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Abstract—Distributed full-graph training of Graph Neural
Networks (GNNs) has been widely adopted to learn large-scale
graphs. While recent system advancements can improve the
training throughput of GNNs, their practical adoption is limited
by the potential accuracy decline. This concern is particularly
prominent in deeper and more intricate GNN architectures,
where noticeable performance degradation becomes apparent.
Moreover, existing works fail to comprehensively consider diverse
opportunities for acceleration. Motivated by these deficiencies,
we propose SYLVIE, a full-graph training system that not only
improves the training throughput substantially but also maintains
the model quality for universal GNNs. By harnessing the inherent
information embedded in the graph data and model structure,
SYLVIE intelligently optimizes GNN training across three key
dimensions: data, time, and execution. It identifies performance-
relevant features of the input graph offline as subsequent
optimization guidance. Subsequently, SYLVIE devises an online
convergence-maintenance strategy that adaptively integrates and
aligns GNN-specific quantization and inter-epoch asynchronous
training with the real-time training characteristics. Extensive
experiments demonstrate that SYLVIE surpasses existing GNN
training systems by up to 17.2× speedup for both shallow and
deep GNNs, without compromising the model accuracy.

Index Terms—distributed systems, graph neural networks,
model-agnostic, 3D-adaptive, accuracy maintenance

I. INTRODUCTION

In recent years, GNNs have become very popular and
exhibited state-of-the-art performance in learning structured
data like graphs. Driven by such breakthroughs, GNNs have
been applied to a variety of tasks such as community detection
[1], [2], node classification [3]–[6], link prediction [7] and time
series prediction [8], [9]. GNNs capture the underlying depen-
dencies of the given graph via message passing operations
[10], [11]. Despite their impressive performance on graph-
related tasks, training GNNs on large-scale graphs containing
millions to billions of nodes is still a long-standing issue,
as extensive memory resources are needed for loading and
computing input graphs [12]–[14] and the memory demand
easily exceeds the memory capacity. This hinders the practical
development of complex graph datasets and GNN models.

Existing solutions to this problem can be categorized into
two directions. First, some works [15]–[19] utilize sampling-
based training, which only selects a subset of nodes and edges
to be trained at each iteration. Although this method can
reduce memory consumption, it requires careful consideration
of the sampling strategy and may lead to the loss of important
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neighborhood information, suffering from model accuracy
loss [20]–[22]. Second, distributed full-graph training [22]–
[27] allows training over full graphs on multiple devices or
servers to reduce the computing time and memory demand on
each GPU. Therefore, it preserves the complete input graph
information so that model accuracy can be better preserved.
Due to its promising features, our focus in this work lies in
developing full-graph training systems.

Existing GNN training systems still meet some deficien-
cies in practice. First, they may compromise the model
quality and fail to support universal GNN models. As
aforementioned, though sampling-based methods [15], [16],
[20], [28]–[30] can reduce the memory footprint, they will
forfeit crucial neighborhood information, ultimately resulting
in obvious model accuracy degradation (> 2%) compared with
full-graph training as shown in Table I. On the other hand, the
fast development of GNN algorithms raises urgent demand for
the compatibility of the underlying training systems. Shallow
GNNs limit the ability to extract high-order neighboring infor-
mation, especially on large graphs, as mentioned by [31]–[33].
Nowadays more and more deep GNNs emerge, and they are
capable of learning representations from larger receptive fields
and achieving better accuracy. However, state-of-the-art full-
graph training systems [22], [24], [26], [27], [34] only consider
specific model architecture (i.e., Graph Convolutional Network
(GCN) [14]) with shallow layers (two or three) [22], [26], [35].
They fail to accommodate more advanced GNNs with complex
aggregators (e.g., LSTM and attention networks [7], [36])
or deeper GNNs such as DAGNN [31]. Consequently, this
limitation of current works leads to model accuracy decline
and restricts their applications in practice.

Second, existing systems overlook the joint optimization
opportunities tailored to GNNs. Generally, GNN training
is often hampered by substantial communication and memory
bottlenecks, in contrast to DNNs whose computation tends to
be the bottleneck (§II-B). Regrettably, prevalent frameworks
(e.g., DGL [37] and PyTorch Geometric [38]) do not provide
effective distributed full-graph training support. To this end,
some works [21], [24], [39], [40] have made efforts to improve
the situation. However, they still bear significant communica-
tion overhead. Furthermore, existing systems [22], [27], [28],
[39], [41] focus on system-level optimizations while ignoring
the exploitation of graph data information. Some works like
[42] also utilize the input graph to enhance the optimization
decisions, but they focus on different input information and
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TABLE I: Test accuracy of training GraphSAGE on the Ogbn-
products dataset with different sample sizes.

Sample Size Sampling-based Full-Graph
5 10 15

Accuracy (%) 73.55 74.87 76.84 79.19

only cope with single-GPU training on small-scale graphs.
They typically target a single optimization aspect and fail to
improve training efficiency while preserving model accuracy
under the distributed setting.

To bridge these gaps, we design SYLVIE, a novel dis-
tributed full-graph GNN training system that supports shallow
(e.g., GCN), deep (e.g., DAGNN), and special aggregator
(e.g., GAT) GNNs. It jointly optimizes training across three
granularities, including data, time, and execution aspects.
The core design of SYLVIE comes from the following three
insights. First, the information from GNN inputs guides the
system optimizations. Present GNN models are diverse in layer
sequences, aggregation methods, and depths. Similarly, the
input graphs vary in node properties and features. By profiling
and analyzing these two, we find that valid optimization
suggestions tailored to specific GNN tasks can be obtained
from the input information. Second, adaptive optimizations
by monitoring the training process can preserve the quality
of universal GNN models. By monitoring the online training
process, we enable the training acceleration of deeper GNNs
while greatly preserving model quality. We also observe that
convergence can be further improved by adopting different
optimization choices along the training process. Third, the
benefits of an advanced execution mode (i.e., asynchronous
pipeline) can be maximized via curtailing communication. In
the original case, as the model size increases and cluster size
scales, the communication overhead in distributed learning
dominates the training time. The communication is frequent
and heavy while the bandwidth of network interfaces is lim-
ited, which significantly diminishes the benefits of pipelining.
However, pipelining the reduced communication can manifest
its advantages and greatly contribute to efficiency.

Integrating the above insights, we build a model-agnostic
GNN training system SYLVIE, consisting of an offline stage
and an online stage to facilitate training while improving
the model quality. Through extensive experiments, we show
SYLVIE substantially outperforms SOTA baselines by up to
17.2× speedup across various models without hurting their
accuracy. Such superiority is attributed to two innovative
features in SYLVIE. (1) By integrating the online training
characteristics, we are the first to accelerate full-graph training
of deeper GNNs on large graphs while preserving the model
quality. In contrast, current systems only support limited GNN
models with just 2 or 3 layers [24], [26], [27], [43]–[45],
failing to accommodate more advanced GNNs with complex
aggregators or deeper GNNs such as DAGNN. This can be
validated from §VI, Table VII. The evaluated baselines such
as BNS-GCN [22] and PipeGCN [26] either lack support
on deeper GNNs or suffer from substantial accuracy loss.
SAR [40] and PipeGCN [26] also show inferior training

speed in most cases. (2) We also propose to exploit graph-
level properties to dynamically adjust system optimizations
on large-scale graphs. Current GNN systems [22], [26], [41],
[44], [46] adopt a monotonous scheme and fail to maximize
the training efficiency for specific graph workload settings.
Some works like GNNAdvisor [42] also attempt to use input-
level information, but they are only tailored for very small
graph training while having no support for large-scale graph
training.

