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ABSTRACT
Autonomous driving systems (ADS) are boosted with deep neural
networks (DNN) to perceive environments, while their security
is doubted by DNN’s vulnerability to adversarial attacks. Among
them, a diversity of laser attacks emerges to be a new threat due
to its minimal requirements and high attack success rate in the
physical world. Nevertheless, current defense methods exhibit ei-
ther a low defense success rate or a high computation cost against
laser attacks. To fill this gap, we propose Laser Shield which
leverages a polarizer along with a min-energy rotation mechanism
to eliminate adversarial lasers from ADS scenes. We also provide a
physical world dataset, LAPA, to evaluate its performance. Through
exhaustive experiments with three baselines, fourmetrics, and three
settings, Laser Shield is proved to surpass SOTA performance.
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1 INTRODUCTION
The development of autonomous driving systems (ADS) is accel-
erated by the integration of multiple deep neural networks (DNN)
for perceiving environments [4]. Nevertheless, the emergence of
research on the security issues of ADS reveals a great gap for its
deployment [9].

One of the most significant threats is adversarial attacks [2, 11,
18]. In general, adversarial perturbations can be generated from
the gradients derived from target models in white-box scenar-
ios [11, 18], or transferred based on the gradients of surrogate
models in black-box scenarios [2]. However, a diversity of research
has emerged recently to mislead DNN models without using gra-
dients such as laser attacks [10, 17]. Particularly, an attacker can
project a laser beam in front of a traffic sign [10] to mislead the
prediction of a well-trained perception model. This kind of laser
attacks, as a novel paradigm of adversarial attacks, poses a more
critical threat to the perception of an ADS due to three reasons as
follows. First, only a laser pointer can make such a simple yet effec-
tive attack. Second, they are indifferent to the attack environment
as long as the laser beams are visible. Third, the information on
target models is not necessarily required. Due to the low cost and
the high robustness, laser attacks are extremely easy to deploy in
the physical world, achieving a high attack success rate.

* Equal contribution. & Corresponding author (qiuhan@tsinghua.edu.cn).

A great number of defense methods are proposed to mitigate
adversarial attacks [14, 16] like adversarial training or image pre-
processing. But adversarial training is too costly while image pre-
processing cannot mitigate laser attacks since they are designed
to reduce human-imperceptible adversarial perturbations which
lasers are no longer mild. A few recent research deploy diffusion
models (DM) to restore corrupted images [7]. Although it has the
potential to eliminate laser, the computation cost is not tolerant in
rapidly changing ADS scenarios [4].

To fill the gap of defense against laser attacks in ADS scenarios,
we propose a novel physical defense Laser Shield. Our intuition
is that lasers are polarized lights that are different with natural
lights. Thus, Laser Shield leverages the polarizer along with a
specifically designed min-energy rotation to eliminate adversarial
laser beams and preserve the functionality of models in ADS, with
negligible computation cost. Laser Shield is robust and easy to
implement in the physical world scenarios. In order to verify the
effectiveness of Laser Shield, we provide a novel dataset of traffic
signs collected from physical world, LAPA1 (Laser Polarizer ADS), to
evaluate laser attacks and our defense. LAPA consists of a diversity
of attack conditions, and it reflects the filtration effect of lasers
by Laser Shield. We conduct a thorough evaluation with three
baselines, four metrics, and three settings (digital space, optical lab,
and on road) to prove Laser Shield’s effectiveness.

2 PRELIMINARIES
2.1 Attacks and defenses on ADS
ADS highly relies on DNN models to perceive driving environment,
but they are known to be vulnerable to adversarial attacks [2, 11, 18].
For instance, Bai et al. [2] can efficiently generate adversarial ex-
amples for black-box DNNs. However, they are difficult to adopt in
physical world, making the attacks on ADS shift towards manipu-
lating physical objects or environments such as adversarial lasers.
Duan et al. [10] proposed the first laser attacks using laser beams.
Yan et al. [17] proposed to directly emit the laser on camera.

