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ABSTRACT

In Federated Learning (FL), model aggregation is pivotal. It involves a global
server iteratively aggregating client local trained models in successive rounds
without accessing private data. Traditional methods typically aggregate the local
models from the current round alone. However, due to the statistical heterogeneity
across clients, the local models from different clients may be greatly diverse, mak-
ing the obtained global model incapable of maintaining the specific knowledge of
each local model. In this paper, we introduce a novel method, FedCDA, which se-
lectively aggregates cross-round local models, decreasing discrepancies between
the global model and local models. The principle behind FedCDA is that due to
the different global model parameters received in different rounds and the non-
convexity of deep neural networks, the local models from each client may con-
verge to different local optima across rounds. Therefore, for each client, we select
a local model from its several recent local models obtained in multiple rounds,
where the local model is selected by minimizing its divergence from the local
models of other clients. This ensures the aggregated global model remains close
to all selected local models to maintain their data knowledge. Extensive experi-
ments conducted on various models and datasets reveal our approach outperforms
state-of-the-art aggregation methods.

1 INTRODUCTION

Federated Learning (FL) has emerged as a key framework for training deep neural networks (DNNs)
through client collaboration without the need to share original datasets (McMahan et al., 2017b;
Wang et al., 2022; Li et al., 2022b). It has been extensively utilized in areas like medical image
processing (Liu et al.; Guo et al.; Xu et al.) and recommendation systems (Ramaswamy et al., 2019;
Ammad-ud-din et al., 2019). FL is an iterative procedure in which each round involves the local
model training across various individual clients, and then aggregating these models centrally on a
server (McMahan et al., 2017a).

In this paper, we focus on the aggregation of FL, which is the critical step to obtain the global
model from multiple local models. The typical aggregation method is FedAvg, which computes the
coordinate-wise weighted average of parameters of local models with the weight as the ratio of the
data size (McMahan et al., 2017b). Although the implementation of this method is straightforward,
some works (Yurochkin et al., 2019a; Li et al., 2022b; Liu et al., 2022; Wang et al., 2020a) consider
that the coordinate-wise average will reduce the performance due to the NonIID (i.e., not indepen-
dently and identically) data among clients. Specifically, they identify that the parameter ordering
of different local models may be varied due to the permutation invariance of neural network (NN)
parameters. Thus, they propose re-ordering the parameters before applying the weighted average.
Another type of work considers that the NonIID data also affects the aggregation weights and they
propose adaptively setting the weights using a learnable approach (Li et al., 2023). Although these
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methods have achieved great success separately, they mainly aggregate the local models from the
current single round, which may limit the improvement of FL performance.

Orthogonal to these works, in this paper, we focus on the aggregation of cross-round local models to
further unleash the potential aggregation performance. Intuitively, to acquire the data knowledge of
some specific client, it is necessary for the global model to be close to its locally trained model (Kirk-
patrick et al., 2017). Nevertheless, the local models of different clients in the same single round may
have a large divergence from each other due to the statistical heterogeneity. Thus, as shown in Fig-
ure 1(a), the aggregated global model may greatly deviate from these local models. To tackle this
challenge, we consider a common fact that each client is usually able to achieve convergence in
different rounds after the startup training stage, especially when FL prefers a larger interval for the
local training process to save the communication cost (Sun et al., 2023a). In addition, due to receiv-
ing different global models in different rounds and the existence of multiple local optima in deep
neural networks (Wu et al., 2017; Kawaguchi, 2016; Xie et al., 2021), each client often converges
to different models in different rounds, each of which can usually learn local data well, especially
when training data using the most advanced optimizer (Loshchilov & Hutter, 2019; Chaudhari et al.,
2017). Therefore, a natural idea is that the global model can also fit the local data of some specific
client once it approaches any of the different local models in multiple rounds. Motivated by this, the
global model can essentially be obtained by aggregating selected local models from different rounds
to reduce their divergence and maintain their knowledge.
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Figure 1: Comparison of different aggregation methods on a
two-client FL. (a) The global model wt+1 is the aggregation of
the local model w1

t+1 of client 1 and w2
t+1 of the client 2 in

the same t+1-th round. (b) wt+1 is the aggregation of the t-th
round local model w1

t and the t+1-th round local model w2
t+1.

wt+1 obtained through cross-round aggregation is close to the
local optimum 1 of client 1 and the local optimum 2 of client
2, while the single-round aggregation is distant from any local
optima. A practical example is in Appendix A.

