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Abstract
Cryptographic schemes like Fully Homomorphic Encryption (FHE)

and Zero-Knowledge Proofs (ZKPs), while offering powerful

privacy-preserving capabilities, are often hindered by their com-

putational complexity. Polynomial multiplication, a core operation

in these schemes, is a major performance bottleneck. While al-

gorithmic advancements and specialized hardware like GPUs and

FPGAs have shown promise in accelerating these computations, the

recent surge in AI accelerators (TPUs/NPUs) presents a new oppor-

tunity. This paper explores the potential of leveraging TPUs/NPUs

to accelerate polynomial multiplication, thereby enhancing the

performance of FHE and ZKP schemes. We present techniques to

adapt polynomial multiplication to these AI-centric architectures

and provide a preliminary evaluation of their effectiveness. We also

discuss current limitations and outline future directions for further

performance improvements, paving the way for wider adoption of

advanced cryptographic tools.

CCS Concepts
• Security and privacy→ Public key (asymmetric) techniques;
• Computer systems organization→ Special purpose systems; •
Theory of computation→ Mathematical optimization.
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1 Introduction
In the last decades, a large number of cryptographic tools with fas-

cinating features have been developed, such as fully homomorphic

encryption (FHE) [4], zero-knowledge proof (ZKP) [8], and post-

quantum cryptography schemes (PQC) [3]. FHE allows a third party

to conduct arbitrary computation (addition and multiplication) on

ciphertexts and ZKP helps a prover to convince a verifier on the

correctness of a statement without disclosing the secret involved

in the statement. These two types of cryptographic schemes can be

utilized to build many interesting security applications, such as se-

cure AI inferencing [7, 15] and privacy-preserving cryptocurrency

exchange [32]. One major obstacle that hinders the wide adoption

of these schemes is their high computation cost. PQC schemes

are designed to resist attacks with quantum computers. They are

not as expensive as FHE and ZKP, but all fall into the category of

asymmetric cryptography (digital signature and public key encryp-

tion/key encapsulation mechanism) and are computation-intensive

by nature.

Although these schemes are different from almost all perspec-

tives like security features and constructions, they share one simi-

larity in terms of computation, i.e., most of their operations involve

polynomial calculations defined over specific algebra structures,

which usually comprise a large portion of the computation cost

of these schemes and the performance bottleneck. To fully utilize

these cryptographic tools, it is important to improve the perfor-

mance of the underlying basic polynomial operations, especially

multiplication.
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Many works have been done on improving the polynomial mul-

tiplication from the algorithmic perspective, such as Karatsuba

multiplication [17] and number theoretic transform (NTT) based

multiplication [21]. Implementation, especially hardware-based

polynomial multiplication implementation, is another important

research direction. The two major hardware platforms that are

studied are GPU and Field Programmable Gate Array (FPGA). Both

GPU and FPGA support parallel computing, which is utilized to

accelerate polynomial multiplication [22, 31].

One emerging computation hardware that is largely ignored is

the tensor processing unit (TPU), or neural processing unit (NPU).

These two names usually refer to the same type of hardware, and we

use the term TPU in the rest of the paper. The concept of TPU was

originally proposed by Google to meet the explosive computation

power demand of artificial intelligence (AI) applications and has

been proven to be a big success [25]. Many TPU designs have been

proposed since then, especially for the edge computing scenario.

Compared with GPU and FPGA, TPU has its unique advantages. On

the one hand, it is closer to Application-Specific Integrated Circuits

(ASIC) and can significantly accelerate specific operations with low

energy costs. On the other hand, TPU still provides a certain level

of flexibility and allows end users to program it.

While TPUs are widely used in AI [10], their application in cryp-

tography is largely unexplored. To the best of our knowledge, this

is the first work investigating TPUs for polynomial multiplication,

a core operation in FHE, ZKP, and PQC. To leverage TPUs’ MACs,

we convert polynomial multiplications to matrix multiplications.

However, TPU’s AI-centric design struggles with these matrices.

We address this using a carefully chosen RNS [6] and matrix parti-

tioning. Our prototype on Google’s cloud TPU demonstrates TPU’s

promise for cryptographic acceleration, with significant room for

improvement given the limitations of current TPU software tools.

From an algorithmic perspective, the polynomial multiplication

method considered in this work uses coefficient representation and

has higher computation complexity (about O(𝑛2)) than the point-

value representation with FFT tricks (NTT, O(𝑛 log𝑛)). But it is
still worth investigating polynomial multiplication with coefficient

representation for at least two reasons: (i)Coefficient representation

is a more convenient way to store polynomials and the multiplica-

tion is efficient when the degree is not very high; and (ii)NTT is

only applicable for polynomials with certain features (e.g., the exis-

tence of 𝑛th root of unity in the finite field where the polynomial

coefficients are defined and the degree is 𝑛).

In summary, the contributions of the paper include: (i)We design

key technologies to enable the utilization of TPU for polynomial

multiplications in a variety of cryptographic schemes; (ii)We de-

velop a prototype using existing TPU hardware and software to

demonstrate the feasibility of the design; and (iii) Last but not
least, we discuss the potential ways to improve the TPU hardware

and corresponding algorithms to further accelerate polynomial

multiplication.

