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Deep learning (DL) has demonstrated its remarkable success in a wide variety of fields. The development

of a DL model is a time-consuming and resource-intensive procedure. Hence, dedicated GPU accelerators

have been collectively constructed into a GPU datacenter. An efficient scheduler design for a GPU data-

center is crucially important to reduce operational cost and improve resource utilization. However, tradi-

tional approaches designed for big data or high-performance computing workloads can not support DL

workloads to fully utilize the GPU resources. Recently, many schedulers are proposed to tailor for DL work-

loads in GPU datacenters. This article surveys existing research efforts for both training and inference work-

loads. We primarily present how existing schedulers facilitate the respective workloads from the schedul-

ing objectives and resource utilization manner. Finally, we discuss several promising future research direc-

tions including emerging DL workloads, advanced scheduling decision making, and underlying hardware

resources. A more detailed summary of the surveyed paper and code links can be found at our project web-

site: https://github.com/S-Lab-System-Group/Awesome-DL-Scheduling-Papers
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1 INTRODUCTION

Recent decades have witnessed a dramatic increase in deep learning (DL) research, development,
and application in many fields, including Go [151], medical analysis [145], robotics [49], and so on.
A standard DL development pipeline consists of model training and model inference. Each stage re-
quires high-grade hardware resources (GPU and other computing systems) to produce and serve
production-level DL models [65, 80, 123, 171]. Therefore, it has become common for IT indus-
tries [65, 171] and research institutes [18, 80] to set up GPU datacenters to meet their ever-growing
DL development demands. A GPU datacenter possesses large amounts of heterogeneous comput-
ing resources to host large amounts of DL workloads. An effective scheduler is required to or-
chestrate these resources and workloads to guarantee the efficiency of DL workload execution,
hardware utilization, and other scheduling objectives.

The scheduler is responsible for determining the resource utilization of the entire datacenter
and the performance of each job, which further affects the operation cost and user experience [41].
Specifically, (1) for model training, the scheduler allocates resources requested by the users to
support the long-running offline training workloads. The scheduler needs to achieve high perfor-
mance for each individual workload, high resource utilization for the entire datacenter, and fairness
among different users. Due to the unique and complicated features of DL training jobs, conven-
tional scheduling algorithms for high-performance computing (HPC) and big data workloads
could cause unbalanced resource utilization and exorbitant infrastructure expense [184], and new
solutions tailored for GPU datacenters are required. (2) For model inference, DL applications often
serve as online services to answer users’ requests. They often have a higher expectation on the
response latency and inference accuracy [24, 199]. Applications that fail to be completed within
the specified time (Service Level Agreement) or have lower accuracy than expected may have little
or no commercial value. Therefore, it is critical to balance the inference latency, accuracy, and cost.

A variety of DL schedulers have been proposed for GPU datacenters [24, 47, 123, 134, 141, 175,
199]. However, most of these systems are designed in an ad hoc way for some specific objectives.
There is still a lack of comprehensive exploration toward efficient scheduling of DL workloads. We
are interested in the following questions: (1) What are the main challenges for designing a satisfac-
tory scheduler to manage DL workloads and resources? (2) Do existing solutions share common
strategies to achieve their scheduling objectives? (3) How do we need to refine the schedulers to
adapt to the rapid development of DL technology? Those questions are important for system re-
searchers and practitioners to understand the fundamental principles of DL workload scheduling
and management and design innovative schedulers for more complex scenarios and objectives.
Unfortunately, there are currently no such works to summarize and answer these questions from
a systematic point of view.

To the best of our knowledge, this article presents the first survey for scheduling both DL train-
ing and inference workloads in research and production GPU datacenters. We make the following
contributions: First, we perform an in-depth analysis of the characteristics of DL workloads and
identify the inherent challenges to manage various DL workloads in GPU datacenters. Second,
we comprehensively review and summarize existing DL scheduling works. We categorize these
solutions based on the scheduling objectives and resource consumption features. We also analyze
their mechanisms to address the scheduling challenges. The summary, referred to the “we summa-
rize” in the above sentence can disclose the common and important considerations for existing DL
scheduler designs. Third, we conclude the limitations and implications of existing designs, which
can shed new light on possible directions of scheduler designs in GPU datacenters. We expect this
survey can help the community understand the development of DL schedulers and facilitate future
designs.
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Fig. 1. The overall structure of this survey.

Existing surveys. Past works also presented some surveys, which are relevant to but distinct
from ours. (1) Some works summarized the optimization techniques for DL applications, such as
distributed training acceleration [129, 161], efficient model inference [43, 106], and so on. These
surveys primarily focused on the acceleration of individual jobs, while we consider the global opti-
mization of the entire datacenter with plenty of workloads for various objectives. (2) Some works
surveyed the scheduler designs for conventional cloud big data [149, 198] and HPC [126, 139] work-
loads. As discussed in Section 2.1, DL workloads have significantly distinct characteristics from
these traditional jobs, and their scheduling mechanisms are not quite adaptable for DL training or
inference. (3) Very few surveys conducted investigations on DL workload scheduling. Mayer and
Jacobsen [114] summarized early designs of DL training job schedulers before 2019. This summary
is outdated due to the emerging scheduling algorithms in recent years. Yu et al. [191] proposed a
taxonomy for DL inference system optimization based on the computing paradigm. However, it
mainly investigated the single node scenario instead of the datacenter scale. A recent work [190]
considered inference scheduling by colocating multiple workloads on the same GPU from both the
cluster level and workload level. Different from those works, we provide a very comprehensive and
up-to-date survey for scheduling techniques of both DL training and inference in the entire GPU
datacenters.
Article organization. The article is organized as follows: Section 2 describes the unique char-
acteristics of DL workloads and challenges for scheduling in GPU datacenters. It also illustrates
the scope of this survey. The main body of this survey is presented in Figure 1. Concretely, Sec-
tion 3 and Section 4 present detailed categorizations of training and inference workloads based
on the scheduling objectives and resource consumption features, respectively. Section 5 discusses
the other workloads, e.g., hyperparameter optimization, mixed training, and inference workloads.
Implications from these works are also given at the end of each section. Section 6 concludes this
survey article and identifies the future directions of scheduler designs.
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2 BACKGROUND

2.1 DL Workloads Characteristics and Challenges

A DL development pipeline typically consists of three stages: data processing, model training,
and model inference. Data processing typically refers to preparing, cleaning, transforming, and
organizing the raw data so it can be used as input of a DL model. This stage requires a significant
amount of CPU and storage resources. In this article, we narrow down our focus to training and
inference workloads that account for the most computation and consume the majority of GPU
resources in a datacenter.

2.1.1 DL Training. A DL training workload builds models by extracting features from existing
data. A DL framework (e.g., PyTorch, TensorFlow) is commonly adopted to fully utilize heteroge-
neous compute resources to accelerate the training process. To further reduce the training time, the
workload is deployed across multiple GPUs with a data-parallel training scheme, which is imple-
mented via distributed training libraries (e.g., Horovod [144], DistributedDataParallel in Py-
torch, MultiWorkerMirroredStrategy in Tensorflow). Note that we only discuss elastic training
based on data parallelism as it is adopted by the majority of training workloads. Other paradigms,
including model and pipeline parallelism [125], are mainly for large models and beyond the scope
of our survey.

DL training jobs share some similar features as traditional big data or HPC jobs and also exhibit
some special features. A series of studies have characterized training workloads from the pro-
duction GPU datacenters, including Microsoft [80], SenseTime [65], and Alibaba [164, 171]. The
characteristics and scheduling challenges are summarized below.
T1: Inherent heterogeneity [80, 175]. GPU resources play a dominant role in DL training. How-
ever, CPUs and memory might interfere with the input processing and then delay the training
execution. A GPU datacenter generally offers an ample pool of CPU and memory resources com-
pared to GPUs. Arbitrary selection of heterogeneous resource combinations by users may lead
to imperfect training progress. Figure 2(f) shows the training performance speedups of common
DL models with various generations of GPUs. Different models have diverse affinities to GPU
types [123].
T2: Placement sensitivity [113, 175]. Distributed DL jobs are sensitive to the locality of allo-
cated GPU resources. Specifically, the runtime speed of some distributed DL jobs is bounded by
device-to-device communication. Figure 2(c) shows two types of placement, where a consolidated
placement can efficiently reduce the communication overhead compared with topology-agnostic
placement. The communication sensitivity of training jobs depends on the inherent property of the
model structure. Advanced interconnect links (e.g., NVlink) can offer an order of magnitude higher
bandwidth than PCIe. Therefore, distributed training jobs tend to request advanced interconnect
to further obtain communication time reduction. Besides, jobs colocated in one server may suffer
from PCIe bandwidth contention.

Challenge: DL training can benefit from newer generations of GPUs. However, the marginal benefit

brought by new GPU versions varies significantly (Figure 2(f)). Besides, along with PCIe, InfiniBand,

Ethernet, and QPI, distributed training has several alternatives for communication. It is non-trivial to

properly allocate these resources to jobs.

T3: Iterative process [41, 132]. DL training repeats a similar iterative pattern up to thousands of
times, as shown in Figure 2(e). Each iteration consists of forward propagation, backward propaga-
tion, and parameter update. Profiling a small number of iterations suffices to predict the pattern
of future GPU memory usage and job completion time.
T4: Feedback-driven exploration [175, 216]. Training a DL model is a typical trial-and-error
process. Users may explore a number of trial configurations and terminate unpromising trials by
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Fig. 2. Characteristics of training and inference workloads. (a) Exclusive Allocation versus GPU Sharing.

(b) Gang Scheduling versus Elastic Training. (c) Consolidated Placement versus Topology-agnostic Place-

ment. (d) Query Batching mechanism in inference. (e) Iterative Process: allocated and reserved GPU mem-

ory trace profiled through torch.profiler (ResNet-50 on ImageNet). Allocated memory is the amount of

memory that is being actively used by the model, and reserved memory is the amount of memory that has

been reserved for potential future use. (f) Heterogeneous Affinity: the magnitude of speedup across GPU

generations differ across different tasks.

the early feedback. Such early feedback can further motivate to launch new trial configurations.
Hence, a GPU datacenter hosts abundant repetitive training trials and short-duration trials.
T5: Exclusive allocation [65] versus GPU sharing [171]. Figure 2(a) depicts the difference be-
tween exclusive allocation and GPU. Exclusive allocation refers to a DL job exclusively having
resource usage ownership. On the contrary, GPU sharing allows multiple jobs to co-locate in the
same GPU device and take advantage of resources in a time-/space-sharing manner. Unlike CPUs,
GPUs do not have the intrinsic hardware-level support for fine-grained sharing across users and
thus they are allocated to DL training jobs exclusively. Due to the increasing hardware compute
capability, plenty of DL training jobs can not fully utilize recent generations of GPU chips. To
address this issue, datacenters enable GPU sharing through various technologies, e.g., NVIDIA
Multi-Instance GPU (MIG), Multi-Process Service (MPS), and GPU virtualization.
T6: Gang scheduling [65] versus elastic training [134]. Figure 2(b) illustrates two scheduling
mechanisms for data-parallel DL jobs. In particular, gang scheduling is that DL training requires
all the GPUs to be allocated simultaneously in an all-or-nothing manner [32]. The requirement
of gang scheduling results from the native support of DL frameworks. In contrast, elastic training
removes the strict GPU request constraint and allows a dynamic number of GPUs to run training
jobs. Many scheduling systems support elastic training to improve GPU utilization and accelerate
the training process. They take advantage of the elasticity of DL training workloads: A DL training
job can adapt to a wide range of GPU counts, and the training processes can be suspended and
resumed via checkpoints [65].
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Challenge: DL frameworks provide functions to pause/resume training jobs at any time for better

fault tolerance. The overhead primarily depends upon the job scale, which ranges from seconds to

minutes and seriously deteriorates for large models.