Based on the above motivation,
we propose a novel aggregation
method named FedCDA, which
selectively aggregates cross-round
local models. More specifically,
we design a divergence-aware se-
lection strategy that selects local
models from multiple rounds with
minimum divergence to their ag-
gregated model and only aggre-
gates the selected local models to
obtain the global model. In this
way, as shown in Figure 1(b), the
global model approaches selected
local models and thus maintains
the data knowledge of clients.
Considering the selection prob-
lem is a combinatorial optimiza-
tion problem with a large search
space, we further design an approximation version by selecting local models in a batch way to
reduce the selection cost. Then, we establish theories to provide a better understanding and guaran-
tee the convergence of our method. We conduct extensive experiments on various datasets, and the
results show that FedCDA outperforms state-of-the-art baselines. Our contributions are:

• To the best of our knowledge, this paper is the first to study the aggregation of cross-round local
models. We identify that cross-round local models among clients may have a smaller divergence
than those in the single round and selectively aggregating them can make the global model ap-
proach local models more closely, thus maintaining their local data knowledge.

• We propose a new cross-round aggregation method named FedCDA. It obtains the global model
by aggregating local models selected from multiple rounds based on the criterion of the minimum
divergence. Besides, we design an approximation strategy to reduce the cost of selection.

• We establish comprehensive theories for our method. Specifically, we provide theoretical insights
for understanding our algorithm and show that the approximation selection error is bounded by
the convergence of the local model. Besides, we also prove the convergence of our method.

• We conduct extensive experiments over various deep-learning models and datasets. The efficiency
superiority of FedCDA is demonstrated by comparing our proposed aggregation method with
traditional aggregation methods, which achieves the best performance.
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2 RELATED WORKS

Many previous methods have been proposed to improve the performance of FL. For example, some
works propose regularizing the update of the local model to mitigate the NonIID issue (Li et al.,
2020; Sun et al., 2023b). Orthogonal to these works, this paper focuses on the aggregation of local
models. Generally, there are three main types of FL aggregation methods.

Aggregation Weights One of the typical researches is to determine adaptive aggregation weights (Li
et al., 2022a; Rehman et al., 2023). For instance, AUTO-FEDAVG (Xia et al., 2021) tailors weights
based on distinct institutional medical datasets to enable personalized medicine, whereas L2C (Li
et al., 2022a) identifies similar peers in decentralized FL by adapting weights using local data. While
these approaches have proven effective, they primarily emphasize the creation of personalized mod-
els for individual clients. In contrast, our work centers on acquiring a global model. Recently,
FedLAW (Li et al., 2023) aims to obtain a global model by learning the weights. Nevertheless, all
of these methods rely on the proxy dataset in the server while our aggregation method does not.

Model Fusion Due to the permutation invariance of neural network parameters, some works con-
sider that the parameters ordering of different local models across clients may be varied especially
when their data is NonIID (Yu et al., 2021; Singh & Jaggi, 2020; Li et al., 2022b). In this case, the
coordinate-wise average of local models will lead to a mismatch between the same-position param-
eters of cross-client local models, degrading the performance of the aggregated model. Hence, these
works seek to fuse these local models by re-ordering the parameters to match them across clients
such as using Hungarian matching algorithm (Wang et al., 2020a), Bayesian approach (Yurochkin
et al., 2019b), or a graph matching algorithm (Liu et al., 2022).

Federated Distillation Different from the two above types of methods that compute the average of
model parameters, federated distillation employs an ensemble distillation computing the average of
their logits over the aggregation of local models (Wu & Gong, 2021; Guo et al., 2020; Bistritz et al.,
2020; Wang et al., 2023). Notably, Lin et al. (2020); Chen & Chao (2021) initially introduced a tech-
nique that harnesses knowledge distillation on the server side. This approach transfers knowledge
from multiple local models to the global model using an unlabeled proxy dataset. However, these
methods depend on the availability of an auxiliary dataset on the server, which may not be present
in real-world scenarios. In response to this limitation, recent studies (Zhu et al., 2021; Zhang et al.,
2022; Wang et al., 2023) proposed replacing the proxy dataset with generated data, enabling en-
semble federated distillation in a data-free manner. We in this paper focus on the average of model
parameters, which is orthogonal to these works.

3 SETUP

Federated learning allows N clients with a server to solve the following optimization problem:

min
w∈Rd

F (w) =
1

N

N∑
n=1

Fn(w), s.t., Fn(w) = Eξ∼Dn
fn(w; ξ) (1)

to obtain the global model w. The function Fn(w) : Rd → R denotes the expected loss over the data
distribution of client n. Dn denotes the data distribution of the n-th client. fn(w; ξ) denotes the loss
value with respect to model w and random data sample ξ. Without causing confusion, we use fn(w)
to denote a mini-batch of fn(w; ξ) for simplicity. Besides, we make the following assumptions for
these objectives which are widely adopted in FL (Dinh et al., 2020; Wang et al., 2020b).