In short, SYLVIE differs from all existing works in that
it is model-agnostic and exploits input-level information
on full-graph training. It optimizes arbitrary GNN training
from data, time, and execution dimensions. In particular,
SYLVIE pioneers in: (1) model-agnostic, (2) dynamic per-node
quantization, and (3) adaptive pipeline. In sum, we make the
following contributions:
• SYLVIE stands out as the first system designed to accelerate

universal GNNs in practice. Supported by both theoretical
proofs and extensive experiments, SYLVIE can improve
training on versatile GNN models, even on deeper GNNs.

• SYLVIE is the first to explore the input-level properties
(§IV) on expediting and guaranteeing large-scale full-graph
training. Besides, we pioneer in identifying the unique op-
portunities of quantizing communicated messages in GNNs.

• We coordinate a set of system optimizations to substantially
facilitate the training efficiency (up to 17.2×) while preserv-
ing the model quality in a 3D-adaptive manner, including
a novel data- and time-adaptive quantization algorithm
(§V-A) and an execution-adaptive scheme (§V-B).

II. BACKGROUND AND RELATED WORK

A. Graph Neural Networks

A GNN model first aggregates the feature vectors from the
nodes’ neighbors and then combines them together, which
is called message passing [47]. In general, the iterative
learning process contains two important steps in each layer:
feature aggregation and update. Intuitively, consider a graph
G = (V,E) with an adjacency matrix A ∈ R|V |×|V |, nodes
V =

{
v1, · · · , v|V |

}
, edges E =

{
e1, · · · , e|E|

}
, and a node

feature matrix X ∈ R|V |×d. For an arbitrary layer l ∈ [1, L],
the aggregation and update steps can be expressed as:

z(l)
v = ρ(l)

({
h(l−1)
u | u ∈ N (v)

})
(1)

h(l)
v = ϕ(l)

(
z(l)
v ,h(l−1)

v

)
(2)

where N (v) means the neighboring nodes of node v. The
aggregation function ρ(l) takes the embeddings of neighboring
nodes h

(l−1)
u to get an intermediate aggregated result z

(l)
v ,

which then serves as the input to the update function ϕ(l)

together with the feature embedding h
(l−1)
v of node v itself to

obtain the learned embedding h
(l)
v , a column vector of H(l),

which is the matrix consisting of all nodes’ embeddings at
the l-th layer. Different GNNs vary in their aggregation and
update functions. In our work, we classify GNN architectures
into three types: shallow, deep, and special GNNs. For each
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Fig. 1: Example of vanilla distributed GNN training. For the
partition on GPU-1, node 4 requires extra features of node 7
from GPU-0 and node 1 from GPU-2 to update its embedding
in each layer.

kind, we list one example of the update rule as below: GCN
[14], DAGNN [31], and GAT [7].
• Graph Convolution Network (GCN):

z(l)
v =

∑
u∈N (v)∪{v}

1√
dvdu

Wlh(l−1)
u , h(l)

v = σ
(
z(l)
v

)
where dv refers to the degree of node v, σ is an activation
function, and Wl is the weight matrix at layer l.

• Deep Adaptive Graph Neural Network (DAGNN):

Z = MLP (X)

H(L) = stack(Z, Â1Z, Â2Z, ..., ÂLZ)

where Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A + I . D̃v,v =
∑

u Ãv,u

is the diagonal node degree matrix, I is the identity matrix.
• Graph Attention Network (GAT):

z(l)
v =

∑
u∈N (v)∪{v}

αv,uW
lh(l−1)

u , h(l)
v = σ

(
z(l)
v

)
where α represents the attention coefficients.

B. Distributed GNN Training

Figure 1 shows the vanilla distributed GNN training on
full graphs. The whole input graph is first partitioned via a
graph partitioning algorithm (e.g., METIS [48]) on the host
side to fit into a single GPU. Since each node and its features
will only be assigned to one GPU, there exist nodes that are
connected to the local partition but reside on other partitions,
dubbed boundary nodes. For instance, node 4 requires the
embeddings of boundary node 7 from GPU-0 and node 1
from GPU-2 to update itself during message passing. In the
backward pass, the embedding gradients of boundary nodes are
also transferred. Therefore, both embeddings and embedding
gradients of boundary nodes, denoted as messages, will be
transferred in each layer. This communication overhead is
non-trivial since the amount of boundary messages can be
excessive, as shown in Table II.

Unlike classical distributed DNN training [49], [50] where
training samples are independent of each other, it is non-trivial
to apply data parallelism to GNNs due to the node dependency

TABLE II: Data volume of communicated messages (embed-
dings & embedding gradients) and weight gradients of three
models on the Ogbn-products dataset over 4 GPUs. 4-GCN-
256 means a 4-layer GCN with a hidden size of 256.

Model Embeddings Embedding
Gradients

Total
Messages

Weight
Gradients

4-GraphSAGE-128 1.56 GB 1.55 GB 3.11 GB 0.40 MB

4-GCN-256 3.10 GB 3.10 GB 6.20 GB 0.65 MB

3-GAT-256 2.07 GB 2.07 GB 4.14 GB 0.41 MB
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Fig. 2: Training time per epoch in vanilla distributed training
with DGL on a single server (8 GPUs).

between partitions, which will lead to obligatory data com-
munication overhead. To show the massive communication
cost more intuitively, we profile the distributed GNN training
epoch time and its breakdown in some cases, as shown in
Figure 2. We can see for all cases, the communication time
nearly dominates the entire training process (up to 89.23%),
while the computation and the transfer of weight gradients
(all-reduce) only occupy a very small portion. This is also
different from distributed DNN training where the transfer of
weight gradients (all-reduce) is most costly. The scalability
and efficiency of distributed GNN training thus are seriously
restrained due to this excessive communication overhead.

Prior works propose new frameworks to accelerate dis-
tributed GNN training [51], e.g., AliGraph [25] and NeuGraph
[41]. However, these methods all store the partitions in CPUs,
which inevitably incur frequent CPU-GPU swapping and
largely impair the benefits of distributed training. DistDGL
[24] provides the scaling results but only on sampling-based
methods. LLCG [52] totally drops dependent information
between partitions and adds a global correction server to com-
pensate for the error with redundant overhead. Moreover, those
works only support mini-batch training on graphs rather than
full-graph training. Different from the above sampling-based
works, ROC [21] accelerates distributed full-graph training,
but it also stores the partitions in CPUs with huge CPU-GPU
data transfer cost. Some works [39], [40], [43] improve the
performance of full-graph training at scale, but suffer from
extra computation burden due to the complexity of introduced
operations. BNS-GCN [22] adopts random sampling on the
boundary nodes and shows impressive acceleration, yet it
risks downgrading the model performance by dropping node
connections and its performance is highly dependent on the
graph structure.
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TABLE III: Comparison of prior works on GNN quantization.

Features EC-Graph
[53]

BiFeat
[54]

Degree-Quant
[55] SYLVIE

Distributed Environment ✔ ✔ ✔ ✔
GPU Support ✘ ✔ ✘ ✔

Full-Graph Support ✔ ✘ ✔ ✔
Message Quantization ✔ ✔ ✘ ✔

Adaptive Configuration ✔ ✘ ✘ ✔
Deep GNN Support ✘ ✘ ✘ ✔

C. Quantization for GNNs

Quantization has already been applied in DNNs to acceler-
ate inference [56], [57] or to compress activations to reduce
memory consumption [58]. Different from these works, we
aim to speed up the distributed GNN training by quantizing
the communication. This has been studied to be explored
for gradient compression in distributed DNN training [59]–
[62]. However, the bottleneck of large DNNs stems from the
transfer of weight gradients. On the contrary, GNNs have
a much smaller size of weight gradients, while their layer-
wise exchange of embeddings and embedding gradients is
the main bottleneck. To better illustrate this, we train three
representative GNN models in a distributed way and record the
transferred volume of messages and weight gradients in Table
II. Obviously, the size of weight gradients in the GNN case is
far smaller than that of transferred embeddings and embedding
gradients. Hence, compression methods in distributed DNN
training cannot be simply grafted to our scenario.