2.1.2 DL Inference. Model inference is the process of making predictions about users’ inputs.
It is commonly applied as online services (e.g., personalized recommendations, face recognition,
language translation). DL frameworks also make efforts to support inference workloads, such as
TensorFlow Serving [128], MXNet Model Server [1], and so on. The inference jobs must be per-
formed in a real-time manner, facing dynamic queries with strict latency requirements [199]. They
may process each inference request individually or batch multiple requests concurrently to balance
resource usage and latency. Since many inference systems are deployed in the public cloud alter-
native to on-premise clusters, there exist many works emphasizing how to exploit cloud resources
at scale to handle inference requests. According to the report from AWS [69], the cost of DL infer-
ence has already taken up the majority (more than 90%) of the total infrastructure cost for machine
learning as a service. A DL inference workload also gives unique characteristics that can affect the
scheduling system designs. They are summarized as follows:
I1: Deterministic online execution [26, 51]. Different from offline training that could be
resource-intensive and last for days or weeks, the inference for each query is often completed
with sub-second response time and consumes much fewer resources. Moreover, many infer-
ence jobs reveal deterministic execution flows and duration under fixed-size query input. This
gives predictable resource usage and execution speed, offering opportunities for fine-grained
optimization.

Challenge: Compared to training jobs, the inference service mainly involves the forward propagation

stage and consumes small amounts of GPU resources. This often leads to low GPU utilization for

inference workloads [96, 200]. Besides, as an online service, it is common for the inference application

to receive bursty and fluctuating requests, which are unpredictable. Operators need to guarantee the

latency with minimal operational cost even in extremely overloading scenarios.

I2: High demands on latency and accuracy [24, 199]. First, the inference service is expected to
respond to incoming queries promptly. Delays of inference responses can cause a bad user experi-
ence. For example, an online recommend service is required to provide recommendations at interac-
tive latencies (<100 ms), such as traditional web-serving workloads [12] to prevent user losses [24].
Other kinds of inference services also have strong latency requirements (e.g., <200 ms [199]). Sec-
ond, prediction accuracy is also critical for building a reliable inference service. Inference work-
loads in some critical domains, e.g., healthcare and finance, may have stronger accuracy require-
ments [54]. The tight latency and accuracy demands pose great difficulty in managing inference
jobs on GPUs, and there exists a tradeoff between high accuracy and low latency. The datacen-
ter managers need to carefully balance the latency overhead and prediction performance of the
inference workloads.

Challenge: The inference jobs are relatively malleable in terms of latency, accuracy, and cost. For

instance, to improve the resource utilization and cluster-wide job throughput, we can colocate multiple

inference jobs or increase the batch size. However, this can increase the inference latency. To increase

the accuracy, effective ways include model ensemble or augmentation evaluation, which can also incur

latency delay [52].

2.2 Prior Schedulers in Datacenters

Scheduling has continuously drawn public attention for several decades [31, 33, 34]. Similar to
scheduling at the level of the operating system, networking system, or applications, parallel job
scheduling at the datacenter level makes decisions about the allocation of computing resources
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Fig. 3. Scheduling workflow for model training and inference workloads.

to competing jobs for specific scheduling objectives [33], which forms an NP-hard problem. In
particular, it matches available resources with pending jobs and decides the optimal moment and
amount of resources to be allocated to each job. Modern datacenters have introduced a number
of schedulers to manage conventional workloads. For instance, HPC schedulers (e.g., Slurm [189],
OpenPBS [2]) are used to support HPC applications and scientific computing; cloud schedulers
(e.g., Mesos [61], Kubernetes [11], Yarn [160]) help allocate heterogeneous compute resources for
big data applications at scale.

As a special case, DL workload scheduling in GPU datacenters shares many similar features
as conventional parallel job scheduling. Figure 3 shows the general workflow of DL schedulers
in a GPU datacenter. The scheduler works on top of the DL frameworks and assigns appropriate
resources to satisfy a variety of DL workloads. It receives different types of workloads from the
users. By monitoring the usage of existing compute resources in the datacenter, it delivers an effi-
cient scheduling solution for these workloads to optimize the predetermined scheduling objective,
e.g., JCT, fairness. Then, it allocates the jobs to a set of hardware resources for execution. The
schedulers for model training and model inference share similar logic flows but have totally differ-
ent scheduling objectives, workload types, and target users. So, our survey will investigate them
separately (Sections 3 and 4) and consider the mix of them in Section 5.

Some techniques and mechanisms of conventional parallel job scheduling may also apply to
DL workload scheduling in GPU datacenters. For example, to manage computing resources more
efficiently and provide guaranteed service for users, it is common to divide computing resources
into separate partitions and set up different queues for different users or jobs with different char-
acteristics [35, 47, 184]. Queues may also have different priorities and be equipped with differ-
ent queuing policies, e.g., First-Come-First-Served and Shortest-Remaining-Time-First. Schedulers
also pursue a better comprehension of affinities between workloads and resources to make wiser
decisions. Therefore, mechanisms such as performance modeling of workloads (e.g., online profil-
ing [41] and performance prediction [47]) and trace analysis for characterizing the cluster-level
workload distribution [65, 171] are widely adopted. Other traditional scheduling techniques (e.g.,
backfilling [47, 120]) and mechanisms (e.g., time-slicing [175], checkpointing [184], and migra-
tion [14, 175]) are also adopted for more flexible job arrangements and better resource utilization
in DL workloads scheduling.

However, due to the distinct characteristics of DL jobs (Section 2.1), simply adopting these tech-
niques can cause a series of issues, e.g., query blocking, resource under-utilization, high operation
cost. Below, we summarize the challenges of scheduler designs caused by DL workload features.

ACM Comput. Surv., Vol. 56, No. 6, Article 146. Publication date: January 2024.



146:8 Z. Ye et al.

2.3 Relevant Studies Not Included in This Survey

This survey mainly focuses on the scheduling of DL training and inference workloads in GPU
datacenters. Other relevant works beyond the scope of this article will not be summarized in the
following sections. Here, we briefly discuss these directions. Readers who are interested in these
works can refer to relevant surveys cited in References [43, 106, 126, 129, 139, 149, 161, 198].

First, we do not consider the optimization solutions for individual training or inference jobs.
Training job optimization mainly contains distributed training acceleration [84] and job place-
ment optimization [188] as well as memory optimization [74, 75, 90, 140, 213, 218]. Inference job
optimization techniques include workload characterization [13], pipeline execution [85], and so
on. These techniques can improve the scheduling performance, but their objectives are to achieve
high performance for a single job instead of an entire datacenter. It is worth noting that schedul-
ing hyperparameter optimization jobs will not be considered as single job optimization, because
it involves a collection of training tasks (e.g., RubberBand [118], HyperSched [107]). They will be
summarized in Section 5.

Second, we consider the scheduling at the job level and do not cover the scheduling approaches
at the hardware-resource level (e.g., network I/O, power). For instance, HIRE [10] proposed a novel
in-network computing scheduling algorithm for datacenter switches. A number of works [50, 115,
165] utilized the DVFS mechanism on CPU and GPU chips to achieve cluster energy conservation.
These works are not included in this survey.

Third, we focus on the GPU datacenters where GPUs are the primary resources for the DL work-
loads. Those datacenters can also exploit other resources (e.g., CPU, FPGA, ASIC, PIM architecture)
as subsidiary. This can reflect the current status of mainstream DL infrastructures. Some sched-
uling systems mainly utilize the CPU [58, 59, 72, 180], FPGA [71, 82], or hybrid resources [83]
where GPUs are not dominant. Some papers consider the DL services on mobile devices [127]
or edge computing [143, 204] other than datacenters. Since DNN training and inference work-
loads are memory-intensive, new compute-capable memory devices such as PIM (Processing-in-

Memory) [19, 38, 56, 94] are proposed to accelerate DL training and inference. Those works are
also out of the scope of this survey.

Fourth, we target the scheduling of general DL training and inference workloads. Some works
studied other types of DL jobs, e.g., data processing, model re-training, model validation. Our sur-
veyed schedulers do not differentiate the DNN models (e.g., RNN, LSTMs, CNNs, MLPs). Some
papers considered the optimization of specific DL applications based on their unique behaviors,
including RNN-based service [39, 62], recommendation systems [53, 82, 83, 109], and video ana-
lytics [146, 201]. These works are not summarized in this article. Besides, our aim is to enhance
system and workloads in terms of performance, efficiency, and user experience. Other objectives
like privacy protection [93, 112] is not considered either.

3 SCHEDULING DL TRAINING WORKLOADS

DL training jobs consume a majority of computing resources in GPU datacenters. Therefore, an ef-
fective and efficient scheduler for training workloads is of critical importance. Existing scheduling
systems can be generally categorized from two dimensions: scheduling objective and resource uti-
lization manner. Table 1 summarizes the past works for DL training scheduling in GPU datacenters.
We detail them in the rest of this section.

3.1 Scheduling Objectives

Different schedulers are designed to achieve different objectives, including efficiency, fairness, and
deadline guarantee. We first review past works from this perspective.
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Table 1. Summary of Schedulers for DL Training Workloads in GPU Datacenters

Year Scheduler Objectives Approaches Advantages Heter. Elastic AutoML
Exp.

Scale

Source

Code

2017
Dorm [154] ♥ Linear Programming Fairness Guarantee; JCT Reduction - - - S -

Topology-aware [3] ♣ Best-effort topology-aware Placement Lower Interference - - - S ✔

2018
Gandiva [175] ✿♣ Time-slicing; Migration; Grow-shrink Better GPU Utilization - ✔ ✔ L -

OASiS [7] ✿♣ Primal-dual framework Better GPU Utilization - ✔ - S -
Optimus [132] ♣ Performance Modelling JCT Reduction - ✔ - S ✔

2019

FC2 [155] ♦ Automatic Resource Configuration Cost Effectiveness ✔* ✔ - S -
Sched2 [110] ♣ Q-network-based Scheduler Reduce Cluster Fragmentation - - - L -
Cynthia [214] ♦ Performance Modelling Monetary Cost Reduction - ✔ - S -
Dragon [108] ✿♣ GPU time-sharing; Autoscaling Better GPU Utilization - ✔ - S -

FfDL [78] ♣ Lesson-motivated Design production DL platform - - - S ✔
Harmony [6] ♣ RL Scheduler; Bin Packing JCT Reduction; Better GPU Utilization - - - S -
JPAS [216] ♦ Accuracy Curve Modelling JCT Reduction - - ✔ S -
Philly [80] ♣ Locality-relaxity Workload Analysis; JCT Reduction - - - - ✔

Tiresias [47] ♣ Gittins index; Least-Attained Service (LAS) Information-agnostic - - - M ✔

2020

Gandivaf air [14] ♥♣ Gang-aware Lottery; Automatic Trading Inter-user fairness guarantee ✔ - - XL -
Ada-SRSF [166] ♣ AdaDUAL; Least workload first Less communication contention ✔* - - S -
Antman [176] ✿♣ Framework-cluster Co-design Better GPU Utilization - ✔ - XL ✔
CODA [142] ✿♣ Adaptive CPU allocator; Contention eliminator Non-dominant resource aware ✔* - - - -

Co-scheML [86] ♣ Interference-aware Scheduler; Random Forest Better GPU Utilization; JCT Reduction - - - S -
Elan [177] ✿♣ Hybrid scaling; IO-free replication;etc Better GPU Utilization; Less IO - ✔ - L -

E-LAS [153] ♣ Real-time Epoch Progress Rate; LAS Information-agnostic - - - - -
Gavel [123] ♣♥ Linear Programming; Round-based Scheduling Heterogeneity-aware ✔ - - M ✔
GENIE [18] ♠ Light Profiler QoS Guarantee - ✔ - S -
HiveD [211] ♣ Buddy Cell Allocation Better Resource Utilization - - - L ✔

MARBLE [55] ✿♣ Offline profiling-based scaling Better GPU Utilization - ✔ - S -
MLCloudPrice [122] ♣♦ Linear Programming; Spot-instance Training Cloud Cost Reduction - - - - ✔

MLFS [162] ♣♠ RL Scheduler Optimize Multiple Objectives - - - - ✔
Non-Intrusive [167] ✿♣ SideCar; Early initialization Framework non-intrusive - ✔ - S -

Parrot [103] ♣ Linear Programming Better Bandwidth Utilization - - - - -
Salus [195] ✿♣ Fast job switching; Memory sharing Better GPU Utilization - - - S ✔
SPIN [57] ♣ Rounding-based Randomized Approximation Robust Time Misestimation - - - - -