Facing the threat of adversarial attacks, we summarize related
defense methods in adversarial training [1], image preprocess-
ing [14, 16], and image restoration [3]. Nevertheless, they all have
shortcomings against laser attacks. In reality, it is difficult for ADS
companies to frequently use high-cost adversarial training espe-
cially for the diversity of emerging new threats [9]. The cost of
image preprocessing is acceptable, but they are proposed against
mild pixel-level perturbations [14, 16], which is ineffective on in-
tense laser beams. With the impressive results of diffusion models
(DM) [7], image restoration has great potential to eliminate lasers.
1https://github.com/qingjiesjtu/LaserShield
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However, using DM will generate a long latency which is not ac-
ceptable in driving scenarios.

2.2 Threat model and defense requirements
Threat model. We summarize the threat model in the adversary’s
goal, knowledge, and capability.
• Adversary’s goal. The main goal is to cause malfunctions of
DNNmodels with lasers. Since we take ResNet [12] as the target
model and we mainly evaluate traffic signs in this paper, the
goal is to mislead the classification model to predict a result
other than “street sign”.
• Adversary’s knowledge. The adversary’s knowledge mainly
consists of two aspects. First, he has full knowledge of the envi-
ronment to deploy the attack, including the target to mispredict,
the light conditions, etc. Second, the target models can be ei-
ther white-box or black-box. For the former, the adversary can
design an adversarial laser with feedback from target models.
For the latter, an arbitrary laser condition, as long as the laser
greatly overlaps with the traffic sign, has also a non-ignorable
possibility to generate error [10].
• Adversary’s capability. The adversary can choose any traffic
sign as a target and generate laser beams with any color, any
intensity, and in any direction.

Defense requirements.As the countermeasure to the above threat
model, we list four requirements for our defense solution.
• Laser elimination. The solution is capable of eliminating or
weakening laser beams from captured images, and helps target
models to predict correctly as if no laser exists.
• Functionality-preserving. The solution cannot disturb the
prediction on images where lasers cause no malfunction or even
no laser exists.
• High fault tolerance. Such a solution should have high fault
tolerance to meet the complex and dynamic ADS scenarios.
• Negligible computation cost. The solution should minimize
computation costs since ADS needs to give quick feedback on
the rapidly changing driving environment.

3 METHODOLOGY
3.1 Overview
Figure 1 shows the overview of Laser Shield. The main idea is to
eliminate adversarial lasers while preserving normal light. Knowing
that lasers can be filtered by a polarizer with a certain angle, we
leverage this physical phenomenon to develop a plug-and-play
defense strategy. Specifically, it is achieved by arranging a polarizer
in the camera, with min-energy rotation mechanism to find the
optimal angle for defense. Hence, we first give an in-depth analysis
of the filtration mechanism of polarizer against lasers, ensuring the
feasibility of leveraging a polarizer to make Laser Shield. Second,
since mounting the polarizer in camera needs a rotation mechanism
to locate effective range, we propose min-energy rotation with an
indicator function, RGB energy, to indicate the optimal angle.

3.2 Make a Shield: Polarizer
Natural light V.S. polarized light. In wave optics, light is de-
scribed as coupled waves of electric and magnetic fields oscillating
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Figure 1: Overview of Laser Shield. It consists of a polarizer
and a min-energy rotation mechanism to eliminate lasers.
in a sinusoidal pattern [5]. These oscillations are perpendicular
to the light’s propagation direction. The majority of light sources
in our daily life (daylight, LED light, etc.) are unpolarized light or
natural light which consists of a combination of waves with varying
oscillations in all directions. In contrast, to ensure high intensity
and monochromaticity, lasers are polarized light that oscillates only
in one direction. Such distinction leaves a chance for defenders to
eliminate lasers and preserve natural light.
Polarizer. Our next step involves an optical device to leverage
the above distinction. More than that, it has to be small and easy
to mount in cameras. The polarizer, a lens characterized as an
assemblage of numerous aligned slender metal wires, is the ideal
solution. When light reaches the polarizer, the waves oscillating
perpendicular to the wires will be the least weakened by an anti-
field caused by its oscillation. In other words, only the components
perpendicular to the wires can pass through and this direction is
defined as the polarizer transmission axis. Hence, the amplitude of
wave is reduced as follows.