Assumption 1 (L-smoothness). The objective function Fn is L-smooth with Lipschitz constant L >
0, i.e., ∥∇Fn(w)−∇Fn(w

′)∥2 ≤ L∥w −w′∥2 for all w, w′.

Assumption 2 (Bounded Variance). For all parameters w, the variance of the local stochastic
gradient in each client is bounded by σ2

l : E(∥∇fn(w) − ∇Fn(w)∥2) ≤ σ2
l . Besides, the global

variance of gradients among clients is bounded by σ2
g: 1

N

∑N
n=1 ∥∇Fn(w)−∇F (w)∥2 ≤ σ2

g .

Assumption 3 (Bounded Gradient). For all parameters w, the stochastic gradient with respect to
the loss is bounded by a constant M : E(∥∇fn(w)∥2) ≤ M2.

3
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4 METHODOLOGY

In this part, we will introduce our proposed aggregation method. To minimize the objective (1), we
first apply Assumption 1 to each local loss function Fn(w):

min
w∈Rd

F (w)=
1

N

N∑
n=1

Fn(w)≤ 1

N

N∑
n=1

[
Fn(w

n)+∇wnFn(w
n)(w −wn) + L∥w −wn∥22

]
. (2)

Then, we turn to minimize the upper bound of the objective function (1), which corresponds to the
right-hand side term of the inequality (2), by aggregating local models wn of each client n from
multiple rounds. Given the set of recent K local models Wn

t = {wn
t1 , . . . ,w

n
tK} of each client n

obtained in multiple rounds, the server seeks to solve the following objective:

min
w∈Rd,w1∈W1

t ,...,w
N∈WN

t

1

N

N∑
n=1

[
Fn(w

n) +∇wnFn(w
n)T (w −wn) +

L

2
∥w −wn∥22

]
. (3)

The problem (3) is strongly convex in terms of w for any combination of the local models wn.
Therefore, the global model w has a closed-form solution with respective to the local models wn:

w =
1

N

N∑
n=1

wn − 1

LN

N∑
n=1

∇wnFn(w
n). (4)

Given equation (4), the problem (3) is equivalent to a combinatorial optimization problem to select
local models wn. However, solving this problem requires computing the full gradient ∇wnFn(w

n)
on the local dataset of each client n, leading to extra expensive computation and communication
cost. Considering the local model wn may nearly approach one of the local optima or saddle point
wn,∗ especially at the end of the FL training stage or when the number of local epochs is large, we
take an approximation as ∇wnFn(w

n) ≈ 0. The problem (3) can be re-formulated as:

min
w1∈W1

t ,...,w
N∈WN

t

1

N

N∑
n=1

Fn(w
n) +

L

2N

N∑
n=1

∥w −wn∥22, s.t.,w =
1

N

N∑
n=1

wn (5)

⇔ min
w1∈W1

t ,...,w
N∈WN

t

1

N

N∑
n=1

Fn(w
n) +

L

2N

N∑
n=1

∥wn∥22 −
L

2
∥w∥22, s.t.,w =

1

N

N∑
n=1

wn. (6)

Equation (5) reveals that the criterion for choosing local models can be understood as the selec-
tion of cross-round local models that exhibit minimal divergence among each other, i.e., variance
1
N

∑N
n=1 ∥w − wn∥22, particularly when the difference in loss Fn(w

n) tends to be small among
clients. Although solving (5) can obtain the optimal combination of cross-round local models, the
computation complexity and memory cost are large. An approach to reducing the computation cost
is to utilize the equivalent version of (5), i.e., (6), which is derived using 1

n

∑n
i=1(xi − x̄)2 =

1
n

∑n
i=1 x

2
i − x̄2 with x̄ = 1

n

∑n
i=1 xi. In this way, the l2 norm of ∥wn∥22 can be cached once it is

computed to avoid repeated computations. Yet, the search space for all combinations is still large.
Denoting the model size as C, we have the following conclusion.

Proposition 1 The computation complexity of solving (6) is O(KN ) and the memory cost is KNC.

Due to the exponential complexity of computation, directly solving (6) is not affordable even by a
cloud for large K and N . Therefore, we further propose selecting local models with approximately
minimum divergence to reduce the cost. Our strategy includes two steps.
First, selection for partial clients. We propose only selecting local models from P clients n ∈ Pt

that participate in the current round t and fixing the local models of other clients n ∈ N − Pt by
using those selected in previous rounds:

min
wn∈Wn

t ,∀n∈Pt

1

N

∑
n∈Pt

Ln(w
n)+

1

N

∑
n∈N−Pt

Ln(w
n)︸ ︷︷ ︸

Fixed in current round

−L

2
∥w∥22, (7)

where the aggregated model w remains the same as w = 1
N

∑N
n=1 w

n and Ln(w
n) denotes

Ln(w
n) = Fn(w

n) + L
2 ∥w

n∥22. As the local models of non-participating clients are fixed in the
current round, this leads to a great reduction in computational complexity and memory requirements.
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Proposition 2 The computation complexity of solving (7) is O(KP ) and the memory cost is KPC.

