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ABSTRACT
Existing defense approaches against sensor spoofing attacks suf-
fer from the limitations of limited specific attack types, requiring
GPU computation, exhibiting considerable detection latency and
struggling with the interpretability of corner cases. We developed
PhyScout, a holistic sensor spoofing defense framework to over-
come the above limitations. Our framework capitalizes on the ob-
servation that human drivers can rapidly and accurately identify
spoofing attacks by performing spatio-temporal consistency checks
of their environment. We commence by defining the generalized
conflicts that different sensor spoofing attacks produce regarding
the spatio-temporal consistency. These conflicts are subsequently
unified and formalized through a least squares problem approach.
This process is modeled using image-based feature point extrac-
tion and matching techniques, followed by the design of a risk
identification method for each conflict.

We evaluate PhyScout across various environments, including
simulators, datasets, and real-world scenarios. Compared to existing
defense solutions, PhyScout offers rapid identification of sensor at-
tacks (within 100ms) with low performance overhead (CPU-based),
and conflict visualization. It demonstrates a fresh paradigm in au-
tonomous vehicle security and presents new avenues for future
research in robust and efficient defense mechanisms against sensor
spoofing attacks. More video demos are at our anonymous website
https://sites.google.com/view/physcout.
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1 INTRODUCTION
Sensors, such as GPS, LiDAR, and cameras, serve as "eyes" for an
autonomous vehicle (AV), interpreting real-world environmental
information into structured data. This data is subsequently utilized
by the autonomous driving system (ADS) to estimate vehicular
states (e.g., pose) or environmental states (e.g., obstacles). However,
these sensors also introduce potential vulnerabilities, providing an
entry point for an adversary to hack into the vehicle system. Taking
LiDAR as an example, an attacker can fool the object detection func-
tion by controlling several drones in specific positions to generate
counterfeit laser points, causing the identification of nonexistent
obstacles. Such manipulations can lead to forced braking on high-
ways, potentially inciting rear-end collisions and compromising
passenger safety [88]. Extensive research has been undertaken to
investigate various categories of sensor spoofing attacks [56, 77, 79].

In response to the threat posed by sensor spoofing attacks, vari-
ous defensive strategies have been proposed: (1) Certified Defense
focuses primarily on detecting adversarial inputs and providing the-
oretical assurances of model robustness against white-box attacks.
Common methodologies in this category encompass techniques
such as objectness explaining [73], randomized cropping [35], inter-
val bound propagation [82], derandomized smoothing [34], secure
aggregation [72], feature space masking [74] and certified training
[43]. (2) Vision-based Consistency Checking aims to incorporate ad-
ditional sensor inputs into the deep learning model. The premise
behind this strategy is to leverage the consistency across various
sensor sources to identify potential attacks [42, 75].
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Unfortunately, the above mitigation methods are encumbered
by several notable constraints. (1) Generalizability: Current solu-
tions are limited to addressing certain types of spoofing attacks
on a specific sensor, such as object misclassification [34, 35, 42,
43, 72, 74, 75, 82] and obstacle hiding [73] on camera. However,
it has been proven that almost all sensors could be potentially
spoofed [77], necessitating multiple defensive strategies for com-
prehensive protection with a huge waste of onboard computing and
storage resources. (2) Detection Latency: According to the industry
standards published by Mobileye [57] and Udacity [2], the latency
for processing tragic condition of ADS should be within 100 ms.
However, current methods, particularly vision-based consistency
checking [42, 75], require significant time (hundreds of millisec-
onds), which enhances the likelihood of vehicle collisions given the
high speeds on highways [2, 57]. (3) Interpretability: Corner cases
pose significant importance in ADS, yet current methods struggle
to explain these instances owing to their reliance on machine learn-
ing methods. Recent researches [10, 64, 67, 85] highlight that these
unexpected scenarios could lead to serious, even deadly, accidents.
(4) Performance Overhead: Current checking methods involve either
complex mathematical proofs or intricate deep learning processes
to ensure rigorous robustness guarantees. The resultant high com-
putational cost compromises their practicality for protection in
autonomous driving as they need to compete with other critical
applications for limited GPU resources.

This paper investigates the potential for a solution that addresses
these constraints simultaneously, namely, a low-overhead, inter-
pretable defensive method capable of real-time detection of
sensor spoofing attacks. We observe that human vision has the
ability to detect sensor spoofing attacks in real time with robust
interpretability. For example, teleportation or abrupt disappearance
of obstacles would instinctively trigger a sense of incongruity. We
attribute this perception to two factors: spatial and temporal consis-
tency. Spatial consistency denotes that the estimated states of the
vehicle should be consistent with the current spatial distribution.
For instance, while a camera spoofing attack may deceive the victim
vehicle into failing to detect forward obstacles, it does not physically
eliminate the real objects. On the other hand, temporal consistency
dictates that the trajectory of an object over continuous time should
remain logically coherent and plausible. For example, an object can-
not be intermittently recognized as a truck and then the sky. To
translate this spatio-temporal consistency into a practical defensive
method, it is imperative to address three issues:

• What are the conflicts present in existing spoofing attacks based
on the principle of spatio-temporal consistency?

• How can we establish a methodology to formally express the
spatio-temporal consistency, thereby enabling a precise quantifi-
cation of the conflicts inherent in sensor spoofing attacks?

• How can these formalized conflicts be modeled and integrated
within the existing ADS framework?

In response to the first question, we have identified seven attack
goals inherent in existing sensor spoofing attacks: target position
altering, target position deviating, target velocity destabilizing, ob-
stacles appearing, obstacle hiding, object misclassification, and lane
altering (Table 1). By analyzing them, we conclude four types of spa-
tial consistency conflicts, namely global space tearing, global space

shifting, target entity confusion, and target semantic confusion,
along with a temporal consistency conflict, i.e., target flickering.

Secondly, by incorporating the vehicular state flow model, we
formally interpret the aforementioned spatio-temporal consistency
conflicts into a discrepancy between real observed measurements
(those perceptible to the eyes) and predicted observed measure-
ments (those expected cognitively). Subsequently, this discrepancy,
considered as an error, is analyzed. The estimation of this error is
then reformulated as the least squares problem for resolution.

Finally, to quantify this error, we introduce a method which
makes predictions on feature point matching to detect sensor spoof-
ing attacks. Initially, we extract 2D keypoints from each frame.
Stable keypoints from successive frames are then triangulated to
generate 3D map points. These map points are subsequently pro-
jected into the 2D space of the current scene, following the predicted
estimated state alterations, and matched with real-time extracted
2D keypoints. The mean error across all matching pairs can be used
to represent the spatio-temporal consistency. Accordingly, we de-
sign a specific detection scheme for each proposed conflict. All these
methods are synthesized into one framework named PhyScout.

We perform comprehensive evaluations of PhyScout in both
simulated and real-world environments. To replicate an authentic
AV urban environment, we utilize Carla integrated with Apollo
7.0 as an ADS with the simulator. PhyScout, as a third-party mod-
ule, processes the real-time frames, estimated pose, and detected
bounding box to identify attacks. Experimental outcomes indicate
that our method can detect all sensor spoofing attacks, drastically
reducing the detection latency to less than 100ms compared to state-
of-the-art defensive approaches. Moreover, our method can operate
in real-time on one single CPU and visually present the error asso-
ciated with each attack. Simultaneously, we conduct assessments
with a physical vehicle to evaluate PhyScout’s practicality and
adaptability in real-world conditions. The impact of various factors
such as image resolutions, vehicle speeds, and environmental dy-
namics on our method is also estimated. The results confirm the
persistent robustness of PhyScout under all assessed conditions.

2 MOTIVATION AND BACKGROUND
Sensor spoofing attacks have been proven to be quite effective in
the ADS. However, they can be easily identified by humans by
cognitive inconsistencies. This lack of coherence with reality arises
from spatio-temporal conflicts between the spoofed target states
and the actual states sensed in the real world. To elucidate the causes
of these conflicts, we provide an overview of spoofing attacks and
their background in § 2.1, as well as a discussion on the potential
conflicts that may arise from each spoofing attack in § 2.2, which
introduces our motivations to propose such a detection method.

2.1 Sensor Spoofing Attacks
In this paper, we focus on spoofing attacks on five mainstream
sensors: GPS, LiDAR, camera, IMU, and ultrasonic sensor/MMW
radar, which are fully or partially integrated into AVs for planning
and control purposes. Spoofing of these sensors can cause the inter-
nal states estimated from sensor data to be modified, resulting in
unexpected and dangerous actions such as rear-end collisions and
falling off a cliff. To identify the sensor spoofing attacks and their
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Table 1: Summary of existing sensor spoofing attacks and related spatio-temporal conflicts.

