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Abstract. Instruction-driven image editing allows users to quickly edit
an image according to text instructions in a forward pass. Nevertheless,
malicious users can easily exploit this technique to create fake images,
which could cause a crisis of trust and harm the rights of the original
image owners. Watermarking is a common solution to trace such mali-
cious behavior. Unfortunately, instruction-driven image editing can sig-
nificantly change the watermarked image at the semantic level, making
current state-of-the-art watermarking methods ineffective.
To remedy it, we propose Robust-Wide, the first robust watermarking
methodology against instruction-driven image editing. Specifically, we
follow the classic structure of deep robust watermarking, consisting of
the encoder, noise layer, and decoder. To achieve robustness against se-
mantic distortions, we introduce a novel Partial Instruction-driven De-
noising Sampling Guidance (PIDSG) module, which consists of a large
variety of instruction injections and substantial modifications of images
at different semantic levels. With PIDSG, the encoder tends to embed
the watermark into more robust and semantic-aware areas, which re-
mains in existence even after severe image editing. Experiments demon-
strate that Robust-Wide can effectively extract the watermark from the
edited image with a low bit error rate of nearly 2.6% for 64-bit wa-
termark messages. Meanwhile, it only induces a neglectable influence
on the visual quality and editability of the original images. Moreover,
Robust-Wide holds general robustness against different sampling config-
urations and other popular image editing methods such as ControlNet-
InstructPix2Pix, MagicBrush, Inpainting, and DDIM Inversion. Codes
and models are available at https://github.com/hurunyi/Robust-Wide.
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1 Introduction

Recently released Text-to-Image (T2I) diffusion models (e.g., GLIDE [17],
DALL.E 2 [20], Imagen [23], Stable Diffusion [21]) have pushed image genera-
tion capabilities to a new level. Trained on massive text-image pairs collected
from the Internet, these models can generate high-quality photorealistic images
based on given text prompts. Instruction-driven image editing, a fantastic tech-
nique utilizing the power of T2I diffusion models, can edit the images on demand
according to the instructions. Different models have been introduced to achieve
this task. For instance, InstructPix2Pix [1] is a popular instruction-driven im-
age editing model, which is fine-tuned from Stable Diffusion [21] on the dataset
generated by GPT-3 [3] and Prompt2Prompt [8]. Afterwards, HIVE [32], Mag-
icBrush [29], and MGIE [6] are proposed to improve InstructPix2Pix.

Despite the success of the instruction-driven image editing technique, these
models could be misused by malicious users. First, attackers can exploit these
models to modify normal images to create fake news, causing a crisis of trust in
an individual or even a country. Typical examples include changing someone’s
face or expression, forging endorsements for commercial gain, or taking off the
clothes to produce vulgar images. Second, attackers can migrate the style based
on a certain painting or make local modifications while keeping the basic compo-
sition of the painting unchanged to create new works, which shall be confirmed
as plagiarism, infringing the IP rights of the work’s owner. By integrating the
personalization technique (e.g., Textual Inversion [7]), they may compose some
concepts learned from other images in the edited image, which will undoubtedly
lead to wider infringement on the concept’s owners.

To identify such misuse and trace malicious users, a common approach is
watermarking. We can embed a secret watermark message into the original im-
age, which can be extracted later for ownership verification. The embedded wa-
termark must be robust enough against various distortions. Traditional robust
watermarking strategies [19] mainly embed the watermark into a transformed
domain to resist spatial distortions. To achieve robustness against more com-
plex digital distortions, some deep watermarking methods are further proposed,
e.g., HiDDeN [33] and MBRS [12]. Additionally, researchers also introduced new
methods to pursue robustness against physical distortions, including StegaS-
tamp [25] and PIMoG [5]. Unfortunately, all the above solutions mainly target
the pixel-level distortions, and fail to resist instruction-driven image editing,
which induces significant distortions in the semantic level.