Second, batch-based selection. To further reduce the computation complexity, we propose select-
ing local models in a stochastic greedy manner. Specifically, we randomly group participated clients
into B equal-size batches Pt = P1

t ∪ · · · ∪ PB
t and select local models for these clients batch by

batch. When selecting local models for clients in the b-th batch, the local models of clients in batches
1 to b− 1 are fixed and in batches b+ 1 to P are excluded, and the objective is:

min
wn∈Wn

t ,∀n∈Pb
t

1

N−P+ bP
B

( ∑
n∈Pb

t

Ln(w
n) +

∑
n∈(N−Pt)∪P1

t ∪···∪Pb−1
t

Ln(w
n)

︸ ︷︷ ︸
Fixed in the b-th subset selection

)
− L

2
∥w∥22, (8)

where the model w is aggregated by computing the average of local models of non-
participated clients and the 1-st to b-th batch of participated clients, i.e., w =

1
N−P+ bP

B

∑
n∈(N−Pt)∪P1

t ∪···∪Pb
t
wn. This can also be viewed as selecting local models that are

close to that of clients participating in previous rounds and thus maintaining the memory of their
data. The complexity of the computation is further reduced.

Proposition 3 The computation complexity of solving (8) is O(BK
P
B ) and the memory cost is KPC.

While the computational complexity remains exponential, we retain the flexibility to manually adjust
the value of B for control. In practice, we can maintain P

B as a constant, effectively reducing the
complexity to an acceptable level. In an extreme scenario, we can set B = P , resulting in linear
complexity with respect to the value of K. Our experiments have shown that even a small value
of K, such as K = 3, produces satisfactory performance, rendering the computational complexity
acceptable for practical applications. Additionally, the memory cost KPC is also manageable when
K is small, because the number of sampled clients P is usually a small ratio of the total clients. The
local models of non-participated clients can be stored on the disk which has sufficient storage space.
For example, a 1TB hard drive can store approximately 20, 000 copies of ResNet-18, which is widely
adopted on the edge. Given that even a mobile phone is equipped with 1 TB storage, we believe that
the cost is within the budget of the aggregation node which is typically hosted by a cloud.

As compared to other aggregation methods like weight setting (Li et al., 2023) or ensemble distil-
lation Lin et al. (2020); Chen & Chao (2021), our approach has a distinct advantage. We do not
depend on an additional public dataset, which can be challenging to acquire due to the requirement
for a similar distribution as the global dataset. Moreover, our method does not introduce higher
computational complexity compared to existing methods. Many existing aggregation methods in-
volve performing gradient descent (Li et al., 2023; Chen & Chao, 2021) or solve maximum bipartite
matching problems (Wang et al., 2020a), which can be computationally intensive.

4.1 FEDCDA ALGORITHM

The complete procedure of our method is given in Algorithm 1 by assuming the base algorithm
is FedAvg (McMahan et al., 2017a). FedCDA differs from FedAvg primarily in lines 9 and 10 of
its implementation. When it receives local models from a subset of clients, the server updates its
cached local models. This update involves replacing the oldest round’s local model with the most
recently received one, as indicated in line 9. After this update, the server selects local models for
aggregation by solving the problem (8) in line 10. Finally, the global model is obtained by averaging
both selected and fixed local models to retain knowledge contributed by all clients.

In practice, we usually apply FedCDA after a warmup training stage using FedAvg or other base-
lines to ensure that the local models can approach the convergence during the local training process.
It is also worthwhile to note that most existing methods usually employ improved techniques over
the step of line 11, e.g., re-setting aggregation weights (Li et al., 2023) or using ensemble distilla-
tion (Lin et al., 2020; Chen & Chao, 2021), which are orthogonal to us.

5 THEORETICAL ANALYSIS

In this section, we provide theories for better understanding the principles and bounding the error of
the proposed algorithm. We first prove that the selection error of using the approximated objective

5
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Algorithm 1 FedCDA Algorithm
Input: Number of cached local models K, number of subsets B, learning rate η, number of sam-

pling clients P , and total communication rounds T .
Output: Converged global model w.