2 Detailed Design of TPU-based Polynomial
Multiplication

Polynomials are used intensively in various public key crypto-

graphic schemes mainly for two reasons: (i) Polynomial is related

to popular hard problems used in cryptography. Many PQC and

FHE schemes are built atop ring LWE problems [30], and using a

polynomial ring is a major way to instantiate a ring LWE instance.

(ii) Polynomial is an effective way for computation representation.

An effective computation representation is critical for ZKP, and

many ZKP schemes use polynomials in one way or another to

represent the computation (or the statement) the prover needs to

prove. Polynomial operations, especially polynomial multiplica-

tions, usually comprise a large portion of the computation cost of

these cryptographic schemes and are the performance bottleneck.

Like a typical computation device, the TPU has four types of

components: I/O, control, storage, and computation. The major part

is a Matrix Multiply Unit, which is implemented as a systolic array.

This unit can perform 256 × 256 multiply-and-accumulate (MAC)

operations on signed or unsigned integers/floating point numbers,

which are essential for matrix multiplications. In addition to the

Matrix Multiplicity Unit, there is another useful computation unit,

the vector unit, which is used for general computations such as the

activation function.

The dedicated and optimized circuit is usually much faster and

more power-efficient than CPU and GPU on MAC operations. Ac-

cording to [13], a Haswell server equipped with the original version

of Google TPU can achieve 92 TOPS/s with a TDP of 861W, while

the server itself can only achieve 2.6 TOPS/s with a TDP of 504W.

After the first generation, Google has released three revised versions

of TPU and the latest version is V4 [12].

2.1 Polynomials Used in Cryptography and
Their Operations

Polynomials used in cryptography are usually defined over a ring

structure Z𝑞 [𝑥]/(𝑝 (𝑥)). From the computation perspective, there

are mainly three factors to consider: (i) The degree of 𝑝 (𝑥). The
degree of operand polynomials and operation result polynomials

are less than the degree of 𝑝 (𝑥). This is an important factor that

dominates the complexity of the computation (addition and multi-

plication) in most cases. (ii)The value of𝑞. The value of𝑞 determines

the range of polynomial coefficients. The size (i.e., the number of

bits) and form (e.g., Hamming weight of the binary representation)

of 𝑞 determine the complexity of each operation on polynomial

coefficients (e.g., addition and multiplication). (iii)The form of 𝑝 (𝑥).
All computation results need to be reduced modulo 𝑝 (𝑥), and the

complexity of the modulo operation is highly related to the form of

𝑝 (𝑥). Generally, the modulo operation is more complex when 𝑝 (𝑥)
has more non-zero coefficients.

In this work, wemainly consider the ringZ𝑞 [𝑥]/(𝑥𝑛+1), which is
widely used in the construction of different cryptographic schemes.

Here 𝑛 is a power of 2, making 𝑥𝑛 + 1 a cyclotomic polynomial, and

𝑞 is an integer and does not need to be a prime number, i.e. Z𝑞 does

not need to be a prime field. Another popular ring structure used

in cryptography is Z𝑞 [𝑥]/(𝑥𝑛 − 1), but the technologies described
in the rest of the paper can be easily adapted to handle the case of

Z𝑞 [𝑥]/(𝑥𝑛 − 1).
A polynomial 𝑓 (𝑥) ∈ Z𝑞 [𝑥]/(𝑥𝑛 + 1) is in the form

𝑓 (𝑥) = 𝑎0𝑥
0 + 𝑎1𝑥1 + · · · + 𝑎𝑛−1𝑥𝑛−1, (1)
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where 𝑎𝑖 ∈ Z𝑞, 𝑖 = 0, . . . , 𝑛 − 1. The two operations defined on the

ring are polynomial addition and polynomial multiplication. Polyno-
mial addition is straightforward, i.e., two corresponding coefficients

of two polynomials are added together and then reduced modulo 𝑞.

Multiplication is more complex and consumes most of the computa-

tion time. We review two common ways to do multiplication, which

are closely related to the representation of polynomials: (i) Multi-
plication with coefficient representation. Coefficient representation

is a natural way to store a polynomial, as demonstrated in Eq. (1).

When two polynomials defined in Z𝑞 [𝑥]/(𝑥𝑛 + 1) are stored using

coefficient representation, a straightforward approach is first mul-

tiplying them as if they are defined in Z[𝑥], and then reducing the

polynomial by taking modulo 𝑥𝑛 + 1 and 𝑞 to obtain the final result.

