
Fingerprinting Image-to-Image Generative Adversarial Networks

Guanlin Li1,2, Guowen Xu3,*, Han Qiu4, Shangwei Guo5, Run Wang6
,

Jiwei Li7, Tianwei Zhang1, Rongxing Lu8

1Nanyang Technological University, 2S-Lab, 3City University of Hong Kong, 4Tsinghua University
5Chongqing University, 6Wuhan University, 7Zhejiang University, 8University of New Brunswick

guanlin001@e.ntu.edu.sg, guowenxu@cityu.edu.hk, *corresponding author

Abstract—Generative Adversarial Networks (GANs) have
been widely used in various application scenarios. Since the
production of a commercial GAN requires substantial com-
putational and human resources, the copyright protection of
GANs is urgently needed. This paper presents a novel finger-
printing scheme for the Intellectual Property (IP) protection
of image-to-image GANs based on a trusted third party. We
break through the stealthiness and robustness bottlenecks
suffered by previous fingerprinting methods for classification
models being naively transferred to GANs. Specifically, we
innovatively construct a composite deep learning model from
the target GAN and a classifier. Then we generate fingerprint
samples from this composite model, and embed them in the
classifier for effective ownership verification. This scheme
inspires some concrete methodologies to practically protect
the modern image-to-image translation GANs. Theoretical
analysis proves that these methods can satisfy different
security requirements necessary for IP protection. We also
conduct extensive experiments to show that our solutions
outperform existing strategies.

1. Introduction
Generative Adversarial Networks (GANs) for image-

to-image (I2I) translation [29] are used in various ap-
plications, e.g., attribute editing [19], domain transla-
tion [68], and super resolution [32]. A well-trained I2I
GAN model (especially the generator) is regarded as the
core Intellectual Property (IP) due to two reasons [46].
First, to handle complicated tasks and datasets, mod-
ern GAN models are designed to be more sophisti-
cated. For instance, CycleGAN [68] and StyleGAN [29]
have 54 and 100 to 300 giga floating-point operations
(GFLOPs), depending on hardware and implementations.
Training such a production-level GAN model usually
requires a large amount of computing resources, valu-
able data, and human expertise. Second, I2I GANs
are adopted in many applications with huge commer-
cial values, such as image/video filters in TikTok [5],
Prisma [4], and Photoleap [3]. So, model vendors have
motivations to protect such assets, and prevent mali-
cious model buyers or customers from abusing, copying,
or redistributing the models without authorization.

Existing IP protection methods for deep learning mod-
els can be roughly divided into two categories. (1) Wa-
termarking: the model owner embeds carefully-crafted
watermarks into the target model by a parameter regu-
larizer [52] or backdoor data poisoning [7], [31], [36],
[67]. Later, the watermarks can be extracted from the

model parameters or output as the ownership evidence.
(2) Fingerprinting: the model owner generates unique
sample-label pairs that can exactly characterize the tar-
get model with a higher probability (Fig. 1a). Common
approaches [9], [43], [48], [56], [57] adopt adversarial
examples to identify such fingerprint examples. Com-
pared to watermarking, fingerprinting does not need to
modify the target model. Hence, it can better preserve
the performance of the target model [9], [48]. It also
shows more applicability and convenience, especially for
some scenarios where the model owner does not have the
right or capability to modify the models. Due to these
advantages, fingerprinting is a more promising method for
IP protection of deep learning models, and we focus on
this strategy in this paper.

However, simply extending prior fingerprinting solu-
tions from classification models to I2I GANs can cause
some issues. (1) Persistency: adversarial examples against
GANs are more sensitive to the changes in the model or
input-output. So it is easier for an adversary to invalidate
such fingerprints by slightly transforming the models or
data samples. (2) Stealthiness: the adversarial output from
a GAN model can be more anomalous than the adversarial
label from a classification model, allowing the model
thief to detect the fingerprint and then manipulate the
verification results. Experiments in Section 6 demonstrate
these limitations. It is necessary to design a fingerprinting
scheme dedicated to I2I GAN models.

We propose the first fingerprinting scheme to protect
the IP of I2I GAN models based on a trusted third
party. The key innovation of our scheme is a composite
deep learning model constructed from the target GAN
model and a classifier (shown in Fig. 1b). Specifically, to
make the ownership verification stealthier, we aim to de-
sign a set of fingerprints, whose input samples and output
samples from the target model are visually indistinguish-
able from normal ones. With this requirement, it seems
impossible for the model owner to detect the plagiarism, as
prior solutions require the output of the plagiarized model
has large divergence from the ground truth. To address this
issue, we propose to employ a classifier that can accurately
identify the output from the plagiarized model, and assign
a unique label to it. The introduction of the classifier can
also enhance the persistency of the fingerprints: although
the model owner is not permitted to change the target
GAN model, he can freely modify the classifier to better
recognize the fingerprint output. This benefit cannot be
achieved in prior solutions [9], [43], [56], [57].

Based on this scheme, we provide three concrete de-

1. Verification
Sample

Trusted
Party

2. Label

Classification
Model

(a) Classification Model

1. Verification
Sample

Trusted
Party

GAN Model

𝐺

Classifier

3. Response
Sample

4. Label

2. Response
Sample

Composite Model

𝐺

(b) GAN Model (ours)

Fig. 1: Fingerprinting different kinds of models.

signs that can practically protect the IP of GAN models. In
the first method (CFP-AE), the model owner can produce
a set of fingerprint samples (i.e., verification samples),
whose outputs from the target model are adversarial ex-
amples for the owner’s classifier, making it give specific
labels with a higher probability. In the second and third
methods (CFP-iBDv1, CFP-iBDv2), the target model’s
responses to the fingerprint samples are designed to be
invisible backdoor samples [35], which can activate the
backdoor embedded in the classifier to produce unique
labels. We leverage the Triplet Loss [51] and fine-grained
categorization [12], [17] techniques to design novel loss
functions, which can implant the backdoor into the clas-
sifier for better security and efficiency.

We perform comprehensive assessments to evaluate
our fingerprinting scheme. Specifically, drawing on the
core idea of the previous cryptography-based watermark-
ing framework for classification models [7], we theo-
retically prove that our scheme satisfies four important
security requirements: functionality-preserving, unremov-
ability and non-rewriteability. Furthermore, through ex-
tensive evaluations across three primary I2I tasks (attribute
editing, domain translation, super resolution) utilizing ad-
vanced GAN models (e.g., AttGAN [19], StarGAN [11],
STGAN [40]), our method demonstrates high versatility
and comprehensiveness. Furthermore, our approach sur-
passes previous strategies in identifying target GAN mod-
els and maintaining superior robustness against diverse
model and image transformations.

2. Preliminaries

2.1. DNN Fingerprinting

Fingerprinting is a promising technique to protect the
IP of deep learning models [9], [43], [56], [57]. Different
from watermarking [7], [31], [36], [67], the model owner
constructs the fingerprint and conducts ownership verifica-
tion without modifying the target model. This brings much
more convenience and applicability. Researchers proposed
solutions to fingerprint classification models with adver-
sarial attacks [9], [43], [56], [57]. The key insight is to
craft adversarial examples for the target model, which
assigns unique labels to them. During verification, the
model owner uses those samples to query a suspicious
model. A matched model will give the desired unique
labels as ownership evidence with a higher probability. An
unrelated model will more probably predict other labels
instead of the desired unique labels.

It becomes difficult when we migrate these strategies
to the fingerprinting of I2I GANs. The main difference
is that the output of an I2I GAN is images rather than

labels. Using adversarial examples of such models for
fingerprinting can lead to two problems. First, the fin-
gerprint is less persistent: the images generated by GANs
are more sensitive to model or input transformations than
labels generated by classifiers. An adversary can easily
remove the fingerprint from the protected model. Second,
the fingerprint is less stealthy: a unique label from a
classification model is still reasonable, as it belongs to
one of possible classes. However, a unique image from
a GAN can be suspicious, and easily recognized by the
adversary. We will validate these conclusions in Section 6.

2.2. Commitments
We introduce a trusted third party to help the model

owner verify a suspicious model. Considering the potential
risk of data leakage and repudiation, it is important to
restrict both the trusted third party and users. Therefore,
we adopt the commitment scheme [28] to implement our
verification protocol. It is a widely used cryptographic
primitive that allows the sender to lock a secret x in a
vault that is free of cryptographic information leakage and
tamper-proof, and then send it to others (i.e., a receiver).
Generally, a commitment scheme contains two algorithms:
• Com(x, h): Given a secret x ∈ S and a random bit

string h ∈ {0, 1}n, outputs a bit string cx, where h
transforms x into the ciphertext state. S represents the
value space of x.

• Open(cx, x, h): Given a secret x ∈ S, a random bit
string h ∈ {0, 1}n, and cx ∈ {0, 1}Z , if Com(x, h) =
cx, outputs 1. Otherwise, outputs 0.
A commitment scheme has properties:
Correctness: it is required that for ∀x ∈ S, we have

Pr
h∈{0,1}n

[Open(cx, x, h) = 1|Com(x, h)→ cx] = 1

Binding: it is impossible for the sender to change the
locked secret x once it is sent out. For any PPT algorithm1

A, we have

Pr

 cx ← Com(x, h)∧
Open(cx, x̃, h̃) = 1 (x̃, h̃)← A(cx, x, h)∧

(x, h) ̸= (x̃, h̃)

 ≤ ϵ(n),

where ϵ(n) is negligible in n and the probability is taken
over x ∈ S and h ∈ {0, 1}n.

Hiding: it is infeasible for receivers to open the locked
x without the sender’s help. It requires that no PPT
algorithm A can distinguish cx′ ← Com(x′, h) from
cx ← Com(x, h) for any x, x′ ∈ S and h ∈ {0, 1}n,
where x ̸= x′. If for all x ̸= x′, the distributions
of cx and cx′ are statistically close, i.e., ∆(cx, cx′) =
1
2

∑
c∈Z Pr(cx = c)−Pr(cx′ = c) is a negligible function

in n, where Z denotes the range space of cx, we call the
commitment scheme statistical hiding.

3. A Novel Fingerprinting Scheme
3.1. Design Insight

As discussed above, to make the verification stealthier
and more indistinguishable from normal inference, the
fingerprint samples and the corresponding model output
should be identical to normal cases. Besides, the model

1. PPT means an algorithm running in probabilistic polynomial time.

𝐺

Sample x
Protected

𝐺(𝑥)

𝐺(𝑥)!

perturbation

Train

𝑓∗(𝒢 𝑥)

𝒪!∗𝒢 𝑥

𝑓

Classifier

“Black Hair”
“Blond Hair”

…

𝐿

𝐺

Protected

𝑓

Classifier

Composite Model

Fig. 2: Training a composite deep learning model.

Fig. 3: Generating a fingerprinted composite model.

output should also be unique to differentiate the target and
other unrelated models. Although these two conditions
seem to contradict each other, we propose a new scheme
to achieve a satisfied tradeoff between them. The general
idea is that we craft fingerprint samples with the model
output visually similar to normal ones, and employ a
classifier to tell if the output is from a target model or not
(Fig. 1b). A matched GAN model will produce visually
normal output samples, but assigned unique labels by the
classifier. Below, we describe the detailed steps of our
scheme. For the convenience of readers, we show all
important symbols used in our paper and their remarks
in Appendix A.

3.2. Scheme Overview
We consider an I2I GAN model for IP protection. We

introduce an additional classifier for ownership judgement,
which forms a composite deep learning model with the tar-
get GAN. Then we carefully craft fingerprints and embed
them into the composite model. This process requires that
the embedded fingerprint should be difficult to remove,
even if the adversary modifies the GAN model or samples.

We borrow the basic framework from [7], which is a
standard theoretical analysis of DNN watermarks. As we
focus on GAN fingerprinting without any model modifi-
cation, we need to modify this framework to adapt to this
requirement. Below, we first give the formal definitions
of the composite deep learning model and the fingerprint.
Based on these, we give the workflow of our scheme. For
simplicity, we use n ∈ N as a security parameter, which
is implicit in the input of all algorithms below. [k] is the
shorthand {1, 2, · · · k} for k ∈ N.

3.3. Composite Deep Learning Model
We consider a target GAN model G for protection2,

which maps a sample x ∈ D to another sample x′ ∈ D.
Here D ⊂ {0, 1}∗ is the sample space. We introduce a
label space L ⊂ {0, 1}∗∪{⊥} for any sample in D, which
defines the possible properties of the samples generated
by G, e.g., objects, scenes or conditions in the image. We
define |D| = Θ(2n) and |L| = Ω(p(n)) for a positive

2. Here G is only the generator of the GAN model, as the discrimi-
nator is deprecated after the GAN is trained.

polynomial p(·). A composite deep learning model is
defined as below:

Definition 1. (Composite Deep Learning Model) Given
the GAN model G and its sample space D, let f∗ be a
ground-truth function which classifies a sample x ∈ D
according to its label y ∈ L. Let G(x) = {G(x) ∪
G(x)p|x ∈ D} be the augmented set of model outputs,
where G(x) and G(x)p denote the accurate model outputs
and possible perturbed ones3. We use the Train algorithm
described below to obtain a classifier f , which approxi-
mates the mapping: G(x)→ f∗(G(x)). Then a composite
deep learning model is defined as M(x) = f(G(x)).