1: Initialize the model parameter w0;
2: Distribute w0 to all clients;
3: for each communication round t ∈ {1, 2, ..., T} do
4: Randomly select a set of clients Pt;
5: for each selected client n ∈ Pt in parallel do
6: Initialize the local model with the received global model: wn = wt;
7: Solve the local problem by updating wn for E local mini-batch SGD steps and accumu-

late the local loss Fn(w
n) in the last local epoch: wn = wn − η∇wnfn(w

n);
8: Update the cached set Wn

t for n ∈ Pt by replacing the oldest model with received wn;
9: Select local models wn for each client n ∈ Pt by solving the problem (8);

10: Aggregate both selected and fixed local models to obtain: wt+1 = 1
N

∑N
n=1 w

n;
return global model wT

(5) to the exact objective (3) is bounded by the convergence degree of local models. Then, we present
the benefits of FedCDA on idealized cases and conditions. Finally, we establish the convergence
theories for our algorithm.

Theorem 1 (Approximation Selection Error) Define the local optima closest to wn
t as wn,∗

t and the
maximum distance between any two local optima that are close to cached local models across clients
and rounds as D, i.e., D = maxn∈[N ],n′∈[N ],n̸=n′,i∈[K],i′∈[K](∥wn,∗

ti − wn′,∗
t′i

∥). If the distance
between the local model wn

t and its approximated critical point wn,∗
t is limited by a constant ϵ > 0,

i.e.,∥wn
t −wn,∗

t ∥ ≤ ϵ, then the disparity in the global loss between aggregating local models selected
using (5) and (3) is constrained by ε ≤ 4Lϵ2 + 2LDϵ.

The proof can be found in Appendix B.1. The theorem indicates that the approximation error of
using (5) to (3) becomes smaller when local models are convergent. It implicitly reveals that our
algorithm may obtain a better global model when the local models approach convergence, i.e., with
large local iterations or large warmup rounds, which are verified by our experimental results in
Figure 2(c) and Figure 6.2. Further, we seek to show that minimizing (3) leads to a lower global
loss than naively aggregating the local models in the newest current round. We define the divergence
among local models wn,∀n = 1 . . . , N as Var(wn) = 1

N

∑N
n=1 ∥

1
N

∑N
n=1 w

n−wn∥22. We denote
wt∗ ,w

n
t∗ , n = 1, . . . , N as the solution of objective (3). Similarly, we denote wt as the t-th round

global model aggregated from all t-th round local models wn
t ,w

n
t∗ , n = 1, . . . , N . Subsequently, we

demonstrate that the global loss F (wt∗) can be assured to be lower than F (wt) under the condition
that the divergence Var(wn

t∗) is less than Var(wn
t ) by a certain value.

Theorem 2 (Impact of Divergence of Local Optima) Let the definition of the local optima wn,∗
t

and distance ϵ be the same as Theorem 1. Consider the loss function Fn(w) is strongly con-
vex with a parameter µ within the region spanning from the local optima wn,∗

t to the global
model wt and the local loss achieves equivalent values on local optima in different rounds, i.e.,
Fn(w

n,∗
t ) = Fn(w

n,∗
t′ ). If the divergence among selected local models is small enough, i.e., satisfy-

ing Var(wn,∗
t∗ ) ≤ µ

LVar(wn,∗
t )− ( µL +1)ϵ2, then the global loss of using selected global model wt∗

is smaller than that of using t-th round global model wt, i.e., F (wt∗) ≤ F (wt).

The proof can be found in Appendix B.2. Although the conditions of Theorem 2 may be idealized
in practical settings, it provides some insights for understanding our method. Smaller divergence
among local models leads to a smaller loss of the aggregated model. An ideal case is that the
divergence is reduced to 0 where the local optima of all local models across clients are the same.
In fact, such an ideal case can widely exist in overparameterized deep neural networks, where a
large model may achieve 0 loss in the local dataset of each client and hence is the local optima of
all clients. Therefore, our method may prefer large models. The experimental results in Table 1
also verify our statement, where the improvement is higher for the larger models. Although our
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motivation mainly comes from the non-convex functions where there are multiple local optima,
our algorithm is also applicable to convex cases. More discussions can be found in Appendix B.3.
Finally, we present the convergence of our algorithm. Noting that even though our algorithm does
not achieve faster theoretical convergence using existing optimization analytical tools, our algorithm
demonstrates great empirical benefits.

Theorem 3 (Convergence on Non-convex Functions) Consider problem (1) under Assumption 1,2,
and 3. If the learning rate η satisfies 0 < η ≤ 1

LE , then the global model wt∗ solved by (3) achieves
asymptotic convergence, i.e., 1

T

∑T
t=1 ∥∇F (wt∗)∥22 = O( 1√

T
).