One disadvantage of this approach is that the intermediate result

has a degree of at most 2𝑛 − 2 with coefficients as large as (𝑞 − 1)2.
We may integrate these modulo operations into the multiplication

to save some time. The complexity of a straightforward multiplica-

tion is 𝑂 (𝑛2), and using some techniques like Karatsuba algorithm

can bring down the complexity to the level of 𝑂 (𝑛log2 3) [17]. (ii)
Multiplication with value representation. Another common way to

store a polynomial is using value representation. For the polyno-

mial 𝑓 (𝑥) given in Eq. (1) represented with coefficients, one can

evaluate it at 𝑛 different values for 𝑥 , and store all these 𝑛 pairs

[𝑥1, 𝑦1 = 𝑓 (𝑥1)], [𝑥2, 𝑦2 = 𝑓 (𝑥2)], . . . , [𝑥𝑛, 𝑦𝑛 = 𝑓 (𝑥𝑛)]. If we al-

ways use 𝑥𝑖 = 𝑖 ∈ Z, 𝑖 = 1, 2, . . . , 𝑛 for evaluating a polynomial, 𝑥𝑖
can be ignored and only 𝑦𝑖s need to be stored (we assume 𝑛 < 𝑞,

which usually holds). These pairs (or 𝑦𝑖s) fully determine the poly-

nomial and we can convert them back to coefficient representation

using Lagrange interpolation. The multiplication of polynomials

stored using value representation is easy, i.e., we only need to

perform an element-wise multiplication. As most cryptography

schemes use polynomials with coefficient representation, one needs

to convert them to value representations first. A straightforward

way of conversion is evaluating a polynomial at each given value,

and the complexity of each evaluation is𝑂 (𝑛). Since the polynomial

is evaluated at 𝑛 values, the overall complexity is 𝑂 (𝑛2), which is

more expensive than the multiplication operation in value represen-

tation. Because the multiplication result may need to be involved in

other cryptographic operations, we usually need to convert it back

to coefficient representation. This inverse operation can be done

using straightforward Lagrange interpolation, and its complexity

is also𝑂 (𝑛2). When the two parameters 𝑞 and 𝑛 of Z𝑞 [𝑥]/(𝑥𝑛 + 1)
meet certain requirements, the conversion and reverse conversion

can leverage number theoretic transform (NTT), and the complexity

is reduced to the level of 𝑂 (𝑛 log𝑛).
Because of the lower computation complexity, multiplication

using value representation receives a lot of attention. However, this

approach has several limitations: (i) Size of the problem. The lower
computation complexity does not guarantee faster execution in

practice. NTT is faster only for relatively large polynomial degrees.

When the cryptography schemes use polynomials with low degrees,

the difference between these two multiplication methods is small,

and value representation can be even slower. (ii)Restrictions on pa-
rameters of Z𝑞 [𝑥]/(𝑥𝑛 + 1). The low computation complexity of

multiplication using value representation relies on the applicability

of NTT and requires the polynomials to be NTT-friendly (e.g., 𝑛 is a

power of 2 and 𝑞 ≡ 1 mod 𝑛). While there are some works on los-

ing these requirements [5], it is hard to get rid of them completely.

These requirements restrict the parameter selection for the cryp-

tography scheme, which is not desirable. (iii)Compatibility with
the hardware processor. Value representation-based multiplication

can be implemented as software but it does not guarantee that the

software can fully utilize the underlying hardware capability.

Considering all these factors, it is worth the effort to con-

sider polynomial multiplication using coefficient representation. In

this work, we focus on the polynomial multiplications defined in

Z𝑞 [𝑥]/(𝑥𝑛 + 1) using coefficient representation.

2.2 Converting Polynomial Multiplication to
Matrix Operations

TPU is a special hardware that is designed to accelerate the infer-

ence operation in a deep neural network, especially the matrix op-

eration. Therefore, we need to convert polynomial multiplications

described in 2.1 to matrix multiplications to utilize the capability

of the TPU hardware.

It is relatively easy to incorporate the reduction of modulo

𝑥𝑛 + 1 into the multiplication process itself by modifying one of

the operand polynomials. Example 1 gives a toy example of incor-

porating the modulo operation into polynomial 𝑏 (𝑥).

Example 1. Considering two degree-2 polynomials defined over

𝑅𝑞 = Z𝑞 [𝑥]/(𝑥3 + 1), 𝑎(𝑥) = 𝑎0𝑥
0 + 𝑎1𝑥1 + 𝑎2𝑥2 and 𝑏 (𝑥) = 𝑏0𝑥

0 +
𝑏1𝑥

1+𝑏2𝑥2. The multiplication process can be converted to a vector-

matrix multiplication operation as follows:

(𝑎0, 𝑎1, 𝑎2) ×

𝑏0 𝑏1 𝑏2

−𝑏2 𝑏0 𝑏1

−𝑏1 −𝑏2 𝑏0

 =

𝑎0𝑏0 − 𝑎1𝑏2 − 𝑎2𝑏1
𝑎0𝑏1 + 𝑎1𝑏0 − 𝑎2𝑏2
𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0

 . (2)

The vector on the right side of Eq. (2) presents the multiplication

result, i.e., (𝑎0𝑏0−𝑎1𝑏2−𝑎2𝑏1)𝑥0 + (𝑎0𝑏1 +𝑎1𝑏0−𝑎2𝑏2)𝑥1 + (𝑎0𝑏2 +
𝑎1𝑏1+𝑎2𝑏0)𝑥2. Note that all coefficients here need to take modulo 𝑞.

