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Abstract—The proliferation of AI technology gives rise to
a variety of security threats, significantly compromising the
confidentiality and integrity of AI applications. Existing software-
based solutions mainly target one specific attack, and require the
implementation into the models, rendering them less practical.
We design UniGuard, a novel unified and non-intrusive detection
methodology to safeguard FPGA-based AI accelerators. The core
idea of UniGuard is to harness power side-channel information
generated during model inference to spot any anomaly. We
employ a Time-to-Digital Converter to capture power fluctuations
and train a supervised machine learning model to identify various
types of threats. Evaluations demonstrate that UniGuard can
achieve 94.0% attack detection accuracy, with high generalization
over unknown or adaptive attacks and robustness against varied
configurations (e.g., sensor frequency and location).

I. INTRODUCTION

As the AI technology becomes increasingly integral to
various aspects of our lives, its security has come under
intense scrutiny. Researchers have discovered various security
threats against AI applications, which could lead to wide-
ranging consequences. For instance, by injecting adversarial
perturbations (adversarial attack [1]) or poisoning training data
(backdoor attack [2]), the model will make wrong decisions.
By querying the remote model with malicious samples, the
adversary can steal model details (model extraction attack [3]).

Extensive studies have been conducted to combat these
threats [2], [4], [5]. Existing defenses are mainly implemented
at the software level, which suffer from several limitations.
First, the majority of these solutions require to be directly
integrated into the targeted AI model, which makes it hard to
protect commercial-off-the-shelf black-box products. Second,
defense at the software level is relatively less reliable, and can
be subverted by many factors, such as privileged adversary,
malware, memory faults, etc. Third, each defense method
mainly targets one specific attack, failing to cover other threats.
Simply combining multiple defenses for different threats could
incur complexity and mechanism conflict issues. These limita-
tions underscore the need of unified, non-intrusive and reliable
approaches to enhance the security of AI ecosystems.

To this end, we introduce UniGuard, a novel hardware-
based methodology to detect various types of AI threats in
a holistic way. It aims to protect hardware AI accelerators,
which have been widely used in many scenarios. These AI ac-
celerators are commonly implemented with FPGAs for higher

flexibility, performance and cost-effectiveness. UniGuard is
based on the observation that an AI model under attack ex-
hibits certain anomalies in its inference behaviors. Prior works
have identified the distinct behaviors caused by adversarial
and backdoor attacks in the activation and feature space, and
designed the corresponding software-based detection tools [6],
[7]. However, they need to collect behaviors from inside the
target model. To achieve non-intrusiveness, we posit that the
attacks also leave discernible behaviors in the side-channel
extraction trace, which could be monitored externally. Inspired
by this, UniGuard implements a Time-to-Digital Converter
(TDC) as a voltage drop sensor to collect the runtime power
traces of the protected model. Then it trains a machine learning
model to analyze the traces and identify whether the model is
being attacked, and what types of attack it is suffering.

To our best knowledge, the only existing work that uti-
lizes side-channel information for AI threat detection is
EMShepherd [8]. However, it has two limitations compared
to UniGuard: (1) EMShepherd mandates manual separation
of the Electromagnetic side-channel trace for different layers
in the attacked model and requires the training of a distinct
classifier for each layer. In contrast, UniGuard enables auto-
matic detection with just one end-to-end model without any
human intervention, bringing significant efficiency improve-
ment. (2) EMShepherd can only detect adversarial attacks,
while UniGuard is capable of identifying a diverse range of
mainstream AI attacks just from one trace.

We implement UniGuard to protect the commercial Nvidia
Deep Learning Accelerator (NVDLA), and perform extensive
evaluations. Experiment results substantiate that UniGuard

exhibits a remarkable detection accuracy while incurring rela-
tively small overhead compared with other white-box defense
methodologies. Notably, UniGuard presents strong generaliza-
tion in detecting unseen attacks and adaptive attacks. It also
has high adaptability to different configurations.