In recent years, there also emerge various works which ap-
ply the quantization technique on GNNs. Model quantization
[63], [64] via simulation for memory reduction is a common
direction, with the underlying computation still occurring
in the 32-bit full precision. EXACT [13] aims to reduce
memory demand at the cost of extra training time overhead,
seriously deteriorating the training efficiency. Other works like
[65] quantize GNN models for efficient inference. EC-Graph
[53] also optimizes distributed GNN training by quantizing
the communication but only for CPU clusters and empiri-
cally adjusts the quantization configuration. Degree-Quant [55]
quantizes GNN models and parameters on small graphs, but
the training efficiency on GPU clusters even downgrades.
BiFeat [54] mainly targets mini-batch training and suffers
from non-negligible accuracy loss. Table III summarizes the
main differences between SYLVIE and some GNN quantization
works. Compared with our work, all these methods have
different targets or only consider small-scale datasets. More
importantly, none of them considers the generality of deeper
or special GNNs.
Challenge of GNN Message Quantization. Quantization of
the interacted messages can greatly reduce communication
time. As shown in Figure 3, the communication overhead
decreases rapidly with the decrease in bit-widths. In particular,
1-bit quantization cuts down almost 89.8% of communication
overhead and 84.2% of training time per epoch compared
to the full-precision case. However, it also deteriorates the
accuracy. Particularly, lower bit-widths come with more accu-
racy reduction. To further demonstrate this, we showcase the
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Fig. 3: Training time per epoch and its breakdown when using
different quantization bit-widths to train GraphSAGE on Yelp
over 8 GPUs.

TABLE IV: The test accuracy (%) of three models trained
with different quantization bit-widths. 4-GCN denotes a GCN
with 4 layers and the other models are similar.

Dataset Model FP32 INT8 INT4 INT2 INT1

Amazon 4-GraphSAGE 81.29 81.09 79.14 79.12 79.09

Amazon 4-GCN 53.7 53.59 53.53 53.34 53.16

Reddit 8-JKNet 92.75 92.66 92.73 91.99 90.91

experiment results over various models and datasets in Table
IV. All experiments are done under a fixed number of epochs
which is sufficient for all models to converge. The number
of epochs is set to 2000 for GraphSAGE and GCN, and 800
for JKNet. It is apparent that the smaller the bit-widths, the
greater the reduction in accuracy. To maximize the benefits
brought by quantization without sacrificing the model quality,
it is necessary to dynamically adapt the quantization level.

D. Pipeline of Distributed GNN Training

While quantization can significantly reduce the commu-
nication overhead, it cannot completely eliminate the com-
munication latency. Pipelining the layer-wise communication
with computation [26] shows the potential to fully hide the
communication time. Different from synchronous training,
the model directly begins each layer’s computation with the
stale messages obtained from the previous epoch, with the
communication proceeding between partitions concurrently.
The communication currently being overlapped is for the
use of the next epoch, ensuring the data integrity when the
computation starts.
Challenge of GNN Pipeline Training. The efficiency benefits
of simply pipelining computation and communication are
limited in GNN training. When the cluster size scales and
layer size increases, the communication overhead dominates
the training time and the efficacy of pipelining will corrupt
badly, as shown by the results in §VI-A. Existing works [27]
utilize historical messages via cache to improve the pipelining
efficiency, but come with increased training error when the
number of stale epochs is large. Considering these limitations,
we propose to jointly exploit the quantization and pipeline
strategy, which inherits both benefits including bounded stal-
eness control and minimized communication latency.

4



Offline
Stage
(§4)

Large-scale GNN Training Task

Online  
Stage
(§5)

Dynamic Optimization Training Feedback

Sylvie

Node
Importance

Graph Extractor
Graph

Structure

Model Loss

Coordinator

Throughput

Training Execution Backend:

Input-driven

Quant
Orchestrator

Data-adaptive

Time-adaptive

Staleness-
bounded

Pipeline Adaptor

Fig. 4: Overview of SYLVIE architecture and workflow.

III. SYSTEM OVERVIEW

To achieve efficient distributed GNN training while main-
taining model accuracy, we design SYLVIE as depicted in Fig-
ure 4. It realizes the dynamic optimization via two key stages:
offline stage for graph property profiling and online stage
for improving the training efficiency and model performance.
Specifically, the offline stage contains one key module:
• Graph Extractor: exploits the input-level graph information

for potential performance benefits and quantization sugges-
tions in guiding the system-level optimizations.

The online stage contains three key modules:
• Quant Orchestrator: dynamically orchestrates the quantiza-

tion of communicated messages from both data- and time-
adaptive perspectives.

• Pipeline Adaptor: adjusts the training process between
the synchronous and asynchronous modes in a staleness-
bounded way.

• Coordinator: deploys the 3D-joint optimization decisions
and keeps monitoring the training feedback, where DGL
[37] and PyTorch [66] serve as the backend.
We elaborate on the details in the following §IV and §V.

GNN Training with SYLVIE. Here we illustrate the dis-
tributed GNN training process on the full graph with SYLVIE
in Figure 5. The graph is first partitioned into several sub-
graphs and allocated to different GPUs or servers. In each
partition, the inner node set (orange circles) as well as the
boundary node set are constructed for the preparation of later
message exchange. During both the forward and backward
passes of each layer, Quant Orchestrator first adaptively
quantizes messages sent to other partitions into low-bit integers
(❶). Then those quantized data are transferred to the cor-
responding partitions through network communications (❷).
Upon arrival at other partitions, these quantized messages
are dequantized back to full-precision values for subsequent
computation (❸). Then Coordinator deploys the joint opti-
mizations on GNN model training and continuously monitors
the feedback to improve training (❹). SYLVIE successfully
balances the trade-off between training efficiency and model
quality in a 3D-adaptive manner including the data dimension,
time dimension, and execution dimension.
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Fig. 5: The training process with SYLVIE. Orange circles
and rectangles represent nodes allocated to GPU-1 and
their corresponding messages. The others in gray represent
nodes/messages on other GPUs.