The matrix on the left side of Eq. (2) is determined by the modular

polynomial 𝑥𝑛 + 1 and the polynomial 𝑏 (𝑥). □

When the modulo polynomial is set to 𝑥𝑛 + 1, the modulo op-

eration is simpler than a general modulus polynomial. Without

loss of generality, we assume the original multiplication result is∑
2𝑛−2
𝑖=0 𝑐𝑖𝑥

𝑖
. For a term 𝑐𝑑𝑥

𝑑
in the multiplication result with a de-

gree 𝑑 ≥ 𝑛, we subtract the coefficient 𝑐𝑑 from the (𝑑 − 𝑛)th term,

i.e., (𝑐𝑑−𝑛 − 𝑐𝑑 )𝑥𝑑−𝑛 , to obtain the reduced result. Following this

idea, we can convert the multiplication into matrix multiplication

format with moduli polynomial 𝑥𝑛 + 1 as follows:

(𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ×


𝑏0 𝑏1 · · · 𝑏𝑛−1
−𝑏𝑛−1 𝑏0 · · · 𝑏𝑛−2
· · · · · · · · · · · ·
−𝑏1 −𝑏2 · · · 𝑏0


. (3)

For the matrix in Eq. (3), each row (except the first one) is a right

shift of all elements below the main diagonal multiplied by −1.
The computation given in Eq. (3) is actually a vector-matrix

multiplication, and it can be easily converted to matrix-matrix

multiplication when one fixed polynomial (the matrix) is multiplied

39



HASP ’24, November 02, 2024, Austin, TX, USA Rabimba Karanjai

Table 1: Common polynomial parameters for cryptographic
schemes.

Scheme Polynomial
degree

Polynomial coefficients
size

FHE (FV, BFV, CKKS) 2
10

to 2
14

32 to 54 bits

PQC 2
8
to 2

10 ≤ 60 bits

ZKP (zkSNARK, zkSTARK) 2
20

to 2
21

384 to 768 bits

with many different polynomials, where each of them is represented

as a vector and all the vectors (a row) form a matrix.

In other words, multiple polynomial multiplications can be con-

verted to a single matrix multiplication, as long as one of the

operand polynomials is the same.

2.3 Challenges of Using TPU for Polynomial
Multiplication

The way of converting polynomial multiplication to matrix oper-

ation described above is not enough for utilizing TPU for crypto-

graphic operations. The first challenge is the degree of the poly-

nomials. For polynomials with degree 𝑛, the corresponding matrix

dimension is 𝑛 × 𝑛. The degree of the polynomials involved in a

typical cryptographic scheme can be large, and the corresponding

matrix cannot fit the TPU hardware for computation. The second

challenge is the size of the polynomial coefficients. Most TPUs are

designed for machine learning tasks, and a significant amount of

work has been done to reduce the size of values involved in a ma-

chine learning model. For instance, the Google TPU supports bf16
natively, which is a 16-bit floating point number system and has

lower precision compared with the standard 32-bit floating point

number, but provides similar model performance [28]. However,

polynomials used in cryptography usually have relatively large

coefficients, from tens of bits to a few hundred bits. Furthermore,

these coefficients are generally defined on a finite and discrete al-

gebra structure, which is not natively consistent with the data type

supported by the TPU. Table 1 summarizes some polynomial pa-

rameters used by different cryptographic schemes. We describe the

way to overcome these two challenges in the following sections.

2.4 Handling Large Coefficients
Classical digital computers store and process values presented using

a limited number of bits. For large values, there are two strategies to

process them: (i)Using an approximated value to replace the original
one. With this approach, limited storage is used to store a value

that is close to the real value. Floating point number schemes like

IEEE 754 [14] and bfloat16 [28] fall into this category of solution.
This strategy is effective for a wide range of applications where

the problems do not require 100% computation accuracy. (ii)Using
multiple basic units to represent the original one. The other one

is breaking a large value into several parts so each part can be

stored and processed by the hardware. Accordingly, an operation

on the original large values is also decomposed into a sequence

of operations on the small units, which can be handled by the

hardware directly. One common example is big integer operations,

where an integer with more than 32 or 64 bits is stored in multiple

basic data structures, and dedicated algorithms are implemented

to support the common arithmetic operations [2]. This strategy is

widely used in cryptographic libraries to support schemes such as

RSA.

Since cryptographic operations usually deal with accurate and

discrete values, the first approach is not a good option. Applying

the second strategy directly to the method described 2.2 is not

ideal either, as each coefficient multiplication/addition needs to be

decomposed into several operations, which cannot be carried out

by the TPU directly. This will lead to more complex design and

lower performance.

To overcome this challenge, we propose to utilize the residue

number system (RNS) [27] for coefficients representation and com-

putation. A residue number system is defined by a set of 𝑘 co-prime

integers called the moduli {𝑚1,𝑚2, . . . ,𝑚𝑘 }. An integer 𝑥 is repre-

sented in the RNS by its remainder [𝑥1, 𝑥2, . . . , 𝑥𝑘 ], where 𝑥𝑖 ≡ 𝑥

mod 𝑚𝑖 for every 𝑖 .