ℎ𝑜 = ℎ𝑖 cos(𝜃 ), (1)

where ℎ𝑖 (resp. ℎ𝑜 ) is the amplitude of the incident (resp. outgo-
ing) light wave, and 𝜃 is the angle between the incident wave’s
oscillation direction and the transmission axis of polarizer.
Malus’s law. The above amplitude reduction directly affects the
intensity of light, which is described by Malus’s law [6]:

𝐼𝑜 = 𝐼𝑖 cos2 (𝜃 ) = 𝐼𝑖
1 + 𝑐𝑜𝑠 (2𝜃 )

2 , (2)

where 𝐼𝑖 (resp. 𝐼𝑜 ) is the intensity of the incident (resp. outgoing)
light. For lasers, the intensity varies within range [0, 𝐼𝑖 ] based on
the angle 𝜃 . The variation period decreases from 360° to 180° due
to the square operation, and an interval of length 90° covers the
full intensity range. For natural light, the intensity is reduced but
cannot be zero since it always contains waves oscillating in the
transmission axis (as shown in Figure 1).

3.3 Mount the Shield: Min-energy Rotation
The polarizer does not always coincidentally fall in the effective
angle range for laser elimination. Indeed, when the oscillation is
parallel to the transmission axis, the polarizer will not work any-
more. To compensate for this shortcoming, we devise a min-energy
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rotation mechanism for the polarizer. The polarizer mounted in
the camera will be attached to a high-speed rotator which should
rotate until an optimal angle. This leads to the need for an indicator
function, which should indicate the angle with minimal laser beams,
and be computation efficient when facing the rapidly changing au-
tonomous driving scenarios [4]. For an image 𝑥 = 𝑠 ⊕ 𝑝𝜃 of scene
𝑠 filtered by polarizer 𝑝 with angle 𝜃 , a simple idea is to use the
image energy E [13]:

E =
∑︁

(𝑖, 𝑗 ) ∈ [1,...,𝑚]×[1,...,𝑛]
𝑥 ′𝑖, 𝑗

2
(3)

𝑥 ′ = 0.299𝑥𝑅 + 0.587𝑥𝐺 + 0.114𝑥𝐵, (4)

where 𝑥𝑅, 𝑥𝐺 , 𝑥𝐵 are RGB channels of 𝑥 , 𝑥 ′ is the grayscale im-
age, and (𝑚,𝑛) is the size. Although this definition is widely used
in image processing, it works poorly to represent laser intensity,
especially for the blue laser. This is due to the low weight (0.114
in Equation 4) for the blue channel. Indeed, the imbalanced RGB
weights of grayscale images are designed for humans’ perception,
while computation algorithms are indifferent to colors. To make up
for this imbalance, we therefore propose RGB energy E𝑅𝐺𝐵 :

E𝑅𝐺𝐵 =
∑︁

(𝑖, 𝑗 ) ∈ [1,...,𝑚]×[1,...,𝑛]
(𝑥2𝑅𝑖,𝑗 + 𝑥

2
𝐺𝑖,𝑗
+ 𝑥2𝐵𝑖,𝑗

) (5)

E𝑅𝐺𝐵 is highly correlated to the laser intensity regardless of the
laser color (detailed explanation is given in Section 4.6). It is also
a lightweight function with time complexity 𝑂 (𝑚𝑛), contributing
to the low computation cost of Laser Shield (further proved in
Section 4.4). Algorithm 1 details min-energy rotation.

Algorithm 1Min-energy rotation.
input: Scene 𝑠 , Polarizer initial angle 𝜃𝑖𝑛𝑖 , Rotation step size 𝛿
output: Optimal polarizer state for laser elimination 𝑝𝜃𝑜𝑝𝑡
1: Initialize a parameter angle 𝜃 ← 𝜃𝑖𝑛𝑖
2: Initialize the optimal RGB energy E𝑜𝑝𝑡 ←∞
3: while 𝜃 ≤ 𝜃𝑖𝑛𝑖 + 90◦ do
4: Rotate the polarizer to angle 𝜃
5: Compute RGB energy E𝑅𝐺𝐵 of current vision 𝑥 = 𝑠 ⊕ 𝑝𝜃
6: if E𝑅𝐺𝐵 ≤ E𝑜𝑝𝑡 then
7: Update 𝜃𝑜𝑝𝑡 ← 𝜃 ; E𝑜𝑝𝑡 ← E𝑅𝐺𝐵

8: end if
9: Update 𝜃 ← 𝜃 + 𝛿
10: end while
11: Rotate the polarizer to angle 𝜃𝑜𝑝𝑡
12: return Optimal polarizer state for laser elimination 𝑝𝜃𝑜𝑝𝑡

4 EXPERIMENTS
4.1 Setup
Settings. Following Duan et al. [10], we take ResNet50 [12] as the
target model (assumed black-box) and traffic signs as the target
objects. We conduct experiments in three settings.
• Digital space. Due to the heavy workload of data collection in
physical world, we first simulate Laser Shield in digital space.