The composite model is essentially a mapping M :
D → L, which simulates how humans assign specific la-
bels to GAN-generated samples. To produce the composite
model from G and f∗, we consider an oracle Of∗

, which
truly answers each call to f∗. Then we have:
• Train(Of∗

, G): it is a PPT algorithm used to output
a classifier f , in which Of∗

plays a role like a model
training algorithm containing dataset and other neces-
sary components to train a classification model.

• Classify(M , x): it is a deterministic function that out-
puts a value M(x) ∈ L\{⊥} for a given input x ∈ D.
Fig. 2 gives an example of training a composite deep

learning model. We use D̄ = {x ∈ D|M(x) ̸=⊥} to
denote the set of all inputs whose relationship with the
output is defined, where ⊥ stands for out-of-domain cases.
Then we say the algorithms (Train, Classify) are ϵ-
accurate if Pr[f∗(G(x)) ̸= Classify(M,x)|x ∈ D̄] ≤ ϵ,
where the probability arises from the randomness of
Train. Thus, we measure accuracy mainly for those
inputs that are meaningful to the outputs. For those inputs
not defined by the ground-truth classifier f∗, we assume
their labels are random, i.e., for all x ∈ D\D̄ and any
i ∈ L, we have Pr[Classify(M,x) = i] = 1/|L|.

3.4. Fingerprints in Composite Models
Our fingerprinting scheme crafts a set of verification

samples and a classifier, such that the classifier can as-
sign unique labels to the target model’s outputs of these
verification samples. Formally, we have:

Definition 2. (Fingerprint Set for a Composite Model) A
fingerprint set V for a composite model M is defined as
(V, VL), where the verification sample set V ⊂ D and

3. G(x)p is used for training to improve the classification accuracy of
f even on the (subtle) perturbations of G(x). Usually, the perturbation
could be random noise, random flipping, random cropping, or random
rotation, which are widely used in training a classification model. As
augmentation methods, we force the classifier to give a correct label to
the perturbed images.

verification label set VL ⊂ L\{⊥} satisfy the condition:
for x ∈ V , VL(x) ̸= f∗(G(x)).

We use an algorithm Fgen to generate a fingerprint
set4 from the GAN model G and oracle Of∗

. We further
define a PPT algorithm Femb to embed the generated
fingerprint into the composite model. Specifically, given
the oracle Of∗

, a fingerprint set V , and a composite model
M , Femb produces a fingerprinted model M̂ = f̂(G(·)),
which can correctly classify the verification samples V as
VL with a high probability (Fig. 3). Formally, we have:

Definition 3. (Fingerprinted Model) We say a composite
model M̂ is fingerprinted by Femb, if it behaves like
f∗(G(·)) on D̄\V , and reliably predicts unique labels VL

on V , i.e.,

Pr
x∈D̄\V

[f∗(G(x)) ̸= Classify(M̂, x)] ≤ ϵ, and

Pr
x∈V

[VL(x) ̸= Classify(M̂, x)] ≤ ϵ.
(1)

Remark: since a given model may be suspected of
being embedded with fingerprints, a strong fingerprint
should be difficult to be reconstructed or be detected by
adversaries in arbitrary ways. It requires the fingerprints to
satisfy additional requirements to endure various types of
attacks. For legibility, we will present these requirements
in Section 4.1.

3.5. Threat Model
We exactly follow the standard threat model in prior

IP protection works [7], [9], [31], [36], [43], [56], [57],
[67]. It encompasses four distinct identities: model owner,
model buyer, adversary, and trusted third party. Specifi-
cally, the model owner has invested substantial resources
into training a valuable production-level GAN model G,
using a private internal dataset. The model buyer pur-
chases G from the model owner and adheres to stipulated
usage policies, including forbidding model redistribution
or resale. The adversary, on the other hand, could be
a hacker that attempts to steal G from the buyer, or a
dishonest buyer who violates the usage policies, such as
illegally reselling the model. The primary objective of the
model owner is to discern whether a suspicious model Gs

was illegally redistributed based on G or stolen from G,
employing an advanced fingerprinting scheme. This verifi-
cation process is assisted by a trusted third party. Basically
the model owner registers his model G with the trusted
third party by securely sharing the verification samples
and classifier f̂ . With such information, the trusted third
party can determine whether a suspicious model is the
model owner’s property G. The verification results could
serve as judicial evidence for legitimate purposes.

We make some practical assumptions. First, we as-
sume the suspicious model Gs is deployed as an online
service (e.g., [1], [2], [5]), so both the model owner and
trusted third party have black-box access to it, i.e., they
can only send arbitrary inputs to Gs and receive the
corresponding outputs without knowing model parameters
and other details. Second, the adversary can alter his
model’s weights or inference samples, attempting to break
the model’s fingerprint without decreasing the model’s

4. Whenever we fix a verification sample set V , the fingerprint set
implies the corresponding VL.

AI Company
(Model Owner)

𝐺 App Developer
(Model Buyer)

Suspicious Service Provider
(Adversary)

AAA
(Trusted Third Party)

𝐺

𝐺

(b). Sell

(c). Stolen/Resell

(a). Upload
Fingerprint
(𝑮, $𝒇, 𝓥, 𝒕𝒔)

Build App

(d). B
uild

 App

(e). Verify Suspicious Service

𝒱

"𝑓

𝑡𝑠
𝐺

𝐺

𝒱

"𝑓

Fig. 4: A real-world scenario.

performance. Moreover, the adversary can overwrite the
fingerprint by launching a new verification process. This
new verification process must also be registered with
the trusted third party, otherwise, the verification results
cannot be recognized as legally effective.

The strong adversarial capability requires the model
owner to design a robust fingerprinting scheme against
various alterations and evasions. Specifically, we consider
three mainstream model transformations (pruning, fine-
tuning, and quantizing) and eight image transformations
(adding noise, blurring, compressing, cropping, adjusting
brightness, adjusting contrast, adjusting gamma, and ad-
justing hue), that could be potentially used by the adver-
sary. The proposed scheme should be robust against these
transformations. On the other hand, the fingerprinting
scheme should be visually stealthy and cannot be detected
with deep-learning models. To reduce the false alarms
on an innocent suspicious model owner, the verification
samples should be highly unique to each model G.

3.6. A Motivating Example
We provide a motivating example to describe the end-

to-end IP protection process, as shown in Fig. 4. An
AI tech company (e.g., DeepX5, Runwayml6, Saleforce7)
runs the business of training deep learning models for
customers, serving as the model owner in our setting. This
company trains an I2I GAN G, capable of modifying a
given image, and sells it to any interested customers. The
company wants to protect the IP of its GAN model from
any unauthorized redistribution using our fingerprinting
scheme. To achieve this, it generates a set of verification
samples V = (V, VL) and submits all the required com-
ponents including G and f̂ to a trusted third party, such
as American Arbitration Association (AAA)8, Ohalo9, or
Dentons Rodyk10, with a timestamp ts (step (a)). This
timestamp is a plaintext followed by a signature to avoid
illegal modification. After receiving all the information,
the trusted third party launches the verification process
on the protected model G, verifies the results, and checks
whether the plaintext ts is correct. After all the checking,
the model G can be safely released for public purchase.

A mobile app developer is developing a photo editing
app and is interested in this GAN model G. He purchases

5. https://deepxhub.com
6. https://runwayml.com/
7. https://www.salesforce.com/ap/
8. https://www.adr.org/
9. https://www.ohalo.co/
10. https://dentons.rodyk.com/

https://deepxhub.com
https://runwayml.com/
https://www.salesforce.com/ap/
https://www.adr.org/
https://www.ohalo.co/
https://dentons.rodyk.com/

G from the AI company and integrates it into his app (step
(b)). He is thus the model buyer in our setting. He needs
to follow the usage policy from the model owner that this
model cannot be redistributed or resold to other entities.
However, an adversary could illegally obtain this model
(step (c)), and deploy it in his own online image editing
service (step (d)). This could be realized by hacking into
the developer’s app or the developer dishonestly reselling
the model to another party for profit. Being aware of IP
protection, the adversary can try different ways to disable
the fingerprinting scheme: (1) he can perform different
model transformations over G; (2) he can perform dif-
ferent image transformations over the input or output
images of G; (3) he can try to build machine learning
models to detect the possible verification samples and then
manipulate the output; (4) he can launch a new verification
process to overwrite the fingerprint. For any action, he
should maintain the normal functionality of the model G.

When the AI tech company (model owner) discovers
a suspicious image editing service Gs that possibly uses
its model G without authorization, it will delegate the
trusted third party to execute the verification process on
Gs (step (e)). If the verification result suggests that Gs

is plagiarized from G, it can be used as the judicial
evidence for the model owner to sue the provider of
Gs (adversary). As mentioned above, the adversary could
register the stolen model to the trusted third party to
overwrite the fingerprint. However, by verifying and com-
paring the timestamps of the model owner’s registration
and adversary’s registration, the trusted third party is able
to tell if the model owner’s fingerprint is overwritten.

3.7. Workflow of Our Fingerprinting Scheme

We now outline our fingerprinting process, as shown
in Fig. 5. Given the targeted model G, the model owner
first adopts the algorithm Train to establish the com-
posite deep learning model M . Then he uses a series of
algorithms to generate a secret marking key mk and a
public verification key vk, and embed the fingerprint from
mk into the model. During verification, the model owner
uses marking and verification keys to verify whether a
suspicious model contains the fingerprints. Additionally, if
the adversary overwrites the fingerprint, we launch a com-
parison algorithm to resolve the fingerprint conflicts. The
entire workflow can be described by four high-level PPT
algorithms (KeyGen, FP, Verify, Compare):
• KeyGen(): Given a security parameter n and the

information related to the model, it outputs the secret
marking key mk and the public verification key vk,
where mk contains the fingerprint to be embedded
into the target model, and vk is used for subsequent
verification. This process requires Fgen to generate
fingerprint sets. It also requires Com to commit to
the elements in each fingerprint set and random ele-
ments selected by the model owner, which provides
arguments for subsequent verification.

• FP(M,mk): Given a composite model M and the
marking key mk, it outputs a fingerprinted model M̂ .
It uses Femb as the subroutine to convert M to M̂ ,
thereby embedding the fingerprint contained in mk into
M . Then, a private key pk and a public key ck are
generated to run a signature algorithm on the current

Fig. 5: The workflow of our fingerprinting scheme.
timestamp ts to obtain the signature sts. Finally, G, f̂ ,
vk, ts||s, and ck are sent to the trusted third party.

• Verify(mk, vk,M): Given the key pair mk, vk and a
model M , it outputs a bit b ∈ {0, 1}, where 1 means
that the verified model has copyright infringement, and
vice versa. It uses Open as the subroutine to open the
previous commitments to all the elements in mk.

• Compare(ts||s, ck, ts′||s′, c′k): Given two signed
timestamps, ts||s and ts′||s′, and the corresponding
public keys, ck and c′k, it outputs one bit {0, 1}, where
1 stands for ts earlier, and 0 stands for ts later. It
checks the signature for each timestamp with its key.
Fig. 6 details the algorithms (KeyGen, FP, Verify,

Compare) for this process. Specifically, let (Train,
Classify) be an ϵ-accurate composite deep learn-
ing model, Femb be a strong fingerprinting algorithm
and (Com,Open) be a statistically hiding commit-
ment scheme. (1) KeyGen generates strong fingerprints
(Fgen), which are also used as the secret marking key
mk. Then a commitment scheme (Com) is used to gen-
erate the verification key vk corresponding to mk for
the legitimacy verification of suspicious models. (2) FP
embeds the fingerprints into the composite model (Femb)
and sends all components to the trusted third party with a
timestamp ts. (3) Verify opens the commitments (Open)
to all the elements in the secret key mk, and uses it to
verify whether a suspicious model matches the fingerprints
(Classify). If most verification samples in the fingerprint
set are predicted as the verification labels by the classifier
f̂ , we infer this GAN model is infringing. When the
adversary provides a verification result with the help of
the trusted third party as well, Compare will check the
legality of timestamps saved in the trusted third party for
the model owner and adversary, and compare their order in
the timeline to make a final decision about the ownership
of the model. Note that both Verify and Compare are
completed with the help of a trusted third party.

3.8. Security Requirements
The correctness of our fingerprinting scheme,

i.e., three PPT algorithms (KeyGen, FP, Verify,
Compare), requires that for the honestly generated keys
mk, vk, and ts < ts′, we have

Pr
(M,M̂,mk,vk)

[Verify(mk, vk, M̂) = 1] = 1, and

Pr
(ts||s,ck,ts′||s′,c′k)

[Compare(ts||s, ck, ts′||s′, c′k) = 1] = 1

We define following three security requirements:
(I) Functionality-preserving. This property is twofold

in our fingerprinting scheme. The model with fingerprints
should be as accurate as the model without fingerprints for
classifying normal samples. The proposed scheme should

also correctly classify the verification samples V as VL

with a high probability. Formally, for any (M̂,mk, vk)
honestly generated through the previously described algo-
rithms, it holds that

Pr
x∈D̄\V

[f∗(G(x)) ̸= Classify(M̂, x)] ≤ ϵ, and

Pr
x∈V

[VL(x) ̸= Classify(M̂, x)] ≤ ϵ.