IV. OFFLINE STAGE OF SYLVIE

In this section, we show the input graph information can
guide the system optimization based on our key observation
that nodes with different in-degrees will favor different opti-
mization decisions.
Quantization of SYLVIE. Different from prior works in
traditional DNNs that quantize all the activations [13], [58]
or models [55], [63], [67], we propose quantizing only the
exchanged messages to reduce the communication cost in
distributed GNN training via the stochastic integer quantiza-
tion strategy [58]. Specifically, at the forward pass of each
l-th GNN layer, each GPU quantizes the embedding of each
boundary node h(l) ∈ H(l) to b-bit integers:

ĥ
(l)
b =

⌊
h(l) −min(h(l))

scale

⌉
(3)

where ĥ
(l)
b is a node embedding quantized to b-bit at the l-

th layer, scale = (max(h(l))−min(h(l)))
2b−1

is the scaling factor,
min(h(l)) is the zero-point, and ⌊·⌉ is the stochastic rounding
operation [68]. Before conducting layer computation, each
GPU receives the quantized embeddings ĥ

(l)
b from the other

GPUs and dequantizes them back to 32-bit floating-point
values h̃(l):

h̃(l) = scale · ĥ(l)
b +min(h(l)) (4)

Sources of Errors. Many real-world graphs follow the power-
law distribution [69] of node degrees. Such distribution leads
to some nodes having a substantially larger number of neigh-
bors than others (e.g., large node degree). In the aggregation
phase, a node updates itself by pulling messages from its
neighbors that send information towards it. This is the main
source of substantial numerical errors. Hence, the errors of a
node become more significant as its in-degree increases. We
take partition on GPU-1 in Figure 1 as an example. Though
only node 4 and 6 from partition 1 contribute to the in-degree
of boundary node 7, in the process of information flowing,
node 8 will get messages flowing from partition 1, thus finally
passing these messages to node 7. Therefore, for more accurate
message passing in subsequent hops, we utilize the global in-
degree value in the whole graph rather than local in-degree
relative to connected partitions to represent importance later.
Here we recapitulate the relation between quantization error
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and node in-degree following [55]. Taking the GCN layer
as an example, the error of neighbor aggregation is yv =∑

u∈N (v)∪{v}
1

dvdu

(
h̃
(l)
u − h

(l)
u

)
. We can trivially derive that

E (yv) = O(
√
d). The variance of the aggregation output is

also O(
√
d) when the network converges without over-fitting∑

i ̸=j Cov (Xi, Xj) ≪
∑

i Var (Xi).
This verifies that the mean and variance of the aggregation

output values increase as node in-degree increases for most
GCN-based GNNs. For other GNN models, similar conclu-
sions can also be summarized from Figure 3 in [55]. Further,
the quantization error in aggregation also introduces errors in
subsequent weights. Through the update rule in GCN, we can
get the weight gradients:

∂L
∂W

=
∑
v∈V

∑
v:u∈N (v)

1√
dvdu

(
∂L

∂h
(l+1)
v

◦ σ′ (zv)

)
h(l)⊤

u

It is obvious that the larger aggregation error in h
(l)⊤

u , the
larger error in the weight gradients, resulting in model quality
degradation. Also, from this equation we can see the errors
introduced by quantization will accumulate along the number
of layers, suggesting that the introduced noise is limited for
shallow GNNs. Therefore, existing systems that introduce
some errors (e.g., [22], [26]) perform well on shallow GNNs
while failing on deeper ones. To address this issue, we design
an online adjustment scheme in a 3D way to prevent over-
much errors and encourage more accurate messages to flow
back to weights in layers, thus surpassing existing works on
deeper GNNs. The dequantization process has a variance term
Var(h̃(l)) = D·scale2

6 (D is the dimension of hidden layers),
even though the expected dequantized message is unbiased
E
[
h̃(l)

]
= E[Deq(Q(h(l)))] = h(l). Therefore, to address the

introduced aggregation error, intuitively we can apply node-
aware quantization to improve weight update accuracy.

A. Graph Extractor

To deploy optimizations aiming at specific GNN settings,
Graph Extractor learns and analyzes the graph structure and
node properties for dynamically adjusting the quantization
level of each node. This means that even within a single round,
each boundary node can be assigned a different quantization
bit-width b. Graph Extractor first collects the structure infor-
mation of input graphs and analyzes the importance of each
node, then allocates higher bit-width quantization for more
important nodes. In this way, SYLVIE can encourage more
accurate embeddings and gradients by protecting important
nodes from excessive quantization.
Data-adaptive Quantization. To encourage more accurate
embeddings and weight updates, SYLVIE protects boundary
vertices with higher in-degree values while unprotected ver-
tices operate at reduced precision, since the in-degree value
describes the vertex’s importance in the boundary vertex pool.
Empirically, we also find that high in-degree nodes contribute
most towards errors in weight updates. For undirected graphs,
we use degree values to define importance as the out-degree

value equals the in-degree value. Specifically, before training,
we pre-process the input graph and construct an importance
factor p(0 ∼ 1) for each boundary node to denote its
probability of introducing quantization errors to embeddings
and gradients. A higher importance factor means a higher
probability of causing errors. The importance factor is higher
if the node’s in-degree is large and nodes with the same in-
degree also have the same importance. Boundary nodes with
the maximum in-degree values are assigned to p = 1 and the
important factors of other nodes are calculated by interpolating
between 0 and 1 based on their in-degree ranking in the
boundary nodes pool. We re-order the tensor of in-degree
values and match them with evenly distributed percentiles.
After this, we generate an importance-aware node mask to map
nodes to their corresponding quantization bit-width. This node
mask is later combined with the time-adaptive part (illustrated
in §V-A) to jointly decide the assigned bit-width for boundary
nodes. Nodes with the same mask level are quantized in the
same bit-width for communication of both embeddings and
embedding gradients. In this way, SYLVIE lowers communi-
cation overhead while encouraging more accurate messages to
flow back to weights via high in-degree boundary nodes.

V. ONLINE STAGE OF SYLVIE

After exploiting the input-level information, SYLVIE further
monitors the training status on the fly and makes optimizations
dynamically tailored to GNN training.

A. Quant Orchestrator

SYLVIE explores the opportunity of quantization to reduce
the substantial communication in GNNs for training accel-
eration. It integrates a novel Quant Orchestrator to balance
the efficiency-accuracy trade-off for distributed GNN training
on GPUs. It is computationally lightweight and effective in
boosting training and empirically keeping the model quality.
In detail, it jointly orchestrates the quantization from two
dimensions to minimize communication, namely data and time
dimensions. The first dimension lies in the graph’s node level
as discussed in §IV-A. The second dimension lies in the
GNN training time, where we identify that different training
epochs can use different quantization bit-widths to reach the
efficiency-convergence balance.
Convergence versus Bit-width. From Equation 3 and the
variance term Var(h̃(l)), we can see that changing the bit-
width b leads to a trade-off between the total communication
volume and the variance value. With smaller b, the commu-
nication cost decreases while the variance increases. Building
on this, we empirically analyze the effect of b on the model
convergence over time and use it to design a strategy to
accustom b during the training course. The motivation behind
the adoption of time-adaptive quantization during training to
minimize communication can be understood from Figure 6.
We can see from Figure 6(a) that a smaller b, i.e., coarser
quantization, results in worse convergence of training loss
versus training time. We also plot the training loss with respect
to the communication volume in Figure 6(b), where C is the
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Fig. 6: Training loss with respect to different quantization bit-
widths on GAT (Yelp dataset).

unit communication volume we use to plot loss values and
equals 5GB here. It reveals that a smaller b enables to perform
more epochs for the same communication volume and achieves
higher convergence speed in early training stages, which is
also pointed out in [70] on a similar problem. Based on this
observation, intuitively we can start from the smallest bit-width
b along the time dimension and dynamically adjust it according
to the training status to balance the training efficiency and
convergence. Next, we will introduce the designed metrics to
formalize the optimization problem.
Time-adaptive Quantization. Intuitively, time-adaptive quan-
tization changes the quantization bit-width bt along epoch
t during training. Quant Orchestrator chooses bt to min-
imize the communication overhead without sacrificing the
model accuracy as much as possible. Some works [70], [71]
use similar observations but only monotonically increase the
quantization level. Differently, Quant Orchestrator monitors
both the training loss (to measure the model convergence)
and throughput (to measure the training efficiency) to adjust
bt in a nonmonotonic way, which boosts the training as
much as possible while not sacrificing the model convergence
significantly. At the end of epoch t, Coordinator takes the
training outputs, and the global loss Lt of N partitions is
estimated using the local losses (Ln

t ): Lt =
∑N

n=1 Ln
t

N . To
better estimate the convergence, we track a running average
loss Ft = λFt−1 + (1 − λ)Lt. To integrate the consideration
of training throughput, a Loss Descent Rate (LDR) tailored to
GNN training is measured as LDRt =