For addition/subtraction and multiplication operations of num-

bers represented in an RNS, it suffices to perform the same operation

on each pair of residues. For two integers represented in RNS, i.e.,

𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑘 ] and 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑘 ], their product 𝑧 is in

the form 𝑧 = [𝑧1, 𝑧2, . . . , 𝑧𝑘 ], where 𝑧𝑖 = 𝑥𝑖 × 𝑦𝑖 mod 𝑚𝑖 for every

𝑖 .

To recover 𝑧 from [𝑧1, 𝑧2, . . . , 𝑧𝑘 ], we can use the Chinese Re-

minder Theorem since all moduli are selected to be co-prime. Note

that we can keep the RNS representation until there is a need to

convert the result back to Z𝑞 [𝑥]/(𝑥𝑛 + 1).
There are two advantages of using RNS to handle large coef-

ficients in our case: (i) The original computation is divided into

multiple instances with small values and these new instances are

independent, i.e., they can be executed in parallel. (ii) Each instance

can be executed using the same framework described in 2.1, and

does not require any modification.

2.5 Handling High Polynomial Degrees
The TPU matrix multiplication hardware has a limited size and can

only handle matrices efficiently within such limitations. While it

may handle much larger matrices with the help of corresponding

tool chain software, the overall performance can decrease signif-

icantly. For a polynomial with a high degree (e.g., 2
20
), it is hard

to store the corresponding matrix completely in TPU memory. To

overcome this challenge, we adopt the divide-and-conquer method,

i.e., dividing the original matrix/vector into several smaller ones

that can be processed by the TPU hardware directly, computing sev-

eral intermediate results, and reconstructing the final result from

these intermediate values.

Fortunately, we can naturally divide polynomial multiplication

with a large degree into several smaller instances. Without loss

of generality, we consider the case where we need to shrink the

degree of polynomials by half, i.e., instead of processing degree 𝑛

polynomials multiplication, we want to break it to operations on

polynomials of degree 𝑛/2. The vector of dimension 𝑛 (correspond-

ing to one degree 𝑛 polynomial operand) is directly divided into

two vectors of dimension 𝑛/2. The matrix of dimension 𝑛 × 𝑛 (cor-

responding to the other degree 𝑛 polynomial operand) is divided

into four sub-matrices, and each of them has dimension 𝑛/2 × 𝑛/2.
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Figure 1: Demonstration of handling of polynomials with
high degree. On the left side of the figure, we evenly break
the vector into two sub-vectors and the matrix into four
sub-matrices. On the right side, the original vector-matrix
multiplication is decomposed into four vector-matrix multi-
plications with smaller dimensions.

Figure 1 depicts the way of breaking high-degree polynomials mul-

tiplication to low-degree polynomials calculations. To calculate and

merge the intermediate results, we:

(1) Calculate the product of sub-vectors and sub-matrices:

𝑟1𝐴 ← 𝑉1 ×𝑀𝐴 𝑟1𝐵 ← 𝑉1 ×𝑀𝐵

𝑟2𝐶 ← 𝑉2 ×𝑀𝐶 𝑟2𝐷 ← 𝑉2 ×𝑀𝐷

All results are vectors of dimension 𝑛/2.
(2) Calculate the first half of the final result 𝑟1 = 𝑟1𝐴+𝑟2𝐶 , which

is a vector of dimension 𝑛/2.
(3) Calculate the second half of the final result 𝑟2 = 𝑟1𝐵 + 𝑟2𝐷 ,

which is a vector of dimension 𝑛/2.
(4) Concatenate 𝑟1 and 𝑟2 to form the final result, which is a

vector of dimension 𝑛.

The dividing process can be repeated recursively until the vec-

tor/matrix can fit the TPU hardware. While this approach can re-

duce the dimension of vector/matrix, it also increases the number

of operations. In the above case, one single vector-matrix multi-

plication becomes four smaller vector-matrix multiplications with

some extra operations.

While this work primarily focuses on polynomial multiplication

in the ring Z𝑞 [𝑥]/(𝑥𝑛 + 1), the core ideas and techniques presented
can be extended to other ring structures and polynomial forms

commonly encountered in cryptographic applications. The con-

version of polynomial multiplication to matrix multiplication, as

described in Section 2.3, relies on the structure of the polynomial

modulus. For different moduli, such as 𝑥𝑛 − 1 or trinomials, the

corresponding matrix structure will change, potentially requiring

adjustments to the mapping process. However, the fundamental

principle of leveraging the TPU’s matrix multiplication capabilities

remains applicable. Furthermore, the use of the Residue Number

System (RNS) for handling large coefficients is independent of the

specific ring or polynomial form. Future work will explore these

generalizations in detail, including adapting the matrix conversion

algorithm for different moduli and analyzing the performance im-

pact on various cryptographic protocols with diverse polynomial

structures.

When the chosen number of moduli (m) results in matrices that

exceed the TPU’s size limitations, we adopt a hierarchical divide-

and-conquer strategy. The large matrices are further subdivided

into smaller blocks that fit within the TPU’s memory constraints.