The first part indicates the fingerprinting scheme does not
affect the composite model on non-verification samples
with a high probability. The second part indicates the
scheme makes the composite model give specific labels
to verification samples with a high probability.

(II) Unremovability. This means that the adversary
cannot remove the fingerprint even if he knows its exis-
tence and the algorithms used. Formally, a fingerprinting
scheme with unremovability requires that any PPT algo-
rithm A wins the following Game 1 only with a negligible
probability11.

1. Generate M ← Train(Of∗
,G) and (mk, vk)←

KeyGen().
2. Compute M̂ ← FP(M,mk).
3. Run A to compute M̃ ← A(Of , M̂ , vk).
4. A wins if

Pr
x∈D

[Classify(M̂, x) = f∗(G(x))] ≈

Pr
x∈D

[Classify(M̃, x) = f∗(G(x))] and

Verify(mk, vk, M̃) = 0.

Game 1 describes a case where the adversary keeps the
first part in the functionality-preserving requirement while
violating its second part, which means that the verification
samples fail to verify the protected GAN. Therefore, if A
wins Game 1, the fingerprint has been removed. Other-
wise, if A cannot win Game 1, the fingerprint has not
been removed, which fulfills the unremovability.

(III) Non-rewriteability. This property requires that
even if the adversary can forge new mk and vk that
can be used to pass the verification process, he cannot
generate an earlier timestamp than the model owner. Since
the generation of the timestamp is equivalent to the time
when the model is uploaded to the trusted third party, the
adversary cannot forge a timestamp that is earlier than the
model owner. Formally, a fingerprinting scheme with non-
rewriteability requires that any PPT algorithm A wins the
following Game 2 only with negligible probability.

1. Generate M ← Train(Of∗
,G) and (mk, vk)←

KeyGen().
2. Compute M̂ ← FP(M,mk) and generate ts||s

binding with M̂ .
3. Run the adversary (m̃k, M̃ , ts′||s′) ←
A(Of , M̂ , vk).

4. A wins if Verify(m̃k, vk, M̃)=1 and
Compare(ts||s, ck, ts′||s′, c′k)=1.

11. To facilitate the security proof, we assume the adversary has
access to the full composite model. In practice, the model owner only
releases the GAN part of the composite model, i.e., G, and retains the
classifier part for subsequent verification. This does not affect the proof
because if the adversary cannot win the game with full access to the
composite model, it is less capable to gain an advantage with weaker
prior knowledge.

Game 2 means the adversary creates a new verification
protocol for the GAN model with his verification samples
and classifier, if needed. A wins Game 2 if and only if
the new verification process passes and its timestamp is
earlier. Otherwise, A fails and the overwritten fingerprint
is invalid.
KeyGen():

1. Run (V, VL) = V ← Fgen(Of∗
, G), where V = {v(i)|i ∈

[n]}, VL = {v(i)L |i ∈ [n]}.
2. Sample 2n random strings h

(i)
v , h

(i)
L ← {0, 1}n, gen-

erate 2n commitments {c(i)v , c
(i)
L }i∈[n], where c

(i)
v ←

Com(v(i), h
(i)
v), c(i)L ← Com(v

(i)
L , h

(i)
L).

3. Set mk ← (V, {h(i)
v , h

(i)
L }i∈[n]), vk ← {c(i)v , c

(i)
L }i∈[n]

and return (mk, vk).

FP(M,mk):

1. Let mk = (V, {h(i)
v , h

(i)
L }i∈[n]).

2. Compute and output M̂ ← Femb(Of ,V,M).
3. Generate signature keys pk and ck . Sign the current timestamp

ts and obtain s.
4. Send G, f̂ , vk, ts||s, and ck to the trusted third party.

Verify(mk, vk,M):

1. Let mk ← (V, {h(i)
v , h

(i)
L }i∈[n]), vk ← {c

(i)
v , c

(i)
L }i∈[n].

For V = (V, VL), test if ∀v(i) ∈ V : v(i)L = f(Gs(v(i))). If
it is true for all except ϵ|V| elements from V , then output 1,
otherwise output 0.

2. Check Open(c
(i)
v , v(i), h

(i)
v) = 1

and Open(c
(i)
L , v

(i)
L , h

(i)
L) = 1

for all i ∈ [n]. Otherwise, output 0.

3. Test that Classify(M̂, v(i)) = v
(i)
L for all i ∈ [n]. If it

is true for all except ϵ|V| elements from V , then output 1,
otherwise output 0.

Compare(ts||s, ck, ts′||s′, c′k):
1. Signature check for ts, with s and ck . If ts is matched s, then

output 1, otherwise output 0.
2. Signature check for ts′, with s′ and c′k . If ts′ is matched s′,

then output 1, otherwise output 0.
3. Order comparison for ts and ts′. If ts is earlier than ts′, then

output 1, otherwise output 0.

Fig. 6: End-to-end fingerprinting process.
4. Concrete Methodologies of Generating and
Embedding Strong Fingerprints
4.1. Assumptions for Strong Fingerprints

With the two algorithms Fgen and Femb, we expect
that the model owner can produce strong fingerprints V
obeying three properties. Femb that takes such samples as
input is called a strong fingerprinting algorithm. These are
necessary for us to build effective fingerprinting solutions
that meet the requirements in Section 3.8.

(1) Stealthiness: Each verification sample during in-
ference should be indistinguishable from the normal ones,
making it difficult for the adversary to respond adaptively
and ensuring the concealment of verification. This means
that for each verification sample v(i) ∈ V generated
from a randomly selected clean sample x(i), the following
expression:

H = ∥v(i), x(i)∥+ ∥G(v(i)), G(x(i))∥
+
∑
j

∥Gv(i),j , Gx(i),j∥

is minimized, where Gv(i),j is the j-th intermediate feature
in G with input v(i), G(v(i)) is the output of G with
input v(i), and ∥·, ·∥ is a distance function12. The first term
describes the differences between the verification sample
and the corresponding clean image in the pixel space. The
second term is to measure the distance between the output
of the verification sample and that of the corresponding
clean sample in the pixel space. The third term is to com-
pare the intermediate features in G. Verification samples
achieve stealthiness in three levels.

(2) Persistency: Femb is able to embed the fingerprint
persistently such that the adversary cannot remove the
fingerprint from the model. This property is discussed
under two assumptions. First, the adversary has limited
computing resources and data resources, which do not
support him to retrain a clean model with competitive
performance from scratch. Otherwise, he will lose the mo-
tivation of stealing others’ models. Second, the adversary
is not willing to erase the fingerprint at the cost of huge
accuracy drop for the plagiarized model. Hence, we define
the persistency as follows: let Of∗

be a ground-truth or-
acle, V be a fingerprint set, and M̂ ← Femb(Of∗

,V,M)
be a ϵ-accurate model. Assume an algorithm A on input
Of∗

, M̂ outputs a model M̃ in polynomial time t which
is at least (1 − ϵ) accurate on V . Then, for any arbitrary
model N , Ñ ←Femb(Of∗

, N) generated in same time t,
is also ϵ-accurate (related to Game 1).

Below we present three novel concrete designs based
on our fingerprinting scheme. For each design, we de-
scribe the two crucial algorithms Fgen and Femb for
generating strong fingerprints and embedding them into
the model, respectively.

4.2. CFP-AE

Algorithm 1: Fingerprint Generation

Fgen (Of∗
, G)

1: Train a normal classifier f with Of∗
and target

GAN model G.
2: Uniformly select random samples {x, y} ∈ D̄ n

times to build X = {x(1), · · · , x(n)} and
Y = {y(1), · · · , y(n)}.

3: for each {x(i), y(i)} ∈ {X,Y } do
4: Generate v(i) from {x(i), y(i)} by minimizing the

objective function Fobj(Of , G, {x(i), y(i)}, v(i)) in
Equation 2.

5: Generate {v(i)L |i ∈ [n]} with label
v
(i)
L = f(G(v(i))) ̸= f∗(G(v(i))).

6: end for
7: Return a fingerprint V = (V, VL), where

V = {v(i)|i ∈ [n]} and VL = {v(i)L |i ∈ [n]}.

Our first method, CFP-AE (Composite Fingerprint
based on Adversarial Examples), is inspired by the gen-
erative adversarial examples [60]. Different from the tra-
ditional fingerprinting methods [9], [43] that directly craft
adversarial examples against the target model, we propose

12. Note that the stealthiness of fingerprints is difficult to describe
with cryptographic primitives because it is very subjective. We mainly
demonstrate this property based on empirical experiments.

to make the target GAN model generate adversarial ex-
amples to the classifier. The output sample of the target
model looks normal, while the output label of the classifier
is unique as the ownership evidence.

Algorithm 1 shows the detailed process of generating
the fingerprint set. Given Of∗

,we first train a classifier
or download a pre-trained classifier f for classifying
the attributes or categories of the data samples. Then
we uniformly select some random samples {x(i)|i ∈ [n]}
from the sample space D. Since the size of the space is
Θ(2n), a PPT adversary only has a negligible probability
to infer these samples. We craft the verification sam-
ples v(i) from these clean samples using an optimization
method, by optimizing the input to minimize an object
function. To ensure the indistinguishability between the
verification sample and its corresponding clean sample,
for each v(i), we need to minimize H = ∥v(i), x(i)∥ +
∥G(v(i)), G(x(i))∥ +

∑
j ∥Gv(i),j , Gx(i),j∥. Also, a qual-

ified verification sample v(i) should enable the classi-
fier to maximize the distance between the ground-truth
label y(i) corresponding to G(x(i)) and predicted label
f(G(v(i))). To achieve these, we construct a loss function
Fobj(Of , G, {x(i), y(i)}, v(i)) as:

Fobj(Of , G, {x(i), y(i)}, v(i)) =∑
c

y(i)c log(f(G(v(i)))c) +
∑

(v(i) − x(i))2+∑
(G(v(i))−G(x(i)))2+∑

j

∑
(Gv(i),j −Gx(i),j)

2,

(2)
where Gv(i),j and Gx(i),j are the j-th features in G when
processing v(i) and x(i), respectively. The subscript c
stands for the index of the ground-truth label, which is
converted to a one-hot vector, and the prediction of the
classifier. The first term in the object function is based
on the cross-entropy loss by multiplying -1 to maximize
the difference between the prediction and the ground-
truth label. We iteratively search for the optimal v(i) by
minimizing the above objective function. As a result, we
obtain the final verification sample v(i) with the label
f(G(v(i))) = v

(i)
L ̸= f∗(G(v(i))).

It is worth noting that in CFP-AE, we do not need
to modify the classifier f after we perform the Fgen

function. We directly use the generated samples to query
the composite model for ownership verification. Hence,
the Femb function is empty with f̂ = f in this method.

4.3. CFP-iBDv1
Our second method, CFP-iBDv1 (Composite Finger-

print based on invisible Backdoor (version 1)), utilizes
the invisible backdoor attack technique [35]. The key
idea is to make the target model produce output samples
containing invisible triggers, which will activate the back-
door embedded in the classifier to predict unique labels.
CFP-iBDv1 requires two steps. Fingerprint generation
calls the same function Fgen as in CFP-AE to produce
verification samples and labels. Then we perform the
fingerprint embedding Femb(Of ,V,M), which further
fine-tunes the classifier f into f̂ , to better recognize the
relationships between the verification samples and labels.

Algorithm 2 shows the detailed process of fine-tuning
the classifier. We prepare two sets: the verification set
Vs = (G(V), VL), where V and VL are generated from
Fgen; the normal set Ns = (G(X), Y), where X contains
samples generating V in Fgen and Y contains labels cor-
resonding to samples in G(X). Since the fingerprint must
be persistent against image transformations, we further
perform data augmentation over these two sets with com-
mon transformation functions. Using these two augmented
sets Va

s and N a
s , we fine-tune the classifier as f̂ , and

finally obtain the composite model M̂(·) = f̂(G(·)).

Algorithm 2: Fingerprint Embedding

Femb(Of ,V,M)
1: (V, VL) = V .
2: Vs = (G(V), VL).
3: Ns = (G(X), Y), X and Y are from Fgen.
4: Augment these two sets to obtain Va

s and N a
s .

5: Fine-tune f into f̂ with Va
s and N a

s together by
minimizing the loss function Lft.

6: Return fingerprinted model M̂(·) = f̂(G(·)).

We use the cross-entropy loss function to fine-tune the
classifier with the two sets:

Lft = LG1(Of ,Va
s ,N a

s) =−
∑

(x,y)∈Va
s

∑
c

yc log(f(x)c)

−
∑

(x,y)∈Na
s

∑
c

yc log(f(x)c),

where c is the label index of f . In the fine-tuning loss, we
aim to minimize the cross-entropy loss on two sets, N a

s

and Va
s , and make the fine-tuned classifier f̂ sensitive to

the small difference between G(x) and G(v) to give them
different predictions.

4.4. CFP-iBDv2
Our third method, CFP-iBDv2 (Composite Finger-

print based on invisible Backdoor (version 2)), is an
advanced version of CFP-iBDv1. We follow the same
algorithms to generate fingerprints and embed them into
the model. A novel loss function is introduced to fine-tune
the classifier for better robustness and effectiveness.