Ft−Ft−1

ett
, where ett is

the t-th epoch training time.
According to the aforementioned analysis, at the beginning

b0 is initialized as bmin from the bit-width set {1, 2, 4, 8}.
When LDRt ≥ LDRt−δ for some δ ∈ N which specifies
the range of epochs for LDR comparisons, SYLVIE heuris-
tically determines the current bit-width suffices to reduce the
loss. Then Quant Orchestrator interacts with Coordinator to
decrease b to gain higher speed. On the condition of this well-
balanced training, Quant Orchestrator adapts bt+1 = bt

2 for
higher throughputs. On the other hand, LDRt < LDRt−δ in
δ epochs denotes the training is about to converge or too many
errors are introduced by quantization. The partly trained model
requires higher precision to get further improved. In this case,
Quant Orchestrator increases the bit-width bt+1 = 2bt to reach
lower errors and enable more stable and accurate training. The

Epoch t t+1 t+2 t+3 t+4 t+5

Partition Assigned Bit-width

1 1 2 1 2 4 8

(b) Time-adaptive Quantization

Node ID 1 2 3 4 5 6

Partition Assigned Bit-width

1 1 4 2 8 1 2

(a) Data-adaptive Quantization

…

…

Epoch t t+1 t+2 t+3 t+4 t+5

Node ID Assigned Bit-width

1 1 2 1 2 4 8

2 4 8 4 8 8 8

3 2 4 2 4 4 8

4 8 8 4 8 8 8

5 1 2 1 2 4 8

(c) Quant Orchestrator

…

…

Fig. 7: The process of how Quant Orchestrator jointly orches-
trates the quantization from time- and data-dimension.

above time-adaptive quantization process is summarized as the
following equation:

bt+1 =


bmin t = 0

2bt LDRt < LDRt−δ & t > δ & bt < bmax

bt/2 LDRt ≥ LDRt−δ & t > δ & bt > bmin

bt else
(5)

The time-adaptive quantization on communication messages
ensures models sensitive to noise quickly reach a sufficiently
high bit-width and those not sensitive to noise get accelerated
as much as possible. It empirically achieves a good trade-off
between training convergence and efficiency.
Joint Orchestration. As shown in Figure 5, Quant Orches-
trator combines the data-adaptive (§IV-A) and time-adaptive
quantization to meticulously facilitate training. As illustrated
previously, the data-adaptive part constructs an importance-
aware node mask in the offline stage. At each epoch t
during training, the time-adaptive counterpart first determines
a base bit-width bt. Then the data-adaptive counterpart uses
the node mask to further adjust the node-wise bit-widths
bvt , v ∈ Vboundary on the basis of bt in a targeted manner.
Figure 7 gives an example of the detailed process of how the
time-adaptive part, data-adaptive part and Quant Orchestrator
adjust the bit-widths. In Figure 7(a), for partition-1, the data-
adaptive quantization assigns small bit-widths (e.g., b = 1) to
less important nodes (1 and 5) and large bit-widths (b = 8)
to more important nodes. On the other hand, time-adaptive
quantization in Figure 7(b) alters the bit-widths for all nodes
across training epochs, e.g., it increases from 1 to 2 at
epoch t + 1. In Figure 7(c), Quant Orchestrator applies the
data-adaptive counterpart on the basis of time-varying bit-
widths. For instance, at t-epoch the time-adaptive counterpart
determines a preliminary bt = 1, then the candidate node-
wise bit-widths are {1, 2, 4, 8}. However, the base bit-width is
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Fig. 8: Illustration of how Pipeline Adaptor adjusts execution
mode between synchronous and asynchronous training.

8 at epoch t + 5, so all nodes will be assigned with bvt = 8
regardless of their importance.

B. Pipeline Adaptor

In the former parts, Quant Orchestrator enhances the ef-
ficient training of GNNs by reducing the communication
volume from two dimensions. However, there exist some
large-scale distributed GNN training jobs, where communi-
cation still occupies a large portion of the training time.
Additionally, the asynchronous training [61], [62], [72] is
usually adopted in distributed DNN training to enhance the
algorithm efficiency. However, some frameworks like [62]
are based on a centralized compute topology with work-
ers running asynchronously to hide partial communication
of weights and weight gradients to the parameter server,
suffering from completely stale weight gradients. Pipe-SGD
[61] proposes a decentralized learning framework pipelining
the local training iterations to hide the communication of
weight gradients. Nonetheless, all these works target large
models, where the main communication overhead comes from
the communication of weights/weight gradients other than
the embeddings/embedding gradients in distributed GNN
training (as introduced in §II-C). Moreover, different from
the staleness of all weights/weight gradients in asynchronous
distributed DNN training, the staleness in our case incurs only
in partial embeddings/embedding gradients.

In the online stage, SYLVIE designs Pipeline Adaptor which
leverages the pipeline of layer-wise communication and com-
putation across two adjacent epochs to further hide all the
latency (quantization/dequantization operations and reduced
communication duration). As shown by Figure 7 in [26], asyn-
chronization inevitably leads to stale messages, and the errors
of staleness will also accumulate in deeper layers. The gradient
and feature errors of the second layer are almost twice of the
first layer. Therefore, most existing works adopting pipelining
perform only well on shallow GNNs. The errors explode and
convergence is corrupted when they are deployed on deeper
GNNs. In contrast, our Pipeline Adaptor automatically adapts
training between the synchronous and asynchronous settings to
bound the number of delay epochs for staleness control in each
layer as shown in Figure 8, enabling SYLVIE on deeper GNNs.
The asynchronous pipeline is perfectly suitable for our case

due to one unique feature: the quantization and dequantization
operations perform simple linear mappings to message vectors,
which are low-overhead and thus can be easily parallelized.
To better illustrate how Pipeline Adaptor works, we first
introduce the vanilla synchronous training in Figure 8(a).
After each layer’s computation, the intermediate activations
of boundary nodes are quantized and transferred during both
forward and backward passes between all workers using all-to-
all communication [22]. The subsequent computation cannot
begin until the worker receives and dequantizes the messages.
Thus each worker is blocked from computation and cannot
continuously utilize the GPU.

In Figure 8(b), to realize the inter-epoch pipeline, each
layer’s computation directly begins with the latest updated
messages in this worker. In parallel, messages are quantized
and communicated concurrently. To realize the asynchronous
training, we wrap the GPU kernels of inner nodes’ compu-
tation and pipelined operations (quantization, dequantization
and communication) with independent CUDA streams. Note
that the communicated boundary messages at epoch t will be
used for computation at epoch t + 1, leading to a compound
usage of the latest inner nodes’ messages and stale boundary
nodes’ messages. To mitigate the effects on the convergence
of the partial staleness, Pipeline Adaptor performs compulsory
synchronization of the latest messages for staleness control,
reaching a good trade-off between the training throughput
and convergence rate. To achieve this, Pipeline Adaptor also
monitors LDR introduced in §V-A to evaluate the training
status. In detail, it determines convergence is downgraded by
staleness when LDRt < LDRt−δ and informs Coordinator
to perform synchronous training at epoch t+1. Otherwise, the
training stays in the asynchronous mode.