Themis [113] ♥ Finish-time Fairness; Auction Bid Better Fairness; GPU Utilization - - - L -
Vaibhav et al. [142] ✿♣ Dynamic programming optimization Better GPU Utilization - ✔ - M -

Yeung [186] ✿ GPU Utilization Prediction Better GPU Utilization - - - - -

2021

DL2 [133] ♣ RL Scheduler JCT Reduction - ✔ - S ✔
AFS [70] ✿♣ Apathetic Future Share; CoDDL Better GPU Utilization - ✔ - L -

ANDREAS [36] ♦ Randomized Greedy Algorithm Energy Cost Reduction - - - S -
Astraea [184] ♥ Long-term GPU-time Fairness Fairness Guarantee - - - - -
Chronus [41] ♠ Linear Programming; Local Search Allocation SLO Guarantee - - - S ✔

DynamoML [20] ✿♣ Combine KubeShare and Dragon Better GPU Utilization - ✔ - S -
Helios [65] ♣ Data-driven Prediction; QSSF; CES Workload Analysis; Energy Conservation - - - - ✔
Horus [187] ✿♣ XGBoost-based interference prediction No need to online profiling - - - S -
Jigsaw [89] ♣ Structured Partial Training Algorithm-System Co-design - - - M -
Liquid [48] ♣ Best-fit; Grouping Genetic Accelerate job execution - - - M ✔
ONES [9] ✿♣ Online evolutionary search Better GPU Utilization - ✔ - S ✔

Pollux [134] ✿♣♥ Goodput; Dynamic batch size & lr Better GPU Utilization - ✔ ✔ L ✔
POP [121] ♦ Partitioned Optimization Reduce Scheduling Overhead ✔ - - L ✔
SMD [194] ♣ Multi-dimensional-knapsack Decomposition JCT Reduction - - - - -

2022

Ali-MLaaS [171] ✿♣ GPU Sharing; Predictable Duration Fine-grained Workload Analysis - - - - ✔
Aonline [206, 217] ✿♣ Integer Linear Programming JCT Reduction - ✔ - - -
CloudBrain [182] ✿ GPU Sharing Fine-grained Workload Analysis - - - - ✔

EDL [174] ✿♣ Stop-free scaling; Graceful exit;etc Better GPU Utilization - ✔ - L -
GADGET [193] ✿♣ Greedy; G-VNE JCT Reduction - ✔ - - ✔

Muri [212] ✿♣ Multi-resource Interleaving Minimize Interference ✔* - - L ✔
Singularity [150] ✿♣ Device Proxy; Replica Splicing; etc User code non-intrusive; Efficient - ✔ - M -

Synergy [119] ✿♣ Optimistic Profiling; Greedy Scheduling Non-dominant Resource-aware - - - M -
Titan [40] ✿♣ Task Merge; Pipeline Switch Foundation Model Fine-tuning - - - - -

2023

EasyScale [101] ✿♣ EasyScale Thread Switching Consistent Model Accuracy ✔ ✔ - L ✔
ElasticFlow [46] ♠♣ Minimum Satisfactory Share SLO Guarantee - ✔ - XL ✔

FGD [172] ✿♣ Fragmentation Gradient Descent Minimize GPU Fragmentation - - - - ✔
Hydro [67] ♦✿ Model Scaling; Trial Interleaving Efficient Large Model Tuning ✔ ✔ ✔ XL ✔
Lucid [68] ✿♣ Non-intrusive Profiling & Packing Code Non-intrusive - - - M ✔

ModelKeeper [91] ♦♣ Automated Weight Transformation Faster Convergence - - ✔ M ✔
PowerFlow [45] ♦♣ Network Packing; GPU Scaling Energy-aware - ✔ - - -
Shockwave [215] ✿♣♥ Volatile Fisher Market Better Fairness - ✔ - M ✔

Sia [79] ✿♣♥ Goodput; ILP Heterogeneity-aware ✔ ✔ ✔ M ✔
SiloD [210] ✿♣♥ Cache Subsystem Cache and IO-aware ✔* - - L -

2024
Acme [66] ♣ Decoupled Scheduling LLM Workload Analysis - - - - ✔

Cassini [136] ✿♣♥ Network Interleaving Communication-aware - ✔ - S -

Objectives: ✿ Utilization ♣ JCT ♦ Cost ♥ Fairness ♠ DDL; Heterogeneous: ✔ heterogeneous GPUs of different

generations. * heterogeneous resources (e.g., CPU, networking); Experiment GPU Scales: the scale of physical

testbed. S (0, 30] M (30, 60] L (60, 120] XL (120, ∞] -: no evaluation on a physical cluster or not clearly specified.

3.1.1 Efficiency. Efficiency is a main objective to pursue when designing the workload sched-
ulers. The GPU datacenter manager can consider different types of efficiency. We classify the
efficiency-aware schedulers into three categories, as discussed below.
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(1) Timing efficiency. This scheduling goal is to reduce the average queuing and execution time
of training workloads in a datacenter. Some advanced strategies with special training configura-
tions (e.g., sharing training, elastic training, heterogeneous training) can help improve the timing
efficiency [70, 89, 99, 134, 174–177], which will be elaborated in Section 3.2. Here, we mainly dis-
cuss the techniques over common training configurations that support gang scheduling, resource
exclusive usage, and preemptive operations.

One of the most common and effective ways for guaranteeing timing efficiency is to explicitly
use some heuristic functions as the job scheduling priority. For instance, Tiresias [47] designs
the Least Attained Service (LAS) algorithm to prioritize jobs based on their service, a metric
defined as the multiplication of requested GPU resources and execution time. It devises the priority
discretization to mitigate the frequent preemption issue, which is inspired by the classic Multi-

Level Feedback Queue (MLFQ) algorithm [22]. These techniques enable Tiresias to beat the
classical YARN-CS [160] significantly. E-LAS [153] improves over Tiresias by prioritizing jobs with
the real-time epoch progress rate, which is computed as the proportion of the current training epoch
over the total number of training epochs. With such improvement, E-LAS outperforms Tiresias in
terms of average job timing efficiency.

An alternative strategy is to use machine learning (ML) techniques for job scheduling.
Sched2 [110] is a scheduler based on reinforcement learning (RL). It utilizes a Q-network that
takes the job state and GPU datacenter state as input and outputs the optimal job to be sched-
uled. MLFS [162] also leverages RL to determine the job priority and resource allocation. The RL
model takes as input the job time information, resource demand, and accuracy requirements and
yields scheduling decisions to reduce the average latency. Helios [65] characterizes the produc-
tion training jobs from a shared GPU datacenter in SenseTime and then adopts a variety of ML
algorithms to predict the job priority from the history job information. The prediction result suf-
fices to minimize the cluster-wide job latency. JPAS [216] is a scheduler based on the accuracy
curve fitting technique to expedite the feedback-driven exploration of general training workloads
T4.1 The feedback-driven exploration readily expects the scheduler to allocate more resources for
more accurate models. JPAS leverages the accuracy curve fitting to predict the potential maximal
accuracy improvement of each job and then prioritize the jobs in a time interval.

Insight 1: The heuristic functions depend on job-related information (e.g., duration, speed,
resource utilization) to identify the job priority. Some Schedulers lacking this information could
use ML algorithms to make predictions.

The timing efficiency of DL training jobs is highly dependent on the job placement, where dif-
ferent placement policies can lead to different communication overheads. Users prefer the strict
placement locality to maintain the training speed T2. Aforementioned schedulers including Philly
and Tiresias as well as E-LAS consider meeting the strict placement locality as much as possible.
Amaral et al. [3] also focused on this direction, and they used a profiler to measure the placement
sensitivity of each job and thus perform a best-effort approach to schedule locality-sensitive jobs
in a packing manner. SMD [194] is a scheduler for parameter-server (PS) training jobs, which
allows multiple jobs to contend the communication bandwidth. It models the scheduling problem
as a non-convex integer non-linear program with the bin-packing constraints and then develops
an ϵ-approximation algorithm called sum-of-ratio multi-dimensional-knapsack decomposition to
solve it. Similar to conventional cloud trace characterization from Google [138], Philly [80] inves-
tigates a production GPU cluster trace from Microsoft and conducts a thorough analysis about the

1TX and IX indicate the training and inference job characteristic (Section 2.1) need to be considered.

ACM Comput. Surv., Vol. 56, No. 6, Article 146. Publication date: January 2024.



Deep Learning Workload Scheduling in GPU Datacenters: A Survey 146:11

impact of gang scheduling and locality constraints on the queuing delay and job runtime. Based
on this analysis, it proposes to relax locality constraints to improve the job timing efficiency.

Sometimes the scheduler can satisfy the GPU capacity request but fail to meet the placement
locality. This will lead to the cluster fragmentation issue, which is often caused by the scattered
GPU resource allocation. HiveD [211] emphasizes that sharing the GPU datacenter without the
consideration of cluster fragmentation will cause significant job queuing delay. Therefore, it devel-
ops a buddy cell allocation mechanism to ensure sharing safety. HiveD can be easily incorporated
with Tiresias [47] and Philly [80] to reduce the queuing delay. Sched2 [110] addresses the cluster
fragmentation problem with an RL model, which is able to satisfy the locality constraint as much
as possible. SPIN [57] observes that delay scheduling [197] can bring reward to the GPU datacenter
in the long term for satisfying the placement locality in the near future. SPIN proposes a rounding-
based randomized approximation method to achieve this goal, which has strong robustness even
with inaccurate job runtime estimation.

Moreover, ModelKeeper [91] identifies model architectural similarity with previously trained
models, selects a parent model with high similarity and good model accuracy, and performs
structure-aware transformation of weights to preserve maximal information from the parent
model during the warmup of new model weights. It significantly achieves faster training com-
pletion time and no reduction in model accuracy.

Insight 2: The effectiveness of placement policy is affected by the jobs, cluster status, and fu-
ture job arrival. We recommend plugin-style schedulers (e.g., HiveD) to improve the quality
of placement decisions without the need of changing deployed schedulers. For better perfor-
mance, ML/RL algorithms can be used to incorporate future knowledge to make more informa-
tive placement decisions (e.g., Sched2, SPIN).

(2) Cost efficiency. This refers to the reduction of power consumption or financial cost for
renting cloud services. This is another significant objective for training workload scheduling.

Existing GPU datacenters have considerable power waste, as not all the GPUs are actively used
all the time, while the datacenter managers prefer to keep all the devices on. To reduce the energy
cost, ANDREAS [36] considers a scenario where the execution of each job can be postponed within
a certain period. Then, it judiciously schedules jobs at appropriate moments to keep all the GPUs
busy in the datacenter. It formulates the power consumption as a Mixed Integer Non-Linear Pro-
gramming problem and proposes an effective greedy heuristic algorithm to achieve a significant
cost reduction. Different from ANDREAS, the Cluster Saving Service (CES) in Helios [65] has
no assumption about postponing the execution of DL training jobs. It predicts the future resource
utilization from the history logs and decides how many GPU nodes should be turned on/off to re-
duce the electricity consumption. PowerFlow [45] aims to save energy via dynamically allocating
GPUs and adjusting the GPU-level or job-level configurations of DL training jobs.

Cloud GPU resources are billed based on the amount and duration of usage. Training a model
can be very time-consuming and resource-intensive. As such, the cost of a training workload could
be considerably expensive. It is critical to reducing such financial costs to produce the model with
the same quality. Particularly, PS training is a common method for distributed data-parallel model
training in the cloud. Cynthia [214] is a scheduler to guarantee the cost-effectiveness of cloud
resource provision for PS training. This scheduler uses an analytical performance model to iden-
tify an optimal resource type and PS configurations to maintain the training throughput while
minimizing the monetary cost. Analogously, FC2 [155] is a scheduler to recommend cost-effective
and high-performing cloud resource configurations for PS training. It proposes a heuristic method
named Scala-Opt to decide the worker instances that can guarantee the job throughput while
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maximizing the cost savings. Jahani [73] treats the compute node with different numbers of GPUs
as different virtual machines (VMs). The renting cost and job throughput vary with different VM
types. Additionally, FfDL [78] is an open-sourced scheduler platform developed by IBM. It uses the
operating lessons from the industry practice to guide the management of DL training workloads
to attain the cost-effective objective in the cloud. MLCloudPrice [122] proposes to move the work-
loads between spot and on-demand instances, which opportunistically utilizes the low-pricing spot
instance to reduce the training cost.

