]. For RandomGaussianNoise, we set the mean to 0 and the variance to 10.
For ColorJiggle, we adjusted the brightness in (0.8, 1.25), contrast in (0.8, 1.25), saturation in (0.8, 1.25), and hue in
(−0.2, 0.2).

Additionally, to enhance the watermark robustness on images sampled at larger sizes, we propose a new augmentation,
which we discuss in detail in Appendix D.

C.2. Distortion in Evaluation Stage

During the testing phase, we applied lossy compression to the images using JPEG, employing the PIL library with a quality
setting of 50. For cropping, we used a random crop of 80%. Gaussian blur, Gaussian noise, and color jitter were applied
using functions from the Kornia library. In Gaussian blur, we used a kernel size of 3 × 3 with an intensity of 4. For
Gaussian noise, we set the mean to 0 and the variance to 0.1 (image is normalized into [0, 1]). In color jitter, we sampled
brightness from (0.9, 1.1), contrast from (0.9, 1.1), saturation from (0.9, 1.1), and hue from (−0.1, 0.1).

For denoising, we used Stable Diffusion v1.5, with a noise strength of 0.1, meaning the added noise was equivalent to the
noise intensity of 100 steps in the DDPM forward process (Stable Diffusion has a total of 1000 timesteps). For denoising-v2,
we employed Stable Diffusion v2.1, with a noise strength of 0.2. Existing watermarking methods often add watermarks
at the pixel level, whereas current generative models compress or regenerate images at the semantic level, significantly
leading to the loss of watermark information. This was experimentally demonstrated in (Zhao et al., 2023b), showing that
compression can significantly eliminate image watermarks. Differently, our watermarks are added to the latent space, where
they are more prominent.

Figure 9 shows the various visual results of distortions that we used during the evaluation.

Clean

Blur

JPEG Crop&Resize Color jitter

Gaussian noise Denoising Denoising-v2

Figure 9. Demonstration of the various visual results of distortions that were used during the evaluation

D. Details of Robustness Enhancement on Larger Sampling Sizes
We designed an augmentation to enhance the watermark extraction capability of our method at larger sampling sizes, and
after the PPFT stage, freeze all remaining weights to conduct additional fine-tuning on the decoder.

Augmentation. We considered the following question: How does a watermark pattern behave under larger sampling sizes
after being trained on 512× 512 watermarks? We observed that the patterns stayed almost the same as the original size
watermark pattern near the four corners. Based on this, we designed the following process during the latent watermark
pre-training phase, allowing the secret encoder and decoder to optimize this observation. Specifically, we divided the
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4× 64× 64 watermark pattern ∆zw into four 4× 32× 32 patches, then resized the 4× 64× 64 image latent zo to 1 to 1.5
times its original size to simulate a larger image. Afterward, we overlaid the four patches onto the corners of the image
latent to produce the watermarked image latent zw and then resized zw back to the original size. The VAE decoder decodes
this to yield the watermarked image Iw, completing the watermarking process.

Fine-tuning. In addition to adding augmentation, we incorporated a decoder-only fine-tuning step after PPFT training to
enhance the extraction accuracy. Specifically, we used the Stable-Diffusion-Prompts (Gustavosta) as the prompt dataset and
sampled images of varying sizes, ranging from 512× 512 to 768× 768, using different secret messages. Subsequently, we
utilized the decoder to extract the secret message from the images and calculated the BCE Loss. During the training process,
we froze all weights except for those of the decoder, focusing on enhancing the decoder’s capabilities.

E. Mathematical Proof of PPFT
In this proof, we omit the text condition c of the model. Assuming that the original distribution of the model is q with
parameters ϑ, our objective is to learn the target distribution q′ with model parameters θ. Formally, we define q′ as a
distribution that satisfies:

q(z0) = q′(z0 +∆zw) = q′(z′0). (9)

Assume z0 ∼ q, z′0 = z0 +∆zw, z′0 ∼ q′. We use pθ to represent the distribution of the target model. Starting from ELBO,
it’s evident that we wish for the distribution pθ of the target model to minimize L:

E [− log pθ (z
′
0)] ≤ Eq′

[
− log

pθ (z
′
0:T )

q′ (z′1:T | z′0)

]
= Eq′

− log p (z′T )−
∑
t≥1

log
pθ
(
z′t−1 | z′t

)
q′
(
z′t | z′t−1

)
 =: L. (10)

Further, we can deduce:

L = Eq′ [DKL (q
′ (z′T | z′0) ∥p (z′T ))︸ ︷︷ ︸

LT

+
∑
t>1

DKL

(
q′
(
z′t−1 | z′t, z′0

)
∥pθ

(
z′t−1 | z′t

))︸ ︷︷ ︸
Lt−1

− log pθ (z
′
0 | z′1)︸ ︷︷ ︸

L0

]. (11)

LT can be treated as a constant, L0 can be seen as a type of distortion and can be ignored. Only consider L1:T−1.