II. BACKGROUND

A. Security Threats to AI Models

The increasing ubiquity of AI applications gives rise to a
myriad of security challenges. Among these, three categories
of attacks have gained prominence, as described below.
Adversarial attacks [1]: This class of attacks aims to ma-
nipulate the prediction results of AI models by injecting



subtle and human-imperceptible perturbations to input data.
Notable algorithms employed in adversarial attacks encompass
Fast Gradient Sign Method (FGSM) [1], Projected Gradient
Descent (PGD) [9], C&W [10] and Deepfool [11].
Backdoor attacks [12]: These attacks involve the insertion
of a backdoor into an AI model, typically by poisoning the
training data. Such backdoor remains dormant under normal
circumstances but can be activated with any input samples
containing a pre-defined trigger. Then the model will make
wrong predictions as desired by the attacker.
Model extraction attacks [3]: These attacks focus on stealing
the proprietary or sensitive information (e.g., network struc-
ture, hyper-parameters, parameters) from an AI model. The
attacker queries the victim model with special samples, and
extracts the information from the responses. The query data
can be synthesized from a small set of in-distribution seed
samples [3], or from an out-of-distribution surrogate dataset.

B. Nvidia Deep Learning Accelerator (NVDLA)

NVDLA is a versatile open-source architecture developed
by Nvidia for efficient deep learning inference. It boasts
the capability to perform various operations in model in-
ference, e.g., convolution, activation, pooling, normalization.
The adaptability of NVDLA is evident in its configurability,
allowing for both large and small implementations. These two
configurations differ in the core dimensions and implementa-
tion of specific engines, e.g., Rubik and DMA.

The architecture of NVDLA is delineated into two fun-
damental components: hardware and software. The hardware
design comprises a series of pipeline stages housing diverse
types of engines that govern the behavior of FPGA boards.
The software design acts as an intermediary between users and
hardware components. Its primary responsibility is to construct
and load the AI model onto the FPGA board for execution.

C. Power Side Channel on FPGA

Malicious actors frequently employ power side-channel
analysis as a non-intrusive reverse engineering method to
compromise the security of cryptographic systems. Besides,
this technique can also serve legitimate purposes, allowing
security experts to assess the effectiveness of hardware se-
curity mechanisms, and ensuring that sensitive data remain
confidential and resistant to power attacks. [13]

Power analysis is also prevalent for FPGA devices. The
underlying principle is that the power consumption of an
FPGA chip varies based on the specific operations being
executed. These fluctuations may inadvertently leak informa-
tion pertaining to internal operations, data, and algorithms.
Specifically, most components on an FPGA chip share a
common Power Distribution Network (PDN). This PDN can
be represented as an RLC circuit, where a resistor (R), an
inductor (L), and a capacitor (C) are connected either in series
or parallel. The intensive switching activities on the chip can
lead to voltage fluctuations within the PDN. The transient
voltage drop experienced by a circuit can be modeled as
Vdrop = IR+L di

dt , where L di
dt reflects the impact of switching

activities on the FPGA [14]. Typically, in CMOS circuits,
the logical delay of combinational logic gates is inversely
proportional to the voltage supplied to each gate, based on
which we can infer the switching activities.
UniGuard utilizes a Time-to-Digital Converter (TDC) to

measure the combinational logic delay. The TDC employs
a clock signal that propagates through a chain of buffers,
serving as the voltage drop sensor. Discrepancies in switching
activities for calculations in different parts of the FPGA lead
to variations in voltage drop values, resulting in different delay
measurements in the TDC. These distinct delays influence the
propagation lengths within the delay line, which affect the
values in the latches. Consequently, the activities of other
circuits on the FPGA can be identified through the TDC
readout, as demonstrated in prior studies [15].

III. UniGuard

As a novel threat detector, UniGuard is designed to satisfy
the following requirements.
• Unified: UniGuard serves as a universal detector capable

of identifying multiple types of threats to AI models, sig-
nificantly reducing the cost of attack prevention.