First, we adopt the idea of the Triplet Loss [51] to
enhance the persistency of our fingerprints. The Triplet
Loss is able to distinguish different objects under similar
conditions (e.g., pose, illumination). It achieves this by
minimizing the inner representation (i.e., feature embed-
ding) difference of the same object with different external
conditions, while maximizing the difference of different
objects with the same condition. Similarly, we can mini-
mize the distance of different verification samples in the
feature space, and maximize the distance of a verification
and normal samples. This can increase the probability
that the fine-tuned classifier will give unique labels for
verification samples. The loss function is as below:

LG2(M,Va
s ,N a

s ,m) =∑
va∈Va

s

max{max
vp∈Va

s

(
∑

(M(va)−M(vp))
2)

− min
x∈Na

s

(
∑

(M(va)−M(x))2) +m, 0},

where m is a constant, and M(·) represents the feature
extraction part in f before the final classification layer. va
and vp are from Va

s and x is from N a
s . va is an anchor

sample, vp is the positive sample, and x is the negative
sample. The goal of the Triplet Loss is to minimize the
distance of features between the anchor sample and the
positive sample and maximize the distance of features
between the anchor sample and the negative sample. By
minimizing this loss, we can make f assign similar fea-
tures to G(v) for all verification samples, which will be
very different from the features of G(x). Therefore, f̂ will
be more robust to recognize G(v), making the verification
process more reliable.

Second, we apply the fine-grained categorization ap-
proaches [12], [17] to fine-tune the classifier. Fine-grained
categorization aims to classify an object into an exact
sub-category, e.g., the brand of a car, the species of a
bird. Various techniques have been introduced to achieve
this challenging goal [44], [61], [66]. We can treat the
fingerprint embedding process as a fine-grained catego-
rization task, where samples from Va

s are in one cate-
gory (fingerprint verification), while samples from N a

s

are in another category (normal inference). Specifically,
we change the classifier to a multitask one by adding
an additional classification head to the original model
structure: the original classification layer is used to predict
the category labels for GAN’s output, while a new one is
added to predict the verification category (label “1” for
fingerprint verification; label “0” for normal inference).
Then we adopt the Entropy-Confusion Loss [13] to train
the multitask model:

LG3(B,Va
s ,N a

s , ϵ) =∑
v∈Va

s

(B(v)0 log
B(v)0
B(v)1 + ϵ

+ (B(v)1 + 1) logB(v)1)+

∑
x∈Na

s

((B(x)0 + 1) logB(x)0 + B(x)1 log
B(x)1
B(v)0 + ϵ

),

where ϵ = 1e−5 is a constant to avoid a denominator of
zero, B(·) is the output from the added binary classifi-
cation layer, and B(·)i is the i-th element in the output.
We force the new classification layer to give G(v) the
prediction of the verification sample and give G(x) the
prediction of the normal data. In this way, we further
improve f ’s robustness in recognizing G(v) and G(x).
Hence, the ultimate loss Lft used to fine-tune f is

Lft = LG1 + LG2 + LG3.

After we finish the classifier fine-tuning, we remove the
binary classification layer from f̂ , and integrate it with the
target GAN model to form the composite model M̂ .

4.5. Generalization to Different I2I Tasks

Our proposed fingerprinting schemes are suitable for
different I2I GAN models and tasks. Below we describe
a unified process for general I2I GANs. First, we need
to build a classification model for verification sample
generation. The choice of the classifier is flexible, and
we only ask it to assign a label to the given image, which
can be unrelated to the image content. For example, for all
I2I GANs, the classifier can be trained on ImageNet. In

our experiments, to better show the choice of the classifier
is flexible, we choose different classifiers for each task.

Then, we need to generate some verification samples
for the protected GAN with the selected classifier. Consid-
ering that the training data for generative models usually
do not contain a label, we directly use the predicted label
from the classifier f as the ground-truth label y for the
clean data x. That is why our fingerprinting scheme does
not require a specific classifier. Therefore, all chosen f
can be seen as f∗, outputting ground-truth labels. With
the label y and the classifier f , we can generate each
verification sample v based on x for the protected model
G. Finally, we can fine-tune f to obtain f̂ . Therefore, our
scheme is a unified protection for different tasks.

5. Security Analysis
Assuming Femb is a strong fingerprinting algorithm

that can generate fingerprints with the three properties in
Section 4.1, we prove our fingerprinting scheme can sat-
isfy the three requirements in Section 3.8 in the following
theory. Therefore, we build a connection between secu-
rity requirements and our proposed fingerprinting scheme,
proving it is an effective solution.

Theorem 1. Let D̄ be of super-polynomial size in
n. Given the commitment scheme and the strong fin-
gerprinting algorithm, the algorithms (KeyGen, FP,
Verify) in Fig. 6 form a privately verifiable fingerprinting
scheme, which satisfies the requirements of functionality-
preserving, unremovability, and non-rewriteability.

Proof (Sketch): Our proof relies on the security of the
commitment scheme and assumptions of strong finger-
prints. In detail, the hiding property of the commitment
scheme enables the public verification key to hide useful
information about the fingerprint from the adversary, while
the binding property ensures that one cannot claim the
ownership of a model from others. Also, as defined in
Section 4.1, a strong fingerprint embedded into the model
should (i) be distinctive, i.e., behaves like f∗(G(·)) on
D̄\V and reliably predicts unique labels VL on V (i.e.,
functionality-preserving), and (ii) be persistent such that
the adversary cannot revert the fingerprinted model back
to the original one in time t (i.e., unremovability). In
addition, since the generation of the timestamp is equiv-
alent to the time when the model is uploaded to the
trusted third party, it is impossible for the adversary to
forge a timestamp that is earlier than the model owner
(non-rewriteability). Therefore, we can prove that our
designs satisfy the above requirements. For the technical
details of the proof, please see Appendix C.

Remark: The algorithm Verify only allows verifica-
tion by honest parties in a private way, since mk will be
known once Verify is run, which allows the adversary to
retrain the model on the verification sample set. It is not a
problem for the applications such as IP protection, because
there are trusted third parties in the form of judges.

6. Experiments
We conduct comprehensive experiments to validate

that our concrete designs can meet the strong fingerprint
requirements in Section 4.1. We report the main results in
this section, and a plethora of experimental results can be
found in Appendix E.2.

Model and dataset. Our scheme can be applied to general
I2I GAN models and tasks, since the design does not
rely on any assumptions about datasets, model archi-
tectures or parameters. Without loss of generality, we
evaluate GANs for three I2I tasks, i.e., attribute editing,
domain translation, and super resolution, with various
GAN models. Specifically, for attribute editing, we train
three GANs (AttGAN [19], StarGAN [11], STGAN [40])
to edit five attributes: (A1) black hair, (A2) blond hair,
(A3) brown hair, (A4) male, and (A5) young, on a public
dataset CelebA [42]. For domain translation, we train three
CycleGANs [68], with different batch sizes and random
seeds, named C1, C2, and C3 to achieve a horse-to-zebra
task [68]. For super resolution, we train three GANs (SR-
ResNet [33], ESRGAN [58], EDSR [37]) on DIV2K [8]
to achieve a 2× up-scaling super-resolution. Our main
experiments are conducted on the attribute editing task.
For the other two tasks, we use them to evaluate the
generalizability of our schemes.
Scheme implementation. In our experiments, the clas-
sifier f is implemented by ResNet34 [18]. For attribute
editing, we train f as a multi-label classifier on the CelebA
dataset to predict the facial attributes. Each sample in
CelebA has 40 annotated attributes. Then the output of
f is a 40-bit vector, with each bit representing whether
the image has the corresponding attribute. For domain
translation, we train f as a two-class classifier to recognize
horses and zebras. For super resolution, we train f on Im-
ageNet as a classifier to recognize 1,000 categories. Note
that the construction of f is general, so other mainstream
classification models can be applied to our tasks as well.

For Fgen in Algorithm 1, we select 100 random
images as clean data set X to generate the verification
sample set V . Specifically, for attribute editing, images
are selected from CelebA. For domain translation, im-
ages are all horses. For super resolution, images are
selected from ImageNet. For each sample, we set its
unique verification label VL(x) after generating the veri-
fication sample by minimizing Fobj in Equation 2. Then,
VL(x) is determined by f based on the prediction of the
verification sample. We set the optimization constraint
∥G(v(i)), G(x(i))∥ ≤ δ = 9e−4, which is proven to be
sufficient to ensure the indistinguishability between the
verification sample and its corresponding clean sample.
The generated verification sample set can be used for
all three proposed methods. A slight difference between
attribute editing and other tasks is that after V is crafted,
we keep all the flipped 40 attributes as the verification
label for CFP-iBDv1 and CFP-iBDv2. For CFP-AE,
we only flip 5 attributes, while the rest attributes are the
same as the ground truth. These 5 attributes are selected
as the easiest to be misclassified by analyzing the decision
boundary of the classifier. Table 1 shows these attributes
for each GAN model. For other tasks, the verification
label is a single number. The difference is mainly because
attribute editing GANs could influence multiple attributes,
which could cause mis-verification when only adopting
one attribute as the verification label.

For CFP-AE, we do not need to make any changes
to the classifier f . For CFP-iBDv1 and CFP-iBDv2,
we need to embed the fingerprint into the composite
model following Femb in Algorithm 2. We fix G, while
fine-tuning the classifier f using the prepared verifica-

Table 1: Top-5 attributes for three GANs in verifying
the model with CFP-AE.

GAN Selected fingerprinting attributes
AttGAN Smiling, BagsUnderEyes, Attractive, MouthSlightlyOpen, HighCheekbones
StarGAN Smiling, Male, Young, WearingNecklace, Attractive
STGAN BigNose, Young, Smiling, BagsUnderEyes, HighCheekbones

tion sample set. This will give us the final fingerprint-
embedded composite model M̂ = f̂(G(·)). For Femb in
Algorithm 2, to enhance the robustness of the fingerprinted
classifier, we adopt four types of mainstream image trans-
formations (adding noise, blurring, compression and crop-
ping) to augment the verification sample set Vs and normal
sample set Ns. We fine-tune f with only 100 verification
samples and 100 normal samples, so it is very efficient
for the model owner to annotate these samples.

For verification, we query the suspicious GAN model
with 100 verification samples. Similar to prior works [9],
[31], [36], [43], [56], we empirically set the threshold τ
for ownership judgement, which is 0.8.

Table 2: MSC (%) and MSV (%) for verifying different
GAN models. ⇓ means a lower score is better. ⇑ means
a higher score is better. Same for the following tables.

GAN
Structure

Method
Target GAN Non-target GAN

MSC ⇑ MSV ⇑ StarGAN AttGAN STGAN
MSV ⇓ MSV ⇓ MSV ⇓

StarGAN

AE-I 100.00 100.00 0.00 0.00 0.00
AE-D 100.00 100.00 100.00 20.00 12.00

CFP-AE 100.00 100.00 50.20 33.80 30.40
CFP-iBDv1 95.52 94.12 62.10 15.10 27.00
CFP-iBDv2 92.87 90.05 39.62 12.53 16.92

AttGAN

AE-I 100.00 100.00 0.00 0.00 0.00
AE-D 100.00 14.00 35.00 1.00 6.00

CFP-AE 100.00 100.00 29.00 42.20 39.80
CFP-iBDv1 93.40 92.45 49.10 34.20 57.02
CFP-iBDv2 91.03 90.70 27.15 17.85 30.10

STGAN

AE-I 98.00 100.00 0.00 0.00 13.00
AE-D 100.00 34.00 66.00 22.00 1.00

CFP-AE 100.00 100.00 26.20 25.80 67.80
CFP-iBDv1 93.53 91.57 50.52 42.08 83.20
CFP-iBDv2 92.20 90.18 30.05 28.75 69.05

Baselines. Since there are no existing works for finger-
printing I2I GAN models, we migrate the fingerprint-
ing strategy from classification models to GANs as our
baselines. Past works proposed two types of common
techniques to generate adversarial attacks for GAN mod-
els, which are adopted for fingerprint generation in our
baselines. Specifically, (1) AE-D leverages the distortion
attack [14], [26], [49], [50], [62], whose outputs are
distorted away from the correct one. This is achieved by
maximizing the distance between the adversarial output
and ground-truth output. During verification, we deter-
mine the legitimacy of the suspicious model by measuring
the noise ratio of the responses and ground-truth outputs.
A model is considered as illegal if the peak signal-to-
noise ratio (PSNR) [23] is smaller than a threshold (20).
(2) AE-I leverages the identity attack [50], [62], whose
outputs are identical with the inputs. This is achieved
by minimizing the distance between the sample outputs
and inputs. During verification, we measure the similarity
between the verification samples and the corresponding
responses. We flag the model as pirated if their Euclidean
distance is smaller than a threshold (9e−4). Both types of
adversarial examples are generated by C&W [10], which
is also used in [9] for fingerprinting classification models.

Metrics. We introduce two metrics: (1) Match Score
for Verification samples (MSV) denotes the match ratio
of verification labels for verification samples; (2) Match
Score for Clean samples (MSC) denotes the match ratio
of ground-truth labels for clean samples. For a good
fingerprinting method, the target model should have high
MSV and MSC, while the MSV on unrelated models
should be low.

