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Abstract
Model quantization is a compression technique
that converts a full-precision model to a more com-
pact low-precision version for better storage. De-
spite the great success of quantization, recent stud-
ies revealed the feasibility of malicious exploiting
model quantization via implanting quantization-
conditioned backdoors (QCBs). These special
backdoors remain dormant in full-precision mod-
els but are exposed upon quantization. Unfortu-
nately, existing defenses have limited effects on
mitigating QCBs. In this paper, we conduct an
in-depth analysis of QCBs. We reveal an intrigu-
ing characteristic of QCBs, where activation of
backdoor-related neurons on even benign samples
enjoy a distribution drift after quantization, al-
though this drift is more significant on poisoned
samples. Motivated by this finding, we propose
to purify the backdoor-exposed quantized model
by aligning its layer-wise activation with its full-
precision version. To further exploit the more
pronounced activation drifts on poisoned sam-
ples, we design an additional module to layer-
wisely approximate poisoned activation distribu-
tion based on batch normalization statistics of
the full-precision model. Extensive experiments
are conducted, verifying the effectiveness of our
defense. Our code is publicly available here.

1. Introduction
In recent years, various deep neural networks (DNNs) have
achieved remarkable success and have been integrated into
many security-critical scenarios (e.g., facial recognition)
(Zablocki et al., 2022; Kim et al., 2022; Zhou et al., 2023).
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However, the extensive computational and memory require-
ments of DNNs pose difficulties in environments that de-
mand real-time responses or have limited resources. A
widely adopted solution for these issues is model quanti-
zation (Gong et al., 2019; Kuzmin et al., 2022; Jeon et al.,
2022), which reduces the precision of the model’s param-
eters from typical 32-bit floating-point numbers to lower
precision formats, e.g., 8-bit or 4-bit integers.

Despite the great success of DNNs, recent studies revealed
that they are vulnerable to backdoor attacks, where adver-
saries can implant ‘hidden backdoors’ into the victim model
during the training phase to cause misclassifications (Li
et al., 2022a). Specifically, the backdoor will be activated
by adversary-specified trigger patterns (e.g., a local image
patch). While most existing backdoor attacks focus on
directly compromising DNNs in full-precision formats, a
few recent studies (Hong et al., 2021; Tian et al., 2022;
Ma et al., 2023) built new attacks with the quantization-
conditioned triggering paradigm, which maliciously ex-
ploits the standard quantization process. Compared to tra-
ditional backdoor attacks on full-precision DNNs, these
special quantization-conditioned backdoors (QCBs) remain
dormant (cannot be triggered) in full-precision format. The
dormant backdoor will be woken up and ready for attacks
only when the user quantifies the model to a lower precision.

To mitigate the threats of backdoor attacks, many back-
door defenses have been proposed (Li et al., 2021c; Zeng
et al., 2022; Zhu et al., 2023). Despite their great success in
defending against state-of-the-art attacks on full-precision
models, as we will validate in the experiments, they are
insufficient in defending against QCBs. The main reason
lies in the peculiarity of these attacks: on full-precision
formats, which is the most common setting of existing de-
fenses, these backdoors stay dormant even in the presence
of the trigger. As a result, the model behaves as if it is
benign, helping it to bypass SOTA detection methods (Ma
et al., 2023). Moreover, since the models backdoored by
QCBs already fit benign samples well, existing tuning-based
defenses can hardly make significant weight changes on the
backdoor neurons, rendering them less effective in breaking
backdoor connections. These limitations underscore the
urgent need for new defenses against this brand new attack.
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In this paper, we propose a simply yet effective method to de-
fend against QCBs. We first reveal an intriguing yet critical
property of such backdoor attacks: neurons highly corre-
lated with backdoor effects (dubbed ‘backdoor neurons’)
experience a distributional drift after the standard quantiza-
tion. In other words, the activation distribution of backdoor
neurons has a notable change after quantization. In partic-
ular, this phenomenon holds on both benign and poisoned
samples, although the drifts are more evident on poisoned
ones. Motivated by this observation, we propose a simple
yet effective method, dubbed layer-wise activation correc-
tion (LAC). With only a small set of unlabeled data, LAC
can purify the backdoor-exposed quantized model by align-
ing its layer-wise activation with its full-precision version.
To further exploit the more pronounced activation drifts on
poisoned samples, we propose to approximate the poisoned
activation distribution of each layer by (slightly) perturb-
ing the activations of benign samples so that their statistics
(i.e., mean and variance) are closer to those recorded by
the corresponding batch normalization (BN) layer of the
full-precision model, leading to more effective and stable
defensive performance. The BN statistics contain informa-
tion on poisoned distribution since the full-precision model
is trained on both benign and poisoned samples.

In conclusion, our main contributions are: (1) We experi-
mentally verify that existing tuning-based defenses are less
effective in purifying QCBs. (2) We demonstrate an intrigu-
ing yet critical property of QCBs, i.e., backdoor neurons
experience a distributional drift on both benign and poisoned
samples after quantization. (3) Motivated by our observa-
tions, we design a simple yet effective method to purify
potential backdoors in the quantized model by layer-wise
activation correction with distribution approximation. (4)
We conduct extensive experiments on benchmark datasets
to verify the effectiveness of our method as an indepen-
dent defense against QCBs or a plug-in module to existing
backdoor defenses, and its resistance to adaptive attacks.

2. Background and Related Work
2.1. Model Quantization and Quantization-conditioned

Backdoor Attacks

Model quantization aims to convert full-precision models
to more compact formats, without significant loss of per-
formance. It is a key technique to reduce computational
and memory requirements, enabling the use of DNNs in
real-time or resource-constrained environments (Gong et al.,
2019; Zhu et al., 2020; Wu et al., 2020).

Specifically, a DNN classifier parameterized by W es-
sentially forms a non-linear function fW : X → Y ,
where X is the input space and Y is the set of labels.
The quantization function can be expressed as: Q(W ) =
round(clamp(Ws , n, p)), where s denotes the scaling param-

eter, round is the rounding operator, n and p denote the
negative and positive clipping integer thresholds. The acti-
vations are quantized similarly. For brevity, we replace fW
with f and fQ(W ) with fQ in the rest of the paper.

Model quantization is widely used in the real world. How-
ever, recent works (Pan et al., 2021; Hong et al., 2021; Tian
et al., 2022; Ma et al., 2023) have demonstrated the feasi-
bility of leveraging the quantization process for malicious
purposes, such as backdoor attacks. This kind of attack is
also known as quantization-conditioned backdoor attacks.
In such attacks, the attacker maliciously tampers the model
to behave normally when in full-precision format but will
contain a backdoor after quantization. From a high level,
the attacker aims to train a full-precision model satisfying
the following conditions:

f(x) = y, f(xt) = y

fQ(x) = y, fQ(xt) = yt
, (1)

where (x, y) denotes the benign samples and its correspond-
ing class, xt denotes the backdoor samples (samples with
trigger) and yt is the attack’s target class.

As can be seen from Eq. (1), unlike the usual benign im-
pact of quantization, attackers in this scenario exploit it
to activate a dormant backdoor implanted in the model.
Since the first work by (Tian et al., 2022), researchers have
improved quantization-conditioned backdoors in terms of
trigger stealthiness (Pan et al., 2021), attack transferability
across different quantization methods (Hong et al., 2021),
as well as training stability and robustness (Ma et al., 2021).
The latest state-of-the-art QCB is PQBackdoor (Ma et al.,
2023). This attack has demonstrated effectiveness on widely
used platforms and commercial quantization tools, including
TFLite and PyTorch Mobile.

2.2. Backdoor Defenses

To defend against backdoor attacks, in recent years, many
research efforts have been devoted. Existing defenses can
be broadly divided into two main types: the detection-based
defenses that aim to detect the backdoors (Wang et al.,
2019; Gao et al., 2019; Xu et al., 2021; Wang et al., 2022c),
and purification-based defenses that attempt to purify the
model (Liu et al., 2018; Li et al., 2021c; Zhao et al., 2020;
Zeng et al., 2022; Zhu et al., 2023). Despite effectiveness
on conventional backdoor attacks, as we will validate in
experiments, these defenses struggle against quantization-
conditioned backdoors. As we will demonstrate latter,
the purification-based defenses, especially tuning-based de-
fenses, act quite unstably on QCBs. One possible reason is
that models backdoored by QCBs already fit benign samples
well. As a result, most tuning-based defenses can only make
minor changes to backdoor-related neurons, therefore failed
to mitigate QCBs well. Very recently, a concurrent work (Li
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et al., 2024) proposed a defense to mitigate the threats of
QCBs by carefully manipulating the quantization process
and quantize the model without activating hidden backdoors.
Different from (Li et al., 2024), our defense operates after
quantization. This approach provides us with more flexi-
bility since we can combine our defense with any SOTA
quantization techniques, while (Li et al., 2024) cannot.