• Non-intrusive: UniGuard is a hardware-based solution. It
treats the protected model as a black box, without any
modifications or implementations. It only needs to set up
a TDC voltage sensor on the same FPGA board as the AI
accelerator, which passively collects the power trace without
interfering the model execution.

• Platform-agnostic: UniGuard is agnostic to the FPGA
board, accelerator implementation, the model and task. Its
hardware design is an IP block that can be seamlessly
integrated into the target platform, while its software design
operates as an independent driver, separate from the acceler-
ator’s software. This plug-and-play (PnP) feature facilitates
easy portability to a wide range of devices and applications.

• Automatic: UniGuard can automatically detect the attacks
in real-time, without any user intervention. This is different
from EMShepherd [8], which requires extensive manual
preprocessing of Electromagnetic traces.

• Robust: UniGuard demonstrates robustness against varied
platform configurations.

• Generalizable: UniGuard is effective in detecting unseen
attacks and adaptive attacks.

A. Overview

UniGuard comprises two key phases, as shown in Figure 1.
The defender first utilizes a public dataset to simulate different
types of attacks and collects the power side-channel traces
to train the detector. Subsequently, this detection model is
deployed in real-world scenarios to detect potential attacks
with a single power trace obtained from the sensor.

Specifically, in the profiling phase, we initiate a series
of randomized model generation processes using a public
dataset. We set up a TDC on the same FPGA board to
collect the power traces of normal inference executions from
these models. Then we launch various attacks against these



AI 
Accelerator

TDC
Driver

TDC
AXI wrapper

FPGA Board
FPGAARM

data

Detection
Model
Host

da
ta

Adversarial Attack!😈

Power fluctuation

Fig. 1: UniGuard Overview

generated models on the AI accelerator, and use the TDC to
collect the corresponding malicious power traces. The normal
and malicious power traces form a dataset, from which we
train the detection model.

In the detection phase, we use the TDC to capture the power
trace of the protected model’s inference process, and feed
the trace to the detection model. This detection model can
determine whether the model is currently under any attack.

It is worth noting that although previous works have utilized
the TDC to perform power side-channel attacks and extract the
secrets [14], [16], the TDC in our UniGuard is not a leakage
point. This is because the TDC is deployed and controlled by
the privileged defender, so the attacker cannot access it to gain
the power trace and the extract the knowledge of the model.

B. Power Monitor Module

In UniGuard, a Power Monitor Module is required to collect
the inference execution traces in the profiling phase to build the
detection model, and capture the real-time trace of the victim
model in the detection phase. Following [16], we employ a
Time-to-Digital Converter (TDC) as the power sensor.

Figure 2 offers an intricate insight into the TDC architecture.
In this design, the incoming clock signal traverses an ad-
justable coarse delay line and a fine delay line. These elements
collectively contribute to establishing an initial delay, which is
then fed into a tapped delay line. The adaptability of the initial
delay is achieved through dynamic configuration, facilitated
by multiplexers (MUX). The calibration involves modifying
the number of logic elements constituting the coarse and fine
delay lines, enabling customization of the delay duration.

The coarse delay line, comprising replicated Look-Up Table
(LUT) and latch modules, offers a substantial delay. The fine
delay line, equipped with replicated LUT modules, provides a
finer degree of control over the delay. The tapped delay line
employs carry chains and leverages CARRY4 primitives, with
their CO outputs registered by four dedicated D flip-flops. In
each readout, this component monitors the taps reached by the
clock signal, yielding a raw value. Based on the configuration
specified in the TDC IP settings, this raw output can be
concatenated or transformed into a sum or exponential sum.

It is critical to perform the TDC calibration, particularly
the adjustment of its initial delay, which precedes the output
measurements. Our calibration process, embedded within the
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Fig. 2: TDC architecture

TDC driver, operates in two loops. It systematically explores
all conceivable combinations of fine and coarse delay line
lengths, determining the optimal initial delay value. This
ensures that the signal remains within the delay line when
its state is captured by the register.