To remedy this issue, we propose Robust-Wide, the first robust watermarking
method for instruction-driven image editing. We are motivated by the popu-
lar encoder-noise layer-decoder framework in most deep watermarking meth-
ods [5, 12, 25, 33], which jointly achieve watermark embedding and extraction
in an end-to-end way and leveragzhi lie the noise layer to simulate specific dis-
tortions to obtain the corresponding robustness. However, the main challenge
in our task is how to simulate the distortions caused by instruction-driven im-
age editing. To this end, we design a novel Partial Instruction-driven Denoising
Sampling Guidance (PIDSG) module in Robust-Wide. Briefly, PIDSG allows the

https://orcid.org/0009-0001-6974-2542
https://orcid.org/0000-0002-4230-1077
https://orcid.org/0000-0001-6595-6650


Robust Watermarking against Instruction-driven Image Editing 3

gradient of the last k sampling steps to flow into the training pipeline, making
the non-differentiable sampling process trainable. Additionally, it injects diverse
instructions to guide distortions, forcing the encoder and decoder to focus on
semantic areas for watermark embedding and extraction.

We perform extensive experiments to demonstrate the robustness of Robust-
Wide during the instruction-driven image editing process. It achieves a low Bit
Error Rate (BER) of nearly 2.6% for 64-bit watermark messages, while pre-
serving the visual quality and editability of original images. Besides the ro-
bustness against semantic distortions, Robust-Wide acquires inherent robustness
against pixel-level distortions such as JPEG and color shifting, which are un-
seen during training. It also holds general robustness against different sampling
configurations and even different popular editing models such as ControlNet-
InstructPix2Pix, MagicBrush, Inpainting [10] and DDIM Inversion [16].

In summary, our contributions are as follows:

– We point out the potential threat caused by the misuse of instruction-driven
image editing and find current state-of-the-art watermarking methods are in-
effective in the emerging case. In other words, we unearth a novel robustness
requirement for current image watermarking.

– We propose Robust-Wide, the first robust watermarking method for instruction-
driven image editing. We introduce a novel Partial Instruction-driven De-
noising Sampling Guidance (PIDSG) module, which forces the watermark
embedded in the semantic-level rather than pixel-level.

– Experimental results demonstrate that Robust-Wide can resist instruction-
driven image editing, conventional pixel-level distortions, and different sam-
pling configurations. More importantly, the proposed method exhibits ro-
bustness against a variety of popular editing models.

2 Background

2.1 Diffusion Model

Inspired by the non-equilibrium statistical physics, Diffusion Model (DM) [24]
destroys the structure in a data distribution through an iterative forward diffu-
sion process, and learns a reverse diffusion process to restore data’s structure.
Denoising Diffusion Probabilistic Model (DDPM) [9] further improves the per-
formance of DM by training on a weighted variational bound with the folllowing
objective:

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (1)

where x is the input image, ϵ is the randomly sampled Gaussian noise, t ∈
{1, ..., T} is the uniformly sampled timestep, xt is the noisy version of x, and ϵθ
is the diffusion model trained to predict a denoised variant of xt.

Many T2I diffusion models, e.g., GLIDE [17], DALL·E 2 [20] and Imagen [23]
are based on DDPM. They operate directly in the pixel space, which can consume



4 Runyi Hu , Jie Zhang , Ting Xu, Jiwei Li, and Tianwei Zhang

a large amount of computational resources for both training and evaluation. To
overcome these shortcomings, Latent Diffusion Model (LDM) [21] is proposed
to perform the noise and denoise process in the latent space of the pre-trained
VAE:

LLDM = EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥22

]
, (2)

where E is the encoder of VAE and zt is the noisy latent variable. Stable Diffu-
sion is a popular T2I model based on LDM with great impact and outstanding
performance.

2.2 Instruction-driven Image Editing

There are mainly five popular instruction-driven image editing models, which
are all based on DMs. (1) InstructPix2Pix [1] performs editing in a forward
pass quickly and does not require any user-drawn mask, additional images, per-
example fine-tuning, or inversion. It is trained in an end-to-end manner, with
the dataset generated by GPT-3 [3] and Prompt2Prompt [8]. Each item in the
dataset contains a source image, an editing instruction, and a subsequent edited
image. During training, the image and instruction are regarded as conditions cI
and cT , respectively, while the edited image is the ground-truth output. There-
fore, the training object is as follows:

L = EE(x),E(cI ),cT ,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, E(cI), cT )∥22

]
. (3)