3. Activation Drift on Backdoor Neurons
In this section, we first analyze the unique properties of
quantization-conditioned backdoors. Recent studies (Zheng
et al., 2022) revealed that some backdoor neurons signif-
icantly correlate to backdoor effects in attacked DNNs.
These neurons are critical to the success of backdoor at-
tacks on full-precision models. Motivated by this finding,
in this section, we delve into the quantization-conditioned
backdoor attacks through their lens. Before stepping into
our analyses, we first give a definition of backdoor neurons.

Definition 3.1 (Backdoor Neuron). Given a backdoored
model f , a corresponding poisoned dataset D′, and the
target label yt. The neuron in the k-th index of all neurons
is defined as a backdoor neuron with an importance of τ if
the following condition is satisfied:

Ext∼D′ [Lce(f−(k)(xt), yt)− Lce(f(xt), yt)] = τ. (2)

where Lce is the standard cross-entropy loss and f−(k) is the
model f after pruning the neuron the k-th index of the l-th
layer. Intuitively, a neuron is defined as a backdoor neuron if
the backdoor loss increases τ after pruning it. A neuron with
larger τ has more importance to backdoor functionality. We
note that this definition is not perfect: it does not consider
the joint effect of neurons, and may misidentify neurons that
are important/unimportant for any task as backdoor/benign
neurons (see more details in Appendix F). However, it is
generally sufficient for our analysis below.

Based on this definition, we can filter out backdoor neurons
in an infected quantized model and analyze their behaviours
on both full-precision and quantized modes.

Settings. We explore backdoor neurons by analyzing their
activation, which is defined as the output of a neuron un-
der a certain input. It reflects the sensitivity of a neuron
with a given input and directly relates to the final prediction.
We train a ResNet-18 model backdoored by PQBackdoor
(Ma et al., 2023) on CIFAR10. We randomly select 1,000
neurons from this model and calculate their importance τ .
Then, we select the neurons with the highest and lowest τ
as a typical case of backdoor neurons and benign neurons,
respectively. In particular, we record their activation distri-
bution w.r.t. both benign and poisoned samples. We use
the output before ReLU function (pre-activation) instead of
activation to better illustrate the full distribution.
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Figure 1: The (pre)activation distribution of benign and poisoned
samples on typical benign and backdoor neurons. (a) The activa-
tion distribution on the benign neuron. (b) The activation distribu-
tion on the benign neuron. As shown, the activation distribution of
both benign and poisoned samples on the backdoor neuron has a
notable change after quantization. However, this phenomenon does
not exist in the benign neuron. See more examples in Appendix.

Results. As illustrated in Figure 1, on both benign and
poisoned samples, backdoor neurons generally show a sig-
nificant distribution deviation from the original activation
after quantization (Figure 1a), while benign neurons only
have a small difference on activation distribution before and
after quantization (Figure 1b). Although the activation drifts
of benign data are smaller than those of poisoned data on
backdoor neurons, they are still significantly larger than
those on benign neurons. We name this phenomenon as
‘activation drift’ on backdoor neurons.

The phenomenon of activation drift indicates that, during
a quantization-conditioned backdoor attack, backdoor neu-
rons deviate from their original activation distribution upon
quantization. On poisoned data, this deviation will accu-
mulate with each layer, causing the quantized model to
increasingly diverge from benign activations. Consequently,
this leads to incorrect target labeling when predicting a poi-
soned sample. In the following sections, we will leverage
the benign full-precision model to correct this activation
drift, and finally repair those backdoor neurons.

4. Methodology
4.1. Threat Model

Attacker’s Goals and Capabilities. Following previous
works on QCBs (Tian et al., 2022; Ma et al., 2023; Hong
et al., 2021), the attacker control the full training proce-
dure of the victim model. This assumption is plausible,
for instance, if the attacker operates as a malicious Ma-
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chine Learning as a Service (MLaaS) provider. The attacker
implants a QCB into the model by poisoning the training
dataset and altering the loss functions.

Defender’s Goals and Capabilities. The defender’s ob-
jective is to cleanse the model received from the attacker,
without sacrificing model accuracy on benign data. Follow-
ing previous works (Liu et al., 2018; Hou et al., 2024; Xu
et al., 2024; Zeng et al., 2022; Zhu et al., 2023), we assume
the defender can access a small set of training data.

4.2. Layer-wise Activation Correction

Motivated by the observation of activation drift, our key
insight is that correcting this deviation could effectively mit-
igate backdoor effects. Our objective, therefore, is to realign
the activation of the quantized model with that of the full-
precision model, in which backdoor neurons still express
benign activations. To this end, we propose a layer-wise
activation correction (LAC) objective. Let W l

o represent the
weights of the l-th layer in the original full-precision model,
and Q(W l) denote the weights in the corresponding layer
of the quantized model. Using Il to represent the batch of
inputs for the l-th layer, our activation correction objective
is formulated as follows:

argmin
W l

D(W l
oIl, Q(W l)Il), (3)

where D(·, ·) indicates the a distance metric, such as Eu-
clidean distance. We note that similar layer-wise objectives
have been widely used by previous works for different tasks
(Frantar & Alistarh, 2022; Lu et al., 2022; Wang et al.,
2022a;b), and recent advances have also verified its effec-
tiveness in mitigating accuracy loss during quantization
(Nagel et al., 2020; Li et al., 2021a; 2024). However, we
derive this objective from our unique analysis in Sec. 3. We
are also the first to show that LAC alone can effectively
mitigate QCBs, and attribute its effectiveness to rectifying
the aberrant activation in the quantized backdoor neurons.
These fundamental differences set us apart from existing
techniques. See a more detailed discussion in Appendix F.

In most prior backdoor defenses (Liu et al., 2018; Li et al.,
2021c; Zeng et al., 2022; Zhu et al., 2023), a set of benign
samples with label notations is necessary since they typi-
cally include the cross-entropy (CE) loss to maintain a high
benign accuracy. However, in the case where only the origi-
nal training dataset (poisoned dataset) is (partly) available, it
is hard to filter out benign samples. Unfortunately, previous
work (Li et al., 2021d) has shown that even a very small
portion of data (and labels) are poisoned, the CE loss will
enhance the backdoor connections and make the defense
quite difficult. In contrast, LAC is free of label notations
as well as the CE loss, thus the presence of poisoned data
will not hinder the defense effects. Actually, involving some
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Figure 2: Defense results of the layer-wise activation correction
(LAC). We use the LAC loss with the pre-defined iteration steps
to optimize the network layer-by-layer, on three data settings: (1)
all benign data (Benign Data), (2) a mixture of 90% benign data
and 10% poisoned data (Mixture Data), and (3) all poisoned data
(Poisoned Data). The inclusion of poisoned data not only does not
degrade the defense performance but also stabilizes the training.
We evaluate the attack of (Hong et al., 2021) on CIFAR-10.

poisoned data can be beneficial for LAC. For example, as
shown in Figure 2, using poisoned data or the mixture of
benign and poisoned data can have a more stable defense
performance and faster convergence than using benign data
only. This is not surprising as LAC leverages the benign
activations of the full-precision model to correct the quan-
tized model. On poisoned data, the activation of quantized
backdoor neurons is more directly connected with backdoor
effects and it is more deviated from the benign distribu-
tion (Figure 1b). Therefore, LAC can directly correct the
infected neurons thus weakening backdoor effects faster.

4.3. Approximating Layerwise Poisoned Distribution

As we analyzed in Section 4.2, including poisoned samples
can be beneficial for our LAC, as samples from the poisoned
data distribution will have a stronger activation deviation
from the benign one. However, the poisoned samples are
not always available if the original training dataset is not
accessible, e.g., in the popular offline defense scenario where
a small set of benign samples are available.

To further improve the stability of our LAC, we aim to partly
approximate the effect of poisoned distribution on back-
doored neurons when only benign samples are accessible.
Our key insight is to rectify the input distribution of each
layer to approximate the statistics stored in the Batch Nor-
malization (BN) layers. These layers store running means
and variances of the activations, and thus it implicitly en-
codes rich statistical information about the training data
(Yin et al., 2020; Liu et al., 2023a). Thus, we leverage the
BN statistics to approximate the activation distribution of
the poisoned training data to rectify the input used for LAC.

For a certain layer (block) that contains BN layers, as-
sume there are n BN layers in it. Each BN layer records
the running mean and variance of the original input dur-
ing training, denoted as {µ̂l

i, σ̂
2l
i |i = 1, . . . , n}. When

a batch of inputs Il from the previous layer is provided,
we can calculate their mean and variance, denoted as
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Figure 3: The effect of Poisoned Data Approximation (PDA).
On the left side, we plot the distribution of benign and poisoned
data, respectively. It can be seen that the two distributions notably
differ. On the right side, we plot the distribution of poisoned data
and benign data after adjustment with PDA. After PDA, the data
distribution is closer to the poisoned distribution.