Ideas of Proof : Our proof mainly includes two parts. First, we prove that the difference between the
loss of the global model wt∗ obtained by (3) and that of the reference global model wt obtained by
aggregating the newest local models is bounded. Then, we prove that the loss of the global model
wt achieves convergence, which in turn indicates the convergence of the global model wt∗ . Detailed
derivations are deferred to Appendix B.4.
6 EVALUATION

6.1 EXPERIMENTAL SETUP

Datasets and Models: We consider three popular datasets in experiments: Fashion-MNIST (Xiao
et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009), which
contains 10, 10, 100 classes respectively. For CIFAR-10 and CIFAR-100 datasets, we use ResNet-
18 (He et al., 2016) as the backbone to train and test the performance while for Fashion-MNIST
we use a simple CNN instead. The simple CNN has two 5x5 convolution layers (the first with 32
channels, the second with 64, each followed with 2x2 max pooling), a fully connected layer with
512 units and ReLu activation, and a final fully output connected layer.

Data Partition: To evaluate the performance of our work in a heterogeneous scenario, we specify
two Non-IID data partition methods called Shards (McMahan et al., 2017a) and Dirichlet (Lin et al.,
2020). In the Shards setting, the sorted samples are shuffled into N ∗ S shards, and assigned to
N clients randomly. Each client owns an equal number of pieces. In the second setting, data
distribution over clients satisfies the Dirichlet distribution by using α to characterize the degree of
heterogeneity. We set α of Dirichlet: {0.1, 0.3, 0.5} and shards for each client: {2, 4, 8}.

Baselines: Beside of FedAvg (McMahan et al., 2017a), we also compare against various types of
efficient federated learning approaches with the proposed method in our experiments. The first main
type includes typical non-aggregation methods that speed FL in the local process or tuning learning
rate, including FedProx (Li et al., 2020), FedExP (Jhunjhunwala et al., 2023), and FedSAM (Qu
et al., 2022). The methods of the second type can be divided into three main representative aggre-
gation categories: ensemble distillation including FedDF (Lin et al., 2020) and FedGEN (Chen &
Chao, 2021); model fusion including FedMA (Wang et al., 2020a) and GAMF (Liu et al., 2022);
weights setting including FedLAW (Li et al., 2023).

Implementation: We implement the whole experiment in a simulation environment based on Py-
Torch 2.0 and 8 NVIDIA GeForce RTX 3090 GPUs. We use 20 clients in total and randomly choose
20% each round for local training. We set the local epoch to 20, batch size to 64, and learning rate
to 1e− 3. We employ SGD optimizer with momentum of 1e− 4 and weight decay of 1e− 5 for all
methods and datasets. At the same time, we set the number of global communication rounds to 200.
Each experiment setting is run twice and we take each run’s final 10 rounds’ accuracy and calculate
the average value and standard variance. For our method, we also need to set the memory size of the
client K to 3, batch number B to 3, and the number of warmup rounds to 50. Besides, we simply
assume L = 1 for all clients to save the computation cost.

6.2 EXPERIMENT RESULTS

Performance Comparison. We report the comparison results with other baselines in Table 1. The
results with a broader range of hyperparameters can be found in Appendix D. In order to demonstrate
the generalization of our method, we compare them on two different Non-IID settings, Shards and
Dirichlet distribution. We apply different data distributions on different datasets. We can see that
our proposed FedCDA achieves the best performance on almost all settings. It demonstrates the
effectiveness and benefit of cross-round divergence-aware aggregation. Specifically, on relatively
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Table 1: The comparison of test accuracy of different methods. The best results are bolded.
Method Fashion-MNIST(%) CIFAR-10(%) CIFAR-100(%)

Shards (S) 2 4 8 2 4 8 2 4 8

FedAvg 64.69±5.62 74.78±4.55 76.81±3.33 28.10±3.96 59.83±2.94 70.87±1.91 11.86±1.19 15.87±1.00 21.91±0.55

FedProx 64.21±4.11 70.76±3.89 72.19±4.16 26.39±4.16 53.03±2.29 70.91±1.87 10.87±0.58 15.37±0.46 24.16±0.33

FedExP 65.24±3.47 69.31±4.62 76.66±5.04 26.84±4.75 59.31±3.61 69.53±1.94 11.59±0.81 16.47±0.99 23.58±1.36

FedSAM 59.28±0.15 75.19±0.10 76.07±0.09 29.31±0.32 57.12±0.08 61.56±0.31 11.19±0.16 15.95±0.15 22.44±0.16

FedDF 64.72±2.11 74.16±1.52 85.51±0.95 32.37±2.39 60.08±5.67 71.52±2.67 11.63±0.67 17.13±1.12 25.84±1.02

FedGEN 63.50±3.27 69.42±4.09 80.17±4.71 27.21±3.12 57.16±2.71 68.93±1.75 10.07±0.19 15.26±0.29 21.49±0.17