Insight 3: Existing cost-effective schedulers mainly minimize the power consumption and fi-
nancial costs in a single datacenter. Few efforts have been done to leverage the cost difference
among different datacenters to reduce the cost. Such research endeavors have been made in
prior works [111, 208]. We expect more studies in this direction.

3.1.2 Fairness. Fairness indicates how fairly the compute resources are allocated among differ-
ent entities, including user groups (i.e., tenants) and workloads. The design of fairness schedulers
for conventional workloads follows some typical fairness principles, such as sharing incentive,
strategy-proofness, envy-freeness, and Pareto efficiency [42]. Maintaining fairness for DL train-
ing jobs also follows these principles, but requires new scheduler designs for two reasons: (1) A
GPU is an indivisible resource in common settings (gang scheduling) for DL training T6; (2) DL
training exhibits resource-heterogeneity preference T1. Below, we discuss the new works that can
address these two challenges.

(1) Homogeneous GPU resources. A datacenter with only one generation of GPU devices can
be considered as a homogeneous GPU environment. The scheduler in this system achieves fairness
sharing of indivisible GPU resources from the timing dimension. For instance, Themis [113] main-
tains job-level fairness by introducing a new metric called finish-time fairness. This metric inspires
the scheduler to allocate more resources to the jobs whose attained service is less than the deserved
amount. Themis also considers the placement preferences of training workloads and builds a two-
level scheduling architecture for biding resource allocation to resolve severe fairness sharing loss
brought by poor resource allocations. Astraea [184] concentrates on fairness across workloads
and tenants. It introduces the Long-Term GPU-time Fairness (LTGF) metric to measure the
sharing benefit of each tenant and job and proposes a two-level max-min scheduling discipline
to enforce job-level and tenant-level LTGF in a shared GPU datacenter. Besides, Shockwave [215]
extends classic market theory from static settings to dynamic settings to co-optimize efficiency
and fairness.

(2) Heterogeneous compute resources. It is relatively easy to maintain fairness over one type
of GPU. However, the existence of multiple generations of GPUs and other compute resources (e.g.,
CPUs, network links) can also exacerbate the fairness of workloads or user groups T1. A couple
of works have introduced solutions to achieve fairness in the heterogeneous environment.2

To achieve fairness over GPUs and other compute resources, Allox [92] is a fairness scheduler
that assumes that both GPUs and CPUs are interchangeable resources and takes into account
the affinity of workloads towards different compute resources. It models the resource allocation
as a min-cost bipartite matching problem and proposes a greedy heuristic solution to solve it
in an effective and scalable way. Dorm [154] is another fairness scheduler for the fair sharing of
GPUs, CPUs, and memory resources. It assumes that GPUs, CPUs, and memory are complementary
resources, and the capacity of each one can influence the training job throughput. It dynamically

2Note here that we focus on how to fairly allocate heterogeneous resources. The consumption optimization of specific

heterogeneous resources will be discussed in Section 3.2.1.
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partitions different types of compute resources for each DL training job. It formulates a MILP
problem with resource-utilization fairness as the optimization objective. The scheduling decision
in each round is made by calling the MILP solver to optimize utilization fairness.

It is also challenging to achieve fairness over different generations of GPUs. Datacenter users
prefer to request the most powerful GPU resources for their training jobs. However, many jobs
can not saturate the peak performance of these high-end GPUs. Besides, different DL training jobs
have different sensitivities of runtime speed to the compute capability of GPUs. Gandivaf air [14]
is an early fairness scheduler dedicated for the heterogeneous GPU resource environment. It tar-
gets the inter-user fairness in the GPU heterogeneity. To maintain such fairness while maximizing
the cluster-wide job efficiency, Gandivaf air allows users to transparently trade heterogeneous
GPU-time by a couple of techniques including profiling and automatic trade pricing. Gavel [123]
is another heterogeneity-aware fairness scheduler. It profiles the performance heterogeneity be-
tween different types of GPUs and DL model architectures. A round-based scheduling technique
is adopted to improve the scheduling flexibility and ensure timely GPU-time re-allocation. This
scheduler can satisfy different types of fairness defnitions, e.g., max-min fairness, makespan min-
imization, finish-time fairness minimization. However, it is computationally prohibitive to scale
up Gavel to a large datacenter. To this end, POP [121] proposes to partition a large datacenter into
several smaller ones. The original complex optimization formulation is decomposed into multiple
smaller problems and can be solved in parallel.

Insight 4: The presence of heterogeneous GPU (e.g., GPUs from different generations in the
same environment) increases the scheduling decision space. The mathematical optimization
becomes a preferred way to maintain heterogeneity-aware fairness. RL-based schedulers are
expected to further promote fairness.

3.1.3 Deadline Guarantee. Different from the efficiency goal, this objective is to ensure the job
can be done before the specified deadline. It is relatively less studied due to the lack of compre-
hensive analysis of the deadline requirement in DL workloads. An early deadline-aware sched-
uler for DL training workloads is GENIE [18]. It develops a performance model to predict the job
throughput on different resource placement policies. The performance model only requires a small
number of training iterations to profile without any significant degradation of job execution T3.
With this performance model, GENIE can identify the best placement policy for each job to satisfy
the corresponding deadline requirement. However, GENIE [18] does not investigate the deadline
requirement from users and cannot support a mixed workload of deadline and best-effort jobs, a
common scenario discussed in the cloud [159]. In Reference [41], a user survey is conducted to un-
cover users’ latent needs regarding the deadline guarantee and comprehensively discuss the dead-
line requirement from GPU datacenter users. Motivated by this survey, it introduces Chronus, a
scheduler to improve the deadline guarantee for Service-Level-Objective (SLO) jobs and latency
of best-effort jobs simultaneously. It adopts the MILP solver to address the deadline-guarantee
scheduling task with the resource and time constraints. Chronus outperforms existing deadline
schedulers [18, 131] in reducing deadline miss rates and improving the latency. ElasticFlow [46]
further leverages elastic scaling to dynamically allocate resources for every single job to meet their
deadlines.

Insight 5: We anticipate optimizing the deadline guarantee and cost efficiency receive more
attention. A more interesting research direction is to jointly optimize both objectives.
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3.2 Resource Utilization Manner

In addition to the scheduling objective, another orthogonal view to categorize schedulers is based
on the resource-utilization manner of DL training workloads. We discuss prior works based on
whether they adopt heterogeneous resources, GPU sharing, and elastic training.

3.2.1 Heterogeneous Resources. Most schedulers focus on the allocation of GPU resources, as
they dominate the DL training. However, the consumption of CPUs and memory can also affect
training performance. Synergy [119] observes that different DL training jobs exhibit different levels
of sensitivity to the CPU and memory allocation. Therefore, it introduces optimistic profiling to
empirically profile the job throughput for various CPU allocations and analytically estimate all
the combinations of CPUs and memory along with the respective storage bandwidth requirement.
Based on the profiling results, it greedily packs runnable jobs along multiple resource dimensions
to minimize the cluster fragmentation as much as possible (i.e., maximize the number of idle GPU
nodes) T1. CODA [209] observes that CPU jobs colocating within the same compute node can
interfere with the training jobs due to CPU resource contention. It proposes an adaptive CPU
allocator to identify the optimal CPU cores for each DL training job. Moreover, Muri [212] proposes
a technique to interleave critical resources (e.g., GPU, CPU, network, storage) using a Blossom-
based scheduler to mitigate interference. Cassini [136] focuses on accommodating multiple ML
jobs’ network needs. SiloD [210] advocates for the co-design of data caching and job scheduling.

Beyond the CPU and memory resources, network bandwidth is another bottleneck for efficient
DL training. Ada-SRSF [166] aims to reduce the communication contention among jobs. It is com-
bined with the classical SRSF algorithm to relax the communication contention of two jobs if it
can reduce the job completion time. Liquid [48] proposes a network-efficient scheduling solution
to achieve better placement for PS-based distributed workloads. It adopts a random forest model
to predict job resource requirements and then uses the best-fit algorithm and grouping genetic
algorithm to optimize the execution performance of DL jobs. Parrot [103] is a framework to man-
age network bandwidth contention among training jobs using the PS architecture. It uses a linear

program (LP) solution to derive a weighted bandwidth scaling strategy to minimize the time cost
in the communication stage.

Insight 6: We observe that current schedulers consider a subset of heterogeneous resources
(e.g., CPU and memory, networking). In the future, the datacenter might incorporate other
new hardware, and existing schedulers for heterogeneous resources might become obsolete.
A universal scheduler design is anticipated to manage various heterogeneous resources by
identifying the root cause of the performance bottleneck of DL training.

3.2.2 GPU Sharing. With the increased compute capability and memory capacity of GPUs, the
conventional placement approach that makes each DL job exclusively use the GPU can lead to
severe resource underutilization. Performing GPU sharing becomes a promising technique to im-
prove the system throughput T5. In this context, utilization refers to the usage of every single GPU
instead of the occupied GPU quantity at the datacenter scale.

Some works profile and revoke unsuitable jobs to achieve efficient GPU sharing. Salus [195]
focuses on fine-grained GPU sharing with two primitives: fast job switching enables efficient time
sharing and rapid preemption for active DL jobs on a GPU; memory sharing addresses the memory
management issues to ensure high utilization by packing more small DL jobs on the same device.
Gandiva [175] aims to pack multiple jobs on one GPU under the constraints of GPU memory and
job performance. It utilizes a profiling mechanism to monitor and unpack jobs that could affect jobs’
performance. Jigsaw [89] is designed upon a novel distributed training scheme named Structured
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Partial Backpropagation (SPB). SPB allows each worker not to perform the entire backward
pass in the distributed training. This can save lots of computing resources, however, it might lead
to accuracy loss to some extent. Recently, Antman [176] is introduced, which co-designs the in-
frastructure between the cluster scheduler and DL framework engine to efficiently manage GPU
resources in a fine-grained manner. It supports the co-execution of multiple jobs on a GPU device
and thus largely improves the overall compute resource utilization. Ali-MLaaS [171] provides a
comprehensive analysis of large-scale workload traces in Alibaba and discloses the benefit of GPU
sharing in production GPU datacenters. FGD [172] proposes a Fragmentation Gradient Descent
algorithm to minimize GPU fragmentation.

Alternatively, some works use data-driven approaches to make the GPU sharing decision. Ho-
rus [186, 187] designs a prediction-based interference-aware mechanism that can be integrated
with existing DL training scheduling frameworks. The prediction engine in Horus is in charge of
estimating the GPU usage of each DL job by accessing its graph and dry-running the model upon
the job submission. Based on the prediction results, Horus allocates GPU resources to DL jobs via
de-prioritizing co-location placement decisions that would result in JCT slowdown from severe
interference and communication delays. Co-scheML [86] also measures some metrics for each
DL job and uses a random forest model to predict the interference. Then, the scheduler makes
the decision with the aim of fully utilizing the cluster resources. Analogously, Liquid [48] also
supports fine-grained GPU sharing for further resource-utilization improvement using a random
forest model. Harmony [6] applies an RL model to make placement decisions for minimizing in-
terference and maximizing the throughput for bin-packing jobs in a GPU datacenter. Lucid [68]
achieves non-intrusive workload profiling and packing based on interpretable models.

With the rapid popularity of large language models (LLMs) in recent years, there are more
datacenter-level optimization opportunities tailored for LLM workloads. Hydro [67] extends re-
sources of hyperparameter tuning workloads by interleaving them with pipeline-enabled LLM
pretraining tasks, effectively utilizing idle time intervals on each node known as bubbles, which
are caused by the gaps between the forward and backward processing of microbatches. Titan [40]
merges multiple LLM fine-tuning workloads to share the same GPU resource, which can signifi-
cantly reduce JCT. Moreover, Acme [66] presents an in-depth characterization study of a six-month
LLM development workload trace collected from Shanghai AI Laboratory and provides some in-
sights to optimize systems tailored for LLMs.

Insight 7: The low single-GPU utilization leaves a large optimization space for GPU sharing.
ML algorithms present advantages in packing training jobs in a single GPU to improve GPU
utilization and cluster-wide efficiency.