{µl
i(Il), σ2l

i (Il)|i = 1, . . . , n}. We optimize the input of
this layer to better fit the statistics in the BN layers via the
poisoned distribution approximation (PDA):

argmin
Il

n∑
i=1

(∥µl
i(Il)− µ̂l

i∥22 + ∥σ2l
i (Il)− σ̂2l

i ∥22)

s.t. ∥∆Il∥p < γ

, (4)

Intuitively, the above objective corrects the input of each
layer to match the statistics in the corresponding BN layer.
The subject term in Eq.(4) is a lp bound to avoid overfitting
to the BN statistics as well as keeping sample-wise diversity,
and γ is a hyper-parameter to bound the perturbation added.
We use l∞ norm in this paper, and leverage PGD (Madry
et al., 2018) to solve this constrained optimization problem.
The hyper-parameter sensitivity analysis and ablation of this
objective can be found in Section 5.3.

In Figure 3, we visualize the effect of our PDA objective.
As shown in this figure, the activation distribution of benign
and poisoned data is different. Besides, PDA effectively rec-
tifies the benign data to align with the statistics of poisoned
data, resulting in a more similar activation distribution. This
reflects that our PDA objective is effective in approximating
the poisoned distribution. Note that there is still a slight
difference between poisoned data and data after PDA. It
is mostly because the BN statistics record the distribution
of the training data, which is a mixture of benign and poi-
soned data instead of solely poisoned one. Accordingly, the
rectified distribution is also that of the mixture distribution.

As we will see in experiments, despite without the labels,
our method still maintains high benign accuracy. To better
understand why this happens, inspired by previous works
on knowledge transfer and model compression (Srinivas
& Fleuret, 2018; Nagel et al., 2020; Li et al., 2021a), we
analyze it through a theoretical perspective, as follows:

Theorem 4.1. Let Wo be the weights of the full-precision
model, Q(W ) be the weights of the quantized model, L(·, ·)
denote the CE loss. Assume the model has already con-
verged, the layers are mutual-independent, and the quanti-
zation error is sufficiently small. If we exploit second-order

Taylor expansion and neglect higher-order terms, then for
the l-th layer, we have:

argmin
W l

E
[
D(W l

oIl, Q(W l)(Il +∆Il))
]

≈ argmin
W l

E [L(fQ(x), y)] .
(5)

In general, Theorem 4.1 reveals that for the l-th layer, opti-
mizing our LAC with PDA can also optimize the CE loss on
the corresponding benign samples. It partly explains why
LAC+PDA can maintain high benign accuracy even without
label notations. Its proof can be found in Appendix A.

5. Experiments
5.1. Experimental Settings

Models and Datasets. All evaluations are done on two
benchmarking datasets, i.e. , CIFAR10 (Krizhevsky et al.,
2009) and Tiny-ImageNet (Russakovsky et al., 2015),
over ResNet-18 (He et al., 2016a). We also validate our
method across different architectures, including AlexNet
(Krizhevsky et al., 2012), VGG19 (Simonyan & Zisserman,
2014), MobileNet-V2 (Sandler et al., 2018), ViT (Dosovit-
skiy et al., 2021), and Efficient-ViT (Liu et al., 2023b).

Settings for Backdoor Attacks. We consider 3 SOTA QCB
attack: CompArtifact (Tian et al., 2022), Qu-ANTI-zation
(Hong et al., 2021), and PQBackdoor (Ma et al., 2021; 2023).
We set all hyper-parameters following their original paper
to achieve the best attack performances. Following their
original setting, we evaluate the attacks under 8-bit and
4-bit quantization, leading to totally 6 attack settings for
each dataset (3 attacks × 2 quantization bandwidths). See
full-precision model accuracies and ASRs, as well as more
implementation details in Appendix B.

Settings for Backdoor Defenses. Following a recent bench-
mark on backdoor learning (Wu et al., 2022), we select
6 popular backdoor defenses as our baselines, including
vanilla Fine-tuning (FT), FP (Liu et al., 2018), MCR (Zhao
et al., 2020), NAD (Li et al., 2021c), I-BAU (Zeng et al.,
2022), and FT-SAM (Zhu et al., 2023). All selected base-
lines are either widely-evaluated classical defenses (Wu
et al., 2022) or recent SOTA. To ensure fair comparisons, fol-
lowing (Wu et al., 2022), we assume all defenses, including
ours, to access 5% benign data. Note that other defenses all
require labels while ours do not. We follow (Wu et al., 2022)
to set other configurations and hyper-parameters. More im-
plementation details are placed in Appendix B.

Evaluation Metrics. We involve three metrics to eval-
uate the performance of each baseline and our method:
Attack Success Rate (ASR), Benign Accuracy (BA), and
Defense Effectiveness Rating (DER) proposed in (Zhu
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Table 1: Defense results on CIFAR-10 dataset on ResNet-18 (%). Results with the best DER are marked in boldface.

8-bit Quantization 4-bit Quantization

CompArtifact Qu-Anti-zation PQBackdoor CompArtifact Qu-Anti-zation PQBackdoor
BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑

No defense 88.59 / 99.87 / 0 –00 91.72 / 99.16 / 0 –00 85.16 / 99.11 / 0 –00 90.27 / 99.49 / 0 –00 88.60 / 100.0 / 0 –00 81.31 / 96.74 / 0 –00

Backdoor Defenses
FT 90.59 / 01.72 / 99.08 93.86 / 03.09 / 98.03 85.29 / 98.97 / 50.07 89.54 / 08.29 / 95.23 91.76 / 04.04 / 97.98 81.02 / 98.63 / 49.85
FP 89.20 / 99.86 / 50.01 91.21 / 99.08 / 49.78 86.00 / 92.60 / 53.26 90.91 / 99.62 / 50.00 88.47 / 100.0 / 49.94 81.18 / 84.94 / 55.84
MCR 91.80 / 01.42 / 99.22 92.33 / 02.90 / 98.13 85.34 / 78.14 / 60.48 88.31 / 06.02 / 95.75 88.51 / 03.19 / 98.36 82.69 / 66.10 / 65.32
NAD 90.82 / 00.68 / 99.59 93.71 / 02.67 / 98.25 39.74 / 06.57 / 73.56 88.49 / 07.41 / 95.15 89.07 / 03.96 / 98.02 37.58 / 16.09 / 68.46
I-BAU 90.77 / 01.42 / 99.22 92.62 / 00.45 / 99.35 83.48 / 37.30 / 80.06 88.00 / 04.02 / 96.60 86.56 / 00.45 / 98.75 77.02 / 52.12 / 70.16
FT-SAM 92.81 / 00.96 / 99.46 93.59 / 01.29 / 98.94 81.93 / 06.52 / 94.68 92.68 / 02.88 / 98.31 92.23 / 01.28 / 99.36 78.77 /0 7.07 / 93.56

Ours 91.35 / 00.61 / 99.63 93.31 / 00.92 / 99.12 85.81 / 01.64 / 98.74 92.72 / 00.72 / 99.38 92.70 / 01.44 / 99.28 84.70 / 01.57 / 97.58

Table 2: Defense results on Tiny-ImageNet dataset on ResNet-18 (%). Results with the best DER are marked in boldface.

8-bit Quantization 4-bit Quantization

CompArtifact Qu-Anti-zation PQBackdoor CompArtifact Qu-Anti-zation PQBackdoor
BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑ BA ↑ / ASR ↓ / DER ↑

No defense 56.33 / 99.75 / 0 –00 54.64 / 99.25 / 0 –00 55.90 / 96.84 / 0 –00 50.38 / 98.34 / 0 –00 44.15 / 98.68 / 0 –00 46.96 / 96.37 / 0 –00

Backdoor Defenses
FT 52.49 / 06.00 / 94.96 48.48 / 08.89 / 92.10 51.91 / 97.07 / 48.00 45.49 / 94.44 / 49.51 43.79 / 05.08 / 96.62 40.44 / 95.46 / 47.20
FP 42.36 / 05.14 / 90.32 41.93 / 97.46 / 44.54 44.30 / 00.09 / 92.58 36.62 / 77.93 / 53.33 37.12 / 87.65 / 52.00 35.61 / 00.02 / 92.50
MCR 58.36 / 03.72 / 98.02 57.05 / 00.45 / 99.40 59.62 / 44.56 / 76.14 54.57 / 72.72 / 62.81 53.76 / 00.41 / 99.14 54.19 / 32.88 / 81.75
NAD 53.36 / 04.46 / 96.16 47.73 / 11.51 / 90.42 50.05 / 97.86 / 47.08 45.93 / 95.31 / 49.29 43.22 / 06.73 / 95.51 38.58 / 97.91 / 45.81
I-BAU 42.24 / 00.05 / 92.81 43.27 / 07.89 / 90.00 41.18 / 25.88 / 78.12 37.05 / 39.20 / 72.91 36.79 / 05.66 / 92.83 36.63 / 14.74 / 85.65
FT-SAM 52.53 / 14.65 / 90.65 53.06 / 88.96 / 54.36 53.69 / 96.80 / 48.92 47.51 / 86.94 / 54.27 47.11 / 81.24 / 58.72 48.52 / 96.94 /0 0.50

Ours 56.93 / 00.50 / 99.63 55.29 / 02.08 / 98.59 58.16 / 00.73 / 98.06 53.72 / 00.67 / 98.84 52.59 / 00.82 / 98.93 55.53 / 00.39 / 97.99

et al., 2023). ASR is the percentage of backdoored sam-
ples that the model incorrectly classifies into the target la-
bel, while BA is the proportion of correctly labeled be-
nign samples. DER (Zhu et al., 2023) is calculated as
[max(0,∆ASR)−max(0,∆BA) + 1]/2, where ∆ means
the drop of ASR/BA after defense. A high DER indicates
the defense successfully removed the backdoor effects (high
drop in ASR) while having only a small impact on BA (low
drop in BA), thus it is a better metric to compare the overall
performance among different defenses. As such, we will
mark the defense with the highest DER in bold. A success-
ful defense should have high BA (↑), low ASR (↓) and high
DER (↑). All evaluated samples are from the test set, which
are unseen during training. In evaluating ASR, we exclude
samples whose labels already belong to the target class of
the attack to ensure the fairness of our comparison.