Attack Goal Target States Attack Vector Spatial Consistency
Conflict

Temporal Consistency
Conflict

Target Position Altering Position GPS Spoofing [17, 23, 24] Global Space Tearing ×
Target Position Deviating GPS Spoofing [36, 54, 84] Global Space Shifting ×

Target Velocity Destabilizing Velocity IMU Spoofing [47, 65, 66, 70] ×

Obstacle Appearing Obstacle
Ultrasonic/MMW Radar Spoofing [44, 62, 80] Target

Entity Confusion

×
LiDAR Spoofing [13, 27, 50, 58, 61], Camera Spoofing [48, 49, 69, 87] ×

Obstacle Hiding LiDAR Spoofing [12, 27, 88], Camera Spoofing [15, 25, 37, 41, 71, 76, 86]
Target FlickeringObject Misclassification Traffic Controller Camera Spoofing [18, 19, 31, 41, 48, 49, 60, 68, 69, 81, 86] Target

Semantic ConfusionLane Altering Lane Camera Spoofing [28, 49, 55]

target states, we summarize the findings from existing works and
present them in Table 1. The table concludes seven attack goals as-
sociated with corresponding sensor spoofing attacks. Our proposed
framework is designed to address these challenges and ensure the
safety of AVs. In this context, spoofing attacks are classified based
on the attack goals rather than the specific sensor. This approach
ensures that our proposed defensive method is not confined to
certain sensor characteristics, such as data formats and hardware
prerequisites, thereby promoting broader applicability.
(1) Target Position Altering. This attack goal involves the adver-
sary inducing the vehicle to locate at a predetermined position and
trigger unexpected decisions and actions. A GPS spoofer is com-
monly employed to execute this attack, which generates false GPS
signals that trick the AV’s GPS receiver into providing inaccurate
location, triggering the launch of some unexpected decisions and
actions [17, 23, 24]. For example, the victim drone is forced to land
immediately by spoofing a location to restricted no-fly zones [17].
(2) Target PositionDeviating.This attack goal aims to accumulate
position deviations and cause mis-predictions of a target vehicle’s
location. One of the ways to execute this attack is through the use
of a GPS spoofer that continuously introduces small deviations to
the AV’s position [36, 54, 84]. For example, a lateral deviation could
be employed to deceive the vehicle into moving away from the
designated lane and colliding with the curb [36]. Another example
involves slightly shifting the GPS location of an AV so that the
spoofed navigation route aligns with the shape of the actual roads
[84]. This approach can trigger physically plausible instructions
that could compromise the safety of the vehicle and its occupants.
(3) Target Velocity Destabilizing. This attack goal is to generate
an angular velocity in a single direction to cause the vehicle to
overturn. AVs typically require dynamic adjustments to maintain
balance in response to changes in velocity or position. These vari-
ances are estimated from IMU sensors, which an adversary can
exploit by using an IMU spoofer to generate false data, thereby
disrupting the balance [47, 65, 66, 70]. For instance, an attacker can
destabilize a vehicle, causing the crash by spoofing fake IMU data
[66].
(4) Obstacle Appearing. This attack goal aims to deceive a ve-
hicle to mistakenly recognizing a non-existent obstacle in front.
Typically, vehicles utilize various sensors such as LiDAR, camera,
ultrasonic, and MMW radar to identify obstacles. However, it has
been demonstrated that these sensors can be spoofed by either
directly generating the false normal wave signals, such as ultra-
sonic [44, 80] and MMW radar [62], or by launching adversarial
attacks on deep learning models through the use of projection
[48, 49, 69, 87] or fake laser points [13, 27, 50, 58, 61]. For example,
[48] demonstrated how an attacker can fool Tesla’s autopilot into

applying the brakes by projecting a phantom of a pedestrian on the
road.
(5) Obstacle Hiding. This attack goal aims to deceive a vehicle
into failing to detect an existing obstacle. Similar to the obstacle
appearing attack, this attack can be implemented by spoofing Li-
DAR or cameras. Adversaries can use small patches or few laser
points to deceive the internal deep learning model [12, 15, 25, 27,
37, 41, 71, 76, 86, 88]. For instance, by operating several drones
in identified positions, adversaries can generate counterfeit laser
points and interfere with the perception results of the point cloud
model of the victim vehicle.
(6) Object Misclassification. This attack goal aims to cause a vehi-
cle to misclassify traffic signs or traffic lights, resulting in hazardous
consequences. Traffic controller detection systems rely on camera-
captured images to perform classifications, making it possible for an
attacker to deceive the deep learning model by projecting phantom
images or attaching stickers [18, 19, 31, 41, 48, 49, 60, 68, 69, 81, 86].
For instance, recent research has focused on constructing robust
adversarial examples to mislead real-world object detectors [86].
(7) Lane Altering. This attack goal aims to cause a vehicle to
misidentify traffic lanes, leading to potentially dangerous conse-
quences. Similar to the traffic controller detection module, the seg-
mentation module also relies on camera-captured images to dis-
tinguish between different traffic lanes to take appropriate actions.
Therefore, an adversary can deceive the segmentation module by
projecting phantoms [28, 55] or attaching patches [49] to alter the
AV’s perception of the lanes. For example, previous research has
explored the use of dirty road patches to deceive different lane
detection models, causing the victim AV to deviate laterally [55].

2.2 Motivation
Sensor spoofing attacks have proven to be quite effective. However,
their efficacy is limited by the ease with which they can be detected
by human observers. Comprehending the underlying causality aids
us in devising efficacious countermeasures against sensor spoofing
attacks. This lack of coherence with reality arises due to conflicts
between the spoofed target states and the actual states sensed in
the real world. To describe these conflicts, we propose a definition
of spatial-temporal consistency: (1) Spatial consistency refers to the
variance of the spatial environment caused by the expected behavior
of the system, which should be within an acceptable margin of error.
(2) Temporal consistency pertains to the spoofer’s ability to generate
a continuous and steady stream of fake target states. By adhering
to these principles, as Figure 1 shows, we identify 6 conflicts that
arise between the goals of existing sensor spoofing attacks and the
requirements of spatial-temporal consistency.
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Normal Scenario (a) Global Space Tearing (b) Global Space Shifting

(c) Target Entity Confusion (d) Target Semantic Confusion (e) Target Flickering

Figure 1: Illustration of five spatial-temporal consistency conflicts.

(1) Global Space Tearing. (Figure 1.a) This spatial conflict can
arise when an attacker spoofs the AV suddenly from one location
to another, resulting in a phenomenon known as "space tearing".
Due to the lack of physical continuity between these two locations,
drivers can easily identify their vehicle’s real position.
(2) Global Space Shifting. (Figure 1.b) The deviating position
altering attack and the destabilizing velocity altering attack are two
forms of attacks that aim to create a slight offset of a vehicle. This
offset can cause a global space shifting conflict, which occurs when
there is a mismatch between the expected and current sensing sur-
roundings. Such conflicts can be easily identified by the driver, since
the environment does not shift along with the spoofed direction.
(3) Target Entity Confusion. (Figure 1.c) This spatial conflict
can arise when obstacles suddenly appear or disappear in the envi-
ronment. While it is possible for the obstacle detection module to
be compromised by spoofing attacks, the physical world remains
unchanged. Thus, hiding targets can still be observed by drivers,
and non-existent objects can be identified with a quick glance.
(4) Target Semantic Confusion. (Figure 1.d) This spatial conflict
can arise in the environment when an object is misclassified by
spoofers, leading to potentially dangerous actions. While it is possi-
ble for deep learning models in traffic controller detection modules
to be compromised by spoofing attacks through minor changes to
images, drivers can still identify anomalies through the texture and
color of traffic signs and lanes.
(5) Target Flickering. (Figure 1.e) This spatial conflict can arise
due to the robustness issues of adversarial spoofing attacks. Re-
cent studies have revealed that these attacks demonstrate higher
sensitivity to the target’s distances and angles from the victim’s
sensors (e.g., camera and LiDAR) compared to normal scenarios
[14, 37, 42, 83, 86]. This phenomenon can lead to the emergence of
discrete time periods during which the spoofing attacks are effec-
tive, thereby providing the possibilities of detecting anomalies.

3 CONSISTENCY FORMALIZATION
This section aims to quantify the spatial-temporal consistency con-
flicts through the formulation of solvable mathematical expressions.
This is accomplished by the introduction of a state flow model to
represent the transition of AV states under both normal and attack
scenarios (§ 3.1). By leveraging this model, we can derive formal
representations of the conflicts. Subsequently, we tackle conflict
identification by translating it into a nonlinear least squares prob-
lem (§ 3.2). This approach guides the design of our system.
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Figure 2: The state flow model of an AV system under the
normal and spoofing attack scenarios.