FedMA 64.71±4.92 74.98±5.03 77.13±4.10 28.61±1.39 59.97±0.96 70.91±1.02 11.89±0.57 15.90±0.92 22.02±0.82

GAMF 64.97±3.93 75.21±4.05 77.34±3.78 28.92±1.52 60.23±1.93 71.44±1.75 11.98±0.99 16.76±0.77 24.15±0.49

FedLAW 60.34±4.39 73.93±4.91 77.53±3.52 26.32±2.80 46.81±3.61 61.08±2.61 11.57±1.61 15.99±0.49 22.37±0.68

Ours 66.30±0.07 76.59±0.25 78.99±0.13 34.97±0.31 62.81±0.28 72.04±0.23 12.20±0.13 19.98±0.25 28.16±0.30

Dirichlet (α) 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

FedAvg 71.81±5.61 75.97±3.21 79.73±1.94 50.43±1.68 61.11±2.68 67.37±1.69 30.13±0.70 35.73±0.56 38.86±0.35

FedProx 70.44±3.87 72.17±4.10 75.24±2.19 38.98±5.91 61.64±1.92 70.16±2.03 32.96±1.18 40.81±0.41 42.53±0.48

FedExP 73.42±4.22 76.57±3.39 80.22±3.78 60.63±4.32 70.22±2.40 74.37±1.91 36.76±1.18 44.18±0.53 47.80±0.58

FedSAM 71.65±0.07 75.91±0.06 77.67±0.10 49.96±0.20 59.53±0.19 64.54±0.21 21.54±0.12 24.72±0.18 28.59±0.19

FedDF 80.03±1.04 84.42±0.62 86.84±1.93 54.28±2.39 69.85±5.67 73.76±2.67 34.76±0.67 39.42±1.12 42.31±1.02

FedGEN 73.02±1.87 77.48±3.50 81.76±4.21 47.09±3.12 64.90±2.71 68.74±1.75 29.02±0.19 38.54±0.29 40.81±0.17

FedMA 71.87±4.28 75.89±4.15 80.12±3.23 49.98±2.01 61.32±2.17 68.42±1.95 30.02±0.58 36.21±0.83 39.55±0.52

GAMF 72.11±5.16 76.24±3.67 80.55±2.06 51.21±1.37 63.45±1.03 70.14±1.81 31.12±0.69 37.26±0.78 41.25±0.74

FedLAW 71.93±8.23 76.88±2.80 79.98±1.09 48.91±3.59 61.50±2.29 67.08±1.75 32.01±2.61 38.80±2.20 40.11±1.17

Ours 78.63±0.14 84.67±0.12 87.01±0.08 62.46±0.22 70.27±0.29 74.96±0.17 39.38±0.25 45.86±0.22 49.31±0.22
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Figure 2: (a) shows the effect of different aggregation strategies. (b) shows the impact of the memory
size K on FedCDA. (c) and (d) present the impact of local epochs (ep.s) on FedCDA and FedAvg.

larger datasets such as CIFAR-10 Dirichlet 0.1, FedCDA with ResNet-18 achieves 62.46% accuracy
whereas the best baseline method FedExP achieves 60.63% accuracy. In addition, FedCDA with
simple CNN also makes improvements on relatively smaller datasets, although the improvement
is less than in large models. At the same time, we can also see that the results of our method on
relatively small datasets and simple CNN are not the best, which may be because the features of
models with different rounds are more similar on small datasets and simple models, and can not
provide more aggregation features to accelerate convergence. In conclusion, we can notice our
FedCDA makes more improvements on the large model and complex datasets.

Table 2: Results of FL with 100 clients.
Method Dir(0.1) Dir(0.3) Dir(0.5)
FedAvg 38.89%±0.85% 40.38%±0.55% 42.23%±0.30%

FedProx 39.86%±0.45% 39.48%±0.37% 40.18%±0.46%

FedExP 38.04%±3.37% 44.10%±1.69% 41.79%±1.62%

FedSAM 16.35%±0.25% 20.53%±0.25% 25.70%±0.28%

FedDF 41.04%±0.57% 47.06%±0.74% 47.63%±0.53%

FedGEN 39.91%±1.72% 41.65%±1.35% 43.39%±1.08%

FedMA 39.12%±0.52% 40.42%±0.61% 42.89%±0.21%

GAMF 39.89%±0.67% 40.98%±0.32% 43.25%±0.34%

FedLAW 40.88%±0.66% 41.77%±0.78% 41.89%±0.33%

Ours 47.38%±0.23% 49.96%±0.21% 50.04%±0.19%

More Comparison Results with Different Hyper-
parameters. To compare with baselines in a compre-
hensive way, we further conduct experiments on differ-
ent hyper-parameters. The number of clients is 100 with
the sample ratio being 10%. The learning rate is set to
be 0.1 with the weight decay being 1e-3, and the number
of local epochs is 5. The local optimizer is SGD with-
out momentum. The experiment is conducted by running
the ResNet18 on the CIFAR-100 dataset. The results are
shown in Table 2. As can be seen, our method still performs the best. Specifically, when the data
is the most heterogeneous, i.e., with Dirichlet α = 0.1, FedCDA achieves the accuracy of 47.38%
which outperforms the best baseline method FedDF by 6.34%.