(2) ControlNet [31] is a dedicated framework that amplifies the capability and
controllability of pre-trained T2I diffusion models by integrating spatial condi-
tioning controls. Therefore, we can regard original images as spatial condition-
ing controls and train ControlNet on the dataset of InstructPix2Pix to real-
ize instruction-driven image editing, which is called ControlNet-InstructPix2Pix
[31]. (3) Afterwards, HIVE [32] improves InstructPix2Pix by harnessing human
feedback to tackle the misalignment between editing instructions and resulting
edited images. (4) MagicBrush [29] introduces the first large-scale and manu-
ally annotated dataset for instruction-guided real image editing and fine-tunes
InstructPix2Pix on the dataset for better performance. (5) MGIE [6] uses mul-
timodal large language models to derive expressive instructions and provide ex-
plicit guidance to further improve the editing performance while maintaining the
efficiency. Besides, there are also some popular text-driven image editing meth-
ods such as Inpainting [10] and DDIM Inversion [16]. Inpainting edits an image
by masking some regions of it and then regenerates the image according to the
given text. DDIM Inversion [16] performs the reversed DDIM sampling process
conditioned on the original text caption to convert the image to its partially
noised version. Afterwards, the edited image is acquired by denoising the noised
image given the edited text caption.

In this paper, we mainly target InstructPix2Pix, and assess the generaliza-
tion of our method to ControlNet-InstructPix2Pix, MagicBrush, Inpainting and
DDIM Inversion based on Stable Diffusion, since these models are open-sourced
and publicly available.
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Fig. 1: The overall training pipeline of Robust-Wide.

2.3 Robust Watermarking

Robust watermarking is widely used for IP protection and forensics. Tra-
ditional methods (e.g ., DWT-DCT [19] and DWT-DCT-SVD [19]) embed a
pre-defined watermark message into transformed domains to achieve simple ro-
bustness against different operations, e.g., affine transformation, scaling, etc.
HiDDeN [33] is the first to leverage deep neural networks for watermark embed-
ding and extraction. Importantly, it simulates JPEG compression into a differ-
ential module, inserted into the famous encoder-noise layer-decoder framework
for robustness enhancement. RivaGAN [30] applies a customized attention-based
mechanism to embed diverse data and includes a separate adversarial network for
optimizing robustness. Afterwards, MBRS [12] utilizes a mixture of real JPEG,
simulated JPEG, and noise-free images to get superior robustness performance
against JPEG compression. Similarly, CIN [14] combines invertible and non-
invertible mechanisms for robustness to various digital distortions. In addition to
digital robustness, numerous works (LFM [27], StegaStamp [25], RIHOOP [11],
PIMoG [5]) try to acquire robustness against physical operations such as screen-
shooting, print-shooting, etc. Recently, SepMark [28] utilizes a unified framework
for source tracing and Deepfake detection which also achieves robustness against
face manipulations, a special form of image editing. However, none of them can
resist instruction-driven image editing (see Table 1.)

In this paper, we compare our method with current state-of-the-art water-
marking methods such as MBRS [12], CIN [14], PIMoG [5], and SepMark [28].
We also adopt DWT-DCT [19], DWT-DCT-SVD [19], and RivaGAN [30] as the
baseline methods, which are suggested by Stable Diffusion’s official webpage [26].

3 Methodology

3.1 Overview

We introduce Robust-Wide, a novel methodology to embed robust water-
marks into images, which can resist instruction-driven editing. Its overall train-
ing pipeline is shown in Figure 1. An embedding network Em and extracting
network Ex are jointly trained to achieve watermark embedding and extraction,
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respectively. Furthermore, a novel Partial Instruction-driven Denoising Sampling
Guidance (PIDSG) module is integrated into the pipeline to enhance the wa-
termark robustness against instruction-driven image editing. With the trained
networks, we can use Em to embed a secret watermark message into a protected
image, and release it to public. If a malicious user performs instruction-driven
image editing over this watermarked image without authorization, we are able
to detect this misuse by using Ex to extract the watermark message from the
edited image. Below we describe each step in detail.