3.1 AV State Model
An AV system can be modeled as a set of sensor inputs, system
states, and control outputs, which change over time as the AV
interacts with the environment. Meanwhile, the environment also
changes in response to the AV’s actions. In this paper, 𝑥𝑡 and 𝑦𝑡
denote the estimated pose and environment states based on sensor
data at time 𝑡 , whereas 𝑢𝑡 is used to represent the control outputs
that induce changes in 𝑥𝑡 and𝑦𝑡 . Additionally, 𝑧𝑡 signifies the direct
observable physical environmental distribution under the pose 𝑥𝑡 ,
i.e., the raw image captured by the camera. Figure 2 presents a state
flow diagram of an AV system, where grey and red circles denote
normal and spoofed states. The black and red solid lines indicate
the direction of changes in normal and spoofed states.
Normal Scenario. The AV pose and environment states are sub-
ject to change as the AV moves. Specifically, the AV pose 𝑥𝑡 at
the current moment is determined by the AV pose 𝑥𝑡−1 and the
control action 𝑢𝑡−1 at the last moment. The sensors capture these
newly generated states and transform them into observations 𝑧𝑡 .
In addition, the estimated pose 𝑥𝑡 and environment 𝑦𝑡 are used to
plan the control action 𝑢𝑡 for the current moment. These processes
of the state transition can be written as follows by using the motion
model and measurement model:{

𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑢𝑡−1) +𝑤𝑡 ⊲Motion Model
𝑧𝑡 = ℎ(𝑦𝑡 , 𝑥𝑡 ) + 𝑣𝑡 ⊲Measurement Model

(1)

where 𝑓 (·) is a motion equation that describes the transition of
a pose from 𝑥𝑡−1 to 𝑥𝑡 under the control output 𝑢𝑡−1, and ℎ(·) is
a measurement equation that describes the observation data 𝑧𝑡
produced when the vehicle observes the environmental state 𝑦𝑡
at 𝑥𝑡 . 𝑣𝑡 and 𝑤𝑡 are the noises of these two state transitions and
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commonly assumed to satisfy the Gaussian distribution of the zero
mean [63]:

𝑤𝑡 ∼ N(0, 𝑅𝑡 ), 𝑣𝑡 ∼ N(0, 𝑄𝑡 ) (2)
where N denotes the Multivariate Gaussian distribution, 𝑅𝑡 and
𝑄𝑡 denote covariance matrices.
Attack Scenario. We consider the scenario where an adversary
attempts to falsify the estimated states from {𝑥𝑡 , 𝑦𝑡 } to {𝑥 ′𝑡 , 𝑦′𝑡 }
through sensor spoofing attacks 𝑠𝑡 . This erroneous estimated data
is then used by the AV to formulate the control action 𝑢 ′𝑡 , which
subsequently generates erroneous estimated state 𝑥𝑡+1 and envi-
ronment state 𝑦𝑡+1. The adversary can continuously spoof these
states into {𝑥 ′

𝑡+1, 𝑦
′
𝑡+1} through 𝑠𝑡+1 and this error will continue to

propagate until it reaches the attacker’s desired end state 𝑥 ′
𝑇
, such

as collision and rear-end. This process can be written as follows:

𝑧′𝑡 = ℎ(𝑦′𝑡 , 𝑥 ′𝑡 ) + 𝑣𝑡 (3)
where the observation data 𝑧′𝑡 is the state observed under the
spoofed estimated states 𝑥 ′𝑡 and 𝑦

′
𝑡 . It is worth noting that 𝑧′𝑡 cannot

be observed since the control output 𝑢𝑡−1 at the last moment is
unchanged, the observation data is still 𝑧𝑡 observed at 𝑥𝑡 and 𝑦𝑡 .
Spatial-Temporal Consistency Conflicts. It can be observed
from Figure 2 that under the sensor spoofing attack, the transition of
the system and environment state from {𝑥𝑡−1, 𝑦𝑡−1;𝑥𝑡 , 𝑦𝑡 ;𝑥𝑡+1, 𝑦𝑡+1}
to {𝑥𝑡−1, 𝑦𝑡−1;𝑥 ′𝑡 , 𝑦′𝑡 ;𝑥 ′𝑡+1, 𝑦

′
𝑡+1}. However, the former transition is

continuous in the state space, while the latter is not. This is attrib-
uted to the misestimation of the states 𝑥 ′𝑡 and 𝑦

′
𝑡 generated by the

spoofing attack, instead of being transferred from 𝑥𝑡−1 and the out-
put control 𝑢𝑡−1 using the motion model. This paper focuses on the
discontinuity of these estimated states and proposes spatio-temporal
consistency conflicts as a means of characterizing this discontinuity.
We can formulate these conflicts as follows:

𝑧′𝑡 ⊖ 𝑧𝑡 > 𝜀 ⊲Spatial Consistency Conflict
𝑧′𝑡+1 ⊖ 𝑧

′
𝑡 > 𝛿 ⊲Temporal Consistency Conflict

(4)

where ⊖ is an operation to quantify the difference between two
environment states. 𝜀 and 𝛿 are two thresholds to check whether
the difference is within a reasonable range.
• Spatial ConsistencyConflict. This conflict is a result of themis-
match between the observation data 𝑧𝑡 in the physical world and
the predicted observation data 𝑧′𝑡 based on the spoofed estimated
states 𝑥 ′𝑡 and 𝑦

′
𝑡 .

• Temporal Consistency Conflict. This conflict is a result of the
mismatch between the predicted observation data in different
time periods, such as 𝑧′𝑡 and 𝑧

′
𝑡+1.

3.2 Error Formalization
From the analysis of Equation 4, it can be inferred that the obser-
vation data 𝑧 and the predicted data 𝑧′ under an attack scenario
exhibit certain discrepancies. This observation paves the way for
conducting maximum a posterior estimation of spoofed pose 𝑥 ′
and environment states 𝑦′ while taking into account the known
observation data 𝑧 and control output 𝑢. We mark this maximum a
posterior estimation as (𝑥 ′, 𝑦′)∗

𝑀𝐴𝑃
and formulate it as follows:

(𝑥 ′, 𝑦′)∗𝑀𝐴𝑃 = argmax
𝑥 ′,𝑦′

𝑃 (𝑥 ′, 𝑦′ |𝑧,𝑢) (5)

By invoking Bayes’ rule, we can derive an estimation for the condi-
tional distribution of the state variables as below:

(𝑥 ′, 𝑦′)∗𝑀𝐴𝑃 = argmax
𝑃 (𝑧,𝑢 |𝑥 ′, 𝑦′)𝑃 (𝑥 ′, 𝑦′)

𝑃 (𝑧,𝑢)
∝ argmax 𝑃 (𝑧,𝑢 |𝑥 ′, 𝑦′)𝑃 (𝑥 ′, 𝑦′)

(6)

where 𝑃 (𝑧,𝑢 |𝑥 ′, 𝑦′) is the likehood and 𝑃 (𝑥 ′, 𝑦′) is the prior. As the
denominator of the conditional distribution does not depend on
𝑥 ′ and 𝑦′, it can be ignored. Moreover, since the prior is unknown,
we can follow [20] to transform the maximum posterior estimation
into a maximum likelihood estimation as follows:

(𝑥 ′, 𝑦′)∗𝑀𝐿𝐸 = argmax
𝑥 ′,𝑦′

𝑃 (𝑧,𝑢 |𝑥 ′, 𝑦′) (7)

Equation 7 can be intuitively understood as identifying the state that
is most probable to have generated the observation data. Obviously,
there is a significant bias in the maximum likelihood estimates of
the normal estimated state (𝑥,𝑦)∗

𝑀𝐿𝐸
and the spoofed estimated

state (𝑥 ′, 𝑦′)∗
𝑀𝐿𝐸

.
By combining the measurement model in Equation 1 and the

Gaussian distribution of noise in Equation 2, it can be inferred that
the conditional probability in Equation 7 adheres to the Gaussian
distribution as below [63]:

𝑃 (𝑧𝑡 |𝑥 ′𝑡 , 𝑦′𝑡 ) = N(ℎ(𝑥 ′𝑡 , 𝑦′𝑡 ), 𝑄𝑡 ) (8)
Considering a 𝑁 -dimensional Gaussian distribution 𝑥 ∼ N(𝜇,∑),
the expansion form of its probability density function can be ex-
pressed as follows:

𝑃 (𝑥) = 1√︁
(2𝜋)𝑁 det(∑)

exp(−1
2
(𝑥 − 𝜇)𝑇∑−1 (𝑥 − 𝜇)) (9)

By applying the negative logarithm to both sides of the equation,
we obtain the following:

− ln 𝑃 (𝑥) = 1
2
ln((2𝜋)𝑁 det(∑)) + 1

2
(𝑥 − 𝜇)𝑇∑−1 (𝑥 − 𝜇) (10)

As Equation 10 is a monotonically increasing function, maximiz-
ing the original function is equivalent to minimizing the negative
logarithm. In the given formula, the first term is independent of 𝑥
and can be omitted during minimization of 𝑥 . Thus, as long as the
quadratic term on the right is minimized, the maximum likelihood
estimation of the state can be obtained. By combining with Equa-
tion 7 and 8, the maximum likelihood estimation can be expressed
as follows:

(𝑥 ′, 𝑦′)∗𝑀𝐿𝐸 = argmaxN(ℎ(𝑥 ′𝑡 , 𝑦′𝑡 ), 𝑄𝑡 )

= argmin 𝑒𝑇𝑧,𝑡𝑄
−1
𝑡 𝑒𝑧,𝑡

w.r.t. 𝑒𝑧,𝑡 = 𝑧𝑡 − ℎ(𝑥 ′𝑡 , 𝑦′𝑡 )
(11)

This equation can be considered a method for minimizing a qua-
dratic form of the noise variable, commonly referred to as the
Mahalanobis distance. In this context, the Mahalanobis distance
represents the weighted Euclidean distance (two-norm) by the in-
formation matrix 𝑄−1

𝑡 . The information matrix 𝑄−1
𝑡 , also known as

the inverse of the covariance matrix in the Gaussian distribution,
plays a crucial role in this equation.