6.1. Time Cost Comparison
Training a high-quality GAN will cost a lot of time.

For example, training a StarGAN [11], used in our pa-
per, on one V100 will cost about one week to achieve
good performance. Training a StyleGAN [29], which is a
popular generative model, on 8 GPUs will cost one week
to generate high-resolution images13. Compared with the
training cost, generating one image as a fingerprint to
verify the GAN only needs several minutes, depending
on the GAN itself. Therefore, our protection scheme is
efficient and environmentally friendly.

6.2. Distinctness Analysis
We show that the generated verification samples can

identify the target GAN models with a higher probabil-
ity. We generate verification samples and fingerprinted
classifier from one target GAN model, and use them to
verify the model itself, as well as other unrelated GAN
models, including a model trained with the same configu-
rations (network structure, algorithm, hyperparameters and
dataset). Table 2 presents the Match Scores for different
models. We observe that all methods perform well on the
target model. For other unrelated models, AE-I performs
the best in reducing the false positives. This indicates the
adversarial identity attack has much lower transferability
to other models. We will show that AE-I is impractical
in terms of persistency (Section 6.3). AE-D has high
transferability for StarGAN, hence it fails to distinguish
target and non-target GAN models trained from the same
StarGAN. Our methods are generally fair to distinguish
target and non-target models with a threshold τ = 0.8.
CFP-iBDv2 is better than CFP-AE and CFP-iBDv1,
due to the utilization of more sophisticated loss functions
when fine-tuning the classifier.

6.3. Persistency Analysis
We adopt the mainstream operations in prior water-

marking or fingerprinting works [7], [9], [31], [36], [43],
[56], [57], [67] to evaluate the persistency of different
fingerprinting methods.
Persistency against model transformations. We assume
the adversary can have access to the corresponding dis-
criminator of the stolen generator to facilitate the follow-
ing experiments. However, it is not realistic, because the
discriminator will be discarded after the training process.
Therefore, the adversary we consider in this section is
very strong. We apply pruning and fine-tuning14 to mod-
erately alter the GAN model. We also tried model quan-
tification, which could significantly decrease the model

13. https://github.com/NVlabs/stylegan
14. Fine-tuning GANs is actually not practical for an adversary to

perform, as it requires the discriminator, which is kept secret by the
model owner (see Appendix B). To demonstrate the strong persistency
of our method, we still evaluate this impractical attack.

Table 3: MSC (%) and MSV (%) after two model transformations.

GAN
Structure

Method
Target GAN Fine-tuning (epochs) Pruning (compression ratio)

10 20 30 0.2 0.4
MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑

StarGAN

AE-I 100.00 100.00 100.00 0.00 100.00 6.00 100.00 2.00 100.00 43.00 100.00 0.00
AE-D 100.00 100.00 100.00 100.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CFP-AE 100.00 100.00 96.60 94.20 96.40 91.80 97.00 96.00 98.80 98.20 94.60 97.00

CFP-iBDv1 95.52 94.12 94.98 93.07 92.20 89.25 92.88 92.15 95.58 94.12 95.35 93.60
CFP-iBDv2 92.87 90.05 92.53 85.32 92.28 84.57 92.68 84.80 92.73 90.02 92.78 89.57

AttGAN

AE-I 100.00 100.00 100.00 91.00 100.00 84.00 100.00 75.00 100.00 22.00 100.00 0.00
AE-D 100.00 14.00 100.00 14.00 100.00 14.00 100.00 14.00 100.00 14.00 100.00 16.00
CFP-AE 100.00 100.00 98.60 94.60 99.80 95.40 99.00 94.80 97.80 91.20 86.40 87.40

CFP-iBDv1 93.40 92.45 93.33 92.37 93.45 92.40 93.45 92.37 93.53 92.40 93.08 89.00
CFP-iBDv2 91.03 90.70 91.93 90.62 92.00 90.70 92.05 90.67 91.98 90.75 91.95 84.95

STGAN

AE-I 98.00 100.00 100.00 85.00 99.00 75.00 92.00 73.00 100.00 58.00 100.00 0.00
AE-D 100.00 34.00 100.00 36.00 100.00 36.00 100.00 32.00 100.00 34.00 100.00 57.00
CFP-AE 100.00 100.00 99.40 95.40 99.80 95.20 99.40 94.60 98.60 95.00 93.40 86.60

CFP-iBDv1 93.53 91.57 93.58 91.62 93.53 91.72 93.28 91.80 93.38 91.45 84.20 91.40
CFP-iBDv2 92.20 90.18 92.08 90.30 92.20 90.25 91.95 90.40 91.55 90.22 88.98 83.35

Table 4: MSC (%) and MSV (%) after four image transformations.

GAN
Structure

Method
Target GAN Image Transformation

MSC ⇑ MSV ⇑ Noise Blur Compression Crop
MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑

StarGAN

AE-I 100.00 100.00 100.00 1.00 100.00 0.00 100.00 0.00 100.00 0.00
AE-D 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 3.00 100.00

CFP-AE 100.00 100.00 67.20 77.60 83.20 84.60 89.20 89.00 80.00 81.60
CFP-iBDv1 95.52 94.12 94.75 93.12 94.85 93.57 95.03 93.75 95.03 93.57
CFP-iBDv2 92.87 90.05 92.83 86.02 92.05 87.57 92.30 89.70 92.25 90.62

AttGAN

AE-I 100.00 100.00 100.00 1.00 100.00 0.00 100.00 0.00 100.00 0.00
AE-D 100.00 14.00 100.00 18.00 100.00 14.00 100.00 14.00 4.00 97.00

CFP-AE 100.00 100.00 67.20 82.00 80.20 73.00 86.80 84.80 67.60 76.80
CFP-iBDv1 93.40 92.45 92.60 91.20 92.75 92.07 92.90 92.52 93.33 91.57
CFP-iBDv2 91.03 90.70 91.38 80.32 91.40 84.10 91.58 89.30 91.58 88.82

STGAN

AE-I 98.00 100.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
AE-D 100.00 34.00 100.00 41.00 100.00 39.00 100.00 36.00 2.00 100.00

CFP-AE 100.00 100.00 85.50 77.00 94.80 41.20 96.00 65.20 84.20 57.00
CFP-iBDv1 93.53 91.57 92.53 89.00 92.98 90.72 93.30 91.45 93.48 90.95
CFP-iBDv2 92.20 90.18 91.53 86.40 91.48 86.55 91.75 88.15 91.58 88.80

usability [55] (see Appendix E.2). So we ignore such
operation. (1) For model fine-tuning, we refine the model
with different epochs (10, 20 and 30) using the same
training set15. Such a setting is commonly used in previous
works, and also in line with the adversary’s capability in
this paper. The learning rate is different for fine-tuning
different model structures to avoid the collapse: 9.99e−5

for StarGAN, 1e−4 for AttGAN, 2e−5 for STGAN, which
all follow the learning rate adjustment in the original pa-
pers. (2) For model pruning, we consider two compression
ratios (0.2 and 0.4). Experiments show that a compression
ratio higher than 0.4 can cause significant accuracy degra-
dation for GAN models (see Appendix E.2).

As shown in Table 3, AE-I can hardly resist these
transformations because the above attacks fundamentally
change the generation details of the target model, while the
effectiveness of AE-I highly depends on the invariance
of these details. AE-D will benefit from these model
operations, which can further distort the model output and
decrease the PSNR value. But this is still not enough for
verifying AttGAN and STGAN. In contrast, our methods
achieve satisfactory persistency under these modifications.
Persistency against image transformations. We evaluate
the impact of image transformations. We first tried to

15. Fine-tuning a GAN using a different dataset of the same distri-
bution will give the same conclusion. Fine-tuning using a dataset of
different distributions is a challenging task in computer vision, and there
are no satisfactory methods for us to follow.

transform the model input, which significantly degrades
the quality of output images and is impractical for the
adversary (see Appendix E.2). So we mainly consider the
transformation of model output. We adopt four popular
operations: adding Gaussian noises (with mean µ = 0 and
standard deviation σ = 0.1), Gaussian blurring (with a
kernel size of 5), JPEG compression (with a compression
ratio of 35%), and center cropping (from 128 × 128 to
100 × 100). These transformations will still maintain the
quality of the images. Table 4 reports the Match scores.
We observe AE-I is not robust at all, as these operations
can significantly compromise the details of the images
and invalidate the verification process. For our approach,
CFP-AE is less effective for STGAN because the output
of STGAN is more sensitive than other models, due to
its adaptive selection structure giving more details in
the output. In contrast, CFP-iBDv1 and CFP-iBDv2
perform the best, as the backdoor classifier together with
the invisible backdoor samples are more robust against
these operations, further enhanced by the data augmenta-
tion during fingerprint embedding. We also measure the
impacts of different transformation strengths and other
types of transformation operations in Appendix E.2, which
has similar conclusions.

6.4. Stealthiness Analysis
We assess the stealthiness property from three per-

spectives. Note that our three methods share the same

𝑥

𝐺(𝑥)

𝑣

𝐺(𝑣)

STGANStarGAN

Black
Hair

Blond
Hair

Brown
Hair

YoungMale

AttGAN

Black
Hair

Blond
Hair

Brown
Hair

YoungMale Black
Hair

Blond
Hair

Brown
Hair

YoungMale

Fig. 6: Fingerprint visualization. (a) Clean sample x; (b) Verification sample v; (c) GAN output of clean sample G(x);
(d) GAN output of verification sample G(v). If the input agrees with the modifying attribute’s label, the model will
flip this label and modify the input with the flipped label.

verification samples, as they use the same Fgen. So we
use CFP-* to denote any of our methods. We provide
results on attribute editing tasks.

Sample space indistinguishability. Fig. 6 visually com-
pares the verification query-response images with the
ground-truth (normal images) for three different GANs
using our proposed CFP-*. Visualizations of CFP-*
for other GANs, and AE-I and AE-D can be found in
Appendix D. We observe that the perturbations added
to the verification samples and model output samples
are imperceptible. This confirms the effectiveness of the
objective function in Equation 2.

Quantitatively, Table 5 shows the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [23] be-
tween the input of clean and verification samples, as well
as between their output samples. According to [22], [39],
two pictures with PSNR> 35 or SSIM> 0.95 can be
considered as the same in human vision. We observe that
although AE-I and AE-D have indistinguishability for the
input samples, their output images are significantly differ-
ent from ground-truth ones. In contrast, our verification
samples meet the visual indistinguishability from normal
samples for both model inputs and outputs. This improves
the concealment of ownership verification and makes it
difficult for adversaries to distinguish verification samples
from visual changes.

Feature space indistinguishability. An adversary may try
to monitor the intermediate features of the inference pro-
cess to detect the verification samples. Anomalous sam-
ples usually result in unique behaviors in the feature space,
which has been exploited to detect adversarial attacks
[30], [34], [54]. Specifically, we produce 100 samples
for each category (normal, AE-I, AE-D, and CFP-*).
We compute the standard deviation of features for each
sample, and then the cumulative probabilities among these
100 samples in one category. If the cumulative probability
distribution of one category is closer to that of normal
samples, it is harder for the adversary to identify such
verification samples in the feature space. Table 6 shows
the statistical results. The stealthiness of the verification
samples from CFP-* is much better than that of AE-I
and AE-D since its distribution is closer to the normal
one’s. This is because the construction of our verification
samples is forced to minimize the distance ∥Gv,j , Gx,j∥,
which fundamentally ensures the consistency of the dis-

tribution in the feature space between verification and
normal samples.

Indistinguishability from machine learning detectors.
An adversary can employ an anomaly detector to identify
verification samples. To show this feasibility, we introduce
two detecting scenarios for an adversary. Scenario 1: The
detection model accepts differences between inference
samples and the corresponding results of the GAN model
as inputs. Scenario 2: The detection model accepts in-
ference samples as inputs. We train lightweight one-class
models based on HRN [25] only from clean samples for
each scenario, respectively, since the adversary does not
have information on the verification samples. The verifica-
tion samples are secretly stored in the trusted third party.
The adversary can only adopt clean data to train a detector
to detect verification samples. Specifically, the prediction
of the detector is projected to a non-linear space (0, 1)
through a function sigmoid(x) = 1/(1 + exp−x). The de-
tection result of normal samples is expected to be close to
1, while that of verification samples is expected to be close
to 0. The detector in our experiment is ResNet34 [18]
trained with the one-class detection method [25]. Ta-
ble 7 shows the performance of our anomaly detector
under two scenarios. We adopt the AUC (Area Under the
ROC Curve) metric: a higher AUC score means higher
detection accuracy, while a score of 50 indicates the
detector has similar performance as random guess. We
observe the it is challenging to perform detection just
based on the inference samples (Scenario 2) for all the
methods. However, if the adversary adopts the difference
between the inference samples and their corresponding
outputs (Scenario 1), the anomaly detector can identify the
verification samples based on AE-D and AE-I with very
high accuracy, while the detection accuracy of CFP-* is
still low. This demonstrates that our method is a stealthy
approach for IP protection of GAN models.