3.2 Watermark Embedding

An embedding network Em is introduced to generate a watermarked image
Iwm from the original image Iori, where the watermark is a random L-bit message
m ∈ {0, 1}L. Specifically, we adopt U-Net [22] as the structure of Em. To match
m with the dimension of Iori, Em converts the flattened version of m in the shape
of 1×

√
L×

√
L to the shape of C×H×W using some transposed convolutional

layers, where C is the predefined feature channel, H and W are the height and
weight of Iori. Then, we concatenate the reshaped message with Iori. To preserve
the editing capability of the image, Iwm should be visually consistent with Iori.
We first adopt the L2 distance between Iori and Iwm in the pixel level, i.e.,

Lem1
= L2(Iori, Iwm) = L2(Iori, Em(Iori,m)). (4)

Furthermore, we add another constraint between Iori and Iwm in the feature
space, represented by the encoder E of VAE in InstructPix2Pix, i.e.,

Lem2
= L2(Zori, Zwm) = L2(E(Iori), E(Iwm)). (5)

3.3 Partial Instruction-driven Denoising Sampling Guidance

Existing watermarking solutions mainly consider the robustness against pixel-
level distortions. In contrast, instruction-driven image editing changes an image
significantly at the semantic level, making these approaches ineffective. We note
that instruction-driven image editing involves the injection of a large number
of different semantic instructions and varying degrees of image modifications at
different semantic levels, which can be utilized to guide the robust and semantic-
aware watermark embedding and extraction process. Thus, our intuitive idea
is to incorporate the editing process into the end-to-end training framework.
However, one challenge is that during the denoising sampling process (e.g ., in
InstructPix2Pix), gradients are not allowed to flow directly. Introducing this
process into training would result in the inability of gradients to propagate from
the watermark decoder through the sampling process back to the watermark
encoder. In other words, this would lead to a discontinuity in the computational
graph, rendering the entire process non-differentiable. While a straightforward
approach might be to open gradients for the numerous denoising sampling steps,
this would introduce a significant memory overhead. To address this, we design
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the Partial Instruction-driven Denoising Sampling Guidance (PIDSG) module,
which selectively allows gradients to flow only in the last k sampling steps. This
design not only makes the entire method feasible but also enables the process to
be differentiable and amenable to end-to-end optimization.

As shown in the middle part of Figure 1, InstructPix2Pix consists of VAE
[4], U-Net [22], and CLIP text encoder [18]. We freeze all the parameters of
these models. During training, the encoder E of VAE converts Iwm to its latent
Zwm = E(Iwm). Then, Zwm is concatenated with the pure noise latent ZT and
sent to U-Net to perform denoising sampling iterations. Assuming the sampling
process totally has T steps, we truncate the gradient flow in the first T −k steps
to obtain the partially denoised latent Zk. After that, we concatenate Zk with
Zwm and perform the last k sampling steps (dubbed gradient backward steps) to
enable the gradient flow. The CLIP text encoder processes the instruction Ins
and outputs the textual embedding to guide the whole sampling process. Finally,
after T sampling steps, the fully denoised latent Z0 is produced and converted
to the edited image Ieditwm by the decoder D of VAE.

3.4 Watermark Extracting

For the extracting network Ex, we leverage some residual blocks as its archi-
tecture. With the edited image Ieditwm , Ex aims to extract the message medit

wm that
is consistent to the original embedded message m, i.e.,

Lex1
= MSE(m,medit

wm ) = MSE(m,Ex(I
edit
wm )). (6)

For effective forensic, we also require Ex to be capable of extracting the embed-
ded watermark message mwm from the watermarked image Iwm before editing:

Lex2
= MSE(m,mwm) = MSE(m,Ex(Iwm)). (7)

Interestingly, we observe that the training will not converge without Lex2 . We
explain that the extracting network Ex cannot find the watermark area if only
fed with edited images that are different from the original images at the semantic
level. More results can be found in Sec. 4.5.

3.5 Joint Training

We jointly train Em and Ex with the above-mentioned components: water-
mark embedding, PIDSG , and watermark extraction. The total loss is formulated
as follows:

Ltotal = Lem1
+ λ1Lem2

+ λ2Lex1
+ λ3Lex2

, (8)

where λ1 = 0.001, λ2 = 0.1, and λ3 = 1 by default are the hyperparameters to
balance each loss item. More analysis can be found in Sec. 4.5.
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4 Experiments