C. Detection Model

Power Trace Pre-processing. For each collected raw power
trace, we need to preprocess it with two essential opera-
tions: averaging the data and reshaping them from a one-
dimensional array into a two-dimensional format. Specifi-
cally, the side-channel data have high-frequency fluctuations.
Averaging helps reduce the noise or small-scale variations
in the raw data, and then enhances the model’s ability to
capture broader patterns and features. Then, we normalize
the data and organize them into three rows. The conversion
to a matrix structure renders it more suitable for processing
by convolutional and recurrent layers, facilitating subsequent
model operations.
Detection Model Architecture. Figure 3 shows the detailed
detection model architecture of UniGuard. It can effectively
analyze power side-channel traces and classify them into dis-
tinct categories: (0) benign, (1) adversarial attack, (2) backdoor
attack, (3) model extraction attack.

The preprocessed power trace is first fed into a convolution
layer, which is responsible for extracting essential features.
Following this, a fully connected layer is employed to trans-
form the extracted features into a format suitable for further
processing. The model incorporates multiple Recurrent Neural
Networks (RNNs) with Bidirectional Gated Recurrent Unit
(BGRU) cells. These RNNs are well-suited for capturing
temporal dependencies and sequential patterns in the traces.
The bidirectional nature of the GRU cells enables the model
to consider both past and future contexts, enhancing its ability
to discern subtle differences. The Gaussian Error Linear Unit
(GELU) activation function is applied to model the complex
non-linear relationships within the data. To mitigate overfit-
ting and enhance model generalization, a dropout layer is
integrated, which randomly deactivates a fraction of neurons
during training, forcing the model to rely on different pathways
and reducing its susceptibility to side-channel noise. The final
fully connected layer serves as the output layer, where the
model assigns one of the four class labels to the input sample.



Conv

FC

RN
N

s 
(BGRU

)

FC

GELU

Dropout

FCPre-processed
power trace

output classes:
0: benign
1: adversarial attack
2: backdoor attack
3: model extraction attack

Fig. 3: Detection model architecture in UniGuard.

200 400 600 800 1000 1200 1400 1600

2

1

0

1

2

3

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

-C
AM

 Im
po

rta
nc

e

(a) benign input
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(b) adversarial attack
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(c) backdoor attack
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(d) model extraction attack

Fig. 4: CAM for 4 output classes.

Interpreting the Detection Mechanism. We further leverage
Class Activation Map (CAM) to interpret why our detection
model can distinguish different types of traces. It sheds light
on the regions of the power trace that significantly influence
the model’s prediction. Specifically, we employ the Grad-CAM
technique [17] to visualize and interpret the activations of the
detection model. This algorithm involves the selection of a
target layer, attaching hooks to that layer for both forward
and backward passes during inference, gradient calculation,
and weighted summation.

Figure 4 presents the CAMs for four output classes. The
curve in each figure represents the input trace to the model,
where the x-axis corresponds to the time, and y-axis represents
the amplitude of the power trace. Different colors along the
curve signify the varying degrees of importance, with the
brightest color indicating the most influential regions. The
results illustrate that UniGuard concentrates on the central
part, aligning with the trace segment where FPGA calculations
are ongoing. Notably, the significant regions appear discretely
throughout the trace, indicating that UniGuard’s decision is
informed by a combination of information from all layers—a
characteristic akin to software-based detection methods. This
also makes it more difficult to conduct adaptive attacks to
bypass the detection (Section V).