6.5. Generalize to Other Tasks

We evaluate CFP-* on the domain translation task and
super resolution task to prove that our scheme is general
to various I2I GANs. The results are shown in Tables 8
and 9. We observe a strong consistency among different
I2I tasks. Our methods can successfully verify protected
GANs and discriminate unrelated GANs. They are robust

Table 5: PSNR and SSIM of the verification and clean input (v, x) and output (G(v), G(x)) images for different
edited attributes. (“-” in AE-D indicates we are not able to find the qualified verification samples with Fgen.)

Similarity StarGAN AttGAN STGAN
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

PSNR(v, x)
AE-I 43.84 43.73 43.64 43.72 43.99 39.92 38.68 38.65 39.60 40.07 38.27 38.23 39.50 39.73 39.36
AE-D 33.62 33.67 33.68 33.57 - 33.70 33.72 33.62 34.09 34.24 33.35 33.81 33.67 - 33.39
CFP-* 41.54 42.38 42.34 41.12 40.86 47.50 45.54 46.41 46.16 46.41 46.22 44.08 43.48 44.56 44.64

SSIM(v, x)

AE-I 0.99 0.99 0.99 0.99 0.99 0.96 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.97 0.98
AE-D 0.89 0.89 0.89 0.89 - 0.90 0.90 0.90 0.91 0.90 0.90 0.90 0.91 - 0.94
CFP-* 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

PSNR(G(v), G(x))

AE-I 22.44 18.28 23.37 24.59 23.98 30.83 27.79 29.04 29.43 29.66 31.78 33.82 36.32 37.29 36.87
AE-D 10.99 10.07 10.85 10.77 - 23.94 22.92 24.51 25.65 28.29 22.50 20.12 25.71 - 29.62
CFP-* 37.75 38.00 38.12 37.37 37.20 45.33 43.33 44.38 44.46 44.36 44.53 42.78 42.81 43.94 44.01

SSIM(G(v), G(x))

AE-I 0.84 0.79 0.87 0.87 0.85 0.95 0.92 0.92 0.94 0.94 0.96 0.97 0.98 0.98 0.98
AE-D 0.40 0.38 0.41 0.40 - 0.86 0.85 0.87 0.89 0.90 0.85 0.84 0.90 - 0.93
CFP-* 0.97 0.97 0.97 0.96 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 6: The cumulative probability of standard devi-
ation of feature maps for different types of samples.

Method Standard deviation of feature maps
0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825

Normal 0% 3% 9% 15% 38% 63% 92% 100%
AE-I 0% 2% 19% 58% 97% 100% 100% 100%
AE-D 0% 18% 64% 99% 100% 100% 100% 100%
CFP-* 0% 3% 14% 37% 69% 86% 98% 100%

Table 7: AUC for detecting verification samples.

Method Scenario 1 Scenario 2
l2 l1 l∞ l2 l1 l∞

AE-D 85.74 99.82 86.39 55.46 65.78 55.85
AE-I 75.96 80.37 - 48.19 52.69 -
CFP-* 59.00 - - 51.51 - -

against various model modifications16 as well. Therefore,
our methods are general for different I2I GANs.

6.6. Summary
Table 10 summarizes the comparisons of those meth-

ods from the above evaluations. There are five levels to
assess each property of each method. AE-I is effective
for fingerprinting the GAN model, but not robust enough
against model pruning, fine-tuning or image transforma-
tions. AE-D cannot guarantee the high quality of verifica-
tion samples on other GAN models, leading to low MSV
scores. In Appendix D, we show the outputs of verification
samples for three GANs, which reveal that AE-D is not a
stable and general fingerprinting method. Besides, AE-I
and AE-D are not stealthy, which gives an adversary more
chances to detect the verification samples and manipulate
the results. For our proposed scheme, CFP-AE is not good
at resisting image transformations. With the introduction
of the invisible backdoor technique for fingerprint em-
bedding, CFP-iBDv1 and CFP-iBDv2 can significantly
improve the effectiveness and persistency. The two novel
loss function terms in CFP-iBDv2 can further increase
the distinguisability between target and non-target GAN
models. The three methods also give much better stealth-
iness in both the sample space and feature space.

7. Discussions
7.1. Limitations and Future Work
Fingerprinting other types of generative models. This
paper mainly focuses on the protection of I2I GANs.

16. We do not consider image transformations because these trans-
formations significantly change the outputs under these two I2I tasks,
violating our threat model.

Table 8: MSC (%) and MSV (%) for verifying different
GANs. The target GANs are C1 and SRResNet for
domain translation and super resolution, respectively.
C2 and C3 are for domain translation. RRDBNet and
EDSR are for super resolution.

Task Method
Target GAN Non-target GAN

MSC ⇑ MSV ⇑ C2 / RRDBNet C3 / EDSR
MSV ⇓ MSV ⇓

Domain
Translation

CFP-AE 100 88 51 44
CFP-iBDv1 93 97 41 30
CFP-iBDv2 99 97 38 27

Super
Resolution

CFP-AE 100 100 56 45
CFP-iBDv1 100 100 73 49
CFP-iBDv2 100 100 48 35

There are other types of GANs, e.g., noise-to-image
translation, models for synthesizing audios, texts, etc. We
expect our scheme to be general and extensible for those
models as well. We will consider this as future work. On
the other hand, recent diffusion models [20] are proposed
as a more advanced generative model. However, the for-
ward process requires many sampling steps to obtain high-
quality images, which makes the optimization process
during fingerprint generation computationally impossible.
Besides, the diffusion model can be sampled randomly
to generate various outputs, making the verification sam-
ples invalid. Therefore, our scheme does not fit diffusion
models. A new solution dedicated to diffusion models is
desired as future work.
Protection against model extraction attacks. Although
a few works about IP protection of classification models
[27], [43], [48] evaluate model extraction attacks, they
are not included in our threat model. The main reason
is that extracting a GAN model requires the adversary
to have much more significant amounts of computing
resources than stealing a classification model, and is much
easier to defeat by simply adding small scales of Gaussian
noise to the output [24]. Besides, [24] only presents the
attacks against noise-to-image GAN models, while the
feasibility of extracting I2I models is unknown. How to
design more resource-efficient model extraction attacks
and evaluate the effectiveness of our scheme against them
are interesting future directions.
Alternative schemes. We evaluate existing adversarial
attacks for GAN models [14], [26], [49], [50], [62] as
the fingerprint baselines, and show their limitations in
stealthiness and persistency. An alternative direction is to
seek for more robust and stealthy attacks for fingerprinting
GANs. Adversarial attacks against GANs are much less
studied, and we could not find a satisfactory solution.

Table 9: MSC (%) and MSV (%) after two model transformations. The target GANs are C1 and SRResNet for
domain translation and super resolution, respectively.

Task Method
Target GAN Fine-tuning (epochs) Pruning (compression ratio)

10 20 30 0.2 0.4
MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑ MSC ⇑ MSV ⇑

Domain
Translation

CFP-AE 100 88 97 88 98 88 91 88 96 88 83 88
CFP-iBDv1 93 97 91 98 95 94 94 91 96 92 95 87
CFP-iBDv2 99 97 94 95 96 91 95 85 100 90 97 85

Super
Resolution

CFP-AE 100 100 91 100 93 100 89 100 52 100 39 92
CFP-iBDv1 100 100 100 100 100 100 100 100 100 100 100 99
CFP-iBDv2 100 100 100 100 100 100 100 100 100 100 100 97

Table 10: Assessment summary of each method. (Ex-
cellent > Good > Fair > Poor > Bad)

Method Distinctness Persistency Stealthiness
Model trans. Image trans. Sample space Feature space Detection

AE-I Excellent Bad Bad Fair Bad Bad
AE-D Poor Fair Fair Poor Bad Bad

CFP-AE Poor Excellent Good Excellent Good Good
CFP-iBDv1 Fair Excellent Excellent Excellent Good Good
CFP-iBDv2 Good Excellent Excellent Excellent Good Good

On the other hand, the intrinsic fingerprint of GANs in
the frequency domain is not robust against the changing
brightness of the image. Therefore, such a fingerprint
cannot be used in I2I GANs, such as super-resolution,
denoising, and colorizing. We urge researchers to explore
this direction for both effective attacks and fingerprint-
ing solutions. Nevertheless, our novel scheme provides a
different perspective with off-the-shelf methodologies.

7.2. Related Works

We discuss some relevant works and highlight their
differences from our solution.
Watermarking GANs. Compared to classification mod-
els, IP protection of GAN models is much less explored.
Prior works [15], [38], [46] designed watermarking so-
lutions for GAN models. To embed a watermark into a
protected GAN, the model owner needs to train the model
from scratch, which is less practical for an already trained
GAN. As discussed in Section 1, watermarking has the
limitations of usability and applicability [9], [48], which
can be solved by fingerprinting.
Watermarking Diffusion Models. There are several re-
cent works [16], [41], [59] focusing on the IP protection
of diffusion models [21]. Diffusion models can synthesize
high-quality images from noise or text descriptions, or per-
form I2I translation. There are more and more applications
based on diffusion models. These methods are mainly
based on backdoor techniques, making the diffusion model
generate samples containing specific patterns in the signal
domain or pixel domain, which can be recognized by a
detector. Embedding such backdoors require training or
finetuning the diffusion model, which is costly in terms of
time and resources. It is interesting to extend our solution
to fingerprinting diffusion models.
Using GANs for IP protection. Some works utilized
GANs to enhance or defeat IP protection methods. For
instance, GANs are used to generate watermarks for BERT
language models [6], and identify and remove watermarks
from classification models [53]. Different from those
works, our solutions focus on protecting I2I GANs.
Meta learning for fingerprinting. Pan et al. [47] propose
a meta-learning-based fingerprinting scheme, which is a
task-agnostic framework independent of the tasks. They

adopt a number of positive and negative suspect mod-
els, where the positive suspect models are derived from
the protected model based on pruning, fine-tuning, and
distillation, and the negative models are models different
from the target model for different training data or model
structures. Although their framework shows robustness
against various attacks, we argue that it is not practical
to protect GANs for commercial use. In Section 6.1, we
show the time to train a high-quality GAN. The heavy
time cost makes this framework unrealistic in protecting
state-of-the-art GANs.

Detecting and attributing GAN-generated images.
Some works [63]–[65] leveraged fingerprints to detect
GAN-generated images and trace their sources. However,
they are not quite applicable to fingerprint GAN models
for IP protection. For instance, [64], [65] require the
model owner to modify the GAN model training process
(e.g., training loss and training data) to have the capability
of embedding fingerprints in the output images, which
violates the requirement of model fingerprinting. In [63],
the fingerprint in the output image is very sensitive to
model transformations: “Even GAN training sets that dif-
fer in just one image can lead to distinct GAN instances
[63].” As a result, an adversary can just use a different
training set to fine-tune the target GAN model to invalidate
the fingerprint. In contrast, our methods do not need to
modify the model and exhibit higher unremovability. [45]
adds a fingerprint into the generative model by modifying
the model structure, which is obvious for an adversary to
find out such a modification. This method also requires
the generative model to use the latent space during the
generation process, which is not general for all GANs.

8. Conclusion

We propose a novel scheme to fingerprint GAN mod-
els for IP protection. We introduce a classifier to construct
a composite model with the protected GAN. From this
composite model, we craft verification samples as the
fingerprint, and embed it in the classifier. The classifier
can distinguish the target and non-target models in a
stealthy and robust manner. We design three fingerprinting
methodologies based on generative adversarial examples
and invisible backdoor attacks. Extensive evaluations val-
idate the effectiveness of our designs.

9. Acknowledgement

This study is supported under the RIE2020 Industry
Alignment Fund – Industry Collaboration Projects (IAF-
ICP) Funding Initiative, as well as cash and in-kind con-
tribution from the industry partner(s).

References

[1] Lunapic free online editor. https://www.lunapic.com/editor/
?action=beauty.

[2] Makegirlsmoe - create anime characters with ai. https://make.girls.
moe.

[3] Photoleap. https://www.photoleapapp.com/.

[4] Prisma lab. https://prisma-ai.com/.

[5] Tiktok online image editor. https://www.tiktok.com/discover/
online-image-editor.

[6] Sahar Abdelnabi and Mario Fritz. Adversarial watermarking trans-
former: Towards tracing text provenance with data hiding. In Proc.
of the SP, pages 121–140, 2021.

[7] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and
Joseph Keshet. Turning your weakness into a strength: Water-
marking deep neural networks by backdooring. In Proc. of the
USENIX Security, pages 1615–1631, 2018.

[8] Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on
single image super-resolution: Dataset and study. In Proc. of the
CVPR Workshops, pages 1122–1131, 2017.

[9] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IPGuard:
Protecting the intellectual property of deep neural networks via
fingerprinting the classification boundary. CoRR, abs/1910.12903,
2019.

[10] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In Proc. of the S&P, pages 39–
57, 2017.

[11] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun
Kim, and Jaegul Choo. StarGAN: Unified generative adversarial
networks for multi-domain image-to-image translation. In Proc. of
the CVPR, pages 8789–8797, 2018.

[12] Jia Deng, Jonathan Krause, and Li Fei-Fei. Fine-grained crowd-
sourcing for fine-grained recognition. In Proc. of the CVPR, pages
580–587, 2013.

[13] Abhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, and Nikhil
Naik. Maximum-Entropy Fine Grained Classification. In Proc.
of the NeurIPS, pages 635–645, 2018.