Temporal consistency is a critical aspect of our analysis, whereby
we evaluate data at batch times. In addition, our assessment of
observation data and environment state takes into account various
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Table 2: Definition of stealthiness and naturalness.
Constraints Constraints Examples

Stealthiness
Active Spoofer Signal projector

Remote Attack Range > 10𝑚
Imperceptible Signal GPS, laser, ultrasonic, MMW Radar

Naturalness Passive Spoofer Patches, objects
Semantic Independence Target semantics cannot be modified

features, such as pixels or corners, that coexist at the same moment.
We use 𝑧𝑡,𝑘 and 𝑦𝑡,𝑘 to denote each future of observation data and
environment states at time 𝑡 . Typically, these control outputs and
features can be assumed to be independent of one another at each
moment. As a result, we can factorize the conditional probability:

𝑃 (𝑧,𝑢 |𝑥 ′, 𝑦′) =
∏
𝑡

𝑃 (𝑢𝑡 |𝑥𝑡−1, 𝑥𝑡 )
∏
𝑡,𝑘

𝑃 (𝑧𝑡,𝑘 |𝑥 ′𝑡 , 𝑦′𝑡,𝑘 ) (12)

We can minimize the Mahalanobis distance between the estimated
values at all times and the real observation data, which is equiva-
lent to seeking the maximum likelihood estimation. By leveraging
negative logarithms in Equation 10, we can convert products in
Equation 12 into sums as bellows.

min 𝐽 (𝑥 ′, 𝑦′) =
∑︁
𝑡

𝑒𝑇𝑢,𝑡𝑅
−1
𝑡 𝑒𝑢,𝑡 +

∑︁
𝑡

∑︁
𝑘

𝑒𝑇
𝑧,𝑡,𝑘

𝑄−1
𝑡,𝑘
𝑒𝑧,𝑡,𝑘

w.r.t. 𝑒𝑢,𝑡 = 𝑥
′
𝑡 − 𝑓 (𝑥 ′𝑡−1, 𝑢𝑡−1)

(13)

where minimizing 𝐽 (𝑥 ′, 𝑦′) can be interpreted as a least squares
optimization problem, which is synonymous with maximizing the
likelihood estimation of states 𝑥 ′ and 𝑦′. Refining any estimation
is capable of marginally reducing the error, usually approaching a
minimum. Hence, the stated process is a standard instance of non-
linear optimization. This paper employs the Levenberg-Marquardt
algorithm to address the optimization quandary. It is worth noting
that all assumptions in this section align with prevailing standards
in the robotics domain [59, 63], are corroborated by extensive em-
pirical testing, and have been incorporated into current ADS.

4 SYSTEM AND THREAT MODEL
System Model. We consider an end-to-end AV application that
utilizes multiple sensors including GPS, IMU, camera, LiDAR, ultra-
sonic, and MMW radar. The GPS and IMU sensors are employed
for vehicle localization in the map, which is then used to plan the
optimal route toward the destination. To ensure safety during navi-
gation, the application uses camera, LiDAR, ultrasonic, and MMW
radar sensors to estimate the distance between the vehicle and ob-
stacles. When the obstacles are too close, the vehicle will decelerate
or brake to avoid a collision. Additionally, the camera sensor is
utilized to recognize regions of interest (ROI), such as traffic lights,
traffic signs, and lanes. The detection of these traffic controllers
triggers various events for safe decision-making and control. Our
method is a universal detection framework that is independent of
the specific model used by the perception module. The state esti-
mation can stem from a single sensor or multiple sensors’ fusion
[12, 21, 36, 52], which makes our application more practical.
Threat Model. We consider sensor spoofing attacks aiming at
achieving one of seven attack goals outlined in Table 1. These at-
tacks are designed to cause the vehicle to make dangerous decisions
and take action, such as colliding with an obstacle or stopping on

a highway. We assume that adversaries could create fictitious ob-
stacles or conceal real ones, or alter the interpretation of traffic
controllers and lanes. However, such capabilities are limited with
the stealthiness and naturalness constraints: As detailed in Table 2,
stealthiness is characterized by the use of an active spoofer, which
projects malicious signals from a distance. Such an attack remains
inconspicuous to drivers even at significant ranges, such as beyond
10 meters, where the attacker can be easily hidden in such a re-
mote distance. Moreover, the imperceptible features of the emitted
signals, such as GPS, laser, ultrasonic, and millimeter-wave radar,
cannot be observed to the naked eye, thereby preserving the covert
aspect of the attack. On the other hand, naturalness is illustrated
through passive spoofing methods, where the spoofer is either af-
fixed to or placed in proximity to the intended target. This form of
attack is well-designed so that it does not alter the target’s inher-
ent semantics, ensuring the alteration remains undetectable to the
driver. As such, while natural elements like dirt patches on roads
[55] and small-scale stickers on traffic signs [26, 77] are permissible
within our model, overt actions such as covering the target entirely
with an untextured sticker or adding distinct semantic symbols are
excluded from our work.

Our model excludes large-scale or multi-point alterations. This
assumption was predicated on the belief that alterations affecting
multiple points within a camera’s field of view might inherently
diminish the attack’s stealthiness due to the introduction of more
discernible anomalies. Although [13] has shown the feasibility of
the multi-point LiDAR spoofing attack, we recognize that this may
not translate directly to camera systems, given their distinct detec-
tion capabilities and vulnerabilities. In addition, we also acknowl-
edge that the use of a single modality, i.e., camera for detecting
sensor spoofing attacks has its limitations, which would cause a
single-point fault. Our model does not consider scenarios with
extremely low visibility due to very dim light or heavy fog, because
these scenarios are also an open problem and challenge for com-
mercial autonomous driving systems and have not been completely
solved. We do not consider cyber attacks against RVs, such as those
targeting software and ROS vulnerabilities [51, 78], in-vehicle net-
works [8, 9, 32], DNN backdoors [22], communication protocols
[16, 29], and side-channel leakage [40], as they do not directly target
on-vehicle sensors.

5 METHODOLOGY
This section presents our methodologies for detecting sensor spoof-
ing attacks. We begin by outlining some of the technical challenges
of designing a universal detection framework(5.1). Next, we intro-
duce our proposed solutions to address these challenges (5.2-5.3).

5.1 Technical Challenges
(1) Modeling consistency conflicts. As humans are able to iden-
tify anomalies in spatial-temporal conflicts, we need to emulate this
ability by modeling these conflicts. Meanwhile, we need to ensure
the robustness of our model against spoofing attacks, ensuring that
it can accurately identify any sensor spoofing attacks.
(2) Detection Scheme Design. To effectively mitigate various sen-
sor spoofing attacks, we need to design different detection schemes
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Figure 3: The spatial consistency model.

based on our proposed model. Additionally, to ensure the com-
pleteness, these schemes must be designed based on a thorough
understanding of the various types of potential attacks.
(3) Optimizing performance. In the context of physical AVs with
limited computing resources, ensuring the real-time execution of a
detection framework is critical for mitigating risks. Thus, we need
to propose a performance optimization approach that enhances the
efficiency of our detection methodologies, allowing the vehicle to
promptly identify spoofing attacks and mitigate associated risks.

5.2 Consistency Conflicts Modeling
5.2.1 Spacial Consistency Conflicts Modeling. We investigate the
spatial consistency by checking the variance of the spatial envi-
ronment caused by its expected behavior. To model this variance,
we propose extracting features from sensor data to represent the
distribution of the surroundings. It is crucial for these features to be
robust enough to be extracted at any continuous space. By compar-
ing the error between the extracted features 𝑧𝑡 and the predicted
features 𝑧′𝑡 , we can establish a measure for the conflict of the spa-
tial consistency. Additionally, these extracted features should be
capable of identifying target semantics, enabling us to differentiate
between different traffic controllers. Figure 3 shows our spatial
consistency model. It consists of four components as follows.
2D Feature Extraction. This component aims to extract 2D fea-
ture points from the current perceived image, i.e., measurement
data 𝑧𝑡 . It is based on the Oriented FAST and Rotated BRIEF (ORB)
algorithm [53]. We choose ORB rather than other popular features
such as Scale-Invariant Feature Transform (SIFT [39]), Speeded Up
Robust Features (SURF [6]), and Accelerated-KAZE (A-KAZE [4])
due to its real-time performance without requiring GPUs and its
good invariance to changes in viewpoint and illumination [45]. The
2D feature extraction process begins by selecting a pixel 𝑝 as the
center and searching for 16 pixels on a circular pattern with a radius
of 3 pixels. If the difference in brightness between the searched
pixels and 𝑝 exceeds a predetermined threshold (e.g., 20%) for 12
consecutive pixels, 𝑝 is considered as a keypoint and selected as
a feature. These keypoints are typically located in corners, edges,
and blocks within the images. To ensure scale and rotation invari-
ance in the vehicle’s movement, we further process the extracted
keypoints using multi-scale image pyramids and intensity centroid
algorithms. An image pyramid represents a single image at mul-
tiple scales, with each level being a downsampled version of the

original image. All keypoints extracted from various levels are then
collected. The intensity centroid algorithm [53] leverages the fact
that a corner’s intensity is the offset from its center to determine
the orientation. Finally, to differentiate the keypoints further, we
use a descriptor, which is a 256-bit binary feature vector consisting
of only 1s and 0s. Each bit is computed by comparing the brightness
of surrounding pixels based on a predefined pattern.
Feature Prediction and Generation. This component aims to
predict 3D feature points 𝑦𝑡 by utilizing the historical environment
states [𝑦0, . . . , 𝑦𝑡−1] and generating counterfeit 3D feature points
𝑦′𝑡 from spoofed sensor data. To estimate the normal state 𝑥𝑡 and 𝑦𝑡 ,
we incorporate mapping mechanism from the vision-based SLAM
[46], which converts stable keypoints from the current frame into
map points by triangulating the current frame with other adjacent
frame and stores all historical map points into a map dataset. A
keypoint is deemed stable if it satisfies two criteria: the number of
frames observing the map point is more than two since its creation,
and the ratio of the number of frames that can track the map point
to the number of frames that can observe this map point is greater
than 25%. We define that if the current frame can find a matching
key point for the map point, it is trackable, and if only the map
point can be observed, it is observable. In addition, we assume that
the objects in adjacent frames move uniformly in a short period
of time, thus the pose of the current frame 𝑥𝑡 can be estimated
based on the pose of the previous frame 𝑥𝑡−1 and related control
outputs 𝑢𝑡−1. The environment state of the current frame 𝑦𝑡 can
also be predicted in the same method. Note that this hypothesis is
also applicable in mainstream SLAM frameworks [7, 11, 46] and
has shown strong robustness in our subsequent experiments. To
determine the spoofed state 𝑥 ′𝑡 and 𝑦

′
𝑡 , we combine the keypoints

extracted in the current frame with perceived data from spoofed
sensors and formulate corresponding strategies for different spatial
consistency conflicts, which are elaborated in § 5.3. It is worth
noting that the estimation of 𝑥𝑡 and 𝑦𝑡 is based on the distribution
of keypoints in captured images and is not affected by spoofed data.