3.2.3 Elastic Training. Elastic training indicates dynamically changing the resource allocations
of training jobs to improve the resource utilization and job efficiency T6. We consider two primary
elastic training approaches adopted by existing elastic schedulers: (1) resource elasticity, which
dynamically allocates GPUs for jobs, and (2) batch elasticity, which dynamically determines the
batch sizes to adapt the allocated resources to maximize the job throughput. Resource elasticity in
big data workloads has been investigated for many years [4]. Recent resource-elastic schedulers
for DL training mainly focus on placement sensitivity and heavy preemption overhead. We first
discuss how DL schedulers handle the uncertain job runtime led by placement sensitivity and
address heavy preemption overhead brought by resource autoscaling. We also discuss the sched-
uling approaches to handle the resource elasticity of DL training. Followed by resource elasticity,
we investigate how batch elasticity further improves cluster-wide efficiency.
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Elastic training exacerbates the effect of placement sensitivity on DL training speed as a result
of dynamic resource allocations. To make informed scheduling decisions, many schedulers focus
on the design of accurate performance modeling for elastic training. Gandiva [175] designs a Grow-

Shrink mechanism that uses the profiling information to estimate each job’s progress rate and then
allocates GPUs accordingly. Optimus [132] estimates the loss reduction rate on any placement
policies based on a performance model. Leveraging the performance model, Optimus successfully
maximizes the cluster-wide training throughput. MARBLE [55] enables elastic DL training in HPC
systems. It determines the optimal number of GPUs through offline profiling and employs a FIFO-
based policy for scheduling. AFS [70] is proposed based on the insight that the scheduler should
proactively prepare for resource contention in the future by utilizing the current resources. It con-
siders both resource efficiency and job duration for resource allocation while amortizing the cost
of future jobs into the calculation of the current share. The effectiveness of AFS depends upon
the accurate job duration prediction. GADGET [193] formulates a resource-scheduling analyti-
cal model for ring-all-reduce DL and uses a greedy approach to maximize the utility of unfinished
jobs. It obtains a provable guarantee for high performance. One challenge of elastic training is that
it changes the hyperparameters and the training procedure according to available resources and
thus introduces the non-determinism during training and inevitably affects model accuracy. To this
end, EasyScale [101] preserves the data-parallel training behaviors strictly, traces the consistency-
relevant factors carefully, and utilizes the deep learning characteristics for EasyScaleThread ab-
straction and fast context-switching.

Frequent resource re-allocation in elastic training leads to the high overhead of preemption,
making the reduction of resource re-allocation overhead a priority for many elastic schedulers.
For instance, ELAN [177] employs asynchronous coordination to minimize start and initialization
overhead during adjustments, while Wang et al. [167] introduce an early initialization mecha-
nism through a SideCar process in a Kubernetes-based framework, resulting in efficient GPU re-
allocation and minimal disruption to deep learning training frameworks. EDL [174] also supports
elasticity in DL job scheduling. It implements stop-free scaling and graceful exit to minimize the
scale-out and scale-in overheads, respectively. DynamoML [20] is a Kubernetes platform that com-
bines KubeShare [185] and Dragon [108] for DL workload scheduling. It supports easy and fast
resource autoscaling for training workloads. More recently, Microsoft presents Singularity [150],
a scheduler for Azure DL training and inference workloads. It achieves transparent preemption,
migration, and elasticity across a global fleet of AI accelerators (e.g., GPUs, FPGAs). It implements
device proxy to decouple DL training and resource allocation. In other words, jobs are unaware of
resource elasticity.

Some works propose mathematical optimization to elastically determine resource allocations
for DL training jobs. OASiS [7] introduces a primal-dual framework for optimizing the distributed
PS-based jobs, which is coupled with efficient dual subroutines to achieve good long-term perfor-
mance guarantees with polynomial time complexity. AOnline [206, 217] uses the integer linear
program to formulate the maximum weighted schedule problem. It schedules a job if its weight is
higher than its estimated serving cost to maximize the total weight of scheduled jobs.

A number of works apply RL to optimize the elastic training policy. Specifically, RIFLING [17]
adopts K-means to divide concurrent jobs into several groups based on the computation-
communication ratio similarity to reduce the state space and accelerates the convergence speed
of the RL model. RIFLING chooses the Q-Learning algorithm and allows the RL model to perform
online update from historical logs to adapt to the workload variation. DL2 [133] is another RL
scheduler focusing on the PS architecture and dynamically adjusting the resources allocated to
the parameter server and workers. It mitigates the optimization instability by a combination of
offline supervised learning and online actor-critic reinforcement learning. The RL model takes
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the job state and resource state as input and makes the resource allocation decision. The reward
function targets the cluster-wide normalized epoch progress.

In addition to the resource elasticity, the batch size of DL training jobs can also be dynamically
adjusted. Vaibhav et al. [142] design a job scalability analyzer and a dynamic programming-based
optimizer to determine the batch sizes and GPU counts for DL jobs. However, Vaibhav et al. [142]
assume that changing batch sizes within an appropriate range does not sacrifice the model accu-
racy. Pollux [134] aims to achieve higher utilization by automatically configuring the DL train-
ing jobs and co-adaptively allocating resources to them. Specifically, it defines goodput, a metric
for measuring training performance including system throughput and statistical efficiency. It de-
signs a joint scheduling architecture to maximize the goodput. Lyra [99] further extends Pollux
by dynamically loaning idle inference GPU nodes to training jobs. It brings higher cluster uti-
lization and lower queuing time. Similar to Pollux, ONES [9] automatically manages the elastic-
ity of each job based on the training batch size using an online evolutionary search algorithm.
Sia [79] further schedules adaptive DL jobs on heterogeneous resources to achieve better cluster
performance.

Insight 8: Elastic training can expedite the training speed but incurs accuracy loss and repro-
ducibility crisis, particularly for batch elasticity (e.g., Pollux). It is advisable to implement elastic
schedulers when the model accuracy has demonstrated resilience to elastic training, such as
fine-tuning BERT as demonstrated in Reference [28], or in scenarios where prioritizing speed
over accuracy is necessary.

3.3 Discussion

The scheduling objective plays an important role in designing schedulers for GPU datacenters.
We have discussed the scheduling objective when DL training jobs use a fixed exclusive resource
allocation in Section 3.1. Section 3.2 mainly discusses latency minimization and fairness using dif-
ferent resource-utilization manners. Attaining the scheduling objectives, including cost-efficiency
and deadline guarantee for heterogeneous resources, GPU sharing, and elastic training, deserves
greater attention and consideration.

According to the unique resource utilization manner of DL training, datacenter managers can
enhance the overall resource utilization and minimize the job latency as well as promote fairness.
However, these approaches have their limitations that can hinder their deployment in practice. For
instance, adaptive training could change jobs’ batch size, learning rate, and GPU amount, which
can cause model convergence issues. Its generalization for more application scenarios also requires
more validation. Job colocation can cause potential performance degradation and fault tolerance
issues, which can make users unwilling to adopt this feature. How to address these practical issues
is a promising and challenging future direction. We look forward to seeing more progress in this
topic.

Although different scheduling algorithms for conventional workloads and systems have been
extensively studied for decades, further efforts are necessary to reduce operational cost and en-
hance job throughput in the scheduling of deep learning training jobs. Scheduling algorithms
encompass heuristic, mathematical optimization, and ML-based approaches. Heuristic solutions
serve as useful benchmarks for evaluating the performance of new algorithms. Mathematical opti-
mization, while potentially providing optimal solutions, can incur significant computational over-
head. ML-based schedulers are particularly advantageous in complex scheduling scenarios, such
as GPU sharing and elastic training. However, the design of these ML-based schedulers, including
the model architecture, learning algorithms, and loss functions, requires further refinement and
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Table 2. Summary of Schedulers for DL Inference Workloads in GPU Datacenters

Year Scheduler Objectives Approaches Advantages Batching Colocate Cloud
Exp.

Scale

Source

Code

2017 Clipper [24] ♣♥♠ Query-level caching; Layered architecture General abstraction for model selection ✔ - - M ✔

2018
Ease.ml [102] ♣ Multi-tenant model selection Homogeneous declarative inference platform - - - - ✔

HiveMind [124] ♠ Sharings of pipelines, weights, and layers Multi-model training and inference ✔ ✔ - S -
Space-time [76] ♠✿ GPU sharing across space and time Performance isolation under sharing ✔ ✔ - S -

2019

Ebird [25] ♥♠✿ CUDA stream paralleism; GPU-side memory pool Transfer-computation overlapping ✔ ✔ - S ✔
Gilman et al. [44] ♥♠ Preloading model into GPU memory DNN model execution caching - ✔ - - -

MArk [199] ♥♦ Predictive autoscaling on serverless instances Flexible to burst requests ✔ - ✔ S ✔
Nanily [157] ♥♠ Adaptive batching; autoscaling Batch size adjustment by remaining time ✔ - - S -

ParM [87] ♥ Coded-computation via a learning-based approach Erasure-coded resilience for inference ✔ - - M ✔
RRL [135] ♥ Region-based Reinforcement Learning Parallelism configuration tuning ✔ ✔ - M ✔

Tolerance Tiers [54] ♣♥♦ Service Version Ensembling Explicit accuracy-latency tradeoff in requests - - ✔ S -
TrIMS [27] ♥♠✿ Multi-layered caching across FaaS Memory efficiency by sharing ✔ ✔ ✔ S ✔

2020

AutoDeep [104] ♥♦♠ BO and DRL Cloud configuration and device placement - ✔ ✔ S -
Clockwork [51] ♥♠ Consolidating choice Predictable E2E performance ✔ - - M ✔
DyBatch [207] ♥♠ Task slicing and reordering Fine-grained batching; Fairness-driven scheduling ✔ ✔ - S -
GSLICE [29] ♠✿ Dynamic GPU resource apportioning Efficient fine-grained sharing ✔ ✔ - S -
Inferline [23] ♥♦ Low-frequency planner; high-frequency tuner Near-optimal scaling cost-efficiency ✔ - ✔ M ✔

Irina [173] ♥♠✿ Batching, colocation, and preemption Graceful general preemption ✔ ✔ - S -
PERSEUS [96] ♥♦♠ Performance and cost characterization on Cloud Cost savings under GPU instances ✔ - ✔ S ✔

2021

Abacus [26] ♥♠ Runtime operator scheduling Deterministic latency under colocation - ✔ - M ✔
INFaaS [141] ♥♦♠ VM- and model-level autoscaling Automatical model variants selection - ✔ ✔ - ✔

Mendoza et al. [116] ♥ Latency degradation prediction during colocation Safe colocation - ✔ - M -
MIG-SERVING [156] ♥♦ Greedy algorithm, GA, and MCTS MIG-enabled inference scheduling ✔ ✔ - S -

Morphling [163] ♦♠ Model-agnostic meta-learning Performance prediction under different configuration ✔ ✔ ✔ - ✔

2022
Cocktail [52] ♣♥♦ Weighted majority voting policy Ensembling-based model selection - - ✔ - -
Gpulet [21] ♦♠✿ Spatio-temporal Sharing Higher Throughput ✔ ✔ - M ✔

2023

AlpaServe [105] ♥♠ Integrating Model Parallelism Higher Throughput ✔ ✔ - M ✔
Clover [97] ♦ Mixed-quality Models; MIG Carbon-aware Inference ✔ ✔ - M ✔

DeepPlan [81] ♥♠ Direct-host-access Lower Tail Latency ✔ - - S ✔
DeltaZip [183] ♦♠ Compressing Model Deltas Efficient LLM Serving ✔ ✔* - S ✔
iGniter [178] ♦✿ Cost-efficient GPU Provision Lower Monetary Cost ✔ ✔ ✔ M ✔
Kairos [98] ♥♦♠ Query Distribution; Optimize Configuration Cost Budget Aware ✔ - ✔ M ✔

MOSEL [63] ♥♠ Modality Selection Tailored for Multi-modal Model ✔ - - S ✔
Punica [16] ♦♠ LoRA; SGMV Efficient LLM Serving - ✔* - M ✔

Shepherd [202] ♦♠♥ Preemption; Periodic Planning Higher Throughput ✔ - - M -
S-LoRA [147] ♦♠ LoRA; Unified Paging Efficient LLM Serving - ✔* - M ✔

Symphony [15] ♦♠♥ Non-work-conserving; Autoscaling Higher Throughput ✔ - - M -
Tabi [170] ♥♣ Multi-level Inference; Attention-based Pruning Tailored for Discriminative LLM - - - S -

2024 SpotServe [117] ♥♦ Kuhn-Munkres Algorithm; Stateful Recovery Lower Monetary Cost ✔ - ✔ M ✔

Objectives: ✿ Utilization ♣ Accuracy ♦ Cost ♥ Latency ♠ Throughput; Experiment Scale: S (Single Node)

M (Multi Nodes) -: no evaluation on a physical cluster or not clearly specified. * LLM parameter sharing.

evaluation through benchmark studies. Further collective efforts are needed to advance the prac-
ticality of ML-based schedulers.