Implementation Details. All experiments are conducted
on a single NVIDIA RTX 3090. For each layer, we first
use PDA to rectify the inputs then use LAC to align the
activation. This process is conducted layer-by-layer. We use
Adam optimizer (Kingma & Ba, 2014) with default hyper-
parameters and a batch size of 32. The learning rate is set to
10−3 for LAC. We set γ in Eq. (4) to 10−3. The maximum
iteration step is set to 10000 for LAC and 500 for PDA.
More implementation details can be found in Appendix B.

5.2. Experimental Results

Main Results. We comprehensively compare our method
with multiple baselines and summarize the results in Ta-

ble 1-2. As can be seen, our approach always has the best
or nearly the best performance among all defenses in all
cases. However, it is noteworthy that existing backdoor de-
fenses generally exhibit limited or inconsistent effectiveness
against novel quantization-conditioned backdoors, with dif-
ferent levels of failure for each defense. For instance, in the
CIFAR10 dataset, while techniques like FT, MCR, I-BAU,
and FT-SAM showed efficacy against CompArtifact and
Qu-Anti-zation, they were unsuccessful in countering the
more sophisticated PQBackdoor. Similarly, NAD, though
somewhat effective against PQBackdoor, significantly im-
pairs benign accuracy (with approximately a 40% reduction
in BA), rendering it an impractical solution as reflected
by its low DER. The situation is exacerbated in the case
of Tiny-ImageNet, a larger and higher-resolution dataset,
where most defenses not only fail to lower the ASR below
5% but also detrimentally impact the model’s utility, evi-
denced by a marked decline in BA. Moreover, all baseline
defenses were ineffective against PQBackdoor and 4-bit
CompArtifact. In sharp contrast, our proposed strategy
successfully lowers the ASR to under 2% in virtually all
scenarios tested. In summary, while existing backdoor de-
fenses show limited promise against the emerging challenge
of quantization-conditioned backdoors, our novel defense
strategy demonstrates robust performance, maintaining high
BA, low ASR, and high DER.

Effectiveness across Models Architectures. We evalu-
ate our method across three different model architectures,
including (1) AlexNet (Krizhevsky et al., 2012), (2) VGG19-
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Table 3: Defense results across different models. We evaluate on a
4-bit attack (Hong et al., 2021). The dataset is CIFAR10 for CNNs
and ImageNette (Howard & fastai community, 2023) for ViTs.

Model Defense BA ↑ / ASR ↓ / DER ↑

AlexNet No Defense 76.47 / 88.71 / 0 –00
Ours 81.15 / 01.98 / 93.36

VGG19-BN No Defense 82.78 / 98.57 / 0 –00
Ours 85.02 / 01.34 / 98.62

MobileNet-V2 No Defense 79.80 / 99.90 / 0 –00
Ours 89.99 /01.24 / 99.33

ViT No Defense 87.16 / 99.24 / 0 –00
Ours 89.94 /00.60 / 99.32

EfficientViT No Defense 96.64 / 99.77 / 0 –00
Ours 96.46 /00.62 / 99.49

BN (Simonyan & Zisserman, 2014), and (3) MobileNet-V2
(Sandler et al., 2018). On model architectures that do not
contain Batch Norm layers, the PDA is omitted. As shown
in Table 3, our method has high transferability across model
architectures, with consistently high BA and low ASR.

Other Experiments. In Appendix C, we test the effect of
our method on benign (unbackdoored) models. The results
show that our method has negligible impacts on their accu-
racies. In Appendix D, we show the effectiveness of our
method on a real-world dataset ImageNette. The results
show that our method can have a good performance on this
larger dataset. In Appendix E, we demonstrate the gener-
alizability of our method on attacks with diverse triggers,
including different trigger sizes and more advanced triggers.
The results show that our method has high transferability
across patch-based triggers with different trigger sizes, as
well as invisible and dynamic triggers.

5.3. Ablation Study

Effect of Each Component. Our method consists of two
main components, including layer-wise activation correc-
tion (LAC) and poisoned distribution approximation (PDA).
From Table 5, we can see that the LAC alone is sufficient
to remove the backdoor threats, while PDA can further en-
hance the performance and boost our stability, as indicated
by a small standard deviation.

Effect of Parameter γ. The hyper-parameter γ controls the
degree of perturbation on the activation inputs. A smaller
γ can help better generalization while a larger γ may lead
every single data to fit the BN statistics, which degrades data
diversity and thus may harm generalization. As shown in
Table 4, across different datasets, the backdoor-removal and
accuracy maintaining effect of our method is not sensitive.
As such, a wide range of γ can be selected for PDA.

5.4. Discussions

Combination with Other Defenses. From the experiments
above, we can see the strong ability of our proposed method

Table 4: Hyperparameter analysis for γ. The attack is PQBackdoor
and the model is ResNet-18.

Dataset
γ

10−4 5× 10−4 10−3 5× 10−3 10−2

CIFAR10 BA 85.81 85.78 85.87 85.69 85.78
ASR 1.92 1.46 1.72 1.21 1.46

Tiny-ImageNet BA 58.35 57.67 58.09 58.57 57.91
ASR 0.92 0.94 0.98 0.97 0.94

Table 5: Ablation study on each component. The attack is PQBack-
door, on CIFAR10 and ResNet-18.

Comp. 8bit Attack
LAC PDA BA ↑ ASR ↓
✓ − 86.05 ± 0.44 2.18 ± 1.77

✓ ✓ 85.81 ± 0.13 1.64 ± 0.22

to remove quantization-conditioned backdoors. As we have
discussed in Section 4.3, PDA can also be used as a plug-
and-play augmentation to current state-of-the-art backdoor
defenses. In detail, a defender can first use PDA to adjust
the inputs without changing the labels, then use them to take
the place of the original inputs. This slightly approximates
the poisoned distribution, which enlarges the discrepancy
between model outputs and ground-truth labels, making the
vanilla CE loss more effective in removing backdoor effects.
To verify this, we combine PDA with two SOTA defenses:
NAD (Li et al., 2021c) and FT-SAM (Zhu et al., 2023).
We keep the original defense mechanism intact but adjust
the whole benign dataset via PDA before conducting the
defense. Since many existing defenses are not conducted
layer-by-layer, we sum up the PDA loss across all layers
and update the initial input. We evaluate a wide spectrum of
conventional backdoor attacks, including BadNets (Gu et al.,
2017), Blended (Chen et al., 2017), Input-aware (Nguyen
& Tran, 2020), LF (Zeng et al., 2021), SIG (Barni et al.,
2019), ISSBA (Li et al., 2021b), and WaNet (Nguyen &
Tran, 2021). We use the pre-trained backdoored models (5%
poison rate) from BackdoorBench (Wu et al., 2022). We
then compare the performance of the original defense and
the defense combined with PDA under each attack on the
CIFAR10 dataset with PreAct-ResNet18 (He et al., 2016b).
The results are in Table 6. As can be seen, in most cases,
PDA can enhance the performance of state-of-the-art de-
fenses, with a lower ASR and higher DER, especially in
cases where the vanilla defense has only a modest effect
(e.g., Blended, Input-aware, and LF on NAD). We hope
these results can inspire future stronger defenses against
backdoor attacks with the help of PDA.

Grad-CAM (Selvaraju et al., 2017) and t-SNE (Van der
Maaten & Hinton, 2008) Visualizations. These methods
are widely used to interpret model predictions and illustrate
the effect of backdoor defenses. We train models attacked
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Table 6: Combination with SOTA defenses on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18 (%).