• Optical lab. We construct LAPA in an optical lab to evaluate
Laser Shield in controlled environment conditions.
• On road.We evaluate Laser Shield on road to ensure maximal
similarity to real-world ADS scenarios.

Baselines. As far as we know, there is no model specifically de-
signed for laser elimination. Hence, we take three approaches that
have the potential to eliminate laser as follows.
• BdR [16]. Since laser attacks add salient color beams to images,
we choose BdR, which reduces the color bit depth, to mitigate
the adversarial effect.
• PD [14]. Generally, laser attacks corrupt the natural statistics
of images. We therefore choose PD to redistribute the image
pixel values back to normal.
• DM[7]. Laser elimination can be formulated as an image restora-
tion problem [3]. Given the impressive results achieved by dif-
fusion models (DM) in recent years, we choose a DM-based
cleanup model2 to remove laser before inference.

Metrics. We use four metrics to evaluate Laser Shield’s effec-
tiveness across multiple dimensions, corresponding to the defense
requirements as stated in Section 2.2.
• Defense success rate. We mainly use the defense success rate
(DSR) to evaluate Laser Shield’s performance on laser elim-
ination. This is the ratio of successful defenses in successful
attack cases:

DSR =

∑
𝑠 1{𝑓 (𝑠 ⊕ 𝑝𝜃𝑜𝑝𝑡 ) = † ∧ 𝑓 (𝑠) ≠ †}∑

𝑠 1{𝑓 (𝑠) ≠ †}
, (6)

where 𝑓 is the target model and † is the ground truth label.
• Functionality-preserving rate. Laser beams do not exist in
all scenes. For cases with no laser beams or they are too weak to
attack, we need to ensure that Laser Shield causes no influence
on target model’s benign functionality. We therefore propose
the functionality-preserving rate (FPR). It is defined as the ratio
of correct predictions when laser attacks fail:

FPR =

∑
𝑠 1{𝑓 (𝑠 ⊕ 𝑝𝜃𝑜𝑝𝑡 ) = † ∧ 𝑓 (𝑠) = †}∑

𝑠 1{𝑓 (𝑠) = †}
(7)

• Fault tolerance rate As stated in Section 3.3, Laser Shield
works with rotation of polarizer. The theoretical optimal polar-
izer angle 𝜃𝑜𝑝𝑡 requires a mechanical rotator to achieve, which
lacks precision sometimes. However, effective defense is not
only achieved at 𝜃𝑜𝑝𝑡 . To evaluate Laser Shield’s tolerance
on polarizer angle 𝜃 , we propose the fault tolerance rate (FTR):

FTR =

∑
𝑠,𝜃 1{𝑓 (𝑠 ⊕ 𝑝𝜃 ) = † ∧ 𝑓 (𝑠) ≠ †}

10 ×∑𝑠 1{𝑓 (𝑠) ≠ †}
, (8)

where 𝜃 varies from 0° to 90° with step size 10°.
• Computation complexity. To show that Laser Shield ex-
hibits a low computation burden, we evaluate its computation
complexity in two forms, analytical and experimental. This di-
versity of forms ensures the consistency of theory and practice.

4.2 Digital simulation
Due to the heavy workload for constructing LAPA, we first simulate
Laser Shield in digital space to verify its effectiveness against
2https://clipdrop.co/fr/cleanup
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Figure 2: Digital simulation of an image “panda”. The predic-
tion of ResNet50 becomes correct with𝑇 varies from 0 to 1.0.
laser attacks. Following the same setting as Duan et al. [10] that
simulate laser beam as a solid-color light tube, we regulate the
filtration effect with transparency 𝑇 , and the image with laser can
be simulated as:

𝑥 = 𝑐𝑙𝑖𝑝 (𝑠 + (1 −𝑇 ) 𝐼0) , (9)
where 𝑠 is the scene and 𝐼0 is a hyperparameter representing the
original laser intensity. During simulation, 𝑇 varies from 0 (no
defense exists) to 1 (lasers are completely filtered out).