4 SCHEDULING DL INFERENCE WORKLOADS

As more DL-based applications are released as online services in our daily life, it becomes more
critical to manage and schedule large-scale inference workloads in the GPU datacenter. Differ-
ent from the resource-intensive and long-term training workloads, inference jobs have unique
characteristics and requirements (Section 2.1.2), which demand new scheduling solutions. Similar
to Section 3, we categorize these inference scheduling techniques based on their objectives and
resource-utilization manner. Then, we give some implications from these works at the end of this
section. Table 2 summarizes the relevant papers and their features. The table only includes sched-
ulers for general DL inference workloads, while we mention some related scheduling techniques
from other works in the following discussion.

4.1 Scheduling Objectives

We first review prior works based on the scheduling objectives.

4.1.1 Efficiency. As discussed in Section 2.1.2, the main objective for scheduling an inference
workload is to improve its efficiency. This includes the reduction of inference latency and cost, and
improvement of the prediction accuracy I2. The challenge here is that there exist tradeoffs among
different efficiency goals. Here, we discuss the techniques to improve each goal as well as to jointly
balance and improve them.
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(1) Accuracy efficiency. Improving prediction accuracy is a perpetual objective in an infer-
ence system. Although the prediction accuracy of fixed input and model (with deterministic in-
ference execution, which is the usual case) is determined, the scheduling system could achieve
better accuracy by selecting different models and making resource allocation between models
more intelligent. To achieve this, one approach is to collect a set of models and select the best one
to predict the result for each input query. The scheduling decision made includes the model se-
lection and resource allocation among different candidates. Ease.ml [102] leverages the input and
output shape information of the query sample to automatically select the model. It estimates the
potential accuracy improvement of each candidate model and then picks the highest one for ac-
tual inference. It also formulates the cost-aware model selection process under both single-tenant
and multi-tenant settings with multi-armed bandit and Bayesian Optimization. Another effective
approach is the model ensemble, which combines the prediction results from multiple models to
improve the prediction accuracy and generalization. Clipper [24] examines the benefits brought
from the model ensemble in computer vision tasks and applies a linear ensemble method to com-
pute a weighted average of the base model predictions. The linear weights are decided by bandit-
and learning-based approaches. Rafiki [169] leverages an RL model to determine the model set for
the ensemble. This model is also used to identify the final optimal model combinations and tune
critical parameters, e.g., batch size.

(2) Latency efficiency. An inference system should have a satisfactory response time, even
for burst and fluctuating query requests. In this section, we discuss the scheduling techniques to
improve the latency efficiency from two perspectives: (1) how to reduce the latency of a fixed
number of inference requests and (2) how to efficiently allocate resources to meet the latency
requirement. The latency requirement poses challenges for the scheduler to decide which jobs to
be prioritized in the job assignment and rearrangement process. This objective can be achieved
via carefully optimizing resource allocation.

It is common to launch multiple inference execution instances concurrently to reduce the la-
tency of inference requests as much as possible due to the low GPU utilization for each request.
Therefore, the inference scheduler can make scheduling decisions aiming at scaling up resources
according to the request density to maintain a satisfactory latency. Clipper [24] conducts linear
scaling of inference instances and uses separate docker containers to isolate different models. It
replicates the model containers according to the number of queries and applies adaptive batch-
ing independently for each model due to the varied execution time. MArk [199, 200] scales the
inference instances with the cloud services. It selects and combines different cloud services such
as AWS EC2 and Lambda based on their prices and scaling abilities. Also, it monitors the system
loads and request queuing situations proactively and leverages Lambda to scale up instances when
there exist requests violating the latency demands. InferLine [23] targets the pipelined inference
workloads with multiple stages. It monitors the frequency of queries to each model and makes the
scaling decisions of each component separately to maintain the latency SLOs even during sharp
bursts.

A number of works aim to provide bounded latency for inference execution at the system
level considering its deterministic execution I1. Clockwork [51] discovers that many DL infer-
ence models have deterministic performance because of the underlying deterministic computa-
tions. Thus, it guarantees deterministic latency by alleviating the uncertainty introduced by other
components of the system. To overcome the uncertainty from memory and cache usages, hard-
ware interactions, and other uncontrollable external performance variations, Clockwork consol-
idates the configurations among all the system layers during the inference execution by proac-
tively controlling the memory allocation and deallocation and disabling concurrent execution of
multiple inference workloads to eliminate the interaction. Reducing the parallelism of execution
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eliminates the interference from other tasks but inevitably brings lower throughput and resource
utilization. To address this issue, Abacus [26] tries to guarantee SLO for query requests under
the GPU co-location scenarios. It controls the execution sequence and the co-location situation
proactively, rather than the default random-ordered execution overlap. Given the explicit order
and specific co-location operators on GPUs, Abacus could predict the estimated running time un-
der co-location from the early offline profiling stage. Based on the estimation, the query controller
schedules all the simultaneous inference workloads to guarantee the QoS by searching the opti-
mal execution sequence of DNN operators. ParM [87] migrates the concept of erasure codes from
distributed computing to model inference systems and uses learning-based coded computation to
introduce redundancy and thus supports the recovery of inference executions with tail latency or
failures.

Some solutions proactively schedule the inference workloads and rearrange the execution se-
quence at the job level. Irina [173] models the satisfaction of latency demands as a scheduling prob-
lem. By leveraging preemption for DL inference workloads, Irina dynamically decides whether to
preempt the ongoing query and launch the later arrived one, which brings a significant reduc-
tion of average completion time for inference workloads. The main challenge is that existing ML
frameworks are not designed and suitable for preemption during execution. Irina carefully man-
ages the preemption process by adding an exit node to the existing dataflow graph of the inference
workload, thus enabling safe preemption at arbitrary moments. It is necessary to have more run-
time information about the inference workloads for effective scheduling. Kube-Knots [158] makes
predictions about the resource utilization of each inference workload from two aspects. From the
spatial aspect, Kube-Knots discovers the correlations across different resource-utilization metrics
and then forecasts future resource utilization. From the temporal aspect, Kube-Knots predicts the
peak inference usage and tries to avoid co-locating jobs that could attain peak consumption of the
same resources simultaneously.

(3) Cost-efficiency. The monetary cost becomes one of the main concerns when using public
cloud resources to deploy DL inference workloads. Considering the varied compute capabilities
and prices for different types of resources and services, a couple of schedulers implement many
mechanisms to achieve cost-efficient inference. MArk [199, 200] analyzes the cost of utilizing dif-
ferent levels of resource abstractions in Amazon Web Services (AWS) and Google Cloud Plat-

form (GCP) for inference. It finds that the Infrastructure-as-a-Service (IaaS) provides better
cost efficiency than Content-as-a-Service (CaaS), while Function-as-a-Service (FaaS) could
compensate for the relatively long cold-start latency of IaaS at the cost of increased costs. Small
instances with advanced CPUs and burstable instances are also recommended. For GPU instances,
the cost can be greatly reduced by batch processing as well. Given different levels of capability,
scalability, and pricing, MArk greedily selects the most cost-effective type of instances and lever-
ages the spot instances for cost-saving. AutoDeep [104] considers not only the resource type in
the cloud but also the device placement for DL inference. It leverages Bayesian Optimization for
the nearly optimal cloud configuration and Deep Reinforcement Learning for the nearly optimal
device placement. Constrained by the SLO requirements, AutoDeep performs joint optimization
to minimize the total cost of the inference execution. Kairos [98] aims to maximize throughput
under cost budget and SLO requirement via efficient query distribution among cloud instances
and find a high-throughput heterogeneous configuration. iGniter [178] builds a lightweight ana-
lytical performance model to explicitly capture the performance interference among workloads
and propose a cost-efficient GPU resource provisioning strategy to guarantee SLOs. Besides, spot
instances also can be leveraged to minimize cost. Cocktail [52] develops a distributed weighted
auto-scaling policy and leverages the spot instances to minimize cost. Similarly, SpotServe [117]
leverages the autoregressive nature of LLMs and introduces stateful inference recovery, which
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allows inference engines in cheap preemptible instances to commit their progress at the token
level, rather than the request level as seen in prior work.

Besides monetary cost, in a GPU datacenter, how to improve the efficiency of energy cost is also
critical. While this objective has been extensively explored for training workloads (Section 3.1.1),
it is relatively less studied for the inference workloads. Some works [60, 130] provide some energy
characterizations of production DL inference clusters. Kube-Knots [158] presents simple energy
efficiency comparisons of inference workloads between GPUs and CPUs. It is necessary to compre-
hensively explore the energy optimization of different DL inference models with different types
of compute resources and design more sophisticated energy-saving mechanisms with the con-
sideration of latency and resource utilization. Clover [97] achieves lower carbon emission using
mixed-quality model variants.

(4) Tradeoffs between accuracy, latency, and cost. The objectives of accuracy, latency, and
cost are not independent. Improving one goal may possibly compromise another goal if the so-
lution is not designed properly. Besides, users may also have their specific expectations about
different objectives. This motivates researchers to explore the tradeoffs between these objectives
and devise more flexible and comprehensive scheduling systems.

The adoption of multiple models can improve the model inference accuracy but might also in-
crease the response latency and cost. Several works track the latency and prediction accuracy of
different models and implement mechanisms to select the most appropriate ones determined by
the schedulers. Clipper [24] introduces a model selection abstraction, which supports both sin-
gle model selection and model ensemble selection. It executes the inference for all the models
and combines their results. It observes the corresponding accuracy and latency feedback continu-
ously to make the selection with a best-effort search method. Model-Switching [203] pursues the
tradeoffs between computational cost and service accuracy by switching different model variants
proactively to improve the accuracy of responses under the latency constraint. By maximizing
the ratio of correct predictions returned within the deadline, it makes selections among model
variations with different computation demands and accuracy. Cocktail [52] balances the cost with
accuracy and latency on the public cloud via the optimization of the model ensemble. With a dy-
namic model selection policy that searches models tightly with the accuracy and latency bounds,
Cocktail reduces the candidates in the ensemble and accomplishes fast and efficient model selec-
tion. Tabi [170] is optimized for discriminative language models via a multi-level inference engine,
which uses the calibrated confidence score to decide whether to return the accurate results of small
models or re-route them to LLMs. MOSEL [63] is designed for multi-modal models that carefully
picks input modalities per request based on user-defined performance and accuracy requirements.

Some schedulers allow users to specify their demands about accuracy, latency, and cost and
make scheduling decisions directly according to the demands. Tolerance Tiers [54] discloses the
efforts the system can offer to achieve each objective and makes users programmatically select
their demands. Observing that improving the accuracy of some extreme requests can increase the
latency greatly, Tolerance Tiers relaxes and sacrifices the accuracy demand to improve the latency
and service cost. Each tier defines an error tolerance to indicate the tolerable accuracy loss and an
optimization objective. Then, Tolerance Tiers optimizes the objective under the constraint of the
maximum error tolerance. INFaaS [141, 179] also asks for the throughput and accuracy demands
from the users. It generates some variants from the existing models with different specific pa-
rameters (e.g., batch size, hardware configurations, hardware-specific parameters). After one-time
profiling for each variant, INFaaS selects the model variant based on the resource consumption
and profiling information from the profiling to serve users’ requests. Each model variant may
have different inference latencies and monetary costs during execution. Therefore, INFaaS applies
two levels of autoscaling to support guaranteed latency requirements and improve cost efficiency
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under varying loads. In addition to autoscaling at the hardware (VM) level, INFaaS also monitors
load by maintaining a state machine for each model variant and supports scaling between model
variants with different types and replicas. INFaaS makes the selection via a heuristic-based ap-
proach, which selects the variant with the minimum cost while meeting the SLO constraint or
upgrades existing variants with higher throughput to fulfill the burst queries.