Datasets. To train the embedding and extracting networks, we adopt 20k image-
instruction pairs from the dataset used in InstructPix2Pix. We also select 1.2k
additional samples that do not overlap with the above training data for evalu-
ation by default. Besides, we collect some real-world images from the Internet,
which cover 6 types (i.e., person, animal, object, architecture, painting, and
scenery) and each type has 5 images which can be found in the supplementary
material. Then, we use InstructPix2Pix [2] by default to edit these images based
on 6 instructions and generate 8 images per instruction to finally obtain 1.44k
edited images for testing.
Implementation Details. We train all our models on a single A6000 GPU,
with a learning rate of 1e-3, batch size of 2, and total steps of 20,000. We use the
AdamW optimizer with a cosine scheduler of 400 warm-up steps. Images used
for training and evaluation are all 512×512 by default. For the configurations of
PIDSG , we adopt the Euler sampler, with 20 inference steps, the text guidance
scale sT=10.0, and image guidance scale sI=1.5.

We choose seven baselines for comparisons, i.e., DWT-DCT [19], DWT-DCT-
SVD [19], RivaGAN [30], MBRS [12], CIN [14], PIMoG [5] and SepMark [28]. We
directly use their official code for implementation. Noteably, the released model
of MBRS and SepMark only support 256×256 images with 256 bits and 128 bits
separately and we used the Tracer of SepMark for watermark extraction after
image editing. Since the released model of CIN only supports 128×128 images
and it is robust against the resize operation, so we resized the watermarked
image to 256×256 for image editing and then resized it back to 128×128 for
watermark extraction. PIMoG does not provide model weights, we trained the
model ourselves using the official code.
Metrics. To evaluate the effectiveness of our method, we measure the Bit Error
Rate (BER) between the extracted watermark X and ground-truth watermark
Y , i.e., BER(X,Y ) =

∑L
i=1(Xi ̸=Yi)

L , where Xi, Yi ∈ {0, 1} and L is the water-
mark length. To assess the fidelity, we adopt PSNR and SSIM to measure the
visual quality of watermarked images. To verify how the watermarked image can
preserve its original editability, we adopt the CLIP image similarity (CLIP-I)
and CLIP Text-Image Direction Similarity (CLIP-T), which are also used in
InstructPix2Pix [1].

4.1 Effectiveness Evaluation

Table 3: The integrity of Robust-Wide and
the influence on the image editability.

Metrics w/o Editing (BER (%) ↓ ) w/ Editing (BER (%) ↓ ) CLIP-I ↑ CLIP-T ↑
Original Images 49.8403 48.8550 0.8402 0.2183

Watermarked Images 0.0000 2.6579 0.8430 0.2148

Table 1 compares the effective-
ness of Robust-Wide with the baseline
methods with different image sizes
and watermark lengths. For Robust-
Wide, we consider the implementa-
tion without and with PIDSG . From
this table, it is obvious that none
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Table 1: Quantitative results compared with other methods.

Method Image Size Watermark BER (%) ↓ PSNR↑ SSIM↑Length (bits) w/o Editing w/ Editing

DWT-DCT [19] 512x512 32 11.9351 49.2286 38.7123 0.9660
DWT-DCT-SVD [19] 512x512 32 0.0314 47.5680 38.6488 0.9726
RivaGAN [30] 512x512 32 0.6276 40.5256 40.6132 0.9718
MBRS [12] 256x256 256 0.0000 46.7661 43.9780 0.9870
CIN [14] 128x128 30 0.0000 44.9888 40.3678 0.9763
PIMoG [5] 256x256 64 0.0000 49.9635 35.3183 0.9212
SepMark [28] 256x256 128 0.0084 28.1460 36.4341 0.9194
Robust-Wide 512x512 64 0.0000 2.6579 41.9142 0.9910
Robust-Wide 512x512 256 0.0000 4.1867 39.1842 0.9844

Table 2: The importance of PIDSG. † denotes the results on real-world images.

Method Image Size Watermark BER (%) ↓ PSNR↑ SSIM↑Length (bits) w/o Editing w/ Editing

Robust-Wide (w/o PIDSG) 512x512 64 0.0000 50.1558 55.3710 0.9982
Robust-Wide (w/ PIDSG) 512x512 64 0.0000 2.6579 41.9142 0.9910

Robust-Wide (w/o PIDSG) † 512x512 64 0.0000 51.0801 55.3715 0.9983
Robust-Wide (w/ PIDSG) † 512x512 64 0.0000 2.6062 41.4038 0.9922

of the baseline methods can resist
instruction-driven image editing, with
the BER of around 50%. Comparably, Robust-Wide is effective with a low BER
of 2.6579%. Table 2 also shows the effectiveness of Robust-Wide on 1.44k real-
world samples. Importantly, the removal of PIDSG leads to a complete failure,
revealing the importance of PIDSG . Moreover, Table 3 shows that Robust-Wide
will not extract watermarks from original images with or without editing, guar-
anteeing forensic integrity.