The generation of map points for each frame occupies substantial
computational and storage resources. To mitigate this performance
overhead, we align with the ORB-SLAM framework, where the
conversion of stable observed keypoints to map points for a frame
is performed only only when the current frame is identified as a
keyframe. The determination of keyframes is typically based on
whether the environmental changes surrounding the vehicle are
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substantial. This approach significantly mitigates the frequency
of calculations required. Moreover, our method has no need for
constructing an environment map, as a window mechanism is es-
tablished wherein only map points generated by 𝑁 continuous
keyframes are stored. Based on this way, the growth in storage
requirements due to map expansion is considerably reduced.
Match Paris Searching. This component aims to identify keypoint
matching pairs from the 2D extracted keypoints 𝑧𝑡 and 3D predicted
points 𝑦𝑡 or spoofed points 𝑦′𝑡 . To do this, we need to first project
3D map points in the physical world to the 2D coordinate in the
current frame with an estimated pose, which is formalized as:

(𝑚𝑥
𝑖 ,𝑚

𝑦

𝑖
, 1)′ = 𝐼𝐶 · (

𝑀𝑥
𝑖

𝑀𝑧
𝑖

,
𝑀

𝑦

𝑖

𝑀𝑧
𝑖

, 1)′

w.r.t. 𝐼𝐶 =


𝑓𝑥 0 𝑐𝑥
0′ 𝑓𝑦 𝑐𝑦
0′ 0 1

,
𝑚 = (𝑚1,𝑚2, . . . ,𝑚𝑛𝑚 )
𝑚𝑖 = (𝑚𝑥

𝑖 ,𝑚
𝑦

𝑖
),

(14)

Here (𝑀𝑥
𝑖
, 𝑀

𝑦

𝑖
, 𝑀𝑧

𝑖
) and (𝑚𝑥

𝑖
,𝑚

𝑦

𝑖
) are the 3D map point and its pro-

jected coordinates in the current frame. 𝐼𝐶 is the camera intrinsic
matrix containing the focal length along x-axis 𝑓𝑥 and y-axis 𝑓𝑦 ,
and the optical center offset along x-axis 𝑐𝑥 and y-axis 𝑐𝑦 .

Then we need to identify the corresponding keypoint 𝑘𝑖 in the
current frame for each projected map point 𝑚𝑖 . Specifically, we
traverse all map points and create a container 𝐾𝑖 for each map
point, storing all keypoints within a circular area of radius 𝑟 from
the map point. As we mentioned in § 5.2.1, each extracted keypoint
𝑘 is allocated to one level 𝑙𝑘 of multi-scale image pyramids. Since
𝑀 is transferred from keypoints, each𝑚 also owns a level 𝑙𝑚 . The
keypoint matching follows a rule that level 𝑙𝑘𝑖 of the selected key-
points 𝑘𝑖 must be the same as level 𝑙𝑚𝑖

of the corresponding map
point𝑚𝑖 or the difference is 1, which is formalized as:

𝐾𝑖 = {𝑘 𝑗 = (𝑘𝑥𝑗 , 𝑘
𝑦

𝑗
) | (𝑚𝑥

𝑖 − 𝑘𝑥𝑗 )
2 + (𝑚𝑦

𝑖
− 𝑘𝑦

𝑗
)2 ≤ 𝑟2}

s.t. 𝑙𝑘 𝑗
∈ {𝑙𝑚𝑖

− 1, 𝑙𝑚𝑖
, 𝑙𝑚𝑖

+ 1}, for each 𝑘 𝑗 ∈ 𝐾𝑖
(15)

For each keypoint in the container, the feature searching func-
tion computes the Hamming distance of descriptors between all
keypoints 𝑘 𝑗 ∈ 𝐾𝑖 and the related map point𝑚𝑖 . The keypoint with
the shortest distance 𝑘best ∈ 𝐾𝑖 will form a pair with the map point
𝑚𝑖 and be put into the corresponding histogram bin according to
the rotation angle difference between them. Histogram bins are
twelve containers for storing matching pairs of different angular
differences (interval: 30°). Finally, the three bins with the most
matching pairs (𝑚𝑖 , 𝑘

best) are selected as inputs to the model, while
others are discarded. We can formulate this process as following:

(𝑚𝑖 , 𝑘
best) ∈ {(𝑚𝑖 , 𝑘

best) |BinIdx((𝑚𝑖 , 𝑘
best)) ∈ Top3BinIdx}

w.r.t. 𝑘best = minHDist(𝑘 𝑗 ,𝑚𝑖 ), 𝑘 𝑗 ∈ 𝐾𝑖

BinIdx(𝑚𝑖 , 𝑘
best) =

|angle𝑚 − angle𝑘best |
30

(16)

Here HDist and BinIdx denote the functions of computing the
Hamming distance and the bin index. Top3BinIdx is the set of top
three bin indexes.
Offset Error Computation. After the aforementioned procedures,
we have acquired all the necessary components for solving Equation

13, including the observed data 𝑧𝑡 , the normal predicted pose 𝑥𝑡 ,
and the environment state 𝑦𝑡 , as well as the deceived pose 𝑥 ′𝑡 and
environment state 𝑦′𝑡 . In order to perform the optimizations, we
utilize the graph nonlinear optimizer g2o [33], which is based on
the Levenberg-Marquardt implementation. Our primary objective
is to minimize all error edges by traversing an error edge for each
matching pair, with the intention of discovering an appropriate pose
𝑥𝑡 and environment state 𝑦𝑡 . Following multiple optimizations, we
will calculate the total mean of the error and identify the matching
pair whose error exceeds the threshold as an outlier.

5.2.2 Temporal Consistency Conflicts Modeling. We investigate
the temporal consistency of a system by analyzing the variance
in the bounding boxes generated by object perception modules
in ADS. To model this variance, we measure the error between
the extracted features 𝑧𝐵𝑡 and the predicted features 𝑧

′𝐵
𝑡 within the

bounding box. Since 𝑧
′𝐵
𝑡 is derived from 𝑧

′𝐵
𝑡−1, the error between

𝑧𝐵𝑡 and 𝑧
′𝐵
𝑡 can be employed to verify temporal consistency. If an

obstacle abruptly disappears or transforms into another object, the
distribution of feature points should correspondingly shift, resulting
in a substantial error between time 𝑡 − 1 and 𝑡 . This discrepancy
affords us the means to identify such attacks by examining the error
and the variance of the bounding boxes.

5.3 Detection Scheme Design
In this subsection, we present various detection strategies target-
ing distinct spatial consistency conflicts, as summarized in Table 1.
These strategies share a common goal, which is to generate the cur-
rent false environment state, i.e., 𝑦′𝑡 , using the spoofed sensor data
in conjunction with the known system state 𝑥𝑡−1, 𝑦𝑡−1, and 𝑢𝑡−1.
Figure 4 provides an overview of the workflow for each detection
scheme, which will be elaborated upon in detail below:
Normal Scenario. In the normal scenario, the current environment
state 𝑦𝑡 can be inferred from the previous environment state 𝑦𝑡−1
and the system control output 𝑢𝑡−1, utilizing the equation:

[𝑦𝑡 , 1] ′ = 𝑇 · [𝑦𝑡−1, 1] ′

w.r.t. 𝑇 =

[
𝑅 𝑟

0′ 1

]
, 𝑦𝑖 = (𝑦𝑥𝑖 , 𝑦

𝑦

𝑖
, 𝑦𝑧𝑖 ),

(17)

where 𝑦𝑡 and 𝑦𝑡−1 denote the position of 3D map points at time 𝑡
and 𝑡 − 1. 𝑇 is a 4x4 transformation matrix to represent the trans-
formation relationship from 𝑦𝑡−1 to 𝑦𝑡 and can be calculated from
𝑢𝑡−1. Specifically, the transformation matrix is a diagonal matrix
containing a 3x3 rotation matrix 𝑅 and a 3x1 translation matrix 𝑟 .
The immunity of Equation 17 to sensor spoofing attacks is attrib-
uted to its ability to function independently of sensor data other
than images.
Global Space Tearing. The global space tearing scenario is char-
acterized by a significant deviation between the false position and
the actual position of the vehicle. However, the offset error of the
feature points from the previous and current frames is found to be
negligibly small. Thus, we introduce the identification conditions
that must be met for this attack to occur: (𝑝𝑜𝑠𝑡 − 𝑝𝑜𝑠𝑡−1 > 𝜃 ) &&
(𝑧′𝑡 ⊖ 𝑧𝑡 < 𝜀). Here 𝑝𝑜𝑠 and 𝜃 denotes the position of the AV and
the threshold to check whether the difference between previous
and current positions is within a reasonable range.
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Figure 4: The detection schemes for each type of spoofing attacks.
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Figure 5: The overview of the Phycout.