IV. EVALUATION

Testbed. UniGuard is general to protect different types of
AI accelerators. Without loss of generality, we choose the
Xilinx Zynq-7000 SoC ZC706 board (xc7z045ffg900-2) as
our testbed with the small NVDLA implementation. The board
runs Ubuntu 16.04 OS, and Vivado 2019.1 is used for hardware
design. NVDLA operates at a clock frequency of 10MHz, and
the TDC sensor clock is set to 150MHz, while the TDC AXI
clock runs at 10MHz. For model training and execution, we

utilize PyTorch version 1.13 and CUDA version 11.6, running
on a server equipped with a Nvidia GeForce RTX 3090 GPU.
Detection Dataset Construction. We create a dataset with
normal and various types of attack traces for training and
testing the detection model. Due to the memory limits of
our onboard system, we select two computer vision datasets:
MNIST and CIFAR-10. We believe UniGuard is effective
for more complex tasks as well. Specifically, for the MNIST
dataset, we randomly generate 400 models and deploy them on
the NVDLA accelerator. These models have random numbers
(in the range of [2, 18]) and types of network layers, featuring
12 different convolution layers with varying kernel sizes (2,
3, 4, 5) and output sizes (10, 20, 30), 4 pooling layers with
different kernel sizes (2, 3, 4, 5), 5 fully-connected layers
with varying output sizes (100, 200, 300, 400, 500), 1 ReLU
layer, and 1 softmax layer. For the CIFAR-1o dataset, we opt
to collect side-channel traces using the ResNet models [18].
These models are first pre-trained using Caffe, then calibrated
by TensorRT, and finally compiled by the NVDLA compiler.
They are generated on the host computer and executed by
NVDLA runtime on the FPGA.

Targeting these models, we launch three attacks: adversarial,
backdoor and model extraction attacks. We capture the corre-
sponding traces together with normal inference to construct a
dataset. For each type of attack, we choose three state-of-the-
art methods. Table I lists these methods and hyper-parameters,
such as perturbation magnitude (ϵ), norm (L2), step size (αs),
watermark strength (α), constant (c), and objective function
(f ). We partition each class of traces into two parts: 90% for
training and 10% for testing.

Note that we only select the common attacks for training
the detection model. As variations of attacks exhibit common
characteristics, the detection model is expected to capture such
commonalities and identify unseen attacks as well (see Section
V). However, considering the diversity and complexity of AI
threats, we acknowledge the detection model can still miss
certain types of emerging attacks. We believe incorporating
the behaviors of those new attacks into the training dataset
can enhance the model’s generalization and effectiveness.

TABLE I: Attack parameters

Attack Method Hyper-parameters

FGSM ϵ = 0.5
Adversarial PGD ϵ = 0.5, L2, αs = 8/255
Attack C&W L2, c = 0.01− 1010, f = f6

Pattern trigger α = 0.4, poison rate=10%
Backdoor Instance trigger poison rate=1.7%
Attack Watermark α = 0.4, poison rate=10%

Model Surrogate (FashionMNIST) 28*28 grayscale image and 32*32 image
Extraction Surrogate (CIFAR-10) 28*28 grayscale image
Attack Surrogate (CelebA) 32*32 image

Synthetic (JBDA) λ = 0.1, lr = 5 ∗ 10−3, epoch=10

A. Detection Accuracy

We first evaluate the impact of hyperparameters on the
performance of the detection model. We primarily focus on
two key hyperparameters: the number of RNN layers N



(ranging from 1 to 6) and RNN dimension D (128 or 256). We
train the model with each configuration over the constructed
dataset for 100 epochs. The training process takes 39 hours.
The results are presented in Table II. We observe that more
RNN layers can significantly improve the detection accuracy,
with 5 RNN layers achieving the best results. Moreover, in
most cases, an RNN dimension of 128 outperforms that of 256.
Therefore, we adopt the configuration of 5 RNN layers and
a dimension of 128 for the detection model in the following
experiments.