This involves performing multiple smaller matrix multiplications

and then combining the intermediate results to obtain the final

product. This approach increases the number of matrix multipli-

cations but allows us to handle larger RNS bases and potentially

improve performance by increasing parallelism. The overhead of

this hierarchical division is minimized by careful scheduling and

data management within the TPU environment.

2.6 Key Parameters Selection
For polynomial multiplication in cryptography, two important pa-

rameters are associated with large coefficients and high-degree

handling. One parameter is the size of the RNS base (and corre-

sponding moduli), and the other parameter is the matrix dimension,

which determines the size of the basic matrix calculation.

RNS base selection. Given the ring Z𝑞 [𝑥]/(𝑥𝑛 + 1), there are

several requirements for RNS base selection. (i) Eachmodulus of the

RND base should fit the TPU hardware so related calculations can

be done easily. (ii) The product of all moduli of the RNS base should

be larger than 𝑞2 if we only need to do one multiplication operation

with the given RNS system and convert it back to its original form.

As we need to compute matrix multiplication, several intermediate

products are added together in the computation process, so we

require the product of the RNS base to be larger than ℓ𝑞2, where ℓ

is the number of addition operations. At the same time, we prefer

an RNS base with fewer members to reduce computation costs, so

a larger modulus should be chosen first.

The selection of a suitable RNS base involves carefully consider-

ing several factors. First, the word length of the moduli is chosen

to be as close as possible to the TPU’s maximum integer word

length, which is 8 bits for the Google TPU v2 and v3 used in our

experiments. This maximizes the utilization of the TPU’s arithmetic

capabilities and minimizes the overhead of splitting larger coef-

ficients. Second, the number of moduli (𝑚) is chosen to balance

the benefits of parallelism with the overhead of conversion and

reconstruction. We aim for an𝑚 that provides sufficient parallelism

without causing excessive memory consumption or communica-

tion overhead. Third, the moduli are selected to be co-prime to

ensure correct reconstruction using the Chinese Remainder Theo-

rem (CRT). Their productmust be larger than themaximumpossible

value of the coefficients after multiplication, which depends on the

value of q and the degree of the polynomials. In our experiments,

for a given m, we choose the largest possible co-prime moduli that

fit within the 8-bit word length. Finally, we prioritize moduli that

allow for efficient modular arithmetic on the TPU. For instance,

moduli close to powers of two can simplify modulo operations and

improve performance.

The value of 𝑞 in the polynomial ring Z𝑞 [𝑥]/(𝑥𝑛 + 1) and the

TPU’s maximum word length are crucial factors in determining the

efficiency of the RNS representation and the overall performance.

In our experiments, we consider values of 𝑞 that are larger than

the 8-bit word length of the TPU. This requires representing coef-

ficients using multiple moduli in the RNS, effectively performing

multi-precision arithmetic within each modular computation. This

introduces a potential bottleneck, as the TPU is optimized for single-

word integer operations. However, by carefully selecting the RNS

base and utilizing efficient modular arithmetic techniques, we aim

to minimize the overhead of multi-precision computations. Future

work will explore optimizations such as incorporating Montgomery
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or Barrett reduction algorithms to further improve the performance

of these operations.

Matrix dimension selection. The matrix dimension selection also

relies on the structure of Z𝑞 [𝑥]/(𝑥𝑛 + 1) and the TPU hardware

parameters. We prefer to use a larger dimension when possible as it

can simplify the implementation and reduce the number of matrix

multiplications. However, a large dimension may cause two issues:

(i) The TPU does not have enough memory to store the matrices,

which can crash the application. We have observed crashes for

multiple Google Cloud TPUswith largematrices. (ii) The dimension

does not fit the TPU directly, and the system needs to take extra

steps to break it down and the efficiency is not guaranteed.

While a simple approach sets the dimension to the matrix mul-

tiplier’s size, cloud TPUs often have multiple multipliers, making

fine-tuning challenging. Experimentation is key to finding the opti-

mal dimension, requiring more effort than RNS base selection.

2.7 Putting All Pieces Together
Having described the conversion of polynomial multiplication to

matrix multiplication and addressed the challenges of large coeffi-

cients and degrees, we now outline the process of utilizing TPUs

for polynomial multiplication in cryptographic schemes. The algo-

rithm comprises three main steps: (i) determining the parameters

to decompose the original polynomials for TPU compatibility; (ii)

computing intermediate multiplication results on the TPU; and

(iii) reconstructing the final polynomial multiplication results from

these intermediate values. This process is summarized in Algo-

rithm 1.

Algorithm 1 Polynomial multiplication using TPU.