Global Space Shifting. In the context of global space shifting, the
position of the vehicle will undergo slight shifts, but the resulting
changes in direction will be significantly different. In order to ad-
dress this issue, we propose a method to obtain the current control
output by analyzing the spoofed IMU or GPS data and comparing it
with the previous pose 𝑥𝑡−1. We note that the resulting error𝑢 ′

𝑡−1 is
distinct from the control 𝑢𝑡−1 output by the system at the previous
moment. This discrepancy leads to an incorrect transformation ma-
trix𝑇 ′ and we can calculate the spoofed environment state 𝑦′𝑡 using
Equation 17. These 3D map points are then mistakenly projected
to 2D estimated points 𝑧′𝑡 using Equation 14 and matched with
corresponding keypoints 𝑧𝑡 using Equation 15 and 16. Obviously,
the actual observed state 𝑧𝑡 and 𝑧′𝑡 would exhibit significant errors
during nonlinear optimization: (𝑧′𝑡 ⊖ 𝑧𝑡 > 𝜀).
Target Entity Fusion. In the context of the target entity confusion
scenario, the vehicle will either fail to detect an obstacle or mis-
takenly identify a non-existent obstacle ahead. In order to address
the obstacle appearing attack, we propose a methodology that in-
volves the extraction of all map points 𝑦𝐵𝑡 within the bounding box.
These 3D points are then converted into deceived environmental
features 𝑦

′𝐵
𝑡 by attaching the distance 𝑑 ′𝑡 estimated by the objection

detection module. These false depth data could project 𝑦
′𝐵
𝑡 into 𝑧

′𝐵
𝑡

with incorrect level. Due to the different distance between the real
observation 𝑧𝐵𝑡 and spoofed estimated feature 𝑧

′𝐵
𝑡 , the error during

nonlinear optimization will increase substantially: (𝑧′𝐵𝑡 ⊖ 𝑧𝐵𝑡 > 𝜀).
To mitigate the obstacle hiding attack, we need to map the map

points within the bounding box 𝑏𝑏𝑜𝑥𝑡 that were detected in the
previous time 𝑦𝐵

𝑡−1 to the current time 𝑦
′𝐵
𝑡 . However, the bounding

box cannot be detected during the attack, making it impossible to
use the above approach. Thus, we infer the transformation matrix

𝑇 from the bounding box in the previous moment to the current
time based on the relative speed 𝑢∗

𝑡−1 of the target and the vehicle.
This data can help us to predict the position of the bounding box in
the next short period of time. The mapped environment states 𝑦

′𝐵
𝑡

are then projected into 𝑧
′𝐵
𝑡 and nonlinearly optimized with their

corresponding matching observation keypoints 𝑧𝑡 , and the error
value is expected to be as small as in the normal scenario. Thus, the
identification conditions that must be met for this attack to occur:
𝑏𝑏𝑜𝑥𝑡 → 𝑁𝑈𝐿𝐿 && (𝑧′𝐵𝑡 ⊖ 𝑧𝐵𝑡 < 𝜀).
Target Semantic Fusion. In the scenario of target semantic confu-
sion, the vehicle might misclassify objects, erroneously identifying
one object or lane as another. To address this issue, we propose an
approach similar to the method used for detecting obstacle appear-
ing attacks. However, rather than attaching the obstacle distance 𝑑
to the current map point, we continue utilizing the distance derived
from triangulating the original keypoints. Once the type of the
detected object changes, the distribution of its feature points is
expected to shift correspondingly. Consequently, a substantial dis-
crepancy between the observed value 𝑧𝐵𝑡 and the predicted observed
value 𝑧

′𝐵
𝑡 should arise. This discrepancy can be used to identify such

the attack: 𝑡𝑦𝑝𝑒𝑡 (𝐴 → 𝐵) && (𝑧′𝐵𝑡 ⊖ 𝑧𝐵𝑡 < 𝜀). Note that our detec-
tion of both obstacle hiding attack and misclassification attack also
leverage the phenomenon of target flickering conflict.

6 PHYSCOUT
In this paper, we present Phycout, a novel framework that has been
developed to effectively detect sensor spoofing attacks using the
above-mentioned spatio-temporal consistency detection schemes.
Figure 5 shows an overview of Phycout, which mainly consists of
three working threads: global detector, local detector and mapper.
Global Detector. This module identifies sensor spoofing attacks
from global spatial disruptions and shifts. It begins by extracting
2D keypoints from each frame. These features are then utilized
to generate 3D map points and construct optimization matching
pairs. As discussed in § 5.2, only when the frame is identified as a
keyframe are the keypoints transferred to the subsequent module.
Historical map points are transported to the current moment and
projected into 2D space. These projected map points seek out the
best features in the extracted keypoints to form an optimalmatching
pair and compute the error. Ultimately, these errors in conjunction
with pose data serve to identify global spoofing attacks.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuan Xu, Gelei Deng, Xingshuo Han, Guanlin Li, Han Qiu, and Tianwei Zhang

Table 3: Implementation of each spatial-temporal conflict.
Conflict Case Attack Goal Target Node Target Channel Malicious Data Duration (Frames) Threshold

Global Space Tearing Target Position Altering rtk_localization /localization/pose (1, y, z, qx, qy, qz, qw) 10 20
Global Space Shifting Target Position Deviating rtk_localization /localization/pose (x, y+0.2, z, qx, qy, qz, qw) 10 40

Target Entity Confusion Obstacle Appearing v2x_fusion /apollo/perception/obstacles Yolo4BBoxes(x, y, z,...) 100 10
Target Entity Confusion

Target Flickering Obstacle Hiding v2x_fusion /apollo/perception/obstacles Yolo4BBoxes(999, 999, z, ....) 50 10

Target Semantic Confusion
Target Flickering Object Misclassification v2x_fusion /apollo/perception/obstacles Yolo4BBoxes(object class: bird, ...) 50 10

Docker Docker

Carla Apollo

PhyScout

Apollo-Cyber

Remap

Figure 6: The experimental setup of simulated environment.
Mapper. This module generates global and local 3D map points
from historical 2D keypoints. Global map points are constructed
from keypoints extracted from two adjacent keyframes, while lo-
cal map points are generated from keypoints extracted from the
bounding boxes of two successive frames. We use frames instead
of keyframes to generate local map points because the sparsity
of keyframe-generated map points in the local space could cause
significant error fluctuations when detecting local attacks.
Local Detector. This module identifies sensor spoofing attacks
stemming from target entity and semantic confusion. Much like
the global detector, it projects the historical 3D map points within
the bounding box to the 2D predicted points at the current moment.
These features are then used to seek out the best matches within
the extracted keypoints in the bounding box to form an optimal pair
and calculate the error. Ultimately, these errors and the bounding
box, serve to identify local spoofing attacks.

7 DEFENSE ANALYSIS AND EVALUATION
7.1 Experimental Environment
Setup. In our evaluation, we employ PhyScout as an evaluation tool,
integrating it with the cutting-edge open-source ADS, Apollo 7.0,
and the Carla simulator. As depicted in Figure 6, separate docker en-
vironments are designated for Apollo and Carla. Specifically, Apollo
derives environmental and vehicular contexts from Carla, enabling
the planning of optimal routes to destinations and the calculation
of instant velocities. Subsequent control commands are relayed to
Carla to propel the AV. PhyScout is co-located in the same docker
as Apollo, designed to receive sensor data (e.g., image and pose)
through an established bridge for the detection of potential attacks.
Notably, the bridge utilizes the Apollo Cyber module, serving as
a pivotal mechanism for data conversion. All frameworks are de-
ployed in a powerful server (i9-10900 CPU@2.8GHz with 32GB of
RAM and NVIDIA GeForce RTX 2080Ti) in our lab.
Attacks. We assume that the attacker possesses robust adversarial
capabilities, sufficient to reliably launch an attack. Therefore, we
directly manipulate the internal estimation state within the AV.

This is achieved through a systematic identification of the target
channel, along with its associated readers and writers within the
Apollo system. The red dotted box in Figure 6 depicts our approach,
where we remap each writer’s subscribed channel to a new channel,
subsequently deploying a malicious node that transforms messages
from the new channel to the target channel. The decision to directly
modify sensor data in our simulation experiments is predicated on
two fundamental advantages: (1) this approach allows us to simulate
sensor spoofing attacks that are more consistent and stable than
those typically possible in physical settings, representing a more
consistent and stealthier threat model that is challenging to detect.
Evaluating our system, PhyScout, against such rigorous conditions
is crucial for assessing its robustness. (2) it affords us flexibility
to instantiate a diverse array of attacks across varying times and
locations, thereby subjecting PhyScout to a rigorous examination
across multiple environmental contexts.