N Train Acc Test Acc

1 92.8 67.8
2 97.0 81.4
3 98.1 86.6
4 98.9 88.6
5 99.3 91.0
6 99.3 89.7

(a) Results for D=128

N Train Acc Test Acc

1 98.8 66.6
2 98.2 81.2
3 98.7 85.7
4 98.9 85.8
5 99.6 89.0
6 99.1 89.8

(b) Results for D=256

TABLE II: Impact of RNN configurations

Second, we compare UniGuard with state-of-the-art AI
detection methods. These include adversarial attack detection
schemes: HASI [19], EMShepherd [8], Feature Squeezing (FS)
[20], Kernel Density Estimation (KDE) [7], and [21], along
with backdoor attack detection schemes [22]–[24]. All the
baselines except EMShepherd [8] perform the detection at the
software level. We highlight that such comparisons are not
quite fair for UniGuard, as these baseline methods have more
requirements or limitations: (1) they require multiple inference
queries to detect one attack, while UniGuard only needs to
analyze one query; (2) some of the methods (e.g., KDE, FS,
HASI and [21], [23]) require extra information about the target
model, including the intermediate outputs, testing inputs, or
complete knowledge of the model architecture and parameters.
UniGuard does not need to have such information; (3) these
methods are designed to detect one specific type of attack,
while UniGuard is able to cover all.

Table III shows the comparison results on two datasets
(MNIST and CIFAR-10). Note that some model extraction
attacks also employ adversarial attack methods to synthesize
query samples [25], making them fundamentally indistinguish-
able. So we also report the combined accuracy of adversarial
and model extraction attacks (the UniGuard * row). Although
UniGuard has fewer requirements than existing methods, it
still has superior detection accuracy. In the following, we will
mainly focus on the results of UniGuard *.

B. Resource and Timing Overhead

We evaluate the resource overhead incurred by UniGuard.
Given that there are very few hardware-based detection meth-
ods, we compare our design with the adversarial attack
detector in [21]. The results are summarized in Table IV,
where ”Area Consumed” represents the ratio of Look-Up
Tables (LUT) and flip-flops (FF) to the corresponding available
resources on the FPGA. It is obvious that UniGuard imposes
much lower hardware resource overhead.

TABLE III: Detection Accuracy

Method
Detection Accuracy(%) Total

Benign Adversarial Backdoor Model extraction Acc

HASI - 87 - - -
EMShepherd - 94 - - -
FS - 67 - - -
KDE - 50 - - -
[21] - 71 - - -
[22] 79 - 81 - -
[23] - - 90 - -
[24] - - 90 - -
UniGuard 97.4 / 95.1 68.6 / 88.5 94.1 / 92.6 92.0 / 70.2 87.9 / 89.4
UniGuard * 97.4 / 95.1 92.1 / 90.9 94.1 / 92.6 92.1 / 90.9 94.0 / 93.3

The results of UniGuard are reported for MNIST / CIFAR-10.
False Positive Rate (FPR): EMShepherd, KDE=10%, HASI=6%, FS=4.5%,
[21]–[24]:undisclosed; FPR of UniGuard: Adversarial=3.9%/5.9% , Backdoor=5.1%/2.0%,
Model Extraction=6.9%/2.2%, Adversarial and model extraction combined=4.1%/4.3%.
*: Combined accuracy of adversarial and model extraction attack

TABLE IV: Overhead comparisons

Solution LUT FF BRAM DSP Area Consumed (%)

[21] 17510 8528 2001 40 32.9% / 8.01%
UniGuard 1051 1505 0 0 0.48% / 0.34%

We further use the Vivado power report to estimate
the power consumption of the Power Monitor Module in
UniGuard. It only consumes 0.079W power, constituting 4%
of the total power consumption (1.954W). Furthermore, the
time required for one detection process is measured at 0.14
seconds, and the introduction of the power monitor module
has no impact on the model’s inference time.