Input: Two polynomials 𝑎(𝑥), 𝑏 (𝑥) ∈ Z𝑞 [𝑥]/(𝑥𝑛 + 1), TPU param-

eters para
Output: 𝑐 (𝑥) = 𝑎(𝑥)𝑏 (𝑥) ∈ Z𝑞 [𝑥]/(𝑥𝑛 + 1)

⊲ Creating the configuration information based on the problem

and the hardware

1: config ← GenConfig((Z𝑞 [𝑥]/(𝑥𝑛 + 1), para))
⊲ Extract the list of moduli from config, which is used to build

the RNS base

2: 𝑚𝑜𝑑𝐿𝑖𝑠𝑡 ← ExtractModuli(config)
⊲ Extract matrix dimension information from config

3: 𝑑𝑖𝑚𝐿𝑖𝑠𝑡 ← ExtractDimensions(config)
⊲ Use selected parameters to convert polynomials to matrix

form for multiplication on TPU

4: 𝐴← ConvertPoly(𝑎(𝑥),𝑚𝑜𝑑𝐿𝑖𝑠𝑡, 𝑑𝑖𝑚𝐿𝑖𝑠𝑡 )

5: 𝐵 ← ConvertPoly(𝑏 (𝑥),𝑚𝑜𝑑𝐿𝑖𝑠𝑡, 𝑑𝑖𝑚𝐿𝑖𝑠𝑡 )

⊲ Calculate matrix multiplication using TPU

6: 𝐶 ← TPUMul(𝐴, 𝐵)

⊲ If needed, convert back the multiplication result to coefficient

representation

7: 𝑐 (𝑥) ← ConvertMatrix(𝐶,𝑚𝑜𝑑𝐿𝑖𝑠𝑡, 𝑑𝑖𝑚𝐿𝑖𝑠𝑡 )

8: return 𝑐 (𝑥)

3 Experiments and Evaluation
Due to the rising popularity of AI applications [16], there is a grow-

ing interest in the design and development of TPU hardware [26].

Table 2: Benchmarking environments on Google Cloud.

Env Description (Physical Cores)

Env 1 (Figure 2a) Ubuntu 22.04, TPU v2-8: 8 cores, 64 GB memory.

Env 2 (Figure 2b) Ubuntu 22.04, TPU v3-8: 8 cores, 128 GB memory.

However, the number of TPU products accessible to general de-

velopers remains limited. One of the most widely used options is

Google’s TPU, which is what we primarily evaluate our design

using.

Overview of Google Cloud-based TPU. Google offers two pri-

mary ways to access TPUs: via a TPU-equipped virtual machine

(VM) or through Colab, an online platform with TPU connectiv-

ity. Both support frameworks like TensorFlow, PyTorch, and JAX,

which are Python-based and designed for AI applications. We opted

for a TPU VM with JAX, prioritizing its flexibility in configuring

hardware and support for non-AI computations and performance

optimization. Colab, while convenient, offers limited hardware con-

figuration and currently lacks support for the JAX version used in

our experiments.

Prototype and evaluation. The most computation-intensive part

of polynomial multiplication in Z𝑞 [𝑥]/(𝑥𝑛 + 1) is the matrix multi-

plication operation. As we discussed in Section 2, the size of coeffi-

cients and the degree of the polynomial will affect the dimensions

of the matrix we have to deal with. We evaluate the performance

using three polynomial degrees, i.e., 𝑛 = 2
8, 210, 214. For the RNS

base size, we also consider three values, i.e.,𝑚 = 8, 16, 128. Table 2

describes the two benchmarking environments.

Figure 2a and Figure 2b summarize the benchmarking results

using two execution environments Env 1 and Env 2 respectively.

For each figure, we fix the value of𝑚 and the x-axis is different

values of 𝑛. The y-axis is the execution time and the unit is the

second. We observe several things from the experiment results: (i)
For small matrix dimensions, the computation time is a constant

value. After the threshold, the computation time increases linearly

with the value of 𝑛. Note that the overall computation complexity is

𝑂 (𝑚 ×𝑛 ×𝑛) (if the computation is done using the straightforward

algorithm), which is not consistent with the experiment results.

One potential reason is that the TPU architecture carries out the

computation in a highly parallel manner and reduces the latency.

(ii)The slopes of curves for different𝑚 values are similar, which

means that𝑚 does not affect the cost much. The potential reason

is that the TPU hardware supports 128 × 128 matrix multiplication,

and the largest𝑚 we choose is within this range. (iii) TPU v3 is

faster than TPU v2, but the difference is not significant, especially

for cases with small parameters. This may be because both versions

have the same number of matrix multiplication hardware (Table 2).

Limitations of the current benchmarking.
While our experiments demonstrate the potential of TPUs as

cryptography accelerators, our benchmarking is limited by the

inability to fully control execution granularity, potentially under-

utilizing TPU capabilities. For example, despite the larger memory

capacity of TPU v3, the current programming environment lacks

direct control over its usage. Ideally, pipelining multiple matrix

multiplications could reduce latency, but Google’s TPU framework

currently lacks support for such fine-grained optimization.
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(a) TPU v2 with𝑚 = 8, 16, 128

(b) TPU v3 with𝑚 = 8, 16, 128

Figure 2: Summary of experiment results using Google TPU with different configurations.

4 Further Improving Polynomial Multiplication
with TPU

Having addressed the feasibility of accelerating polynomial mul-

tiplication on TPUs, we now turn our attention to optimization

techniques that further enhance system performance.