Considering q(zt−1|zt, z0), since q is the distribution of model ϑ, we can directly derive the mean:

µ̃t(zt, z0) = µϑ(zt) =
1
√
αt

(
zt −

βt√
1− αt

ϵϑ(zt, t)

)
, (12)

and variance β̃t :=
1−αt−1

1−αt
βt.

Importantly, due to definition Equation 9, we can obtain

q′
(
z′t−1 | z′t, z′0

)
= q (zt−1 | zt, z0) . (13)

From this, it is known that the mean of q′
(
z′t−1 | z′t, z′0

)
is µϑ(zt).

Based on the KL divergence formula:

KL(p, q) = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2

The variance of q′
(
z′t−1 | z′t, z′0

)
is a fixed value, and the variance of pθ

(
z′t−1 | z′t

)
is set to be a constant related to β.

Therefore, only the mean needs to be calculated.

We can obtain the effective computational part:

Lt−1 = Ez′
0∼q′

[
1

2σ2
t

||µ̃t(z
′
t, z

′
0)− µθ(z

′
t, t)||2

]
+ C = Ez0∼q

[
1

2σ2
t

||µϑ(zt)− µθ(z
′
t, t)||2

]
+ C. (14)
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Following DDPM, we perform parameterization:

µθ (z
′
t, t) = µ̃t

(
z′t,

1√
ᾱt

(
z′t −

√
1− ᾱtϵθ (z

′
t)
))

=
1
√
αt

(
z′t −

βt√
1− ᾱt

ϵθ (z
′
t, t)

)
. (15)

By substituting Equation 12 and 15 into Equation 14, we can derive the final loss function (omit text condition c):

LPPFT(θ) :=Et,z0,ϵ

[
∥ϵϑ (zt, t)− ϵθ (z

′
t, t)∥

2
]

=Et,z0,ϵ

[∥∥ϵθ (√ᾱt(z0 +∆zw) +
√
1− ᾱtϵ, t

)
− ϵϑ

(√
ᾱtz0 +

√
1− ᾱtϵ, t

)∥∥2] . (16)

F. Details of Comparison Experiments
Bit Accuracy. Assuming a k-bit binary watermark s ∈ {0, 1}k is injected into the target model, and the bit string extracted
from the sampled generated image is s′, bit accuracy is defined as the ratio of the number of matching bits between s and s′

to k, defined as Acc(s, s′).

TPR with Controlled FPR. We consider all the watermark approach as a single-bit watermark, with a fixed watermark
s. A threshold value τ , which ranges from 0 to k, is predetermined. If the accuracy score Acc(s, s′) meets or exceeds the
threshold τ , it is concluded that the image indeed contains the watermark.

Previous research (Yu et al., 2021) commonly assumed that watermark bits s′1, . . . , s
′
k retrieved from clean images are

random and uniformly distributed, each bit s′i being modeled by a Bernoulli process with a success probability of 0.5.
Consequently, the accuracy measure Acc(s, s′) adheres to a binomial distribution characterized by the parameters (k, 0.5).
Once the distribution of Acc(s, s′) is determined, the false positive rate (FPR) is defined as the probability that Acc(s, s′) of
a vanilla image exceeds the threshold τ . This probability can be further expressed using the regularized incomplete beta
function Bx(a; b),

FPR(τ) = P (Acc(s, s′) > τ) =

k∑
i=τ+1

(
k

i

)
1

2k
= B 1

2
(τ + 1, k − τ). (17)

We estimate the false positive rate (FPR) to be maintained at 10−6, determine the respective threshold τ , and evaluate the
true positive rate (TPR) using 1,000 watermarked images. Refer to Table 2, where the FPR is kept at 10−6, our method
demonstrates commendable performance in terms of bit accuracy and TPR.

G. More Robustness Results
For the downloaded models, users have the option to add additional LoRA and ControlNet during the image generation
process. Consequently, we conducted corresponding tests to assess this capability.

G.1. Apply LoRA

Table 10. Bit accuracy for watermarked models with LoRA add-on.

CHARACTER +
STYLE LORA(GHIBLI STYLE)

STYLE +
CHARACTER LORA(SHADOWHEART)

BIT ACCURACY (%) ↑ 92.64 93.91

In this experiment, we tested two scenarios: In the first scenario, we used a watermarked character model and added a LoRA
related to a style. In the second scenario, we employed a watermarked style model and added a LoRA concerning a character.
For both scenarios, we fixed the chosen LoRA and randomly selected 4 models for testing, sampled 100 images each then
calculated the average. Table 10 shows the results of our experiment. It can be observed that, although the addition of LoRA
had some impact on performance, the accuracy remained above 92%, demonstrating good robustness.
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G.2. Apply ControlNet

In this experiment, we tested all types of the 1.0 version of ControlNet. For canny, depth, hed, MLSD, normal, and
segmentation, we randomly selected 4 models from the style group. For openpose, we chose 4 models from the celebrity
type. We sampled 100 images from each model to calculate the average bit accuracy. Table 11 displays the results of our
experiment, which show that ControlNet did not impact the extraction of watermarks.