Figure 2 shows an example of the simulation on a digital image.
As transparency 𝑇 increases, the laser beam becomes weaker, and
the prediction turns to correct. It is worth noting that the correct
prediction not only happens when the laser is the weakest. Indeed,
out of five𝑇 values to simulate Laser Shield, the defense succeeds
three times, thus 𝐹𝑇𝑅 = 60%. Table 1 shows the simulation on 500
images. It can be seen that laser filtration is significantly effective
for defense because DSR rises as transparency increases. Besides,
we also compute the overall FTR and it equals 71%. This indicates
Laser Shield’s potential for high fault tolerance.

Table 1: Digital simulation of 500 images.

Transparency 0 0.2 0.4 0.6 0.8 1.0
DSR (%) 0 27.3 53.5 76.9 87.3 100

As a result, digital simulation implies the effectiveness of Laser
Shield, on both DSR and FTR. Hence, it is necessary to construct
a physical world dataset for laser attacks and polarizer filtration,
thus LAPA, to evaluate Laser Shield.

4.3 Constructing LAPA
Simulating Laser Shield in digital space is not sufficient. Due
to the complex and disturbing conditions in the real world, we
construct LAPA to evaluate Laser Shield. In general, the construc-
tion of dataset needs a workload of collecting and cleaning [8]. We
follow this principle with considerations of devices, main steps,
hyperparameters, and data distribution for maximal quality.
Devices. Figure 3 shows the devices and their arrangement during
data construction. We use Leica cameras which support a resolu-
tion of 8192 × 6144 to ensure images’ quality. The linear polarizer
GSP-50B with a polarization extinction ratio (PER) of 100:1 and a
diameter of 50.4mm is chosen. And it is mounted on a GMK-0104
rotator to control the polarizer angle. Laser attacks are reproduced
by three laser pointers (red, blue, and green) of 200 mW. In addition,
we use three traffic signs as the attack and defense targets.
Main steps. Laser attacks mainly happen during the night when
laser beams are more visible. To collect data of LAPA, we first choose
a dark and stable environment, an optical laboratory, to deploy the
above devices. Then, we adjust, with stands, the relative distance
and height between devices to put traffic sign and laser beam in the
camera field. Then, we fix the polarizer just in front of the camera

Traffic Sign

Stands

Camera

Polarizer

Green/Blue/Red 
Laser Pointers

Figure 3: Experiment devices to construct LAPA.

to simulate the installation within the lens. The mode of camera is
switched to “professional” to avoid image distortion made by intel-
ligent algorithms. With changes in laser colors, laser propagation
directions, polarizer angles, and traffic signs, we take images to
construct LAPA.
Hyperparameters. The main steps are actually determined by
multiple refinements, where we collect, test, and clean several sam-
ples to choose the critical hyperparameters for laser attacks and
defenses. The first hyperparameter is the type of traffic sign. We
choose three with different colors (blue U-turn, red no-passing, and
yellow crosswalk) from the most common traffic signs to broaden
the evaluation scope. In complementary to that, the second hy-
perparameter is the color of laser beams since it causes different
visual effects under the background of traffic sign colors. The third
hyperparameter is the laser propagation direction because laser
can come from any direction in physical world scenarios. Last but
not least, the fourth hyperparameter has to be the polarizer angle,
since it is highly correlated to the filtration effect of lasers.
Data distribution. Due to the uniform sampling of hyperparame-
ters, LAPA has a uniform data distribution. It has in total 27 scenes
(3 types of traffic sign × 3 laser colors × 3 laser propagation direc-
tions). For each scene, we take 1 image without the polarizer, and
10 images with the polarizer but in different angles. In addition, we
take 3 images with only traffic signs to exclude their effect during
target model’s prediction. The total number of LAPA is therefore
27 × 11 + 3 = 300. It is worth noting that, depending on the attack
effect, LAPA can be divided into two subsets (approximately 50% to
50%), one of successful laser attack and one of unsuccessful attack
(control cases). The former is to evaluate DSR and FTR, and the
latter is to evaluate FPR.