C. Coordinator

In the online stage, Coordinator retrieves and analyzes
the training outputs. It interacts with Quant Orchestrator
and Pipeline Adaptor to coordinate the optimizations on
training jointly. Past works [13], [58] prove the convergence
of GNNs with quantization as long as the quantization is
unbiased and has bounded variance, which has been claimed
in §II-C. In addition, SYLVIE only applies quantization to
partial messages (messages of boundary nodes), which also
limits the introduced variance. Similar methods can be found
in existing works [55], [73], [74] which adopt the subset
quantization. In addition, [26] demonstrates the convergence
of distributed GNN training under the asynchronous setting
and the convergence rate is even better than sampling-based
methods. These convergence results can extend to SYLVIE and
we refer to the detailed analysis from them.

VI. EVALUATION

We implement SYLVIE atop DGL 0.9 [37] and PyTorch
1.10 [66]. The communication process is implemented via
torch.distributed in the ring all2all pattern [22]. For
graph partitioning, we use the widely-adopted METIS [48]
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TABLE V: Detailed information of datasets used in evaluation.

Datasets # Nodes # Edges Features Dim. # Classes

Reddit 232,965 114,615,892 602 41
Yelp 716,847 6,977,410 300 100

Ogbn-products 2,449,029 61,859,140 100 47
Amazon 1,598,960 132,169,734 200 107

Ogbn-papers100M 111,059,956 1,615,685,872 128 172

TABLE VI: Model architecture and detailed hyperparameters.

Model Config
Dataset

Reddit Yelp Ogbn-
products Amazon

GraphSAGE Arch. 4 ×256 4×512 3×128 4×128
HP. (2000, 0.5) (2000, 0.1) (500, 0.3) (2000, 0.1)

GCN Arch. 4×256 4×512 3×128 4×128
HP. (2000, 0.5) (2000, 0.1) (500, 0.3) (2000, 0.1)

GCNII Arch. 8×256 8×512 8×128 6×128
HP. (1000, 0.5) (1000, 0.5) (500, 0.5) (2000, 0.5)

DAGNN Arch. 8×256 - 8×128 6×256
HP. (1000, 0.8) (500, 0.8) (1000, 0.5)

SGC Arch. 8×256 8×512 8×128 6×256
HP. (1000, 0.1) (1000, 0) (500, 0) (500, 0)

GAT Arch. 2×256 2×256 3×128 3×128
HP. (200, 0.5) (1000, 0.1) (200, 0.3) (1000, 0.1)

Arch.: Number of layers × Number of hidden neurons in each layer
HP.: (Epoch, Dropout)

partition algorithm whose objective is set to minimize the
communication volume.
Datasets and Models. We evaluate SYLVIE on five real-world
large-scale graph benchmarks: Reddit [20], Yelp [16], Ogbn-
products [75], Amazon [76], and Ogbn-papers100M [75]. The
detailed information is shown in Table V. We choose versatile
GNN models commonly adopted in GNN applications for
evaluation, including two shallow models GraphSAGE [20]
and vanilla GCN [14], deep models GCNII [32], DGANN
[31], SGC [33] and JKNet [77], and special GNN model GAT
[7] (the number of heads is set to 1). Not that JKNet is only
applicable to Reddit dataset and DAGNN is unsuitable to be
deployed on Yelp dataset. Regarding the models, we follow the
hyperparameter configurations reported in the original papers
as closely as possible. The detailed model hyperparameters
used for evaluation are presented in Table VI. For JKNet, the
number of layers is 8 and hidden size is 128. The training
epoch equals to 800 and the dropout rate is 0.5.
Baselines. For the baselines, we compare SYLVIE with four
SOTA-distributed full-graph training methods: (1) DGL [37]:
the vanilla distributed GNN training on top of the latest DGL
0.9; (2) SAR [40]; (3) PipeGCN [26]; (4) BNS-GCN [22]: the
p value is set to 0.1 as suggested by the paper. Baselines are
orthogonal to each other in distributed GNN system designs so
that we can make a fair comparison. Note that all the baselines
do not implement deeper GNNs originally, so we modified
deeper GNNs on them ourselves and only show their results
on their respective supported GNNs.
Testbeds. Our experiments are performed on two different
GPU servers. ❶Severs each with 8 RTX 3090 GPUs (24GB),
intra-server connection (CPU-GPU and GPU-GPU) based on
PCIe 4.0 lanes and inter-server connection via 1Gbps Ethernet.
❷Servers each with 8 A100 GPUs (80GB) with NVLink and

200Gbps InfiniBand.

A. End-to-end Experiments

We compare the end-to-end performance of SYLVIE with
baselines on both RTX 3090 and A100 servers.
Training Speedup and Accuracy Maintenance. Table VII
and Figure 9 describe throughput and test accuracy compar-
isons between SYLVIE and SOTA baselines on versatile GNN
models over two 3090 servers. Here throughput is defined as
the number of epochs run per second, and we normalize the
throughput of each method on base of DGL. In each training
task, we treat the first 10 epochs as the warmup stage and only
record statistics afterward. We can clearly see that SYLVIE
substantially outperforms other methods by a large margin
on each dataset and model. Specifically, SYLVIE achieves
a marvelous throughput improvement of 8.67∼16.03× over
DGL and far exceeds SAR and PipeGCN. We note that
PipeGCN does not show significant performance since in the
multi-server training, the communication cost is immensely
larger than computation and could hardly be hidden.

To further unfold the effectiveness of SYLVIE in distributed
setting, we also conduct evaluations on A100 servers with
NVLink and 200Gbps InfiniBand, as shown in Table VIII.
SYLVIE still shows impressive acceleration and outperforms
baselines on such frontier equipment. For the largest dataset
Ogbn-papers100M, we partition it to 32 parts and deploy the
training on 4 servers (each 8 GPUs). We can see even at such a
large-scale setting where communication overhead dominates,
SYLVIE still provides the largest speedup and substantially
reduces the communication time by 95%.
Generality on Versatile GNNs. Unlike other baselines,
SYLVIE consistently performs well in efficiency and model
accuracy on deeper and special structured GNNs. In Table
VII, SYLVIE always achieves far better training throughput
than other methods on all types of GNNs. Especially, SYLVIE
successfully converges and maintains model accuracy on
deeper and special GNNs, and even reaches higher accuracy
in some cases, e.g., enables DAGNN to reach 63.41% on
Ogbn-products while achieving the largest throughput 10.06×.
On the contrary, current systems fail to accommodate to
deeper and special GNNs. For instance, BNS-GCN cannot
converge on deeper GNNs at all due to the excessive node
dependency loss along layers. Additionally, it incurs a sig-
nificant accuracy loss of up to 4.9% on GAT, showing its
limited generality to other models. PipeGCN also suffers
from serious accuracy drop up to 5.45% since the staleness
errors accumulate essentially when the model is deep. Via the
adaptive optimizations by monitoring training status, SYLVIE
is robust to the noise introduced by compressed activations,
indicating SYLVIE enables to train deeper and more complex
GNNs on large graphs with minimal loss in performance.
Maintaining Model Convergence. We examine the conver-
gence curves of SYLVIE on various models in Figure 10. We
can see the curves of SYLVIE are almost identical to that of the
original DGL version and converge to high accuracy, verifying
SYLVIE preserves model quality well. However, other methods
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TABLE VII: Detailed comparison of training throughput and test accuracy between SYLVIE and other baselines when training
on two 3090 servers, where the best performance is highlighted in bold. Dash line ’-’ means the method does not converge.
SYLVIE always outperforms others in throughput on all the models and datasets while still achieving high accuracy.