Attack
BadNets Blended Input-aware LF SIG ISSBA WaNet

BA / ASR / DER BA / ASR / DER BA / ASR / DER BA / ASR / DER BA / ASR / DER BA / ASR / DER BA / ASR / DER
No defense 91.82/93.79/0 –00 93.58/99.72/0 –00 89.71/95.96/0 –00 93.01/99.06/0 –00 84.49/97.87/0 –00 92.88/97.07/0 –00 90.57/96.93/0 –00

NAD w/o PDA 90.94/01.67/95.62 92.07/87.82/49.25 92.97/67.91/64.03 92.27/83.80/57.26 90.14/09.77/94.05 92.00/66.99/64.60 92.99/02.12/97.41
NAD w/ PDA 90.26/01.34/95.45 92.65/71.37/63.71 92.81/42.56/69.65 92.28/56.67/70.83 89.76/07.62/95.12 92.18/61.26/67.56 93.06/02.34/94.51

FT-SAM w/o PDA 91.54/01.26/96.13 92.37/14.08/92.22 93.17/01.60/97.18 92.05/03.79/97.19 91.21/04.32/96.78 92.01/07.32/94.44 93.32/00.72/98.11
FT-SAM w/ PDA 91.55/01.31/95.90 92.16/08.13/95.09 92.80/00.67/97.64 91.97/04.31/96.76 90.57/00.89/98.49 91.68/04.80/95.53 93.07/00.56/98.19
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Figure 4: Visualization results. Grad-CAM (Selvaraju et al., 2017)
highlights DNN’s attention on a given image, and t-SNE (Van der
Maaten & Hinton, 2008) visualizes data in a model’s feature space.
We conduct experiments on the CIFAR-10 dataset with ResNet-18.

by (Hong et al., 2021) and (Ma et al., 2023), which are with
visible patch triggers (Gu et al., 2017) and invisible triggers
(Nguyen & Tran, 2021), respectively. Then we visualize
the Grad-CAM results on a set of poisoned images on the
undefended and defended models. After this, we visualize
the attacked model of (Ma et al., 2023) using t-SNE. Figure
4 presents the results of Grad-CAM on defended models,
highlighting a notable shift in focus towards the primary
subjects of the images, as opposed to the trigger regions that
are typically targeted in backdoored models. Additionally,
t-SNE visualizations demonstrate a noticeable dispersion of
poisoned samples post-defense, diverging from the cluster-
ing pattern observed in their untreated counterparts. This
evidence supports the effectiveness of our defense in mitigat-
ing backdoor threats, confirming the successful eradication
of backdoors from the analyzed models.

6. The Resistance to Adaptive Attacks
To consider a more stringent threat model, we discuss the
resistance of our method to potential adaptive attacks. In
this section, we consider a very smart attacker informed
of our defense design and aims to bypass it. Since LAC
leverages the activation discrepancy of full-precision and
quantized models, we design an adaptive attack by incorpo-
rating a loss function that proactively aligns the activation
of full-precision and quantized models, which is expressed

Table 7: Results on Adaptive Attacks (%).

Dataset Setting BA / ASR

CIFAR10 No Defense 93.21 / 99.61
Ours 92.29 / 01.65

as Ladaptive =
∑L

l=1 ∥W lIl − Q(W l)Il∥22. We use add
Ladaptive to the overall training objective in Eq. (1) with a
weighting parameter λ = 1. Then we use this modified
objective to conduct the second-stage training using the pro-
tocol of (Hong et al., 2021) to conduct the adaptive attack.

Results & Analysis. As shown in Table 7, this adaptive
strategy has a high ASR when our method is not applied.
However, the attack still fails to hack our method, as ref-
elected by a high BA and low ASR. This is because PDA
stimulates the poisoned distribution using the BN statistics.
For the backdoor to succeed, the activation of poisoned data
and benign data inherently differs (Zheng et al., 2022). As
such, this adaptive attack failed to bypass our method. As
the security research on backdoor vulnerabilities is an evolv-
ing game between attacks and defenses, we leave the study
on more effective attacks to future work.

7. Conclusion
In this paper, we shed light on the emerging threat of
quantization-conditioned backdoor (QCB) attacks on DNNs.
This attack exploits model quantization to activate malicious
backdoors in otherwise benign models. We discovered a
distinctive distributional drift in neuron activation patterns
correlated with backdoors on both benign and poisoned
data. To counter this, we introduced layer-wise activation
correction (LAC) to align activation distributions between
quantized and full-precision models, reducing drift in back-
door neurons. Additionally, we proposed the poisoned dis-
tribution approximation (PDA) objective, which uses slight
perturbations to enhance activation discrepancy and improve
our defense. Our experiments showed that LAC and PDA
effectively counter existing QCB attacks and can enhance
existing backdoor defense strategies. We hope this work can
draw attention to DNN supply-chain security and encourage
further research on trustworthy machine learning.
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Impact Statement
This paper attempts to defend against these sophisticated
QCB attacks by identifying and mitigating the effects of
backdoor neurons through a novel method, which includes
tuning the model and approximating poisoned distributions.
While our approach marks a valuable step towards secur-
ing DNNs against QCBs, it’s important to recognize the
limitations and potential ethical implications. Firstly, our
method targets only the quantization-conditioned backdoor
attacks and, therefore, cannot be directly used to defend
against other attacks. Additionally, the adversaries could po-
tentially design even more advanced attacks to circumvent
our defenses, underscoring the perpetual arms race between
security measures and attack methodologies. People should
use only trusted training resources and models to eliminate
and prevent backdoor attacks at the source.

It’s crucial to acknowledge that while this work enhances the
security of DNNs against a specific type of backdoor attack,
it does not address the broader spectrum of vulnerabilities
that DNNs might face. Therefore, stakeholders should not
solely rely on this method as a panacea but should continue
to employ a multifaceted approach to security, emphasizing
the importance of using trusted training resources and mod-
els. Our work underscores the ongoing need for vigilance,
continuous research, and the development of comprehen-
sive defense mechanisms to protect against the evolving
landscape of cybersecurity threats in artificial intelligence.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Barni, M., Kallas, K., and Tondi, B. A new backdoor attack
in cnns by training set corruption without label poisoning.
In ICIP, 2019.

Botev, A., Ritter, H., and Barber, D. Practical gauss-newton
optimisation for deep learning. In ICML, 2017.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017.

Dong, Z., Yao, Z., Arfeen, D., Cai, Y., Gholami, A., Ma-
honey, M., and Keutzer, K. Trace weighted hessian-aware
quantization. In NeurIPSW, 2019.

Dong, Z., Yao, Z., Arfeen, D., Gholami, A., Mahoney,
M. W., and Keutzer, K. Hawq-v2: Hessian aware trace-
weighted quantization of neural networks. In NeurIPS,
2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
ICLR, 2021.

Frantar, E. and Alistarh, D. Spdy: Accurate pruning with
speedup guarantees. In ICML, 2022.

Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D. C., and
Nepal, S. Strip: A defence against trojan attacks on deep
neural networks. In ACSAC, 2019.

Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., and
Yan, J. Differentiable soft quantization: Bridging full-
precision and low-bit neural networks. In ICCV, 2019.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In ECCV, 2016b.

Hong, S., Panaitescu-Liess, M.-A., Kaya, Y., and Dumitras,
T. Qu-anti-zation: Exploiting quantization artifacts for
achieving adversarial outcomes. In NeurIPS, 2021.

Hou, L., Feng, R., Hua, Z., Luo, W., Zhang, L. Y., and Li,
Y. Ibd-psc: Input-level backdoor detection via parameter-
oriented scaling consistency. In ICML, 2024.

Howard, J. and fastai community. Imagenette. https:
//github.com/fastai/imagenette, 2023.

9

https://github.com/fastai/imagenette
https://github.com/fastai/imagenette


Purifying Quantization-conditioned Backdoors

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Improving post training neural quantization: Layer-
wise calibration and integer programming. In NeurIPS,
2020.

Jeon, Y., Lee, C., Cho, E., and Ro, Y. Mr. biq: Post-training
non-uniform quantization based on minimizing the recon-
struction error. In CVPR, 2022.

Kim, M., Jain, A. K., and Liu, X. Adaface: Quality adaptive
margin for face recognition. In CVPR, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, 2012.

Kuzmin, A., Van Baalen, M., Ren, Y., Nagel, M., Peters, J.,
and Blankevoort, T. Fp8 quantization: The power of the
exponent. NeurIPS, 2022.

Li, B., Cai, Y., Li, H., Xue, F., Li, Z., and Li, Y. Near-
est is not dearest: Towards practical defense against
quantization-conditioned backdoor attacks. In CVPR,
2024.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. Brecq: Pushing the limit of
post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021a.

Li, Y., Li, Y., Wu, B., Li, L., He, R., and Lyu, S. Invisible
backdoor attack with sample-specific triggers. In ICCV,
2021b.

Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., and Ma, X.
Neural attention distillation: Erasing backdoor triggers
from deep neural networks. In ICLR, 2021c.

Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., and Ma, X. Anti-
backdoor learning: Training clean models on poisoned
data. In NeurIPS, 2021d.

Li, Y., Jiang, Y., Li, Z., and Xia, S.-T. Backdoor learning:
A survey. IEEE TNNLS, 2022a.

Li, Y., Yuan, G., Wen, Y., Hu, J., Evangelidis, G., Tulyakov,
S., Wang, Y., and Ren, J. Efficientformer: Vision trans-
formers at mobilenet speed. NeurIPS, 2022b.

Li, Y., Ya, M., Bai, Y., Jiang, Y., and Xia, S.-T. Back-
doorbox: A python toolbox for backdoor learning. arXiv
preprint arXiv:2302.01762, 2023.

Liu, J., Niu, L., Yuan, Z., Yang, D., Wang, X., and Liu, W.
Pd-quant: Post-training quantization based on prediction
difference metric. In CVPR, 2023a.