Insight 9: Scheduling inference workloads for accuracy, latency, and cost efficiency is a
trilemma. Latency is often more important in online inference systems. By intelligently provi-
sioning and allocating resources among different models, a scheduling system could achieve a
tradeoff between these objectives. Some schedulers allow users to specify their demands about
accuracy, latency, and cost and make scheduling decisions directly according to the demands.

4.1.2 System Throughput. Another important objective for scheduling inference workloads is
to improve throughput capability. The techniques to achieve this goal are summarized as follows:

(1) Batching execution. One common approach is to batch multiple inference queries and
execute them concurrently. Handling individual inference queries usually leads to GPU underuti-
lization. Hence, batching inference can efficiently improve the utilization and reduce the system
overhead. Like job queuing in parallel job scheduling, batching multiple queries can delay the ex-
ecution of the requests that come earlier and possibly jeopardize the SLO requirement. Setting a
proper batch size is critical to balance such delays and system throughput. Most schedulers dy-
namically adjust this hyperparameter based on the actual SLO requirement and queuing situation.

First, some schedulers adopt heuristic methods to tune the batch size. Clipper [24] and
Rafiki [169] apply the practical Additive-Increase-Multiplicative-Decrease (AIMD) algorithm
to adjust the inference batch size. Specifically, the batch size is additively increased by a fixed
amount until the latency of processing a batch exceeds the latency requirement and then multi-
plicatively decreased by a fixed percent. Clipper evaluates that AIMD is simple yet effective and
adaptive to the changing throughput of a model in special cases. It also aggressively delays the
execution of queries under moderate loads to the subsequent batch, which can bring a significant
throughput increase for some models.

Second, some schedulers propose optimization-based methods to balance the inference delay
and throughput. MArk [199, 200] considers the maximum time of delaying a query, profiles the
processing rate without batching, and searches for the optimal batch size under the SLO constraint.
Nanily [157] presents the upper bound of the batch size by retrieving the maximum remaining
time for the requests, calculated as the remaining time towards the deadline subtracted by the
least queuing time for the available resources. It then derives the corresponding batch size, which
makes the inference execution time equal or close to the maximum remaining time. DyBatch [207]
considers the fairness of the delay for each independent workload when batching. It implements
fine-grained batching schemes along with fairness-driven scheduling, which can compensate for
the deviation of slowdown for small inference workloads. DyBatch organizes the workload batches
in a time-sharing manner and selects the batch with the lowest resource utilization for running,
thus maintaining fairness and minimizing the slowdown of each workload.

(2) Caching and reusing. Another widely used strategy is caching and reusing the prediction
results across different requests. The scheduler selects the request that benefits most from caching
and allocates proper resources. This can be done at two levels.

The first direction is to perform optimization at the query level. To provide fast responses to
different queries, the inference system can cache the inference execution and prediction results
for burst queries. Clipper [24] maintains a prediction cache for requests with the same target
model and the query input. Then, it can produce the results for some queries without evaluating
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the model, thus increasing the inference throughput. Clipper also applies an LRU cache eviction
policy to optimize the caching efficiency. However, this approach may be less efficient when the
queries do not have high similarities in practical scenarios, which leads to high cache miss rates
and evictions.

The second direction is to perform optimization at the device level. Inference scheduling system
resides models in the GPU device, thus increasing system throughput. Gillman et al. [44] proposed
to cache the DL models instead of the inference results. It schedules models to be loaded into
the limited GPU memory to maximize the probability of servicing an incoming request without
swapping the models in and out of the memory, thus accelerating the inference by eliminating
the cold-start latency with cache hits. The caching and eviction policy considers many runtime as-
pects of DL inference workloads, including model size, frequency, model accuracy, and speed. This
work also discusses some future directions for more dynamic caching mechanisms and policies,
such as framework-level GPU memory-friendly optimization, proactively loading and evicting,
and cluster-level GPU memory allocation. To address the limitation of GPU memory, TrIMS [27]
organizes the memory sharing of different models in a more systematic design. TrIMS reconciles
the lifecycle of model memory consumption and carefully handles cache misses and evictions. It
also considers multi-node, isolation, and fairness problems during sharing. Extensive evaluations
on different models show its general abilities to improve the inference throughput by mitigating
the model loading overhead.

(3) System configuration tuning. Besides the optimization techniques detailed above, there
exist some schedulers leveraging end-to-end configuration tuning to improve the system through-
put. Morphling [163] formulates the optimal configuration search as a few-shot learning problem.
Then, it adopts model-agnostic meta-learning (MAML) [37] to combine offline meta-model
training for inference serving performance modeling under varied hardware and runtime con-
figurations and performs online few-shot learning to predict the service performance. Based on
the prediction, Morphling auto-tunes the resource provisioning configurations and makes better
scheduling decisions. RRL [135] concentrates on optimizing the parallelism configurations from
different levels, including request-level parallelism and intra-request-level (inter-op and intra-op)
parallelism, which have strong impacts on the latency of the entire system. RRL utilizes a region-
based RL method to tune the parallelism configurations and reduce the inference processing la-
tency based on the system performance similarity between different configurations within a sim-
ilar parallelism setting. Shepherd [202] exploits the insight that aggregating request streams into
moderately sized groups greatly improves predictability, permitting high resource utilization as
well as scalability. Symphony [15] utilizes a non-work-conserving scheduling algorithm capable
of achieving high batch efficiency while also enabling robust autoscaling.

Insight 10: It is a common strategy for an inference scheduling system to sacrifice the latency
of inference requests in exchange for higher resource utilization and lower average inference
request latency, thus achieving higher throughput. Other strategies, such as caching, can also
be used in exchange for higher throughput at the cost of higher resource usage. The resource
usage characteristics of inference workload leave potential throughput gains for schedulers.

4.2 Resource Utilization Manner

Similar to training workloads, the inference schedulers can also be categorized based on the re-
source utilization manner. Below, we detail the scheduling solutions designed to target these
features.
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4.2.1 Colocation and Resource Sharing. From the challenges discussed in Section 2.1.2, exe-
cuting one inference request can lead to resource underutilization. The development of GPU ar-
chitecture designs motivates GPU sharing from the hardware perspective and software perspec-
tive [148, 195]. GPU sharing across different inference requests can improve resource utilization
by better leveraging GPUs’ parallel computing capability. However, it can also incur the risks of
violating the latency requirements due to the uncertain running time.

One line of research works adopt the static colocation strategy to guarantee the inference la-
tency. Space-time [76] calls for both space-sharing and time-sharing for DL inference with GPUs.
It preserves the predictability and isolation during virtualization by monitoring the inference la-
tency per kernel. Then, it improves the utilization by fusing concurrent small kernels into larger
one to fill up the GPU utilization under the time-sharing mechanism. Nexus [146] focuses on opti-
mizing video analysis on GPU datacenters. It also applies a heuristic approach to select the requests
to be co-located on the same GPU. First, it identifies the optimal batch size for throughput and SLO
needs of the inference workload. Afterward, it establishes all possible combinations within a GPU’s
duty cycle on a single GPU in a best-fit manner and maximizes the utilization without violating
the latency requirement.

Some other works introduce dynamic colocation mechanisms for managing inference work-
loads. GSLICE [29] is an inference system to systematically achieve safe and efficient GPU shar-
ing. It leverages spatial GPU multiplexing for different inference requests on top of the state-of-
the-art GPU spatial multiplexing framework MPS. The performance improvement reaches a point
of diminishing returns after certain configurations, which has a non-linear relationship with the
throughput and latency of the inference. MIG-SERVING [156] leverages the hardware support for
GPU virtualization (i.e., MIG on NVIDIA A100) for efficient GPU colocation. With MIG, an A100
could be partitioned into several instances with smaller hardware capacities under hard constraints.
MIG-SERVING discovers the throughput of most models does not grow linearly with the increase
of resources on different instances. It establishes a reconfigurable scheduling problem and applies
a generic algorithm to find a sub-optimal and feasible solution and improve it via a search-based
method.

Since the colocation of multiple inference workloads multiplexes the GPU, it is hard to measure
and predict their running time due to the colocation interference. Therefore, several inference
scheduling systems focus on estimating and handling colocation interference. INFaaS [141, 179]
targets the inference services in the cloud. It identifies the colocation interference caused by the
shared hardware resources. Then, it allocates the available resources to the interfered instances
by migration or VM-level scaling. The evaluation shows that INFaaS can save the monetary cost
by GPU sharing and satisfy the latency requirements by VM-level scaling. PERSEUS [96] com-
pares the cost and throughput under exclusive execution and colocation for inference workloads.
It concludes that the mixed ratio of different models affects the cost efficiency of colocation. The in-
terference on the model and data loading time during cold start also differs across different models
because of the cache and data transfer requirements under colocation. AlpaServe [105] proposes a
novel model placement algorithm to incorporate model parallelism in serving systems to improve
inference throughput. Gpulet [21] enables spatio-temporal sharing to maximize the resource effi-
ciency. To achieve more stable tail latency, DeepPlan [81] enables a direct-host-access technique
that allows access to particular layers of models in the host memory directly from GPU without
loading.

LLMs become ubiquitous in modern applications, however, serving these models is expensive
and challenging due to their substantial computing requirements and memory footprint. To this
end, DeltaZip [183] efficiently serves multiple full-parameter fine-tuned models concurrently by
aggressively compressing model deltas. Besides, Low-Rank Adaptation (LoRA) [64] is another
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commonly adopted approach for model fine-tuning. Punica [16] contains a new CUDA kernel
design that allows batching of GPU operations for different LoRA models. S-LoRA [147] proposes
a unified paging technique that uses a unified memory pool to manage dynamic adapter weights
with different ranks and KV cache tensors with varying sequence lengths.

4.2.2 Heterogeneous Resources. Several works exploit both CPU and GPU machines of different
sizes for DL inference, especially for the cloud environment. MArk [199, 200] characterizes and
compares the cost and performance of inference workloads on different types of instances available
in GCP and AWS. It concludes that smaller instances with advanced CPU models achieve a higher
performance-cost ratio. It also suggests that GPU instances can achieve lower per-request cost
and smaller inference latency than CPU instances with appropriate batch sizes. PERSEUS [96]
performs a similar cost-efficiency characterization, considering instances with multiple onboard
GPUs. It examines that DL models with high GPU utilization could introduce intensive interference
with other inference workloads in multi-GPU instances. AutoDeep [104] and Cocktail [52] focus
on the price of different cloud configurations and search for the best configuration according to
the pricing information.

Insight 11: Similar to training, GPU sharing benefits resource utilization and system through-
put. However, the inference scheduling system needs to pay more attention to interference
due to SLO violations. Heterogeneous resource scheduling is also important, especially for the
cloud, which needs further investigation.

4.3 Discussion

Most of the above works treat inference jobs as a black box for management and optimization.
In reality, an inference pipeline may consist of several separate stages to fulfill the query. It is
interesting to consider the characteristics of internal stages to optimize the execution in a white-
box manner. PRETZEL [95] leverages this idea, which stores and re-uses the model parameters
and computation among similar white-box representations of pipeline stages to reduce resource
utilization. Willump [88] develops intelligent input selection techniques based on input features
and combines compiler optimizations. It could save huge computation cost while maintaining rela-
tively acceptable accuracy. We expect more future works to focus on the optimization of inference
workloads at this sub-request level.

As the scale of DL models grows faster than the GPU compute capacity, it is more difficult
to accommodate single models on a single GPU or machine. This problem becomes more seri-
ous when cloud users adopt the resource-constraint serverless platform for inference services.
A natural solution to this problem is model partitioning: Gillis [192] splits the network layers
and minimizes the inference latency via dynamic programming. It also adopts some searching
methods such as Bayesian Optimization and RL to minimize cost. AMPS-Inf [77] jointly consid-
ers model partitioning and resource allocation by calculating the optimal execution and resource
provisioning plans under the constraint of response time in serverless platforms. It is worth more
effort to explore the methodologies of serving large models with limited resources for different
objectives.