4.2 Fidelity Evaluation

Table 1 also shows the PSNR and SSIM of different methods. We observe
that Robust-Wide can achieve the comparable visual quality with other baseline
methods. Table 3 compares the values of CLIP-I and CLIP-T for original and
watermarked images. The slight difference indicates that Robust-Wide induces
little influence on the editability. Figure 2 shows some visual results using our
Robust-Wide, which further confirms the fidelity (more results are provided in
the supplementary material). Specifically, the normalized residual images are
computed as N(|Iwm − Iori|), where N(x) = (x−min(x))/(max(x)−min(x)).
From these images, it is evident that the watermark is predominantly embedded
along the contours of the main subjects (such as people or objects) and in the
background (secondary elements like buildings). We posit that these areas may
be robust regions related to conceptual content and therefore Robust-Wide tends
to embed watermarks into robust concept-aware areas.

4.3 Robustness Evaluation

Pixel-level Distortions. We apply different pixel-level distortions in three
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          0.0%                         1.56%                       0.0%                            0.0%                         0.0%                         0.0%                       1.56%

Fig. 2: Visual results for Robust-Wide. From top to bottom: instructions, original
images, normalized residual images, watermarked images, edited images, and the cor-
responding BERs.

Table 4: Robustness of Robust-Wide against pixel-level distortions.

BER(%) None JPEG Median Blur Gaussian Blur Gaussian Noise Sharpness Brightness Contrast Saturation Hue Noise+Denoise
I 2.6579 2.7256 2.4926 2.7074 3.0672 2.6150 12.2907 5.1336 3.0455 2.7591 8.6401
II 0.0000 0.0013 0.0000 0.0013 0.0716 0.0013 0.4733 0.9210 0.0000 0.0000 3.9071
III 2.6579 2.7934 2.9574 2.8489 6.0546 2.7773 9.4796 4.3346 3.0373 3.2829 9.3654

ways: (I) pre-processing watermarked images before editing; (II) post-processing
watermarked images; (III) post-processing edited images based on watermarked
images. Table 4 shows the extraction error of Robust-Wide against different
pixel-level distortion types in three scenarios. It is obvious that Robust-Wide
demonstrates strong robustness against these distortions even if we do not in-
volve them during training.

Additionally, we also test Robust-Wide’s robustness against DiffWA [13], a
new watermark removal attack. This attack utilizes an image-to-image condi-
tional diffusion model to add noise on the watermarked image and then restores
the image while removing the embedded watermark. Due to the unavailability
of DiffWA’s source code, we utilize the open-source SDEdit [15] from Diffusers
to carry out the process of adding noise and subsequently restoring the water-
marked images. We configure the sampling parameters as follows: strength=0.2,
prompt=Null, with all other sampling parameters as their default values. As
shown in the “Noise+Denoise" row of Table 4, Robust-Wide is effective in all
three situations with BER< 10%.
Different Sampling Configurations. We assess the robustness of Robust-
Wide against different diffusion sampling configurations. Figure 3 shows the cor-
responding results. We have the following observations. (1) Robust-Wide is gen-
erally effective for different samplers. (2) As the total number of inference steps
increases, the edited images become more fine-grained while the BER slightly
increases (within a range of 1%). We explain that more details lead to larger
differences between the edited and original images. (3) A larger text guidance
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Fig. 3: Robustness of Robust-Wide against different diffusion sampling configurations.

scale (sT ) and smaller image guidance scale (sI) indicate more severe image
editing. Robust-Wide achieves BER of below 5% in all cases except when sI is
1, validating its general robustness in different settings.
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Fig. 4: General robustness against other editing methods such as InstructPix2Pix,
ControlNet-InstructPix2Pix, MagicBrush, Inpainting, and DDIM Inversion.