4.4 Evaluation on LAPA
Since LAPA provides a diversity of laser attack conditions, the eval-
uation of Laser Shield is more convincing. To meet the defense
requirements as stated in Section 2.2, we show its effectiveness in
laser elimination, functionality-preserving, negligible computation
cost, and high fault tolerance.
Laser elimination and functionality-preserving. Table 2 shows
that Laser Shield almost achieves a perfect effect on laser elim-
ination and functionality-preserving, with DSR and FPR close to
100%. The baselines take effect in several cases but exhibit poor
performance overall. BdR and PD work well on FPR but not on
DSR. This is because they mitigate adversarial effects during image
preprocessing with a subtle modification. Such modification is hard
to control, leading to a trade-off between DSR and FPR. Serving
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Figure 4: Laser Shield gradually takes effect with polarizer angle approaching 𝜃𝑜𝑝𝑡 . The overall FTR on LAPA is 60.0%.

Table 2: DSR, FPR, and A/E-cc (analytical/experimental com-
putation complexity) of Laser Shield compared to baselines.

Metric Method
BdR PD DM Laser Shield

DSR (%) 33.3 44.4 88.9 100
FPR (%) 88.9 88.9 83.4 100
A-cc 𝑂 (𝑚𝑛) 𝑂 (𝐾) 𝑂 (𝑚𝑛 ·𝑇 ·𝐶) 𝑂 (𝑚𝑛)𝑂 (𝑚𝑛)𝑂 (𝑚𝑛)

E-cc (s) 6.6 × 10−4 8.1 × 10−3 3.5 3.5 × 10−43.5 × 10−43.5 × 10−4

as the SOTA of image restoration, DM gives the most competitive
results among baselines, while it is still worse than Laser Shield.
Indeed, even a single failure case is not tolerant in the ADS sce-
narios because the consequences (e.g. car crash) are irreversible.
Besides, Figure 4 shows visually how Laser Shield eliminates
laser. As the polarizer rotates, the adversarial laser beams weaken
until completely disappear at the optimal angle 𝜃𝑜𝑝𝑡 . Besides, the
polarizer does not reduce the visibility of traffic signs regardless
of the rotation state. This is due to the difference between natural
light from traffic signs and linear polarized light from lasers, as we
stated in Section 3.2.
Negligible computation cost. Table 2 also shows the computation
complexity comparison in processing an image of size𝑚 × 𝑛. Ana-
lytically, Laser Shield’s computation cost is only on RGB energy
since the filtration of the polarizer is not related to algorithms. Its
complexity is therefore 𝑂 (𝑚𝑛). Similarly, BdR has the same com-
plexity because it modifies all pixels. For PD, it randomly samples
𝐾 pixels and replaces the value within a small neighborhood. Since
𝐾 is on the same degree order of𝑚𝑛, its complexity is also close to
Laser Shield. Despite the competitive performance, DM exhibits
enormous complexity which is increased by the iterative time𝑇 and
the cost of neural networks 𝐶 . The experimental result is coherent
with the analytical complexity. Laser Shield exhibits the minimal
time cost, which is negligible compared to the computation cost
of ResNet50. BdR and PD have comparable results, while DM is
considered extremely inefficient.
High fault tolerance. Figure 4 also shows the high fault tolerance
of Laser Shield. The target model’s prediction is correct at more
than just 𝜃𝑜𝑝𝑡 where laser beams’ intensity is minimal but at many
polarizer angles. For instance, the prediction of the yellow crosswalk
(resp. the red no-passing) is correct on seven (resp. four) angles
out of ten, thus 𝐹𝑇𝑅 = 70% (𝐹𝑇𝑅 = 40%). Besides, the overall FTR
on LAPA is 60.0%. This indicates that Laser Shield has a wide

tolerance range. When the mechanical rotator or the RGB energy
is occasionally out of alignment, our defense still works.