However, we also recognize that discrepancies persist between
simulated sensor input modifications and their real-world imple-
mentation. This gap is primarily due to the different influences that
physical adversarial objects can have on camera-based spoofing
attacks, such as the variation in extracted keypoints and corre-
sponding map points. Furthermore, the feasibility of our proposed
metrics in physical settings need to be further validated.

Table 3 comprehensively details the configurations of the tar-
get channel, along with the malicious data for different conflicts.
Since each sensor spoofing attack goal listed in Table 1 is aligned
with at least one of our proposed five spatio-temporal conflicts, our
evaluation of PhyScout’s detection on sensor spoofing attacks is
conducted from these five distinct conflicts. This approach allows us
to more thoroughly evaluate PhyScout’s effectiveness. PhyScout is
capable of identifying even new types of attacks, as long as they vi-
olate spatio-temporal consistency. The malicious data, propagated
by the malicious node, is dispatched to every subscribed channel
associated with each reader. For each spatial-temporal conflict, we
implement a case attack goal to evaluate our defensive methods.
Threshold Selection. Within the PhyScout, heuristic thresholds
can be classified into two primary groups: (1) thresholds for extract-
ing feature points and generating map points, and (2) thresholds
for detecting sensor spoofing attacks. For the first group, our mod-
ule mechanism leverages the well-established SLAM framework
technology [7, 11, 46]. The thresholds adopted are influenced by
these frameworks, which have demonstrated real-world robustness.
So they are well-studied and reliable. For the second group, our
thresholds were determined through extensive experiments. Each
attack was tested in five unique scenarios with different keypoint
distributions. Both normal and attacked scenarios were repeated
five times to observe error variations. The significant difference
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Figure 7: Global space tearing attack.
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Figure 8: Global space shifting attack.

Victim Vehicle
Move Straight

Frame 50

Spoofed Obstacles
Stop

20 40 60 80 100
0.0
0.5
1.0

15
30
45
60
75
90

105 Obstacle Detected error

Frame

Frame 50
Attack Launch

Error 
Threshold: 10

Figure 9: Obstacle appearing attack.

between the maximum threshold in normal conditions and the min-
imum in attacked scenarios led us to empirically choose the current
thresholds, ensuring coverage of all attack scenarios.

7.2 Attack Detection
Global Space Tearing. To implement the target position altering
attack, we experimentally adjusted the coordinate parameters of
an AV within a global coordinate system, generating the illusion
of the AV’s teleportation to a distinct location. As illustrated in
Figure 7, starting from the 100th frame, the AV’s 𝑥-coordinate shifts
from its initial value to 1 (highlighted in red) over a span of ten
frames, preserving the𝑦, 𝑧 coordinates and the direction unchanged.
Post-attack, the original 𝑥-coordinate is reinstated.

As derived from the bottom-right figure, we notice that the 𝑥-
coordinate’s decrease from 60 to 1 (black circles) at the 100th frame
correlates with a surge in pose deviation (red triangles) from 4 to
60. This exceeds the predefined threshold of 20 (dashed blue line).
Given our pose deviation calculation maintains a 10-frame win-
dow, an anomaly spanning 20 frames is detected. It is noteworthy
that the optimization error (green squares) remains within normal
bounds during the attack, since the spatial continuity of the physi-
cal environment observed by the AV is retained. The bottom-left
image provides a representation of the 2D map point projection’s
location (purple squares) at the 100th frame, which closely aligns
with the currently observed 2D keypoint (green squares).
Global Space Shifting. To implement the target position devi-
ating attack, we applied an incremental offset (+0.2) to the AV’s
𝑦-coordinate on a frame-by-frame basis after 100th frames, while
keeping the 𝑥 and 𝑧 coordinates unaltered. As depicted in Figure 8,
due to the miscalculation of its position, the AV erroneously pre-
sumes it has deviated from its lane, causing a right turn to regain
the supposed lane (red dotted line). Consequently, the AV, while in
the correct position, collides with a roadside obstacle. Post-attack,
the original 𝑦-coordinate is restored at frame 110.

The bottom-right image reveals that as the 𝑦-coordinate (black
circles) gradually ascends from -3 to -1 at frame 100, the optimiza-
tion error (green triangles) experiences a substantial surge to 132.
This discrepancy arises due to the mismatch between the space
under the AV’s estimated pose and the observed space under the
ground truth pose. Notably, as this value significantly surpasses
our predefined threshold of 40, the attack can be readily detected.
Further, the lower-left figure highlights an apparent offset error at
frame 110 between the projected 2D map point (purple squares)
and the contemporaneously observed 2D keypoint (green squares).
Obstacle Appearing. To implement the obstacle appearing attack,
we inject malicious data (x, y, z) to the obstacle-related topic, caus-
ing the misestimation of the obstacle-sensitive fusion node, termed

v2x_fusion. Our methodology involves the generation of a specified
bounding box, strategically placed in the front of the targeted vehi-
cle, to simulate a nonexistent obstacle. As Figure 9 shows, the victim
vehicle will suddenly decelerate and engage braking mechanisms to
avoid collision with the phantom obstacle. We use a blue square to
represent our malicious bounding box. Within this box, the purple
and green squares are the reprojected 2D extracted keypoints and
matched 2D original keypoints base on reprojected keypoints.

The lower right section of Figure 9 presents a fluctuation analysis
of the error between reprojected 2D keypoints and their correspond-
ing 2D keypoints as extracted from a continuous sequence of 100
frames. Notably, the obstacle appearing attack was launched at the
50th frame, leading to the abrupt detection of a phantom obsta-
cle by the victim vehicle (as indicated by the value of the black
line equaling 1), despite its nonexistence evident from the 50th
frame’s simulator snapshot. This misleading detection results from
the incorporation of inaccurately estimated bounding box distances
into the keypoints extracted from distant curbs, thereby leading to
erroneous mapping during the matching process, and causing the
creation of an obvious discrepancy between the matched keypoints
and their original counterparts. Consequently, the error value wit-
nesses an exponential surge at the 50th frame, surpassing the pre-set
threshold of 10 for obstacle attacks. This obvious increment allows
for the effortless detection of the attack.
Obstacle Hiding. To implement the obstacle hiding attack, we
inject malicious data (999, 999, z) to the obstacle-related topic. Our
attack aim to replace the target vehicle in front to another position,
the bounding box that should have been detected from the target
will be disappeared. As Figure 10 shows, the bounding box depicted
as a blue box is not estimated from the target, but the predicted
box to extract keypoints for the attack detection. The purple and
green squares inside the boxes denote the reprojected 2D extracted
keypoints and the 2D original keypoints matched against these
reprojected keypoints. Building on this, the victim vehicle will
erroneously presume the absence of forward obstacles, resulting in
a collision with the vehicle ahead, as opposed to a preventive stop.

Similar to the obstacle appearance attack, we record the variation
of the error value fluctuations over a sequence of 100 continuous
frames. The obstacle hiding attack is launched at 50th frame, as
depicted in the lower right segment of Figure 10, leading to the
victim vehicle’s sudden inability to detect obstacles (as indicated by
the black line transitioning from 1 to 0). By predicting the missing
bounding box, the corresponding keypoints can be still extracted
from the obstacle. Then the keypoints of two consecutive frames
are used to generate the 3D local map points through triangulation.
These local map points are subsequently projected into 2D coordi-
nates to form matching pairs with the current keypoints. Due to
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Figure 13: An example of altering keypoints attacks.

spatial continuity, the error in these matched pairs should be negli-
gible. As the figure indicates, this error value remains significantly
below the pre-set threshold of 10. Thus, the attack can be readily
identified in the absence of obstacles.
Target Semantic Confusion. To implement the object misclassifi-
cation attack, we manipulating the output of object classification
by YOLOv4 to mislead the output of object classification. Figure
11 provides an illustration where an obstacle vehicle is positioned
ahead of the victim vehicle. Under normal circumstances, the victim
vehicle should decelerate and stop while recognizing the forward
vehicle. However, after maliciously altering the object’s class from
a car to a bird, the victim vehicle would continue to drive forward
since it does not recognize a flying bird as an obstacle, finally lead-
ing to a collision. Since Apollo 7 lacks an integrated YOLO system
incapable of identifying types of non-obstacle objects, we have
externally incorporated a third-party YOLOv4 [3] for enhanced de-
tection capabilities. This scenario is very similar to a past accident
involving a Tesla Model S, which falsely identified a white truck as
the sky [1]. Figure 11 further details this event at the 50th frame
where the vehicle is erroneously classified as a bird, as denoted by
a red bounding box. The purple and green squares inside the boxes
denote the reprojected 2D extracted keypoints and the 2D original
keypoints matched against these projected keypoints, respectively.

We collected error data from total 100 successive frames preced-
ing and following the attack, similar with the experiment conducted
in the obstacle hiding attack. As depicted in Figure 11, the errors
(marked by green squares) between the projected 3D map points
and corresponding extracted 2D feature points of the victim vehicle
are so small, considerably below our established detection threshold
of 10. This can be attributed to the fact that despite the forward
vehicle being misclassified as a bird, its inherent spatio-temporal
consistency remains unaffected. Therefore, this characteristic can
be leveraged to detect such attacks.