Other Popular Image Editing Methods. In addition to InstructPix2Pix, we
further evaluate our robustness against its extension ControlNet-InstructPix2Pix
and MagicBrush on the 1.2k-samples dataset. Experiments show that Robust-
Wide can achieve an average BER of 0.96% on ControlNet-InstructPix2Pix and
9.34% on MagicBrush. Figure 4 shows some visual examples (more examples are
provided in the supplementary material). For the instruction “swap sunflowers
with roses", MagicBrush makes the edited image more different from the original
image, leading to a relatively higher but still acceptable BER.

We also tested the robustness of Robust-Wide against Inpainting [10] and
DDIM Inversion [16] based on Stable Diffusion Models. We found that, even
though Robust-Wide has never seen these image editing methods during training,
it still demonstrates effective resistance as shown in Figure 4.
Continual Editing. A user may utilize InstructPix2Pix to perform multiple
edits on a single image. An image edited by one user could also be spread to
another for further editing, and this process can repeat several rounds. Hence,
we need to ensure our watermarks can resist continual editing. As shown in
Figure 5, we observe that the watermark embedded into the original image can be
accurately extracted even after 3 editing rounds, demonstrating the watermark’s
strong robustness against continual editing.
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             0%                              0%                             0%                         4.68%

             0%                           1.56%                         1.56%                      6.25%

                                                   (a)                                                                                               (b)

Fig. 5: The influence of continual editing. (a) Some visual examples under continual
editing (from left to right). (b) BER increases with more editing rounds. This experi-
ment is conducted on real-world images as mentioned above.

4.4 More Analysis

    DWT-DCT         DWT-DCT-SVD         RivaGAN                 MBRS                      CIN                       PIMoG                  SepMark                    Ours

Fig. 6: The embedding mode of different methods.
From top to bottom: original images, watermarked
images, normalized residual images, DCT and DFT
of residual images, respectively

Embedding mode of Robust-Wide.
Figure 6 displays the normal-
ized residual image between
the watermarked and origi-
nal images, using different wa-
termarking methods. We can
see that the watermarks em-
bedded using DWT-DCT and
DWT-DCT-SVD are quite
faint and imperceptible, in-
dicating their limited robust-
ness. MBRS tends to con-
centrate primarily along the
object’s edge contours, mak-
ing it vulnerable to changes
in the image background. In
contrast, RivaGAN and our
Robust-Wide embed water-
marks in both the edges and
backgrounds, resulting in en-
hanced robustness. Furthermore, we use Discrete Cosine Transform (DCT) and
Discrete Fourier Transform (DFT) to visualize the residual images in the fre-
quency domain. From the residual images, we can observe that DWT-DCT and
DWT-DCT-SVD introduce input-agnostic modification while other methods in-
troduce input-aware modification. From the last two rows of Figure 6, we find
that DWT-DCT, DWT-DCT-SVD, and RivaGAN tend to mainly modify the
low-frequency area while MBRS, CIN, PIMoG, and SpeMark prefer to embed
the watermark into both low-frequency and high-frequency areas. Differently,
Robust-Wide mainly focuses on embedding watermarks in infra-low frequency
areas or mid-low frequency areas, potentially making it more robust against
semantically and conceptually related image modifications.
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Fig. 7: Example of our
extracting mode.

0.0% 43.75% 23.43% 20.31% 1.56%
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Step5 Step10 Step15 Step20Step0

1

Fig. 8: The influence of the number of sampling steps.
(a) Some visual examples at different steps and their
corresponding BER. (b) BER decreases with more steps.

Extracting mode of Robust-Wide. We use the original image Iori and wa-
termarked image Iwm to generate the corresponding edited images Ieditori and
Ieditwm . Here, we control all potential random factors (e.g ., generation random
seed) to guarantee that the difference between Ieditori and Ieditwm is solely caused by
instruction-driven image editing. As shown in Figure 7, the watermark embedded
into the original image also exists after editing, which preserves as an outline of
the character. We hypothesize that the extractor mainly focuses on such robust
concept-aware areas. More examples are provided in the supplementary material.
Relationship between the number of sampling steps and extraction
ability. We test the BER of generated images at different sampling steps. Fig-
ure 8 (a) indicates that the model focues on generating contours and layout at
the first few sampling steps, and then optimizing image details at later steps. As
shown in Figure 8 (b), the BER decreases with more sampling steps.
Relationship between editing strength and extraction ability.
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Fig. 9: The relationship between
image editing strength and extrac-
tion ability.