C. Robustness against Different Configurations

Clock Frequency. We first reduce the working frequency of
the AXI bus for the power monitor sensor and investigate
the impact on the detection accuracy. Such reduction can
result in a decreased amount of data being collected. As
explained in Section III-C, we perform an averaging operation
to preprocess the data. So we select two window sizes for
averaging (50 and 10), and the detection results are shown
in Table V. The ”factor” column represents the ratio of the
original frequency to the experimental frequency. The results
indicate that UniGuard maintains its effectiveness even with
a lower frequency for the AXI bus of the power monitor.
This underscores the robustness and adaptability of UniGuard
across varying operational frequencies.

Factor Train Acc Test Acc

2 98.7 83.9
3 93.0 54.1
4 97.9 76.4
5 98.6 83.4

(a) Averaging Window: 50

Factor Train Acc Test Acc

2 98.0 93.2
3 99.4 87.9
4 99.5 86.8
5 99.2 89.2

(b) Averaging Window: 10

TABLE V: Impact of Clock Frequency

TDC Placement Location. Next, we investigate the impact
of TDC locations on the FPGA board during detection. Prior
studies [15], [26] have indicated the sensitivity of TDC outputs
to its placement. It is crucial to identify the optimal location for
deploying the TDC. We explore three different TDC locations



on FPGA: top-left, center, and bottom-right. We use Pblock
in Vivado to set the location constraints. Table VI shows the
detection accuracy with different TDC locations (”Acc. (w/o.
Aug)” column). We observe that the TDC location can indeed
affect the detection accuracy, given the variations in side-
channel power traces.

A potential solution to mitigate such impact is to augment
the training dataset with power traces collected from multi-
ple locations. The trained model will be more general and
robust against the actual TDC placement at real time. Table
VI (”Acc. (w/. Aug)” column) shows the enhanced results
where we augment the dataset with 10% traces for each of
the three locations. It is obvious that dataset augmentation
gives a significant improvement in the detection performance,
approaching to that of the original location.

TABLE VI: Sensitivity to TDC locations

TDC Locations Acc. (w/o. Aug) Acc. (w/. Aug)

top-left 41.0% 70.1%
center 46.0% 74.7%
bottom-right 48.2% 91.2%

V. GENERALIZATION TO MORE ATTACKS

A. Unseen Attacks

When training the detection model, we collect the malicious
traces of different attack methods to construct the training
dataset. It is important that the detection model is capable
of detecting other attacks not included in the training as
well. To test the generalization of UniGuard, we measure
its detection accuracy against three unencountered attacks.
Specifically, for adversarial attack, we choose the Deepfool
method; for backdoor attack, we choose a square of 3*3 pixels
as a new trigger design; for model extraction attack, we choose
the CIFAR-100 as the surrogate data. Our experiments reveal
that UniGuard can achieve the detection accuracy of 95.6%
for benign samples, 62.6% for the new adversarial and model
extraction attacks, and 83.1% for the new backdoor attack.
This reveals that UniGuard can effectively generalize to new
and unanticipated attack methods.

B. Adaptive Attacks

We consider a more sophisticated scenario, where a smart
attacker knows the mechanism of our defense (not the detec-
tion model parameters) and tries to bypass the detection. We
investigate whether UniGuard can still detect such attacks.

To achieve this, we follow [27] to craft the Detection
Avoidance Attack against UniGuard. Basically, given a simple
malicious input sample X , the attacker’s goal is to find a
perturbation δ and add it to X , which keeps the same attack
effects (i.e., the victim model has the same output for X and
X + δ), while making the detection model output ”benign”.
The attacker also aims to make the scale of δ as small as
possible so X + δ still keeps similar semantics as X .

Since the victim model and mapping between the input and
power trace is unknown to the attacker, he cannot directly

identify the optimal δ. Instead, he can leverage state-of-the-art
black-box adversarial attack techniques. Algorithm 1 shows
the detailed optimization step, which consists of two phases.