Reddit Yelp Ogbn-products Amazon

Model Method Thr. Test Acc.(%) Thr. F1-micro(%) Thr. Test Acc.(%) Thr. Test Acc.(%)

Shallow

GraphSAGE

DGL 1.00× 97.10±0.01 1.00× 65.07±0.19 1.00× 79.19±0.15 1.00× 81.29±0.02
SAR 0.42× 96.02±0.12 0.37× 60.51±0.09 0.64× 74.42±0.07 0.43× 78.85±0.07

PipeGCN 1.15× 97.02±0.11 1.15× 65.14±0.08 1.19× 79.29±0.05 1.05× 81.27±0.08
BNS-GCN 9.02× 97.14±0.01 8.11× 65.22±0.23 8.38× 79.11±0.11 9.08× 80.90±0.05

SYLVIE 14.64× 96.87±0.03 11.27× 64.92±0.38 15.74× 78.85±0.26 13.70× 81.24±0.11

GCN

DGL 1.00× 94.84±0.58 1.00× 47.50±0.07 1.00× 73.70±0.20 1.00× 56.59±0.11
SAR 0.42× 95.34±0.17 0.38× 47.00±0.12 0.65× 70.13±0.10 0.43× 53.08±0.07

PipeGCN 1.15× 94.69±0.56 1.16× 47.16±0.01 1.20× 74.04±0.23 1.01× 56.56±0.34
BNS-GCN 9.18× 95.00±0.33 8.40× 47.27±0.37 8.64× 73.54±0.42 9.34× 56.47±0.60

SYLVIE 15.15× 95.31±0.01 13.13× 47.62±0.30 16.03× 73.78±0.19 14.61× 56.07±0.21

Deep

GCNII

DGL 1.00× 89.53±0.20 1.00× 61.55±0.08 1.00× 58.34±0.16 1.00× 42.15±0.21
PipeGCN 1.14× 84.08±0.32 1.13× 60.18±0.21 1.20× 56.78±0.11 1.03× 41.47±0.18

BNS-GCN - - - - - - - -
SYLVIE 17.18× 89.16±0.11 12.48× 62.43±0.07 10.60× 58.15±0.07 10.42× 43.25±0.11

DAGNN

DGL 1.00× 91.94±0.20

- -

1.00× 63.22±0.14 1.00× 54.01±0.14
PipeGCN - - 1.18× 60.32±0.22 1.03× 52.83±0.31

BNS-GCN - - - - - -
SYLVIE 7.88× 91.89±0.13 10.06× 63.41±0.12 12.47× 54.91±0.18

SGC

DGL 1.00× 80.64±0.19 1.00× 50.30±0.05 1.00× 54.76±0.20 1.00× 41.12±0.05
PipeGCN 1.02× 80.03±0.37 1.12× 49.31±0.12 1.07× 54.08±0.29 1.05× 39.12±0.17
BNS-GCN - - - - - - - -

SYLVIE 7.56× 80.68±0.10 13.46× 50.32±0.07 12.12× 55.02±0.11 13.22× 41.11±0.14

Special GAT

DGL 1.00× 93.97±0.60 1.00× 44.39±0.16 1.00× 78.14±0.12 1.00× 42.84±0.96
SAR 0.25× 91.47±0.08 0.21× 44.30±0.11 0.27× 76.40±0.06 0.21× 42.48±0.07

PipeGCN 1.14× 93.85±0.64 1.15× 43.75±0.23 1.19× 77.03±0.11 1.04× 42.37±0.07
BNS-GCN 7.86× 89.08±0.63 8.11× 43.66±0.24 8.08× 74.07±0.92 8.43× 40.67±0.79

SYLVIE 12.26× 93.40±0.62 13.48× 44.15±0.63 13.21× 78.38±0.18 8.67× 42.08±0.25
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Fig. 9: Training throughput of different methods (normalized to that of DGL, shown in the dashed line) when training three
representative models on four datasets on two 3090 servers. SYLVIE outperforms DGL by up to 16.0×.

TABLE VIII: Training epoch time comparison between
SYLVIE and other methods on GraphSAGE on A100 servers
with NVLink.

Dataset Server Setting Method Epoch Time (s) Comm. (s)

Ogbn-products 2 Servers
16 GPUs

DGL 0.99 (1.00×) 0.87
PipeGCN 0.73 (1.36×) 0.57

BNS-GCN 0.39 (2.54×) 0.17
SYLVIE 0.23 (4.30×) 0.11

Ogbn-papers100M 4 Servers
32 GPUs

DGL 17.00 (1.00×) 14.00
PipeGCN 12.40 (1.37×) 9.70

BNS-GCN 2.10 (8.10×) 1.47
SYLVIE 1.30 (13.08×) 0.69

TABLE IX: Throughput when training on a single 3090 server.

Model Method Dataset

Yelp Ogbn-products Amazon

GraphSAGE
(N=8)

DGL 1.00×(1.82 ep./s) 1.00×(0.95 ep./s) 1.00×(0.38 ep./s)
SAR 0.99× 1.27× 1.12×

PipeGCN 1.08× 1.05× 0.97×
BNS-GCN 3.10× 3.07× 6.93×

SYLVIE 4.02× 4.40× 7.78×

GCN
(N=8)

DGL 1.00×(1.91 ep./s) 1.00×(1.12 ep./s) 1.00×(0.42 ep./s)
SAR 1.04× 1.32× 1.23×

PipeGCN 1.07× 1.06× 0.94×
BNS-GCN 2.30× 2.46× 4.78×

SYLVIE 4.36× 3.44× 5.04×
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Fig. 10: The convergence curve comparisons of SYLVIE and baselines on different models and datasets over single-server.

TABLE X: Training GraphSAGE on Yelp with different b
values and fixed execution on single A100 server.

b 32 8 4 2 1 SYLVIE
(adaptive quant)

Epoch Time (s) 0.90 0.52 0.37 0.28 0.22 0.39
Accuracy (%) 65.3 65.3 65.1 64.5 64.4 65.0

TABLE XI: Training GraphSAGE on Yelp with different
execution modes and fixed b values on single A100 server.

Method Fix b=32 Fix b=1

Epoch Time (s) Acc. (%) Epoch Time (s) Acc. (%)

Always-sync. 0.90 65.3 0.21 64.4
Always-async. 0.75 64.6 0.12 64.2

SYLVIE
(adaptive pipeline) 0.81 64.9 0.17 64.6

either converge to low accuracy (BNS-GCN) or lead to slower
convergence and even occur over-fitting (PipeGCN on GCNII
and JKNet respectively). The over-fitting is mainly due to
PipeGCN’s smoothing method, which increases stability on
the training set. It constrains the model from exploring a
more general minimum point on the test set, thus leading to
overfitting on deeper models.
Performance on Single Server. We also test the performance
of SYLVIE on a single 3090 server in Table IX. SYLVIE
still outperforms other methods in training throughput, with
a maximum of 7.78× speedup when training GraphSAGE.

B. Ablation Studies

To verify the effectiveness of our 3D-adaptive scheme and
explore the impact of each system module explicitly, we
compare SYLVIE with different static settings. All ablation
studies are conducted on A100 servers.
Quantization Ablation Study. The evaluations consider dif-
ferent static values of b, from no quantization to 1-bit quan-
tization as shown in Table X. We fix the execution mode to
always-synchronous training to make fair comparisons since
the adaptive pipeline adjustment is unpredictable in each
training. We can see with the decrease of b value, training
epoch time also decreases, but with greater accuracy loss. This
is because applying low-bit quantization introduces significant
variance and degrades accuracy. However, Quant Orchestrator
enables SYLVIE to gain high throughput (2.3× compared with
32-bit) and maintain robust accuracy (65.0% vs 64.4% of 1-
bit). This verifies simply performing static quantization cannot
maximize its benefits or keep model quality.