Liu, K., Dolan-Gavitt, B., and Garg, S. Fine-pruning: De-
fending against backdooring attacks on deep neural net-
works. In International symposium on research in attacks,
intrusions, and defenses, 2018.

Liu, X., Peng, H., Zheng, N., Yang, Y., Hu, H., and Yuan,
Y. Efficientvit: Memory efficient vision transformer with
cascaded group attention. In CVPR, 2023b.

Liu, Y., Shen, G., Tao, G., Wang, Z., Ma, S., and Zhang,
X. Complex backdoor detection by symmetric feature
differencing. In CVPR, 2022.

Lu, W., Wang, J., Li, H., Chen, Y., and Xie, X. Domain-
invariant feature exploration for domain generalization.
TMLR, 2022.

Ma, H., Qiu, H., Gao, Y., Zhang, Z., Abuadbba, A., Fu, A.,
Al-Sarawi, S., and Abbott, D. Quantization backdoors to
deep learning models. arXiv preprint arXiv:2108.09187,
2021.

Ma, H., Qiu, H., Gao, Y., Zhang, Z., Abuadbba, A., Xue, M.,
Fu, A., Zhang, J., Al-Sarawi, S. F., and Abbott, D. Quan-
tization backdoors to deep learning commercial frame-
works. IEEE TDSC, 2023.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In ICML, 2020.

Nguyen, T. A. and Tran, A. Input-aware dynamic backdoor
attack. In NeurIPS, 2020.

Nguyen, T. A. and Tran, A. T. Wanet-imperceptible warping-
based backdoor attack. In ICLR, 2021.

Pan, X., Zhang, M., Yan, Y., and Yang, M. Understanding
the threats of trojaned quantized neural network in model
supply chains. In ACSAC, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. IJCV, 2015.

10



Purifying Quantization-conditioned Backdoors

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In
ICCV, 2017.

Sha, Z., He, X., Berrang, P., Humbert, M., and Zhang, Y.
Fine-tuning is all you need to mitigate backdoor attacks.
arXiv preprint arXiv:2212.09067, 2022.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.
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A. Proof of Theorem 4.1.
Proof. We first derive from the left hand side. Assume W l ∈ Rn×d and Il ∈ Rd×m. Inspired by Proposition 2 in (Srinivas
& Fleuret, 2018), by using first-order Taylor expansion around Il, we have:

argmin
W l

D(W l
oIl, Q(W l)(Il +∆Il)) ≈ ∥W l

oIl − (Q(W l)Il + JQ(W l)[Il]∆Il)∥22

= ∥W l
oIl −Q(W l)Il∥22 − 2 ·

n∑
i=1

m∑
j=1

((W l
oIl −Q(W l)Il)i,j((JQ(W l)[Il]i,j)

T∆Il)) + ∥JQ(W l)[Il]∆Il∥22

= ∥W l
oIl −Q(W l)Il∥22 + σ2∥JQ(W l)[Il]∥22,

(6)

where JQ(W l)[Il] denotes the Jacobian matrix of Q(W l) with respect to Il. The final derivation is based on a further
assumption that ∆Il ∼ N (0, σ2I) (Srinivas & Fleuret, 2018). Since the quantization error is sufficiently small, we let
Q(W ) = Wo +∆W . Then, by using first-order Taylor expansion again, we have:

argmin
W l

∥W l
oIl −Q(W l)Il∥22 + σ2∥JQ(W l)[Il]∥22 ≈ ∥∆W lJW lIl [W l]∥22. (7)

From the above derivation, we can see that PDA essentially incorporates a Jacobian regularizer (Sokolić et al., 2017) into
the loss function. This regularizer penalizes the norm of the Jacobian matrix, thus leads the quantized model toward better
generalizability and more prediction agreement with the full-precision counterpart. We omit this regularizer and focus on
∥∆W lJW lIl [W l]∥22 in the following proof. We then take a look at the right hand side. Following previous work (Nagel
et al., 2020; Li et al., 2021a; Hubara et al., 2020), by using second-order Taylor expansion around layer weights, we have:

argmin
W l

E [L(fQ(x), y)] = argmin
W l

E [L(fWo+∆W (x), y)]

= argmin
W l

E
[
L(fWo

(x), y) + ∆W · gW +
1

2
∆W ·HW ·∆W T

]
,

(8)

where gW = ∇WL and HW = ∇2
WL is the gradient and Hessian matrix w.r.t. model weights, respectively. As

L(fWo
(x), y) is independent from the whole optimization and the model is converged to a local minimum, gW approximates

0 and therefore the first two terms of the optimization problem can be ignored (Dong et al., 2019; Li et al., 2021a; Dong et al.,
2020; Nagel et al., 2020). Let Al to denote the output (feature map) of the l-th layer i.e.,Al = W lIl = Il+1. According to
Theorem 1 in (Li et al., 2021a), by using quadratic form, it holds that:

argmin
W l

∆W ·HW ·∆W T =

n∑
i=1

n∑
j=1

∆Wi∆Wj

(
∂2L

∂Wi∂Wj

)
=

n∑
i=1

n∑
j=1

∆Wi∆Wj

(
∂

∂Wj

(
m∑

n=1

∂L
∂Al

n

∂Al
n

∂Wi

))

=

n∑
i=1

n∑
j=1

∆Wi∆Wj

 m∑
n=1

∂L
∂Al

n

∂2Al
n

∂Wi∂Wj
+

m∑
n,n′=1

∂Al
n

∂Wi

∂2L
∂Al

n∂Al
n′

∂Al
n′

∂Wj


=

m∑
n=1

m∑
n′=1

(
n∑

i=1

∆Wi
∂Al

n

∂Wi

)(
∂2L

∂Al
n∂Al

n′

)( n∑
i=1

∆Wj
∂Al

n′

∂Wj

)
= (∆WiJAl [Wi]) ·HAl

· (∆WjJAl [Wj ])
T .

(9)
The term

∑m
n=1

∂L
∂Al

n

∂2Al
n

∂Wi∂Wj
is neglected since the full-precision model is converged and thus satisfies ∇AlL ≈ 0 (Li

et al., 2021a). Since layers are assumed to be mutual-independent, according to previous works (Botev et al., 2017; Nagel
et al., 2020; Wang et al., 2020; Hubara et al., 2020), we can assume HAl

to be a constant block-diagonal matrix irrelevant
to W l. As such, we can finally have:

argmin
W l

E [L(fQ(x), y)] = (∆WiJAl [Wi]) ·HAl

· (∆WjJAl [Wj ])
T = ∥∆W lJAl [W l]∥22. (10)

Putting Eq. (7) and (10) together, we finish the proof.
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Notice that Theorem 4.1 does not ensure that our method performs similarly to fine-tuning, especially on backdoor accuracy.
This is possibly because fine-tuning calculates CE loss on final logits. On benign samples, these logits are similar to the
ground-truth labels because QCB-backdoored models already fit benign samples well. As such, vanilla fine-tuning can only
make minor changes to the weights of neurons and thus is less effective in mitigating backdoor effects. In contrast, our LAC
loss can be used to remove QCBs since it can directly reduce activation drifts on the corresponding layer.

B. More Implementation Details

More Details on Backdoor Attacks. In this paper, we defend against 3 state-of-the-art quantization-conditioned backdoor
attacks, i.e. , CompArtifact (Tian et al., 2022), Qu-ANTI-zation (Hong et al., 2021), and PQBackdoor (Ma et al., 2021;
2023). Below is the introduction of each attack and their implementation details:

• CompArtifact (Tian et al., 2022): In the study by CompArtifact (Tian et al., 2022), the methodology uses a trigger
pattern akin to BadNets (Gu et al., 2017), specifically, a small 3×3 white square positioned at the image’s bottom
right. This technique demonstrates resilience when faced with alterations in the calibration set, but exhibiting limited
transferability when applied across varying bandwidths. As such, we separately train models with each specific
bandwidth to ensure a fair evaluation. We reproduce the results using the official source code provided by the authors1.
Following their original paper, we first train a benign model for 400 epochs, and then re-train each model (respectively
for 8-bit and 4-bit) with the backdoor objective for 50 epochs. The poison rate is set to 50% during re-training.

• Qu-ANTI-zation (Hong et al., 2021): To enhance attack transferability, Qu-ANTI-zation (Hong et al., 2021) includes
the multiple bit bandwidths during the re-training phase, exhibiting resilience across a variety of quantization bandwidths
and against more advanced quantization methods. It employs a patch-based trigger approach, with dimensions
designated as 4×4 for CIFAR10 and 8×8 for Tiny-ImageNet, respectively. We use the officially provided code2.
Following their paper, we first train a benign model for 200 epochs, followed by a subsequent re-training period of 50
epochs. This re-training incorporates a modified objective and establishes a poisoning rate of 50%.