Algorithm 1 Detection avoidance attack at the tth iteration
1: Inputs:

L: Loss function of detection model to the target (benign) class.
X: Original input to be attacked, of size n.
δt: Point at which the gradient is to be estimated.
d′: Number of Gaussian samples (should be even).
σ: Scaling factor for Gaussian samples ∼ N(0, In).
gradt−1: Weighted sum of previous gradients.
ϵ: Upper bound on ||δ||p.
µ: Momentum parameter.
η: Step size to update δ in each iteration.

2: Output:
gradt: ∇δE[L(δ)], estimate of the gradient of L(δ)
δt+1: Perturbation after the tth iteration.

3: Initialize:
θi ← N(0, In), for i ∈ {1, ..., d′

2
}

θi ← −θd′−i+1, for i ∈ {( d
′

2
+ 1), ..., d′}

gradt ← 0

4: for i = 1 to d′ do
5: θ′i ← max(min(1, X + δt + σθ), 0)−X − δt
6: gradt ← gradt + L(X + δt + θ′i) ∗ θ′i ∗

1
σd′

7: end for
8: gradt ← µ ∗ gradt−1 + (1− µ) ∗ gradt
9: δt+1 ← δt − η ∗ sign(gradt)

10: δt+1 ← min(max(X + δt+1, 0), 1)−X
11: if ||δt+1||p > ϵ then
12: δt+1 ← δt+1 ∗ ϵ/||δt+1||p
13: end if
14: gradt−1 ← gradt
15: return gradt, δt+1

(1) Gradient Estimation. The attacker performs zero-order
gradient estimation through Natural Evolutionary Strategies
(NES) [28], which can be reviewed as a specific instance
of finite-differences estimation on a random Gaussian basis.
Let L be the loss function of the detection model. Then the
gradient of L can be estimated using the following equation:

∇δE[L(δ)] ≈ 1

σd

d′∑
i=1

θiL(δ + σθi) (1)

where θi ∼ N(0, In), 1 ≤ i ≤ d′ represents samples
drawn from a standard multivariate normal distribution over
Rn. To reduce the variance in our estimation, the attacker
employs antithetic sampling by generating Gaussian noise
samples θi for i ∈ 1, ..., d′

2 and setting θj = −θd′−j+1 for
j ∈ (d

′

2 + 1), ..., d′, where d′ is an even number (line 3). These
samples are utilized to query the target model and obtain the
power traces. Subsequently, the attacker feeds these traces into
the detection model to calculate the loss L(δ+θ′i) and estimate
the gradient at this specific point (lines 5-6).

(2) Perturbation Update. The attacker updates δt at each
step t, using the sign of the estimated gradient sign(grad)
with a momentum parameter µ (lines 8-9). Clipping is applied
to ensure the resulting input X + δt+1 remains within the
boundary (line 10).
Evaluation results. We implement such attack with d′ = 256
samples generated at each iteration of Algorithm 1, comprising
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Fig. 5: Attack success rate of being predicted as benign.

a total of t = 256 iterations, resulting in a maximum query
budget of 65,536. We set the scale of Gaussian noise σ =
0.001, learning rate η = 0.001, momentum term µ = 0.5,
and ϵ = 1/255. For each step t, we repeatedly collect the
power trace of X+δt for 100 times, and compute the average
accuracy of being detected as benign. The results are shown in
Figure 5. It is obvious that the accuracy is close to 0 towards
the benign class as the query budget reaches 65,536, indicating
the ineffectiveness of such attack against UniGuard.

Several factors contribute to UniGuard’s resilience against
adaptive attacks. Notably, the inherent noise in power measure-
ments introduces complexity and unpredictability for gradient
estimation, making it hard to identify qualified perturbations.

VI. CONCLUSION

This paper presented UniGuard, a novel hardware-
oriented methodology to protect FPGA-based AI accelerators.
UniGuard exhibits the capability of detecting a spectrum of AI
attacks, utilizing side-channel information captured by a TDC
during model inference. It is non-intrusive to the target AI
application, and easy to use and deploy. Experiments demon-
strate UniGuard achieves high detection accuracy, robustness
and generalization to various attacks.
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