[14] Zigang Fang, Yu Yang, Jialin Lin, and Rui Zhan. Adversarial
attacks for multi target image translation networks. In Proc. of the
PIC, pages 179–184, 2020.

[15] Jianwei Fei, Zhihua Xia, Benedetta Tondi, and Mauro Barni. Su-
pervised GAN Watermarking for Intellectual Property Protection.
In 2022 IEEE International Workshop on Information Forensics
and Security (WIFS), pages 1–6, 2022.

[16] Pierre Fernandez, Guillaume Couairon, Herv’e J’egou, Matthijs
Douze, and T. Furon. The Stable Signature: Rooting Watermarks
in Latent Diffusion Models. CoRR, abs/2303.15435, 2023.

[17] Efstratios Gavves, Basura Fernando, Cees GM Snoek, Arnold WM
Smeulders, and Tinne Tuytelaars. Fine-grained categorization by
alignments. In Proc. of the ICCV, pages 1713–1720, 2013.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. of the CVPR,
pages 770–778, 2016.

[19] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, and
Xilin Chen. AttGAN: Facial attribute editing by only chang-
ing what you want. IEEE Transactions on Image Processing,
28(11):5464–5478, 2019.

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion
Probabilistic Models. In Proc. of the NeurIPS, 2020.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion
probabilistic models. In Proc. of the NeurIPS, 2020.

[22] Zhiwei Hong, Xiaocheng Fan, Tao Jiang, and Jianxing Feng.
End-to-end unpaired image denoising with conditional adversarial
networks. In Proc. of the AAAI, pages 4140–4149, 2020.

[23] Alain Horé and Djemel Ziou. Image quality metrics: Psnr vs. ssim.
In Proc. of the ICPR, pages 2366–2369, 2010.

[24] Hailong Hu and Jun Pang. Stealing machine learning models:
Attacks and countermeasures for generative adversarial networks.
In Annual Computer Security Applications Conference, pages 1–
16, 2021.

[25] Wenpeng Hu, Mengyu Wang, Qi Qin, Jinwen Ma, and Bing Liu.
HRN: A holistic approach to one class learning. In Proc. of the
NeurIPS, 2020.

[26] Qidong Huang, Jie Zhang, Wenbo Zhou, Weiming Zhang, and
Nenghai Yu. Initiative defense against facial manipulation. In
Proc. of the AAAI, pages 1619–1627, 2021.

[27] Hengrui Jia, Christopher A Choquette-Choo, Varun Chan-
drasekaran, and Nicolas Papernot. Entangled watermarks as a
defense against model extraction. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 1937–1954, 2021.

[28] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme.
In Proc. of the CCS, pages 28–36, 1999.

[29] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator
architecture for generative adversarial networks. In Proc. of the
CVPR, pages 4401–4410, 2019.

[30] Ziv Katzir and Yuval Elovici. Detecting adversarial perturbations
through spatial behavior in activation spaces. In Proc. of the
IJCNN, pages 1–9, 2019.

[31] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial
frontier stitching for remote neural network watermarking. Neural
Computing and Applications, pages 1–12, 2019.

[32] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, An-
drew Cunningham, Alejandro Acosta, Andrew P. Aitken, Alykhan
Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-
realistic single image super-resolution using a generative adver-
sarial network. In Proc. of the CVPR, pages 105–114, 2017.

[33] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, An-
drew Cunningham, Alejandro Acosta, Andrew P. Aitken, Alykhan
Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-
realistic single image super-resolution using a generative adver-
sarial network. In Proc. of the CVPR, pages 105–114, 2017.

[34] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple
Unified Framework for Detecting Out-of-Distribution Samples and
Adversarial Attacks. In Proc. of the NeurIPS, pages 7167–7177,
2018.

[35] Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue, Dali
Kaafar, and Haojin Zhu. Invisible backdoor attacks against deep
neural networks. CoRR, abs/1909.02742, 2019.

[36] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How
to prove your model belongs to you: A blind-watermark based
framework to protect intellectual property of DNN. In Proc. of the
ACSAC, pages 126–137, 2019.

[37] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Ky-
oung Mu Lee. Enhanced deep residual networks for single image
super-resolution. In Proc. of the CVPR Workshops, pages 1132–
1140, 2017.

[38] Dongdong Lin, Benedetta Tondi, Bin Li, and Mauro Barni. Cy-
cleGANWM: A CycleGAN watermarking method for ownership
verification. CoRR, abs/2211.13737, 2022.

[39] Tran Duy Linh, Son Minh Nguyen, and Masayuki Arai. Gan-based
noise model for denoising real images. In Proc. of the ACCV, pages
560–572, 2020.

[40] Ming Liu, Yukang Ding, Min Xia, Xiao Liu, Errui Ding, Wang-
meng Zuo, and Shilei Wen. STGAN: A unified selective transfer
network for arbitrary image attribute editing. In Proc. of the CVPR,
pages 3673–3682, 2019.

[41] Yugeng Liu, Zheng Li, Michael Backes, Yun Shen, and Yang
Zhang. Watermarking Diffusion Model. CoRR, abs/2305.12502,
2023.

[42] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proc. of the ICCV, pages
3730–3738, 2015.

[43] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural
network fingerprinting by conferrable adversarial examples. CoRR,
abs/1912.00888, 2019.

https://www.lunapic.com/editor/?action=beauty
https://www.lunapic.com/editor/?action=beauty
https://make.girls.moe
https://make.girls.moe
https://www.photoleapapp.com/
https://prisma-ai.com/
https://www.tiktok.com/discover/online-image-editor
https://www.tiktok.com/discover/online-image-editor

[44] Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry Davis, Jun
Li, Jian Yang, and Ser-Nam Lim. Cross-X Learning for Fine-
Grained Visual Categorization. In Proc. of the ICCV, pages 8241–
8250, 2019.

[45] Guangyu Nie, Changhoon Kim, Yezhou Yang, and Yi Ren. At-
tributing image generative models using latent fingerprints. CoRR,
abs/2304.09752, 2023.

[46] Ding Sheng Ong, Chee Seng Chan, Kam Woh Ng, Lixin Fan,
and Qiang Yang. Protecting intellectual property of generative
adversarial networks from ambiguity attacks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3630–3639, 2021.

[47] Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. Metav: A
meta-verifier approach to task-agnostic model fingerprinting. In
Proc. of the KDD, pages 1327–1336, 2022.

[48] Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin
Zhu, and Minhui Xue. Fingerprinting deep neural networks
globally via universal adversarial perturbations. arXiv preprint
arXiv:2202.08602, 2022.

[49] Nataniel Ruiz, Sarah Adel Bargal, and Stan Sclaroff. Disrupting
deepfakes: Adversarial attacks against conditional image transla-
tion networks and facial manipulation systems. In Proc. of the
ECCV Workshops, pages 236–251, 2020.

[50] Nataniel Ruiz, Sarah Adel Bargal, and Stan Sclaroff. Protecting
against image translation deepfakes by leaking universal pertur-
bations from black-box neural networks. CoRR, abs/2006.06493,
2020.

[51] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
FaceNet: A unified embedding for face recognition and clustering.
In Proc. of the CVPR, pages 815–823, 2015.

[52] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi
Satoh. Embedding watermarks into deep neural networks. In Proc.
of the ICMR, pages 269–277, 2017.

[53] Haoqi Wang, Mingfu Xue, Shichang Sun, Yushu Zhang, Jian
Wang, and Weiqiang Liu. Detect and remove watermark in deep
neural networks via generative adversarial networks. arXiv preprint
arXiv:2106.08104, 2021.

[54] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin
Zhang. Adversarial sample detection for deep neural network
through model mutation testing. In Proc. of the ICSE, pages 1245–
1256, 2019.

[55] Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song,
XuXin Liu, Yongqiang Lyu, and Yuan Xie. QGAN: quantized
generative adversarial networks. CoRR, abs/1901.08263, 2019.

[56] Si Wang and Chip-Hong Chang. Fingerprinting deep neural
networks-a deepfool approach. In 2021 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021.

[57] Siyue Wang, Xiao Wang, Pin-Yu Chen, Pu Zhao, and Xue Lin.
Characteristic examples: High-robustness, low-transferability fin-
gerprinting of neural networks. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI,
pages 575–582, 2021.

[58] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao
Dong, Yu Qiao, and Chen Change Loy. ESRGAN: enhanced super-
resolution generative adversarial networks. In Laura Leal-Taixé and
Stefan Roth, editors, Proc. of the ECCV Workshops, volume 11133,
pages 63–79, 2018.

[59] Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein.
Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust. CoRR, abs/2305.20030, 2023.

[60] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu,
and Dawn Song. Generating adversarial examples with adversarial
networks. In Proc. of the IJCAI, pages 3905–3911, 2018.

[61] Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao, and
Liwei Wang. Learning to Navigate for Fine-Grained Classification.
In Proc. of the ECCV, pages 438–454, 2018.

[62] Chin-Yuan Yeh, Hsi-Wen Chen, Shang-Lun Tsai, and Shang-De
Wang. Disrupting image-translation-based deepfake algorithms
with adversarial attacks. In Proc. of the WACV Workshops, pages
53–62, 2020.

[63] Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake images
to gans: Learning and analyzing gan fingerprints. In Proc. of the
ICCV, pages 7556–7566, 2019.

[64] Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz.
Artificial fingerprinting for generative models: Rooting deepfake
attribution in training data. CoRR, abs/2007.08457, 2020.

[65] Ning Yu, Vladislav Skripniuk, Dingfan Chen, Larry Davis, and
Mario Fritz. Responsible disclosure of generative models using
scalable fingerprinting. CoRR, abs/2012.08726, 2020.

[66] Fan Zhang, Meng Li, Guisheng Zhai, and Yizhao Liu. Multi-
branch and Multi-scale Attention Learning for Fine-Grained Visual
Categorization. In Proc. of the MMM, pages 136–147, 2021.

[67] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph
Stoecklin, Heqing Huang, and Ian Molloy. Protecting intellectual
property of deep neural networks with watermarking. In Proc. of
the AsiaCCS, pages 159–172, 2018.

[68] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros.
Unpaired image-to-image translation using cycle-consistent adver-
sarial networks. In Proc. of the ICCV, pages 2242–2251, 2017.

A. Symbols and Remarks

Table 1: Some important symbols and their remarks.
Symbol Remarks
mk a secret marking key
vk a public verification key
v(i) a verification sample
x(i) a clean sample
ts a timestamp
D a sample space
D̄ a defined sample space
L a label space
V , V ′ verification sample sets
VL, V ′

L verification label sets
F a protected deep learning model
F s a suspicious model, whether it is stolen or not
G the Generator of protected GAN
Gv(i),j , Gx(i),j the j-th feature maps in G

G(x) the accurate model outputs
G(x)p the perturbed model outputs by the adversary
G(x) a set contains outputs of G(x) and G(x)p

f∗ a ground-truth classifier projecting D to L

f a normal classifier trained with Of∗

f̂ f after fingerprinted
M a composite deep learning model with f and G

M̂ a fingerprinted composite deep learning model with f̂ and G

Of∗
an oracle truly answering each call to f∗

A, T , S PPT algorithms

B. Adversary’s Power

Let us introduce the adversary’s capability in practice
with more details. Firstly, when the model owner provides
the service to others to use the model, the owner only
needs the Generator of the GAN. The Discriminator of the
GAN is deprecated, and any user cannot have the access
to it, as the Discriminator may be deleted after the GAN
is trained. It means that the adversary cannot steal both
Generator and Discriminator, and the adversary can only
steal the Generator at most. Secondly, the adversary does
not have the ability to train a GAN to obtain the same
performance as the stolen one, otherwise the adversary has
no need to steal other’s model. It means that the adversary
does not have the ability to restore the Discriminator
from the Generator. When fine-tuning the Generator, the
adversary must have the Generator and the corresponding
Discriminator at the same time. So the fine-tuning process
is not possible in practice. However, the adversary may
steal the Discriminator by some adaptive ways, such as
stealing the hard disk storing the Discriminator. That is

why fine-tuning the Generator is an adaptive attack in
this paper. Further, let us consider a situation where the
adversary prunes the Generator first and fine-tunes it later.
For a PPT adversary, it is impossible to fine-tune a pruned
Generator, as the Discriminator is no longer aligned with
the pruned Generator. If using an unaligned Discriminator,
it is easy to cause collapse in fine-tuning and make the
Generator give worse results. A PPT adversary cannot find
a set of parameters for the Discriminator to cooperate with
the new Generator, otherwise the adversary can remove
the fingerprint in the Generator directly by finding another
set of parameters for it. As it is impossible, we do not
consider this method in our experiments.

C. Proof of Theorem 1

(I) Functionality-preserving. By the definition of the
algorithm Femb, it outputs a model M̂ that satisfies

Pr
x∈D̄\V

[f∗(G(x)) ̸= Classify(M̂, x)] ≤ ϵ, and

Pr
x∈V

[VL(x) ̸= Classify(M̂, x)] ≤ ϵ.

As a result, given an error ϵ, M̂ classifies correctly for
at least (1− ϵ)|V| elements in V , which is consistent with
the argument that Classify outputs 1 if M̂ disagrees with
V on at most ϵ|V| elements.