• PQBackdoor (Ma et al., 2021; 2023): PQBackdoor is the latest and the state-of-the-art quantization-conditioned
backdoor attack. It improves the training pipeline via introducing a two-stage attack strategy: firstly, train a backdoored
full-precision model. Then, retrain the model via PGD (Madry et al., 2018) to make the full-precision model dormant
while quantized model close to the backdoored one. This stabilizes the training of the quantization-conditioned
backdoor and further enhances its resistance against backdoor defenses. It also utilizes the patch-based trigger, the size
is set to 6×6. PQbackdoor also demonstrated its robustness against blind backdoor defenses such as fine-tuning, and its
transferability to commercial quantization frameworks like PyTorch Mobile (Paszke et al., 2019) and TensorFlow Lite
(Abadi et al., 2016). We use the official PyTorch source code from the authors3 and follow their settings in the paper.
For the first stage, the poisoning rate is set to 1%, with the standard training pipeline on poisoning-based backdoor
attacks for 100 epochs. After the first stage, the poisoning rate is then set to 50% in the second stage, which takes
another 50 epochs. Unfortunately, even if we tried several times (>5), we failed to obtain a full-precision model with
BA reported in their paper. On CIFAR10, we can only have 86.43% with ResNet-18 during our reproduction, lower
than 93.44% reported in their original paper. We experiment with our reproduced models.

More Details on Backdoor Defenses. In this paper, we choose 6 SOTA backdoor defenses as our baselines, including FT
(Sha et al., 2022), FP (Liu et al., 2018), MCR (Zhao et al., 2020), NAD (Li et al., 2021c), I-BAU (Zeng et al., 2022), and
FT-SAM (Zhu et al., 2023). For all defenses, we use the open-source code from BackdoorBox4 (Li et al., 2023), except for
I-BAU, which we use their official implementation5. Here are their brief introduction and implementation details:

• FT (Sha et al., 2022): Fine-tuning (FT) is commonly used approach for defending against backdoor attacks. It directly
fine-tunes the model with a small subset of clean data. Despite its simplicity, it has proven effective in mitigating

1https://github.com/yulongt23/Stealthy-Backdoors-as-Compression-Artifacts
2https://github.com/Secure-AI-Systems-Group/Qu-ANTI-zation
3https://github.com/quantization-backdoor
4https://github.com/THUYimingLi/BackdoorBox
5https://github.com/YiZeng623/I-BAU
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Table 8: Results on full-precision models (%).

Dataset Attack BA / ASR

CIFAR10

Clean Model 93.44% / 0.44%
CompArtifact (8-bit) 91.46% / 1.26%
CompArtifact (4-bit) 93.68% / 1.33%

Qu-ANTI-zation 93.17% / 2.18%
PQBackdoor 86.43% / 2.67%

Tiny-ImageNet

Clean Model 57.77% / 0.21%
CompArtifact (8-bit) 57.09% / 0.78%
CompArtifact (4-bit) 56.89% / 1.43%

Qu-ANTI-zation 55.82% / 2.16%

backdoor effects for many state-of-the-art (SOTA) backdoor attacks, as demonstrated by (Wu et al., 2022). In our study,
we fine-tune all layers of the compromised full-precision model using 5% clean data for 50 epochs.

• FP (Liu et al., 2018): Fine-pruning (FP) is a defense strategy that combines pruning and fine-tuning. Initially, it feeds
a small set of clean data to the network to measure activation levels, then prunes the backdoored neurons, specifically
the less frequently activated ones. To maintain the model’s benign accuracy, FP fine-tunes the model post-pruning. In
our work, we measure the activation in the last residual block and set the pruning rate to 0.4. We then fine-tune the
model with 5% clean data for 50 epochs.

• MCR (Zhao et al., 2020): Mode connectivity repair (MCR) addresses DNN lifecycle security from the loss landscape
perspective. It first fine-tunes a backdoored model, then uses mode connectivity in loss landscapes between the original
backdoored model and the fine-tuned model, and ultimately measures and removes backdoor functions through mode
connectivity repair. In our work, we fine-tune the backdoored model for 50 epochs, perform 100 epochs of curvenet
training, and then carry out 100 epochs of model updating. The hyperparameter t is set to 0.1 and 0.9, and we report
the results with the higher DTM.

• NAD (Li et al., 2021c): Neural attention distillation (NAD) is a defense mechanism that employs knowledge distillation
guided by attention. It observes differences in attention between backdoored and clean models. Initially, it fine-tunes
the backdoored model, which then serves as the teacher model. The original backdoored model becomes the student
model, and knowledge distillation is conducted with attention alignment guidance. We perform 50 epochs of fine-tuning
to obtain the teacher model and another 50 epochs to purify the student model.

• I-BAU (Zeng et al., 2022): Implicit backdoor adversarial unlearning (I-BAU) views backdoor removal as a minimax
problem. It uses the implicit hypergradient to consider the interdependence between inner and outer optimization,
demonstrating faster, more computationally efficient, and more effective performance than previous defenses, achieving
state-of-the-art results on many benchmarks (Wu et al., 2022). We conduct 3 rounds of I-BAU for each attack.

• FT-SAM (Zhu et al., 2023): FT-SAM is a recent defense mechanism based on sharpness-aware minimization.
Observing that backdoor-related neurons correlate strongly with the norm of weights, FT-SAM focuses on the sharpness
of the loss landscape and aims to reduce the norms of these neurons. Following the original paper and the code from
BackdoorBench 6, we train the infected model using FT-SAM for 200 epochs. The hyperparameter ρ is set to 2 for
CIFAR-10 and 8 for Tiny-ImageNet.

For other backdoor attacks and defenses evaluated in Section 5.4, we use the official toolbox released by BackdoorBench
(Wu et al., 2022). To avoid a lengthy introduction, we refer readers to their original papers for more details.

Implementation Details. For all experiments, we use Python 3.8.18 and the PyTorch 1.10.0+cu113 framework, along
with torchvision 0.11.1. All experiments are implemented in Python and run on a 14-core Intel(R) Xeon(R) Gold 5117
CPU @ 2.00GHz with a single NVIDIA GeForce RTX 3090 GPU, on a machine running Linux version 5.4.0-144-generic
(buildd@lcy02-amd64-089) (Ubuntu 9.4.0-1 ubuntu20.04.1). Unless otherwise stated, we use the Adam optimizer (Kingma
& Ba, 2014) with default parameters. All other hyperparameters follow the original settings described in the respective
papers. During clean model training and backdoor model training (first stage for PQBackdoor), the learning rate is set

6https://github.com/SCLBD/BackdoorBench/blob/main/defense/ft-sam.py
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Table 9: Impact on clean models (%). The model is a clean model trained with QAT. Standard means standard quantization and ours
means standard quantization after applying our method.

Dataset Bandwidth Setting Accuracy ↑

CIFAR10

32-bit Full-precision 93.59

8-bit Standard 93.58
Ours 93.57

4-bit Standard 91.33
Ours 92.71

Tiny-ImageNet

32-bit Full-precision 57.35

8-bit Standard 56.58
Ours 57.17

4-bit Standard 53.75
Ours 55.69

to 10−3, whereas it is set to 10−4 for all backdoor defenses and the second stage of PQBackdoor. The batch size is set
to 64 for CIFAR10 and Tiny-ImageNet, and 16 for ImageNette. Each attack ultimately results in a full-precision model
with a dormant backdoor inserted for each dataset and model architecture. As shown in Table 8, quantization-conditioned
backdoors remain well-hidden in full-precision models, with a BA similar to a clean model, and an ASR of nearly 0%.

C. Impact on Clean Models
In our scenario, the full-precision model is assumed to be backdoored and given to the victim. However, in reality, the victim
might obtain an actually clean (unbackdoored) model and employs our method to get rid of potential backdoor dangers.
Therefore, if the model is clean, our method should have little affect on its clean accuracy.

To verify this, we train ResNet-18 models on CIFAR10 and Tiny-ImageNet, respectively, using typical QAT training
objectives and other hyper-parameter configurations similar to the above. On these models, we then apply our method. As
illustrated in Table 9, our method causes very little effect, suggesting our method’s high effectiveness on keeping high BA.

D. Effectiveness on High-resolution Datasets
We assess the efficacy of our method on the high-resolution dataset ImageNette (Howard & fastai community, 2023). The
results in Table 11 affirm the robust performance of our method in high-resolution cases.

E. Effectiveness across Different Triggers
As a novel backdoor paradigm, quantization-conditioned attacks can employ varying trigger sizes or integrate advanced
trigger mechanisms. Presently, existing works on quantization-conditioned backdoors (Ma et al., 2021; 2023; Hong et al.,
2021; Pan et al., 2021; Tian et al., 2022) predominantly adopt the trigger pattern from BadNets (Gu et al., 2017), with
minor modifications in trigger sizes, and we have demonstrated our method’s resilience against these variations. However,
the diverse attack could be enhanced in terms of evasiveness when coupled with more sophisticated triggers (Nguyen &
Tran, 2021; 2020). To comprehensively assess our method’s effectiveness across diverse triggers, we enhance the trigger
mechanism of PQBackdoor and evaluate our method’s performance against these refined conditioned backdoor attacks.
For simplicity, all experiments in this section utilize PQBackdoor (Ma et al., 2023; 2021) on the CIFAR10 dataset with
ResNet-18 architecture.