Table 11. Bit accuracy for watermarked models with ControlNet add-on.

CANNY DEPTH HED MLSD NORMAL SEG OPENPOSE

BIT ACCURACY (%)↑ 94.21 95.39 93.21 95.15 95.87 95.36 94.31

G.3. Apply Textual Inversion

We tested the impact of two types of textual inversion, style and character, on the accuracy of watermark extraction. Our
tests were based on the RealCartoon3D model. As can be seen from Table 12, our method achieves good accuracy.

Table 12. Bit accuracy for watermarked models with LoRA add-on.

STYLE TEXTUAL INVERSION
(MONET STYLE)

CHARACTER TEXTUAL INVERSION
(NATALIE)

BIT ACCURACY (%)↑ 94.79 93.34

G.4. Apply LCM-LoRA

LCM-LoRA(Luo et al., 2023), a LoRA model trained with Stable Diffusion base models using the consistency method,
accelerates image generation to as few as four steps with any custom checkpoint model. We tested the impact of integrating
LCM-LoRA and found an increase in extraction accuracy, with bit accuracy reaching 97.04%. We hypothesize this is due
to LCM-LoRA’s generated images having less content and smoother colors compared to normal sampling, making our
watermark more pronounced.

G.5. Robustness Against Fine-tuning

We also took into account that some advanced attackers, after obtaining the model weights, would fine-tune the model in
an attempt to eliminate the watermark. It is obvious that the value of customized models lies in their inclusion of unique
preferences, which are incorporated during the author’s training process and are usually not publicly released. Therefore,
attackers can usually only use some easily accessible public datasets to fine-tune.

Thus, we conducted corresponding experiments. Specifically, we conducted a fine-tuning attack on a watermarked model
(realcartoon3d v12). We used AquaLoRA with ranks of 320 and 512 to add watermarks, respectively. Then, we used the
MSCOCO dataset to fine-tune the model, and we statistically analyzed the model’s performance at different training steps.

Our findings, as shown in Figure 10, indicate that as the fine-tuning progresses, the watermark is destroyed, which also
significantly compromises the integrity of the original content. Encouragingly, the figure shows that larger ranks exhibit
better robustness against fine-tuning, suggesting that future research could explore using even larger ranks.

H. More Ablation Results
H.1. Fidelity & Accuracy Trade-off

We can modify the balance between accuracy and fidelity by altering the α value. This trade-off is depicted in Figure 11,
which shows how changes in α affect both the accuracy of extraction and the fidelity of images. After considering these
variations, we decided to set α at 1.05.
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0 steps 100 steps 200 steps 300 steps 400 steps 500 steps

Figure 10. Robustness to model fine-tuning. The image illustrates
that the original style embedded in the model gradually diminishes
with fine-tuning.
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Figure 11. Trade-off Between Extraction Accuracy and Image Fi-
delity at Different Alpha Settings.

I. Evaluated Models and Coarse Types
See Table 13.

J. More Visual Results
See Figure 12.
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Table 13. The names of the 25 models used in our experiment and their respective coarse types.

MODEL GROUP COARSE TYPE

COUNTERFEITV30 25 STYLE ANIME
CUTEYUKIMIXADORABLE KEMIAOMIAO STYLE ANIME
DIVINEELEGANCEMIX V9 STYLE ANIME
MEINAMIX MEINAV11 STYLE ANIME
MATUREMALEMIX V14 STYLE ANIME
DELIBERATE V11 STYLE PHOTOREALISTIC
PHOTON V1 STYLE PHOTOREALISTIC
DREAMSHAPER 8 STYLE CARTOON3D
JUGGERNAUT REBORN STYLE CARTOON3D
REVANIMATED V122EOL STYLE CARTOON3D
REALCARTOONREALISTIC V12 STYLE CARTOON3D
REALCARTOON3D V12 STYLE CARTOON3D
LYRIEL V16 STYLE ART
NEVERENDINGDREAMNED V122NOVAETRAINING STYLE ART
GHOSTMIX V20NOVAE STYLE ART
FAMOUSPEOPLE CAITYLOTZ CHARACTER CELEBRITY
FAMOUSPEOPLE EVAGREEN CHARACTER CELEBRITY
FAMOUSPEOPLE SOPHIETURNER CHARACTER CELEBRITY
FAMOUSPEOPLE AOC CHARACTER CELEBRITY
FENRIS V10FP16 CHARACTER ANIMAL
FLUFFYKAVKAROCKMERGI V10 CHARACTER ANIMAL
CHILLOUTMIX NIPRUNEDFP32FIX CHARACTER PERSON
PERFECTDELIBERATE V5 CHARACTER PERSON
REALISIAN V50 CHARACTER PERSON
ROBOT V2 CHARACTER ROBOT
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Figure 12. Comparison between images generated by the original Stable Diffusion model and the watermarked Stable Diffusion model
under the same diffusion configurations and random seed. Left: The results generated from the original model. Right: The results
generated from the watermarked model. The results showed that the watermarked generated image is still very close to the original one.
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