Some inference systems for CPU clusters predict the future trends of query requests to satisfy
the latency requirement. For instance, BARISTA [8] predicts future workload patterns based on
historical data and estimates the required resources for the application to maintain the SLOs. Then,
it makes resource provisions based on the difference between the desired throughput and latency
requirement with the current ones.
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5 SCHEDULING OTHER TYPES OF DL WORKLOADS

The previous two sections categorize the scheduling of general training and inference workloads,
respectively. In this section, we discuss the works for optimizing other types of DL workloads.
Table 3 presents the past works for hyperparameter optimization workloads as well as hybrid
training and inference workloads, with a detailed description as below.

5.1 Hyperparameter Optimization Workloads

A Hyperparameter Optimization (HPO) job aims to identify the best hyperparameters for a
DL task. Technically, HPO belongs to the category of DL training workloads. Here, we discuss it
separately, because it has unique features compared to the general DL training jobs. Specifically, an
HPO job needs to search a set of hyperparameter configurations. Each configuration is associated
with a trial [118], which is a common DL training workload containing training and evaluation
procedures. However, in the HPO context, these trials are extremely similar and orchestrated by an
HPO scheduling policy. To accelerate HPO, the policy can kill poor-performing trials through early
stopping and allocate more resources to promising trials. These optimizations on HPO workloads
can deliver remarkable acceleration.

Accuracy efficiency. Hermes [152] is a scheduler to expedite HPO workloads in GPU datacen-
ters. It provides a container preemption mechanism to enable migration between DL jobs with
minimal overhead. Besides, it also considers the algorithmic property of HPO workloads and de-
vises a convergence-aware scheduling algorithm to favor promising hyperparameter configura-
tions. HyperSched [107] aims to boost the accuracy performance of HPO workloads within the
given time and resource budgets. In an HPO workload, the promising hyperparameter trial gener-
ally has higher accuracy at the early training stage. Then, HyperSched allocates more resources to
the promising trials and terminates unpromising ones. With this technique, HyperSched can par-
allel orders of magnitude more hyperparameter trials and therefore maximize the final accuracy
substantially. As an extension of HyperSched [107], SEER [30] replaces the resource budget with
the monetary cost budget in the cloud. Without resource constraints, SEER can launch numerous
training trials at the early training stage to explore promising hyperparameter combinations. Then,
it will terminate poor training trials and allocate more cost budget to promising trials during the
training progress. The accommodation of more trials at the hyperparameter exploration stage can
improve the final model accuracy. HyperDrive [137] is another scheduler framework for hyperpa-
rameter exploration as well. It develops an accuracy curve-fitting model to extrapolate the accuracy
in the subsequent training iterations. The accuracy prediction engine allows HyperDrive to termi-
nate low-quality jobs early and adjust the resource allocation dynamically. Moreover, Fluid [196]
further leverages the job-packing mechanism to improve resource utilization and accelerate the
HPO process. Furthermore, HFTA [168] horizontally fuses the models from different trials deeply
down to operators and then trains them simultaneously on a shared GPU. Retiarii [205] proposes a
similar operator batching technique for non-trainable operators for Neural Architecture Search

(NAS) jobs. Furthermore, Hydro [67] automatically applies the novel hyperparameter transfer the-
ory MU parametrization [181] to search hyperparameters with a smaller model. Hydro further op-
timizes tuning efficiency via inter-trial and intra-trial fusion, which involve combining multiple
models into a single entity and subsequently performing compiler-based optimization. Besides, it
efficiently orchestrates the tuning process with adaptive fusion and eager transfer mechanisms. Be-
sides, Hydro identifies the opportunities for cluster-wide optimization in the datacenter, including
squeezing bubble resources with interleaving and heterogeneity-aware trial allocation.

Cost efficiency. RubberBand [118] aims to reduce the monetary cost of an HPO job with the
constraint of timing budget in the cloud. Since the optimal amount of resources for an HPO
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Table 3. Summary of Schedulers for Other Workloads in GPU Datacenters

Type Year Scheduler Objectives Approaches Advantages
Exp.

Scale

Source

Code

HPO

2017 HyperDrive [137] ♣ Dynamic Probabilistic Accuracy Prediction JCT Reduction S -
2019 HyperSched [107] ♠ ASHA; Dynamic Resource Allocation Efficient HPO under DDL S ✔
2020 Retiarii [205] ✿♣ Cross-model Optimization Accelerate Model Exploration S ✔
2021 Hermes [152] ♣♦ Time-sharing Execution with Low Overhead JCT Reduction S -
2021 HFTA [168] ✿♣ Horizontal Model Fusion Resource Utilization Improvement S ✔
2021 RubberBand [118] ♣♦ Model JCT and Cost Prior to Runtime Cost-effectiveness S -
2021 SEER [30] ♣♦ Dynamic Resource Allocation Cost Constraint HPO S -
2021 Fluid [196] ✿♣♦ Job Packing; Elastic Training Better Resource Utilization S ✔
2023 Hydro [67] ✿♣♦ Model Scaling; Trial Interleaving Efficient Large Model Tuning XL ✔

Hybrid

2018 Rafiki [169] ♥♦ RL to Optimize Accuracy and Latency Unified Platform for Training and Inference S ✔
2019 Kube-Knots [158] ♦✿ Dynamic Container Resizing GPU Utilization-aware Colocation S -
2020 CMS [100] ♥✿ Common Architecture for Trainers and Modelets Continuous Learning S -
2023 Lyra [99] ✿♥ Capacity Loaning Cluster Size Extension L -

Objectives: ✿ Utilization ♣ Makespan ♦ Cost ♥ Accuracy ♠ DDL; Experiment GPU Scales: the scale of physical

testbed. S (0, 30] M (30, 60] L (60, 120] XL (120, ∞] -: no evaluation on a physical cluster or not clearly specified.

workload differs in the early and later stages of the hyperparameter search and model optimiza-
tion processes, RubberBand needs to jointly accommodate the job throughput, resource amount,
and cloud pricing. By building a profiling model, RubberBand can predict the job throughput and
corresponding cost for a given resource allocation policy. Then, it uses this model to generate an
optimal cost-efficient solution for satisfactory cost reduction.

Insight 12: Compared with the general DL training workloads, HPO workloads have unique
features and different objectives. For instance, we can leverage the diminishing resource re-
quirement of HPO workloads to conserve cluster resources. Besides, the identity model of each
HPO trial allows us to perform more training optimization.

5.2 Hybrid of Training and Inference Workloads

In Section 3 and Section 4, we consider the scheduling techniques for training and inference solu-
tions separately. Actually, there are some DL systems that host these two workloads in a unified
manner. Due to the distinct features of the two types of workloads, new solutions are needed for
efficient scheduling in GPU datacenters. Below, we review and summarize these works.

End-to-end DL development. Some works consider the entire pipeline of DL development
and deployment, including model training, inference, as well as periodic retraining and updat-
ing. CMS [100] designs a continuous machine learning and serving platform, which orchestrates
the model-training executions, model inferences, and model update services. It unifies different
training jobs into a simple trainer contract and the scheduler monitors the resource consumption
of these resource-intensive training tasks to avoid contention. Other techniques including model
validation and model switching mechanism are also applied to guarantee model serving quality.
Rafiki [169] proposes to reuse the datasets and parameters across different training and inference
jobs. It implements a unified distributed dataset storage and a parameter server. The parameter
server is kept in memory and shares model parameters across different trials in the training and
is dumped for later reuse in the inference. Other common underlying components are also shared
across training and inference workloads to reduce operational cost, e.g., storage, communication
protocols, and compute resources.

Mix of training and inference development. Some works optimize the datacenter with
mixed workloads of DL training and inference. Kube-Knots [158] minimizes resource waste by
allocating offline batch jobs to better utilize the spare resources. It discovers that GPU energy effi-
ciency increases with its utilization. Therefore, achieving higher GPU utilization indicates higher
energy efficiency and fewer resource wastes. To this end, Kube-Knots colocates the predictable
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GPU batch jobs with the online inference workloads, as the inference jobs generally underuti-
lize the GPUs. During the scheduling, it also predicts the peak resource utilization of the jobs from
their online resource usage. Lyra [99] also observes the resource can be wasted due to the resource
over-provisioning for burst inference requests. It proposes the concept of capacity loaning, which
allows the inference cluster to loan the idle GPU servers during low-traffic periods to run training
jobs. Since the preemption cost is not negligible, it minimizes the total number of preemptions
during the scheduling. Combined with the elasticity of resource demands for part of training jobs,
Lyra successfully guarantees timely resource allocation to inference jobs via a heuristic method.

Insight 13: Supporting the co-optimization of training and inference workloads can further im-
prove GPU datacenter efficiency. The two types of workloads have different characteristics and
demands on resource provisioning, offering greater flexibility and opportunities for scheduling
techniques such as training and inference workload switching [5], fostering the development
of sophisticated scheduling strategies.

5.3 Discussion

In addition to optimizing general DL workloads, there are some opportunities for further re-
source efficiency improvement. For hyperparameter search workloads, one direction is to apply
resource-utilization optimizations (e.g., GPU sharing [196]) or graph-level optimizations (e.g., trial
fusion [168]). Compared with the workload-agnostic manner, it can deliver over one magnitude of
resource and time conservation. However, how to integrate this mechanism well into the scheduler
and coordinate with general DL workloads is a challenging topic, requiring more future research
investigation.

Besides, considering the whole DL model development pipeline instead of focusing on a certain
stage can bring extra system efficiency enhancement. For instance, breaking the shackles between
the training and inference cluster resource not only considerably diminishes the queuing delay of
training workloads but also improves the model serving quality. These directions deserve more
attention in future research on GPU datacenter scheduling systems.

6 CONCLUSIONS AND OUTLOOKS

The scheduler design is an ever-lasting topic in the system research community. The unique fea-
tures exhibited by DL workloads advocate novel DL scheduler designs to manage GPU resources
and jobs in a more intelligent and efficient manner. Our comprehensive summary draws three con-
clusions. First, the design of new scheduling systems is motivated by the advancement of DL, as
well as the evolving needs of users. Second, new works opt for the implementation of advanced
algorithms (e.g., RL, MAML) to significantly enhance scheduling performance. Third, emerging
hardware resources (e.g., heterogeneous GPU) can be leveraged to design efficient new schedulers.

DL workload scheduling in GPU datacenters remains premature. There are multiple interesting
future research directions, as summarized below.

DL workloads. The diverse DL workloads pose different challenges to the scheduler. Section 3
indicates that the training scheduling system can leverage elasticity to speed up DL training but
they are only applicable to DL workloads that are robust to elastic training. Section 4 also points
out inference scheduling system needs to take care of the latency SLO constraint. Section 5 an-
alyzes that a set of novel DL workloads with special resource requirements (e.g., HPO, hybrid
workloads) call for more research efforts. Searching-based DL workloads like HPO eagerly rely
on being served as early as possible to get search results earlier and thus optimize the search di-
rection. Beyond our discussed schedulers, emerging DL workloads might require domain-specific
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schedulers for extreme efficiency. For instance, training extremely large models like Transformers
needs extensive and high-performance resources. Some DL workloads cannot thoroughly consume
the peak computing capabilities, and the co-design of both the scheduling system and DL frame-
work is a promising solution. Better scheduling decisions could be made by negotiating the fine-
grained resource demand of workloads and delegating framework-level control to the scheduling
system.

Scheduling decision making. Many existing schedulers may encounter problems with GPU
datacenters at scale. First, a lot of scheduling systems require additional information about the
workload from users or online profiling, posing great challenges when facing numerous work-
loads and resources. Therefore, some schedulers are combined with ML algorithms to approximate
such information to improve the scheduling decisions. Second, some schedulers form the decision-
making process as an optimization problem, which cannot be solved within an acceptable time
online. As a result, existing works apply heuristic and searching-based solutions, which have been
discussed in the above sections, meeting the solving latency requirement but losing optimality.

Underlying hardware resources. GPU datacenters are growing at an alarming speed. It is
common that GPU datacenters contain complex generations of GPUs and other accelerators. Het-
erogeneous resources provide opportunities for schedulers to make cost-effective decisions and
expedite the cluster-wide throughput, but also bring new challenges to maintain fairness. Addi-
tionally, emerging hardware resources are coupled with algorithmic innovations. For example,
low-precision ALU requires to balance between accuracy and speed.
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