We explore the impact of the image editing
strength (quantified by PSNR and SSIM com-
puted between Iwm and Ieditwm ) on the extrac-
tion BER. As shown in Figure 9, points with
higher BER are mainly at the area where
PSNR and SSIM are low, i.e., the editing
strength is large. This is intuitive as the
greater the change is, the more difficult it will
be for the watermark extraction. When the
editing strength on the original image is signif-
icant, the resulting edited image can be con-
sidered as a form of re-creation. In such cases,
the risk of copyright infringement is relatively
low, and the ineffective extraction may be deemed acceptable.

4.5 Ablation Study

Importance of Lex2
. With Lex2

, the embedding network and extracting net-
work tend to find desirable watermarking areas at first and then search more
robust areas to resist instruction-driven image editing. Without Lex2

, it is chal-
lenging to achieve watermark embedding and extraction only with edited images.
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Table 5 compares the performance under these two settings. The embedded wa-
termark cannot be effectively extracted without Lex2

, both before and after
editing, with the BER of around 50%. Hence, Lex2 is essential for the overall
effectiveness of Robust-Wide.

Table 5: The importance
of Lex2 . The gray cell de-
notes the default setting.

Metrics w/o Lex2
w/ Lex2

BER(%)↓ w/o editing 50.1098 0.0000
w/ editing 50.1219 2.6579

PSNR↑ 68.7220 41.9142
SSIM↑ 0.9999 0.9910

Impact of hyper-parameters λ1 and λ2. Table 6
shows the watermark performance with different λ1

and λ1 values. We observe that a larger λ1 can help
improve the visual quality of watermarked images but
causes a decrease in the watermark extraction rate. On
the other hand, a higher λ2 leads to lower BER, which
showcases the trade-off between extraction ability and
visual quality.

Table 6: The impact of different λ1

and λ2.
Metrics λ1 λ2

0 0.001 0.01 0.1 0.01 0.1 1
BER(%)↓ 1.7391 2.6579 6.0690 50.0364 11.1796 2.6579 0.9674
PSNR↑ 39.6859 41.9142 41.7604 56.9096 45.8701 41.9142 35.2577
SSIM↑ 0.9750 0.9910 0.9938 0.9986 0.9929 0.9910 0.9616

Table 7: The influence of k and the
bits length.

Metrics k Bits Length
1 2 3 16 64 256 1024

BER(%)↓ 4.0520 2.9166 2.6579 2.2812 2.6579 4.1867 6.3036
PSNR↑ 44.3330 42.1386 41.9142 40.8327 41.9142 39.1842 36.5956
SSIM↑ 0.9938 0.9919 0.9910 0.9853 0.9910 0.9844 0.9732

Influence of the number of gradient backward
steps k. Table 7 shows the watermark performance with different numbers of
gradient backward steps k. With more steps, the watermark message is easier to
extract while the visual quality of the watermarked image slightly reduces. Due
to the GPU memory constraints, the maximum number of gradient backward
steps we could set is 3, which is sufficient to obtain acceptable performance.
Influence of different watermark bits length. Table 7 reports the evalua-
tion results with different lengths of watermark messages. A longer watermark
message results in higher BER and lower visual quality. In practice, the user can
customarily select the watermark lengths to balance such trade-off. In Table 7,
we can observe that the visual quality is lower when the watermark length is
16 compared to when the watermark length is 64. Indeed, the integration of
watermark bit with the image involves shape transformations through convolu-
tional or deconvolutional layers. With 16 bits, our available GPU memory posed
restrictions on employing convolutional or deconvolutional layers for shape trans-
formations. Consequently, we opted for a non-parametric interpolation method
to handle the integration, causing degradation in visual quality.

5 Conclusion

In this paper, we propose Robust-Wide, the first robust watermarking method
against instruction-driven image editing. Our core idea is to integrate a novel
module called PIDSG into the encoder-noise layer-decoder training framework,
which forces watermarks embedded in the semantic level. Experiments demon-
strate that Robust-Wide is robust against different image editing methods while
maintaining high visual quality and editability. Furthermore, our in-depth anal-
ysis on the embedding and extracting modes of Robust-Wide is expected to shed
light on the design of watermarking against other semantic distortions.
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