7.3 Adaptive Attacks Analysis
Altering Keypoints at the Frame Level. One possible adaptive
attack is to directly alter or obscure the positions of extracted key-
points in a current frame, leading to anomalies in PhyScout’s error
values. Such a strategy must consider real-world constraints like

the number and size of the patches. Therefore, the attacker must
consider the density of keypoints in the current frame. High density
means that keypoints are concentrated, and most keypoints can be
manipulated with a small patch. However, as Figure 7-11 show, the
keypoints are low in density and scattered everywhere. Thus, we
can conclude that the attacker needs to use a large number of patches
simultaneously to modify the information in the image, which clearly
goes against the principle of stealthiness in sensor spoofing attacks.

To validate our findings, we conducted a controlled experiment
by manipulating the positions of extracted keypoints in a selected
frame from the KITTI dataset, depicting a scene at a traffic light.
In such a scenario, launching an adaptive attack is relatively eas-
ier due to the static nature of both the keypoints and map points,
as the vehicle remains stationary. To maintain data consistency
across the experiment, we initially preserved all data involved in
the optimization process for 10 consecutive frames, which included
extracted feature points, map points, and relevant parameters. Our
objective was to determine the number of keypoint alterations nec-
essary to induce false positives. Thus, we incrementally increased
the number of adjusted keypoints, each shifted by 15 pixels, en-
suring their eligibility as matching pairs. Preference was given to
highly dense keypoints, specifically those with the most neighbor-
ing points within a 15-pixel radius around each target keypoint.

Figure 13 illustrates the minimum number of alterations needed
to successfully execute such an attack. Normal map points and
matching keypoints are represented by green and yellow, while the
targeted victim map points and keypoints that require displacement
are marked in purple and red. Our results indicate that a significant
alteration exceeding 62% of the keypoints is required to impact the
computed error, leading to pose inaccuracies.
Attacking the Non-Convex Optimization Process. Another
possible adaptive attack is to deceive PhyScout by manipulating
perturbations using the internal gradient flow of the system. Since
PhyScout relies on a non-convex function to determine mismatch-
ing errors, attackers could strategically choose positions of opti-
mized patches within a frame to disrupt the spatio-temporal con-
sistency by increasing the non-convex function’s value.

To assess the feasibility of such an attack, we employed an
optimization-based method to craft patches. For each adversar-
ial patch, we randomly selected a position before the optimization
process and repeated the whole procedure to obtain the impacts
of the various patch positions in our following experiments. We
chose the Adam optimizer [30] to optimize our patch, with a learn-
ing rate of 0.01 and 2,000 optimization steps. The objective during
patch optimization is to increase the mean total error of each match-
ing pair. To address non-differentiable operations, we referred to
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(a) An attack case with 32x32 patch (b) An attack case with 64x64 patch (c) An attack case with 96x96 patch

Figure 14: An example of adversarial attack.

Table 4: The results of adversarial attacks.
Patch Size (pixels) Mean Error Max Error Min Error Variance

32x32 3.47 4.03 2.71 0.20
64x64 3.40 4.05 2.71 0.22
96x96 4.69 4.51 2.77 0.43

Table 5: Latency (ms) of each module and end-to-end system.
Module GST GSS OA OH OM
Feature Extraction 70.1 (93%) 66.8 (92%) 50.1 (90%) 53.9 (93%) 52.4 (93%)
Match Pair Searching 0.6 (0.8%) 0.4 (0.6%) 0.5 (0.9%) 0.6 (1.0%) 0.6 (1.1%)
Offset Computation 1.1 (1.5%) 1.3 (1.8%) 0.8 (1.4%) 0.9 (1.5%) 0.8 (1.4%)
Map Points Generation 78.2 89.1 60.2 65.3 66.1
End-to-End 75.3 72.1 55.4 58.2 56.5

Table 6: Decision latency (ms) of Apollo ADAS and PhyScout
pipeline based on incorrect perception states.

ADAS ModuleScenario PhySctout
Detection Prediction Planning Control Total

Apollo - 104 94 10 208
PhyScout 75 - - 10 85

Benign Adv-30°

Adv-45°Adv-0°UGV

Target

Figure 15: The setup of real-world evaluation.

BPDA [5] to transform them into mask-generation processes, i.e.,
we made these operations give masks to obtain the original re-
sults. This allows us to obtain the same results, which are based on
non-differentiable operations, by directly applying masks to inputs.
Thus, we can approximate the gradients for the patches effectively.

Figure 14 displays three types of adversarial patches generated
from the 100th frame in the KITTI dataset. For each patch size,
we conducted 10 runs at random positions to calculate the mean,
maximum, minimum, and variance of the error, with the results
presented in Table 4. We observed that almost all adversarial at-
tacks appeared to have negligible impact on the generated error.
This outcome can likely be attributed to two factors. Firstly, the
uniform distribution of map points across the frame makes it chal-
lenging for a small-area patch to influence multiple matching pairs
significantly. Secondly, even within the same dataset, the distribu-
tion of map points generated by each run of PhyScout may vary
slightly. This variation means that such an adversarial attack has
poor transferability across different map points distribution.

Table 7: Real-world evaluation results.
Scenario Attack Success Rate Latency (ms) False Positive Rate
Benign/0° NO N/A N/A 0%
Benign/30° NO N/A N/A 0%
Benign/45° NO N/A N/A 0%
Adversarial/0° Yes 100% 76 N/A
Adversarial/30° Yes 100% 81 N/A
Adversarial/45° Yes 100% 80 N/A

7.4 Performance Overhead
We evaluate PhyScout’s performance overhead from two perspec-
tives: (1) detection latency; (2) CPU and memory utilization.
Detection Latency Analysis. Table 5 presents the latency of the
four main modules and the overall end-to-end latency in PhyScout.
The percentages in this table indicate the latency of each keymodule
relative to the end-to-end detection. Note that as mentioned in
Section 6, the detector and mapper operate in separate working
threads in parallel, and the map points generation module is off the
real-time detection pipeline. The feature extraction and map points
generation modules take longer time than the other two modules.

Based on the results, we obtain two conclusions. First, as a passive
detection approach, PhyScout operates independently of the ADAS
system. In normal scenarios without attacks, it does not affect
the perception-planning-control pipeline of the baseline system,
or introduce any extra latency. Second, in adversarial scenarios
involving sensor spoofing attacks, PhyScout is able to promptly
detect the attacks with a latency of <100ms (End-to-End Latency
in Table 5). Such short detection latency allows the ADAS system
to timely intervene the decision-making process, and prevent the
control module from executing a malicious action caused by the
attacks. This is evidenced by Table 6, with the example of Apollo:
after the attack compromises the sensor data, it takes a total of
208ms to propagate to the final control module for making incorrect
actions. Meanwhile, PhyScout only requires 75ms to detect the
sensor data anomaly and then inform the control module to ignore
the incoming malicious action (Figure 5). This shows PhyScout can
effectively mitigate the sensor spoofing risks in real time.
CPU and Memory Utilization Analysis. Figure 12 depicts data
collected at 1s intervals on the CPU and memory utilization over a
100s timeframe. The experiment consists of three phases: initial-
ization of Apollo and PhyScout (0-9s), forward movement (10-65s),
and stops at a traffic intersection (66-100s). We can observe that the
CPU overhead is small during both the init and stop phases. The
low overhead during init can be attributed to the absence of attack
detection processes, while the latter is due to the reduction of new
keyframes, thereby eliminating the resource demand for map point
generation. The CPU overhead in the forward movement phase also
remains significantly low (∼8%). Meanwhile, memory utilization
remained constant at a 2%. This overhead can be almost negligi-
ble compared with other defense frameworks with deep learning
models.
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7.5 Real-world Case Study
Setup Up. A typical case study of obstacle hiding experiment with
an Unmanned Ground Vehicle (UGV) was conducted (Figure 15).
The UGV is equipped with an Intel RealSense D435i front-facing
camera, capturing 1080p images at 30fps, as well as a Bosch BMI055
6-axis IMU integrated on an onboard chip. Our experimental setup
employs both benign and adversarial stop signs to implement an ob-
stacle hiding attack [38], which are color-printed and strategically
positioned on a scaled-down, straight roadway delineated by col-
ored tape. The UGV is consistently positioned at an initial distance
of 5m from the target sign and instructed to proceed in a straight
path. To ensure safety within the confines of the indoor setting, the
initial velocity is regulated at 1m/s at the commencement of each
trial. We replicate this experimental procedure for twenty trials,
each comprising three benign and three adversarial signs, angled
diversely for each run.
Result. Table 7 presents our findings obtained in a real-world
setting. Notably, the benign stop sign does not initiate the Attack
signal in any observed instances. In contrast, all adversarial patches,
irrespective of their angular orientations, achieve a 100% detection
rate with a latency within 1s across all 10 trials. Further, PhyScout
demonstrates a zero false positive rate in benign scenarios, attribut-
able to the continual maintenance of spatio-temporal consistency.
This experiment substantiates the occurrence of previously hypoth-
esized spatio-temporal consistency conflicts.

8 CONCLUSION
This paper presents PhyScout, an innovative defense framework
that mitigates the impacts of sensor spoofing attacks on AVs. By
inspiring from the human observers, PhyScout introduces a novel
approach to detecting these attacks via spatio-temporal consistency.
Through the generalization of conflicts within sensor spoofing at-
tacks and the formalization of these conflicts into a least squares
problem. Our approach, utilizing image-based feature point extrac-
tion and matching to design risk identification methods, has been
thoroughly tested in various environments. In comparison with ex-
isting frameworks, PhyScout significantly outperforms in terms of
detection delay, performance overhead, and conflict visualization.
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