(II) Unremovability. As defined in Section 4.1, we
assume that no algorithms can generate an ϵ-accurate
model N in the time t of f , where t is much smaller
than the time required to train a model with the same
accuracy as N using the algorithm Train. In addition,
we assume that the time taken by the adversary A to
break the requirement of unremovability is approximately
t. According to Game 1, A will output an ϵ-accurate
model when it is given the knowledge of M̃ and vk,
where at least a (1 − ϵ) fraction of the elements in V
are classified correctly by M̃ . We first prove that the
adversary’s realization of this is independent of the key
vk. To achieve this, we construct a series of algorithms
to gradually replace the verification samples in vk with
other random values. Specifically, consider the following
algorithm S:

1. Generate M ← Train(Of∗
,G) and (mk, vk)←

KeyGen().
2. Compute M̂ ← FP(M,mk) and run (Ṽ , ṼL) = Ṽ ←

Fgen(Of∗
, G), where Ṽ = {ṽ(i)|i ∈ [n]}, ṼL =

{ṽL(i)|i ∈ [n]}.
3. Set c(1)v ← Com(ṽ(1), h

(1)
v), c(1)L ← Com(ṽL

(1), h
(1)
L),

and ṽk ← {c(i)v , c
(i)
L }i∈[n]. Then, compute M̃ ←

A(Of , ṽk, M̂).
This algorithm replaces the first element in vk with an

independently generated random element, and then runs A
on it. Due to the statistical hiding property of Com, the
output of S is statistically close to the output of A in
the unremovablity experiment. Therefore, we can further
generate a series of hybrids S(2),S(3) · · · ,S(n) to change
the 2nd to n-th elements in vk in the same way. This
means that the model M̃ generated by the adversary A
must be independent of vk. Based on this, we consider
the following algorithm T :

1. Compute (mk, vk)← KeyGen().
2. Run the adversary and compute Ñ ← A(Of ,M, vk).

According to the above hybrid argument, the running
time of the algorithm T is similar to that of A, i.e., time
t. Then it generates a model Ñ which does not contain
the fingerprint. However, this is contrary to the previous
assumption about the persistence of strong fingerprints,
i.e., T must also generate an ϵ-accurate model given any
model in the same time t.

(III) Non-rewriteability. Suppose there is a poly-
nomial time algorithm A which can break the non-
rewriteability requirement. This means that the timestamp
ts′ owned by the adversary is generated earlier than the
ts of the model owner, and the model M̃ owned by the
adversary also passes the trusted third party verification
process. Obviously, if M̃ is built after M̂ , ts′ must be
smaller than ts. This is because the trusted third party
requires all model owners to upload the model as soon
as possible after generating a complete composite model
and use the upload time as the timestamp. The trusted
third party will verify the copyright of the model and
the legality of the timestamp. Therefore, it is impossible
for the adversary to construct ts′ smaller than ts without
knowing the victim model M̂ , since the trusted third party
needs to verify the copyright of the composite model
bundled with ts′ while verifying the legitimacy of ts′.

D. Verification Samples of Different Schemes

In this section, we show the verification samples of
AE-I and AE-D in Fig. 1 and Fig. 2, respectively. For
AE-I, it is clear that all GANs can generate high quality
outputs from the verification samples, and they are similar
visually. However, AE-D does not have the same perfor-
mance on AttGAN and STGAN as on StarGAN. Because
AttGAN and STGAN have more stable generation struc-
tures, which means generating disrupted images by them
are more difficult. On the other hand, AE-D still achieves
a very high SSIM on AttGAN and STGAN, indicating it is
not a stable and general fingerprinting scheme. In Fig. 3,
and Fig. 4, we show the visualization results of CFP-*
for other tasks. The results prove the generalizability of
our proposed fingerprinting schemes.

E. High-resolution Facial Images of CFP-*

In our experiments, we evaluate the performance of
our proposed method by verifying whether the generated
fingerprints satisfy the functionality-preserving, unremov-
ability, and stealthiness properties. Here, we present the
high-resolution of GAN outputs of CFP-* in suffering
various degradation, including model compression and
corruptions with common image transformations.

E.1. Verification Samples after Different GANs

In Fig. 5, we show our CFP-iBDv2 verification sam-
ples’ outputs for different GANs. The columns from (e) to
(j) indicate the output images from different models ma-
nipulated on both clean samples and verification samples.
Verification samples do not decrease other GANs outputs’
quality in most cases. The outputs of verification samples
look similar to outputs of clean samples. It means our
CFP-iBDv2 has good functionality-preserving property.

𝐺(𝑥)

𝑣

𝐺(𝑣)

STGANStarGAN

Black
Hair

Blond
Hair

Brown
Hair

YoungMale

AttGAN

Black
Hair

Blond
Hair

Brown
Hair

YoungMale Black
Hair

Blond
Hair

Brown
Hair

YoungMale

𝑥

Fig. 1: Fingerprint visualization generated from AE-I for three attribute editing GANs with five edited attributes. (a)
Clean sample x; (b) Verification sample v; (c) GAN output of clean sample G(x); (d) GAN output of verification
sample G(v).

𝑥

𝐺(𝑥)

𝑣

𝐺(𝑣)

STGANStarGAN

Black
Hair

Blond
Hair

Brown
Hair

YoungMale

AttGAN

Black
Hair

Blond
Hair

Brown
Hair

YoungMale Black
Hair

Blond
Hair

Brown
Hair

YoungMale

Fig. 2: Fingerprint visualization generated from AE-D for three attribute editing GANs with five edited attributes.
Because there are no verification samples for some attributes, we leave these columns blank.

𝑥

𝐺(𝑥)

𝑣

𝐺(𝑣)

Fig. 3: Fingerprint visualization CFP-* for the domain
translation GAN, C1.

E.2. Verification Samples suffer Degradation

In evaluating the unremovability of our proposed
method, we mainly consider the two different degradation,
model transformations and common image transforma-
tions. Here, we will give more results under different

𝑥

𝐺(𝑥)

𝑣

𝐺(𝑣)

𝐺(𝑥)

𝐺(𝑣)

Fig. 4: Fingerprint visualization CFP-* for the super
resolution GAN, SRResNet.

degrees of degradation.
Model Transformations. In evaluating the unremovabil-
ity against model compression (i.e., pruning), we explore
the effectiveness of our method when the GAN model is
compressed in various levels. In Fig. 6, the column (e)
to (h) indicate the manipulated images with compressed
models when the pruning rate is not larger than 0.4. We
can find that the GAN’s outputs maintain a high-quality
visualization, thus the pruning rate no more than 0.4 is an
appropriate setting in our experiment. Furthermore, if the

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Stealthiness Evaluation Functionality-preserving Evaluation

StarGAN

AttGAN

STGAN

StarGAN AttGAN STGAN𝑥 𝐺(𝑥)𝑣 𝐺(𝑣)

Fig. 5: Manipulated images. (e) edits attribute on x with
StarGAN, (f) edits attribute on v with StarGAN, (g) edits
attribute on x with AttGAN, (h) edits attribute on v with
AttGAN, (i) edits attribute on x with STGAN, (j) edits
attribute on v with STGAN.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Stealthiness Evaluation Unremovability Evaluation

StarGAN

AttGAN

STGAN

Pruning rate 0.2 Pruning rate 0.4 Pruning rate 0.6𝑥 𝐺(𝑥)𝑣 𝐺(𝑣)

Fig. 6: Manipulated images. (e) edits attributes on x with
pruning rate 0.2, (f) edits attributes on v with pruning
rate 0.2, (g) edits attributes on x with pruning rate 0.4,
(h) edits attributes on v with pruning rate 0.4, (i) edits
attributes on x with pruning rate 0.6, (j) edits attributes
on v with pruning rate 0.6.

pruning rate is higher, when it is 0.6, the outputs is not sat-
isfying for a user. We further compare more experimental
results under various pruning rates showing in the Fig. 9.
When the pruning rate is smaller than 0.5, the MSV (%) is
high enough to pass the verification (the threshold is 0.8).
With the pruning rate increasing, the MSV (%) will drop
slowly at first and decrease significantly after the pruning
rate is higher than 0.5. Because the outputs’ quality is not
good enough for the backdoor classifier to recognize the
triggers. We apply model quantization on GANs based
on model parameter trunction, which means we keep
model paramters with a specific length. After different
scales’ quantization, our method can successfully verify
the fingerprinted GAN, which can be found in Fig. 7. The
visulization results in Fig. 8 indicates that under model
quantization, GANs can generate high quality results.

Fig. 7: MSV (%) of CFP-iBDv2 under different quanti-
zation scales. Bit Length stands for the truncation length
for model parameters.

Image Transformations. The GAN’s outputs will al-
ways be corrupted by various image transformations when

Fig. 8: Outputs before and after model quantization. The
first row is the outputs of the clean image and the verifi-
cation image, respectively. The second row is the corre-
sponding outputs after model quantization. Each column
responds to the output of one Bit Length quantization
model in Fig. 7.

spreading in the social models. Fig. 10 presents the vi-
sualization of GAN’s outputs by employing four differ-
ent types of common image transformations, including
adding Gaussian noises, blurring, JPEG compression,
and centering cropping. Here, the parameters of these
transformations are described in Section 6.3. In Fig. 11,
we show the MSV (%) under different transformation
magnitudes, which transformation applies on the outputs
of the GAN. Clearly, our CFP-iBDv2 is robust under
blurring and compression. These two transformations have
trivial influence during the verification process. As for
adding Gaussian noise, CFP-iBDv2 is robust on the
AttGAN, and when the noise std is higher than 0.1, the
verification process will fail on the StarGAN and STGAN.
Center cropping can significantly decline the completeness
of backdoor triggers, resulting in the verification failure.
Our CFP-iBDv2 can still work when the cropping size
is bigger than 90, which is an excellent result.

Fig. 9: MSV (%) of CFP-iBDv2 under pruning.

(a) (b) (c) (d)

Fig. 10: Visualization of GAN outputs corrupted by four
image transformations. The first row is GAN outputs from
clean images. The second row is GAN outputs from veri-
fication samples. (a) adding Gaussian Noise, (b) blurring,
(c) JPEG compression, (d) centering cropping.

Additionaly, we explore unseen image transforma-
tions’ effects on our verification classifier. In Fig. 12, we
compare four unseen image transformations, i.e., bright-
ness adjustment, contrast adjustment, gamma adjustment
and hue adjustment. For each adjustment, we consider
different transformation intensities, and the outputs after
each can be found in Fig. 13. The results confirm that our
method can defend against these unseen transformations
even we do not use them to train our verification classifier.

Fig. 11: MSV (%) of CFP-iBDv2 under different settings
of transformations, applied on the outputs of GANs.

Fig. 12: MSV (%) of CFP-iBDv2 under different settings
of transformations, applied on the outputs of GANs.

Brightness Adjustment

Contrast Adjustment

Gamma Adjustment

Hue Adjustment

Different transformation scales

Fig. 13: Results of outputs after applying image trans-
formations on the outputs. The transformation scales are
consistent with the values on the x-axis in Fig. 12.

Furthermore, in Fig. 14, we show the MSV under
different transformation magnitudes of CFP-iBDv2, in
which transformation applies on the inputs of GANs. The
MSV in these figures is significantly low, which is because
when we add image transformations on the inputs, the
outputs of the GAN lost most of details which contain
the fingerprint information, which can be found in Fig. 15,
especially under Gaussian noise and compression, which
introduce non-trivial noise to replace our backdoor pertur-
bation. We believe that this type of image transformations
will not be used in practice as a defense.

After the comprehensive experiments on model prun-
ing and image transformations, our CFP-iBDv2 shows
impressive functionality-preserving, unremovability, and
stealthiness. It can defend against gentle and medium
image modification and model compression. More than
that, its outputs are visually indistinguishable for humans.

Fig. 14: MSV (%) of CFP-iBDv2 under different settings
of transformations, applied on the inputs of the GAN.

Gaussian noise

Blurring

JPEG compression

Center cropping

Different transformation scales

Fig. 15: Results of outputs after applying image trans-
formations on the inputs. The transformation scales are
consistent with the values on the x-axis in Fig. 14.

	Introduction
	Preliminaries
	DNN Fingerprinting
	Commitments

	A Novel Fingerprinting Scheme
	Design Insight
	Scheme Overview
	Composite Deep Learning Model
	Fingerprints in Composite Models
	Threat Model
	A Motivating Example
	Workflow of Our Fingerprinting Scheme
	Security Requirements

	Concrete Methodologies of Generating and Embedding Strong Fingerprints
	Assumptions for Strong Fingerprints
	CFP-AE
	CFP-iBDv1
	CFP-iBDv2
	Generalization to Different I2I Tasks

	Security Analysis
	Experiments
	Time Cost Comparison
	Distinctness Analysis
	Persistency Analysis
	Stealthiness Analysis
	Generalize to Other Tasks
	Summary

	Discussions
	Limitations and Future Work
	Related Works

	Conclusion
	Acknowledgement
	References
	 A: Symbols and Remarks
	 B: Adversary's Power
	 C: Proof of Theorem 1
	 D: Verification Samples of Different Schemes
	 E: High-resolution Facial Images of CFP-*
	Verification Samples after Different GANs
	Verification Samples suffer Degradation