4.5 Evaluation on Road
To ensure a maximal quality of images and exclude irrelevant fac-
tors, the construction of LAPA is done in an optical lab. Nevertheless,
such a stable environment will cause a subtle difference to real-
world scenarios because the dynamic light conditions of passing
vehicles are ignored. To fill this gap, we implement an evaluation on
road by choosing three arbitrary scenes: a red stop sign, a blue bi-
cycle lane sign, and a white car. We also use the Local Interpretable
Model-Agnostic Explanations (LIME) [15] to explain which regions
of images play an important role in the target model’s prediction.

analog clock street sign spotlight minivanstreet signballoon

Figure 5: Evaluation on road with LIME explanation.

Figure 5 shows that Laser Shield works well on road. Un-
der laser attacks, the red stop sign (resp. blue bicycle lane sign) is
wrongly recognized as “analog clock” (resp. “balloon”), but Laser
Shield almost completely eliminates lasers to draw back the cor-
rect prediction. In addition, we evaluate a new target object other
than traffic signs, a white car. Laser Shield still works to correct
the prediction from “spotlight” to “minivan”. Besides, it is worth
noting that with LIME explanation, we understand that laser beams
are exactly the factor to mislead the prediction. Indeed, LIME ex-
cludes (resp. includes) lasers in images with correct (resp. wrong)
predictions. This is because laser beams have a high saliency in
images during the target model’s prediction. Laser Shield takes
effect by mitigating such saliency.

4.6 Ablation Study
Effectiveness of RGB energy. As stated in Section 3.3, the fil-
tration effect of the polarizer is enhanced by the mechanism of
min-energy rotation where we propose RGB energy to indicate the
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state with minimal laser. Figure 6 shows its effectiveness compared
to other possible indicator functions. For each polarizer angle, we
compute, normalize, and plot the values of image intensity, RGB in-
tensity, image energy, and RGB energy. Since Equation 2 modelizes
the filtration effect as a sinusoidal function, we observe that the
curve of RGB energy (red) is the closest to the ground truth (grey),
also with the lowest MSE (mean-square error). Even if the image
intensity is literally closer to laser intensity, it is less effective than
energy because the ambient light will influence it (mean of pixel
values) while energy (with square operation) amplifies the variation
of lasers. Besides, we observe that the adaption from energy to RGB
energy boosts the effect, confirming our analysis in Section 3.3.
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Figure 6: Four indicator functions on two scenes. RGB energy
is the closest to the sinusoidal ground truth. Mean-square
error (MSE) is shown in parentheses.

Robustness to diverse attack conditions. To evaluate Laser
Shield’s robustness, we vary the attack conditions to see the in-
fluence on defense results. Such a consideration is already taken
in the construction of LAPA. As stated in Section 4.3, LAPA consists
of a diversity of laser attacks across three dimensions (traffic sign
types, laser colors, and laser propagation directions). Since Laser
Shield achieves 100% DSR and 100% FPR on it, we conclude that
our method exhibits robustness to diverse attack conditions.

5 DISCUSSION AND FUTUREWORK
Extension of LAPA. Current LAPA contains only limited categories
of traffic signs which are all collected in the optical lab. However,
practical ADS will face more complex environments including more
objects (e.g. vehicles, pedestrians, and traffic lights, etc.) to recog-
nize. A thorough analysis and evaluation of laser attacks against
ADS is needed which requires more physical world datasets col-
lected with lasers. We will extend LAPA with more objects in ADS
scenario under laser attacks as our first future work.
Physical deployment. Although we try to guarantee the quality
of LAPA and have evaluated Laser Shield under diverse attack
conditions, until nowwe cannot implement Laser Shield on a real
ADS due to the limitation of experimental conditions. We leave the
full physical deployment, including the installation of a polarizer
along with a mechanical rotator for min-energy rotation on an ADS
as our second future work.

6 CONCLUSION
Facing the new threat of laser attacks in ADS, we propose Laser
Shield which leverages a polarizer along with a specifically de-
signed min-energy rotation mechanism to eliminate adversarial
lasers from driving environments. To evaluate its performance,
we construct a physical world dataset LAPA with diverse attack
conditions. Through thorough experiments in digital and physi-
cal space, Laser Shield can effectively eliminate laser, preserve
DNN’s functionality, have high fault tolerance, and need negligible
computation cost. We leave the potential physical deployment of
Laser Shield along with an ADS as our future work.
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