Karatsuba multiplication. The idea of Karatsuba multiplica-

tion [17] is trading one expensive multiplication with multiple

cheap addition/subtraction operations. For two polynomials 𝑓 (𝑥)
and 𝑔(𝑥) with degree 𝑛, we can rewrite them as 𝑓 (𝑥) = 𝑓1 (𝑥)𝑥𝑚 +
𝑓0 (𝑥) and 𝑔(𝑥) = 𝑔1 (𝑥)𝑥𝑚 + 𝑔0 (𝑥), where 𝑓1, 𝑔1 are polynomials

of degree 𝑛 −𝑚, and 𝑓0, 𝑔0 are polynomials of degree𝑚 − 1. The
product is then

𝑓 (𝑥)𝑔(𝑥) = (𝑓1 (𝑥)𝑥𝑚 + 𝑓0 (𝑥)) (𝑔1 (𝑥)𝑥𝑚 + 𝑔0 (𝑥))
= ℎ2 (𝑥)𝑥2𝑚 + ℎ1 (𝑥)𝑥𝑚 + ℎ0 (𝑥),

whereℎ2 (𝑥) = 𝑓1 (𝑥)𝑔1 (𝑥), ℎ1 (𝑥) = (𝑓1 (𝑥) + 𝑓0 (𝑥)) (𝑔1 (𝑥) +𝑔0 (𝑥))−
ℎ2 (𝑥) − ℎ0 (𝑥), ℎ0 (𝑥) = 𝑓0 (𝑥)𝑔0 (𝑥).

This technique can also be applied to accelerate TPU-based poly-

nomial multiplication. Specifically, the original polynomials are

decomposed into multiple lower-degree polynomials, and the TPU

is then employed to perform the multiplications. This method can

be used in place of the high-degree polynomial handling approach

described in 2.5. However, a key challenge lies in the TPU’s ineffi-

ciency for polynomial addition and subtraction. The use of Karat-

suba multiplication may require additional hardware, introducing

communication overhead and complicating optimization.

Fine-tuning the design. In this work, we primarily address the

feasibility of using TPUs for polynomial multiplication. In practice,

cryptographic schemes often require multiple polynomial multipli-

cations in a specific sequence. Several strategies can be considered

to fine-tune the computation: (i) Fixing one operand polynomial as
much as possible. One operand polynomial needs to be converted to

matrix form to incorporate the modulo operation into the multipli-

cation. Creating thematrix and loading it into TPUmemory is costly

compared to matrix multiplication itself. Therefore, reusing a pre-

generated and loaded matrix minimizes the preparation overhead.

(ii) Optimizing computation and I/O. Polynomial multiplication in

cryptography is both computation- and I/O-intensive, and the envi-

ronment is complex. As TPUs function as passive accelerators, data

must be transferred from the host machine to the TPU card. Since

a machine typically has multiple TPUs, selecting the appropriate

TPU at a given time is crucial. Moreover, intermediate results gen-

erated by the TPU might need to be sent back to the host for further

processing, so ensuring the TPU remains occupied with other tasks

during this transfer is essential.

5 Related Works
Accelerating multiplication of polynomials defined in specific rings

has been studied from different perspectives.

Algorithmic approaches.Multiplication acceleration methods are

studied for both coefficient and value representations, e.g., Karat-

suba algorithm [17] and various NTT approaches [5]. Some works

also consider more efficient modulo operation, which is heavily in-

volved in polynomial operations [29]. These works are orthogonal

to our work and have the potential to be utilized to further improve

the polynomial multiplication performance with the TPU.

Hardware-oriented optimization approach. This line of re-

search investigates the utilization of existing hardware features

to accelerate polynomial multiplication on specific rings. Several

types of hardware are studied for this purpose, including CPU [1],

GPU [24], and FPGA [23]. Compared with other types of hardware,

TPU provides a new balance between flexibility, power consump-

tion, and parallelism. Table 3 compares TPUwith other computation

platforms.

Table 3: Comparison of major computation platforms.

Hardware Flexibility Power Consumption Parallelism

CPU Very High High Low

GPU High Very High High

FPGA Moderate Low High

TPU Low Low High

TPU related works. Most existing works on TPU focus on its

architecture [11, 13] and applications in AI [18, 19], with a few

exceptions considering TPU for non-AI use cases. For instance, Hsu

and Tseng developed a tool to use edge TPU for general-purpose
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computation [9], and Lewis et.al discussed the use of TPU for large-

scale linear algebra computation [20]. None of these works consider

the special requirements of cryptographic schemes.

6 Conclusion and Future Work
This work explores the acceleration of polynomial multiplication,

a crucial operation in various cryptographic schemes, using Ten-

sor Processing Units (TPUs). To overcome challenges in managing

large coefficients and high-degree polynomials on TPUs, we em-

ploy the Residue Number System (RNS) and a divide-and-conquer

approach, respectively. Future work will focus on applying TPUs

for NTT-based polynomial multiplication, optimizing hardware

configurations for specific polynomial rings, and designing end-to-

end cryptographic schemes with TPUs, incorporating optimization

strategies.
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