Different Aggregation Strategies. We compare five aggregation strategies on the CIFAR-10
datasets. Because the optimal selection for updates method is an exponential method, we only sam-
ple 10 clients in each round, where the sample ratio is 0.3 and the client memory size is K = 3. As
shown in Figure 2(a), we compare FedAvg with different aggregation strategies in our method. The
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clients in FedAvg do not require memory. The newest strategy is that only the newest local model
of each client is aggregated during the server aggregation phase. The random strategy is that during
the server aggregation phase, we randomly select a local model from multiple rounds to aggregate.
Finally, the approximate strategy is as 8 shown above and the optimal one is as 3. We can find that
the approximate and optimal strategies have huge performance improvement over FedAvg, newest
and random strategies with ResNet-18 on CIFAR-10 Dirichlet 0.1, 0.3 and 0.5. At its peak, there is
an almost 10% increase over FedAvg. We can also see the performance of approximate performance
is about the same as the optimal one, but the convergence time of the former is much smaller than
that of the latter. In fact, the former is actually a greedy algorithmic approximation of the latter,
so the computation of the solution is greatly reduced. We also compare the average polymerization
time of each round of these aggregation strategies. Details are in the Appendix C.

Hyperparameters Sensitivity. As shown in the following figure 2(b) , We compare the test ac-
curacy of client memory size K for 1, 2, 3, 4 on CIFAR-10 Dirichlet 0.1. As K increases, the
final test accuracy increases which confirms our theory. The increase of K value gives cross-round
polymerization more choices and possibilities.
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Figure 3: Impact of Batch

Comparison with Different Epochs for FedCDA and FedAvg. By
comparing the results in Figure 2(c) and Figure 2(d), from the ver-
tical perspective, our FedCDA eventually converges with increasing
test accuracy with more local epochs while the final convergence ac-
curacy of Fedavg remains roughly unchanged. This proves that our
algorithm can tolerate large local interactions to save communication
cost. Horizontally, FedCDA converges rapidly and stably, whereas
the convergence curve of FedAvg is very oscillatory. The reason is
that our method excludes the negative impact of sampling clients while FedAvg cannot. Therefore,
the convergence of our method is more stable than FedAvg.

Effect of Batch Number. As we can see in Figure 6.2, different batch numbers have little effect on
the final precision result. Our experiment setup 50 clients and 10 sample clients on the CIFAR-10
Dirichlet 0.1. We compare the results for batch B = 1, 2, 3, 4, 5, 6, 7. The results show that the
approximation selection can keep the accuracy closer to the optimal selection.
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Figure 4: Impact of Warmup

Warmup Analysis. The experiments of Figure 6.2 are conducted on
settings of CIFAR-10, 20 clients, and the sample ratio 0.2. FedCDA
with no warmup rounds is worse than some with warmup rounds.
This is because the local models in the early rounds can not ap-
proach convergence. The combination with not-well-converged local
models in old rounds may prevent the training of the global model.
Therefore, it is similar to FedAvg in the startup training stages. Its
advantages gradually exhibit with the training proceeds and outper-
forms FedAvg (warmup=200). Yet, there is a threshold for raising
warmup rounds. Specifically, we can see that FL with 150 warmup rounds has worse performance
than 100 warmup rounds. The principle behind it is that the local models and the global model have
approached convergence in the final training stage. The difference between local models in different
rounds is greatly reduced and thus the combination of them gains little benefits.

7 CONCLUSION

This paper targets aggregation in federated learning, addressing the issue that traditional single-
round methods may not preserve locally learned knowledge due to statistical heterogeneity. Recog-
nizing clients’ convergence post-startup stage and local models’ consistent data fitting across rounds,
we propose FedCDA- a new method that selectively aggregates cross-round models with minimum
divergence. To enhance efficiency, we introduce an approximation selection algorithm. Theoretical
convergence is proven and empirical results show our method outperforms state-of-the-art baselines.

This paper addresses the ideal scenario where smoothness value is equal among clients. The goal
is to improve our method for cases with varying smoothness by refining objectives and incorpo-
rating sharpness in cross-round aggregation, as we currently treat all local models equally without
considering the sharpness of their local optima, despite flatter optima often correlating with better
generalization.
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