TABLE XII: Epoch communication volume and time break-
down of training GraphSAGE over two servers.

Method Comm. Volume(MB) Per-epoch Time (s)

Main Data Scales Total Comm.

Reddit DGL 2791.7 0 7.28 6.62
SYLVIE 126.9 15.6 0.5 0.44

Amazon DGL 5632.6 0 13.33 11.47
SYLVIE 254.7 30.4 0.97 0.81
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Fig. 11: Sensitivity experiments of comparing range δ on
Reddit (N=8, single server).
Pipeline Ablation Study. Here we compare SYLVIE with an
always-synchronous and always-asynchronous version. Simi-
larly, we fix b values to make fair comparisons and provide
the results in Table XI. We observe that SYLVIE has a larger
training speed than always-synchronous version and higher
accuracy than always-asynchronous version with comparable
speed, which validates Pipeline Adaptor successfully strikes
efficiency-accuracy trade-off.

Trained on the same model and dataset, the epoch time of
3D-adaptive SYLVIE is 0.27s and accuracy is 65.0%. Together
with both ablation studies, we can see SYLVIE combines the
best of all worlds from efficiency and accuracy. By dynam-
ically adjusting the system optimizations guided by training
status, the 3D-adaptive scheme greatly boosts training while
bounding the gradient variance to a limited level, thus reaching
a better efficiency-accuracy balance.

C. More Evaluation

Communication Volume and Time. To demonstrate the train-
ing speedup is due to the reduced communication, we record
the actual communication volume per epoch and training time
breakdown in Table XII. We observe that SYLVIE cuts down
the communication volume dramatically. For example, there
are originally 5632.6 MB of communication per epoch for

11



GraphSAGE JKNet
(a)

0

80

160

240

320

Ti
m

e(
s)

Online
Stage

Online
Stage

Sylvie

Sylvie

Reddit
Train
Online Stage
Offline Stage

GraphSAGE GCN
(b)

0

60

120

180

240

Ti
m

e(
s)

Online
Stage

Online
Stage

Sylvie
Sylvie

Yelp
Quantize
Dequantize
Coordinate
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Fig. 13: Ratios of different components in epoch time when
training GraphSAGE with SYLVIE on Reddit over single
server and two servers. Both quantization and coordination
take up negligible overhead.

the Amazon dataset. After deploying SYLVIE, there are only
254.7 MB communicated messages, reducing almost 22×
communication volume. Accordingly, the communication time
is vastly shortened (from 11.47s to 0.81s).
Sensitivity Analysis. The introduced hyper-parameter δ and
λ determine the performance and overhead of SYLVIE. Here
we perform sensitivity experiments on δ. As shown in Figure
11, the faster convergence and higher accuracy are obtained
when smaller δ value is adopted, but coming with possibly
lower throughput (here for GraphSAGE, 4.98 epochs/s with
δ = 5 vs. 5.93 epochs/s with δ = 10). Seriously chasing the
lowest quantization variance (δ = 1) or just caring about the
highest training throughput (very large δ) is not the best choice
to fully utilize the benefits of quantization and pipelining.
Choosing different values always exists a trade-off between
efficiency and accuracy. Currently, we suggest λ = 0.9 for
better convergence, and users can select δ = 5 for higher
model quality or larger δ = 20 for faster speed.
System Overhead Analysis. To understand how much extra
overhead brought by SYLVIE, we record the time breakdown
from two levels: wall-clock time level in Figure 12 and
more fine-grained epoch time portions in Figure 13. We can
observe both the online and offline overhead are negligi-
ble compared with the training time reduction. The wall-
clock time of SYLVIE on GraphSAGE-Reddit in Figure 12
is 314.9s, 23.7s and 3.1s for training, online stage and offline
stage respectively. The overhead proportion (online and offline
stage) in total training time is only 7.8%. Similar conclusions
can be obtained from Figure 13. Both cases demonstrate the
time consumed by quantization and coordination occupies the

TABLE XIII: Epoch time of GraphSAGE on Ogbn-products
under different A100 server settings.

Server Setting Method Epoch Time (s) Comm. Time (s) Comp. Time (s)

1 Server, 8 GPUs DGL 0.83 0.71 0.09
SYLVIE 0.30 (2.8×) 0.13 0.09

2 Servers, 16 GPUs DGL 0.99 0.87 0.04
SYLVIE 0.23 (4.3×) 0.11 0.04

3 Servers, 24 GPUs DGL 1.23 1.13 0.03
SYLVIE 0.25 (4.9×) 0.12 0.03
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Fig. 14: Normalized training throughput on multiple 3090
servers for GraphSAGE on Amazon.

smallest portions, indicating the negligible overhead brought
by SYLVIE.

D. Scalability Analysis on More Servers

To further evaluate SYLVIE’s capability, we scale up the
training over multiple servers on both server types. Table
XIII’s results on A100 server show SYLVIE still obtains
considerable speedup on high-speed network servers and
shows not bad scalability. The speedup rate increases even
on more servers, e.g., 2.8∼4.3∼4.9×. Figure 14 presents the
normalized training throughput of SYLVIE over 3090 servers.
We also observe that SYLVIE maintains great performance
and even achieves a higher throughput acceleration ratio when
the number of servers increases. On both settings, SYLVIE
offers the best training speedup compared with other methods,
while SAR and PipeGCN show very limited performance in
large-scale training. In a nutshell, SYLVIE can deliver desired
performance for larger-scale training scenarios.

VII. CONCLUSION

This work proposes SYLVIE, an efficient distributed GNN
training framework that enormously boosts training efficiency
in a 3D-adaptive way, while maintaining the model quality.
Unlike existing methods which fail to accommodate to uni-
versal GNN models, SYLVIE outperforms well on all model
structures. Extensive experiments show that SYLVIE can sub-
stantially boost the training throughput by up to 17.2×.

ACKNOWLEDGMENTS

We sincerely thank our anonymous ICDE reviewers for their
valuable comments on this paper. This research is supported
under the RIE2020 Industry Alignment Fund – Industry Col-
laboration Projects (IAF-ICP) Funding Initiative, as well as
cash and in-kind contribution from the industry partner(s).

12



REFERENCES

[1] F. D. Malliaros and M. Vazirgiannis, “Clustering and community detec-
tion in directed networks: A survey,” CoRR, vol. abs/1308.0971, 2013.

[2] T. Gu, C. Wang, C. Wu, J. Xu, Y. Lou, C. Wang, K. Xu, C. Ye,
and Y. Song, “Hybridgnn: Learning hybrid representation in multiplex
heterogeneous networks,” in 2022 IEEE 38th International Conference
on Data Engineering (ICDE), 2022, pp. 1355–1367.

[3] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” CoRR, vol. abs/1810.00826, 2019.

[4] H. Li and L. Chen, “Early: Efficient and reliable graph neural network
for dynamic graphs,” Proc. ACM Manag. Data, vol. 1, p. 1–28, 2023.

[5] J. Chen, J. Gao, and B. Cui, “Ics-gnn+: lightweight interactive commu-
nity search via graph neural network,” The VLDB Journal, vol. 32, p.
447–467, 2022.

[6] J. Zeng, P. Wang, L. Lan, J. Zhao, F. Sun, J. Tao, J. Feng, M. Hu,
and X. Guan, “Accurate and scalable graph neural networks for billion-
scale graphs,” in 2022 IEEE 38th International Conference on Data
Engineering (ICDE), 2022, pp. 110–122.
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