E.1. Different Trigger Sizes

We evaluate our method’s performance on different trigger sizes, including 3×3, 4×4, and 6×6. The results presented in
Table 10 indicate the robustness of our method across different trigger sizes. The trigger pattern originates from BadNets
(Gu et al., 2017).

15



Purifying Quantization-conditioned Backdoors

Table 10: Our method’s effectiveness on different trigger sizes (%).

Trigger Type Bandwidth Setting BA / ASR

3×3

32-bit Full-precision 91.88 / 01.46

8-bit No Defense 91.65 / 98.82
Ours 91.58 / 00.56

4-bit No Defense 90.09 / 99.06
Ours 91.05 / 00.53

4×4

32-bit Full-precision 92.65 / 01.87

8-bit No Defense 91.99 / 97.78
Ours 92.61 / 00.93

4-bit No Defense 90.88 / 97.72
Ours 92.07 / 00.80

6×6

32-bit Full-precision 92.10 / 01.61

8-bit No Defense 91.69 / 99.63
Ours 91.97 / 01.11

4-bit No Defense 87.54 / 99.82
Ours 91.44 / 00.52

Table 11: Effectiveness on high-resolution dataset ImageNette (%).
The model is ResNet-18 and the attack is PQBackdoor.

Bandwidth Setting BA / ASR
32-bit Full-precision 80.03 / 01.53

8-bit No Defense 79.98 / 99.75
Ours 79.34 / 00.62

4-bit No Defense 76.84 / 98.73
Ours 79.21 / 00.71

Table 12: Effectiveness on advanced triggers (%).

Trigger Type Setting BA / ASR

Input-aware Dynamic
Full-precision 93.16 / 00.36
No Defense 93.89 / 99.73

Ours 93.13 / 00.32

Warping-based
Full-precision 90.57 / 01.90
No Defense 90.69 / 98.60

Ours 90.16 / 00.78

E.2. Advanced Triggers

We evaluate our method’s performance on advanced triggers, specifically examining two advanced trigger mechanisms:
input-aware dynamic (Nguyen & Tran, 2020) and warping-based (Nguyen & Tran, 2021). The input-aware dynamic trigger
crafts a unique dynamic trigger for each input rather than the fixed patch-based trigger, making the attack more evasive and
hard to inspect, but the triggers are still visible; The warping-based triggers from WaNet (Nguyen & Tran, 2021) leverages a
small and smooth warping field to poison the images. This type of invisible trigger is very stealthy and imperceptible and
has been reported as far more evasive against human inspection. For simplicity and to stabilize training, in this section, we
only consider 8-bit quantization during training and evaluation.

As shown in Table 12, our method still works well against these advanced triggers. The reason is that our method does
not rely on any assumption about the trigger pattern. Although these triggers are more advanced than simple BadNets, the
dormant backdoors are still activated by the nearest rounding errors, and thus can be handled well by our method.

F. Discussions
Comparison with (Zheng et al., 2022). At the first glance, our findings of activation drift may look similar to the findings
of (Zheng et al., 2022). To enhance the clarity of our observation, we would like to emphasize that the primary observation
of (Zheng et al., 2022) is that regarding benign samples and poisoned samples, backdoor neurons have different activation
distributions. Although this conclusion also holds for QCBs, we mostly intend to point out that a QCB-backdoored neuron
itself has a drift in activation distribution regarding quantization (instead of different samples). In particular, this activation
drift exists even on benign samples (instead of only on poisoned samples). We believe this is an interesting, useful, yet
unique property of QCBs, and it has not been discovered by previous works.

Discussion on Backdoor Neurons, Activation Drift and More Visualization Results. As we have discussed in Sec.
3, the definition of backdoor neurons in this Definition 3.1 is not perfect. For example, since it only considers the
contribution to the backdoor loss, it may consider those neurons important to all tasks as backdoor neurons, and may
filter neurons that has no contribution for all tasks as benign (e.g., the “dead neurons” that is not responsive to any
input). In our experiments in Sec. 3, we have filtered out neurons that always have a activation value of 0 to enhance the
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Figure 5: The activation distribution of backdoor and benign neurons (modified definition).
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Figure 6: The activation distribution of backdoor and benign neurons (original definition).

credibility of our study. Nevertheless, we can modify the definition of backdoor neurons to τ = ∆Lbackdoor −∆Lbenign =
Ex∼D′ [Lce(f−(k)(xt), yt) − Lce(f(xt), yt)] − E(x,y)∼D[Lce(f−(k)(x), y) − Lce(f(x), y)], i.e. the decrease of backdoor
loss minus the decrease of benign loss. As a result, we can get rid of the limitations above.

Figure 5 and 6 illustrates more visualization results on the activation drift phenomenon in backdoor neurons with both our
original definition and the modified definition. Overall, we find that the neurons filtered via both strategies exhibits similar
activation distributions. Despite this, we note that the definition of backdoor neurons is still not perfectly accurate. For
example, it does not consider the joint effect of different neurons. We observe some neurons also exhibit different activation
distributions after quantization. This is probably because the quantization itself may cause different levels of distortion to
different neurons, so some actually benign neurons may also exhibit the distributional drift. Our preliminary experiments
also found that the degree of activation drift (measured by the KL divergence) is not perfectly positively correlated with τ . In
conclusion, our work still has room for improvement. We hope future works can further discover the mechanisms of QCBs.

On Technical Similarity of LAC to Previous Works. LAC is a very simple optimization objective. Notably, other
layer-wise objectives similar to LAC have been widely used by previous works for different tasks, such as domain adaptation
and generalization, network compression and acceleration, etc. (Frantar & Alistarh, 2022; Lu et al., 2022; Wang et al.,
2022a;b). It has also been demonstrated effective in mitigating accuracy loss during quantization (Nagel et al., 2020; Li
et al., 2021a; 2024), and even have been included by the concurrent work (Li et al., 2024) on QCB defense to compensate
for quantization accuracy loss. However, we argue that our motivation is different from their works. LAC (and also our
PDA) is driven by our novel observations on activation drift and insights into neuron self-rectification. The effectiveness of
LAC in counteracting QCBs is also supported by our thorough analyses. These fundamental differences set our method
apart from existing techniques, despite we finally converged to similar optimization objectives. The primary message of
this paper is that LAC alone can effectively mitigate QCBs, due to its effectiveness in rectifying the aberrant activation in
the quantized backdoor neurons. This, for the first time, also indicate that current advanced quantization techniques who
have included LAC as their objectives are probably immune to existing QCBs. On the attacker side, we also argue that
subsequent attacks should consider resistance to LAC, otherwise they may even be inadvertently mitigated by advanced
quantization techniques.

On Extension of DER Metric. DER (Zhu et al., 2023) is a metric that balances the ASR-BA trade off. In this paper, we
follow the original definition of DER for a simple and fair comparison between different defenses. If the ASR-BA trade-off
needs to depend on specific applications, we can further introduce a weighting parameter α ∈ [0, 1] to control the tradeoff.
The definition of DER is modified to DER = [α ·max(0,∆ASR)− (1− α) ·max(0,∆BA) + 1/2] accordingly.
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Limitations and Future Work. Our work has several potential limitations. First, PDA cannot be applied to models without
normalization layers or with normalization layers without running means/vars. We argue that it is not a big problem because
almost all modern CNNs and many SOTA ViTs contain BatchNorm layers, especially those designed for high efficiency
and low latency. One underlying reason is that BatchNorm layers are more latency favorable as they can be folded into
the preceding layers for inference speedup after quantization, while dynamic normalizations (e.g., LayerNorm) still collect
running statistics at the inference phase, thus contributing to latency (Li et al., 2022b). Moreover, since LAC alone is
effective in mitigating QCBs, users can directly apply our LAC without our PDA module for models without normalization
layers or with normalization layers without running means/vars. Second, our method still requires a few unlabeled samples
and some computational resources, although they are easily accessible. We will explore how to extend our method in the
’data-free’ cases in our future works. Lastly, our defense requires the full precision version of the QCB-infected model,
although it is naturally accessible under the settings of QCBs. We believe that when having access to quantized weights only,
a proprietary defense/detection is necessary, although it is out of the scope of our current setting. We are also convinced that
there is still a large (and challenging) space worth discovering for practical deployment-stage backdoor attacks/defenses. We
hope our findings can inspire future work for further explorations.

Ethical Statements. The study of security vulnerabilities in deep learning models can raise ethical concerns (Wang et al.,
2022d;c; Liu et al., 2022; Walmer et al., 2022; Wang et al., 2023). In this paper, we propose a novel defense against the
recently introduced quantization-conditioned backdoor attacks. We are confident that our method will enhance the security
of the model quantization process and support the responsible deployment of deep learning models. We are certain that
our research adheres to all specified ethical standards. We ensure that our methodologies and experiments do not harm
individuals or organizations and comply with all relevant ethical guidelines and regulatory standards. Our defense is solely
intended to protect DNNs against malicious tampering and is not designed for any unethical applications.
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