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Abstract
While deep learning models have shown significant perfor-
mance across various domains, their deployment needs ex-
tensive resources and advanced computing infrastructure. As
a solution, Machine Learning as a Service (MLaaS) has
emerged, lowering the barriers for users to release or pro-
ductize their deep learning models. However, previous stud-
ies have highlighted potential privacy and security concerns
associated with MLaaS, and one primary threat is model ex-
traction attacks. To address this, there are many defense solu-
tions but they suffer from unrealistic assumptions and gener-
alization issues, making them less practical for reliable pro-
tection. Driven by these limitations, we introduce a novel
defense mechanism, SAME, based on the concept of sample
reconstruction. This strategy imposes minimal prerequisites
on the defender’s capabilities, eliminating the need for auxil-
iary Out-of-Distribution (OOD) datasets, user query history,
white-box model access, and additional intervention during
model training. It is compatible with existing active defense
methods. Our extensive experiments corroborate the superior
efficacy of SAME over state-of-the-art solutions. Our code is
available at https://github.com/xythink/SAME.

Introduction
Deep learning models have demonstrated superior perfor-
mance in various domains. Yet, they often demand signifi-
cant resources, including vast training data, advanced com-
putational capabilities, and rigorous parameter optimization
efforts. These requirements make deep learning models in-
valuable and expensive for adoption. Consequently, Ma-
chine Learning as a Service (MLaaS) has garnered signif-
icant interest, offering users a simplified and cost-efficient
avenue to deploy sophisticated models.

Despite these advantages, a significant body of research
has also revealed the privacy and security risks of models de-
ployed with MLaaS (Tramèr et al. 2016; Shokri et al. 2017;
Liu et al. 2021; Yang et al. 2023; Lou et al. 2021). Among
these, model-extraction attacks (Yu et al. 2020; Pal et al.
2020; Zhao et al. 2023; Chen et al. 2021; Li et al. 2022)
represent a prominent threat, posing a direct risk to the in-
tellectual property rights of the model owner. The objective
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Figure 1: Distributions of anomaly scores for the classifier-
based detection (left) and our sample reconstruction-based
detection (right). The x-axis is in the logarithmic scale due
to its long-tailed distribution. We utilize MNIST as normal
query samples and employ KnockoffNets (with EMNIST-
digits as the proxy set) to generate the malicious query sam-
ples. All samples undergo consistent preprocessing.

of model-extraction attacks is to locally recreate the target
model at a minimal cost, leveraging limited queries to the
openly deployed victim model. To achieve this goal, ear-
lier works have proposed different strategies to generate the
query samples for efficient model stealing, including surro-
gate sample (Pal et al. 2020; Orekondy, Schiele, and Fritz
2019), adversarial sample (Yu et al. 2020; Papernot et al.
2017), and synthetic sample (Barbalau et al. 2020; Truong
et al. 2021; Kariyappa, Prakash, and Qureshi 2021). These
attacks exhibit high effectiveness and efficiency across dif-
ferent threat environments, deep learning models, and tasks.

Many efforts have been made to mitigate model extrac-
tion attacks (Jiang et al. 2023). Among them, malicious sam-
ple detection is the mainstream strategy. The model owner
aims to distinguish the query samples used for model ex-
traction from normal ones, and then reject them or return
obfuscated responses. However, the advance and diversity
of attack approaches pose several challenges in designing an
effective detector. First, some defenses, such as Prada (Juuti
et al. 2019), require keeping a record of each user’s queries
for anomaly detection. They become vulnerable when the
adversary launches a distributed attack (Yao et al. 2023).
Second, some approaches build machine learning classi-
fiers to differentiate malicious and normal samples based on
their features or predicted confidence scores (Kariyappa and
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Qureshi 2020). They are less effective in handling out-of-
distribution (OOD) samples, even if the Outlier Exposure
(OE) strategy (Hendrycks, Mazeika, and Dietterich 2018) is
adopted. As shown in Figure 1 (left), the malicious samples
have a large overlap with normal ones, indicating that lots of
samples will be misclassified. Third, some methods lever-
age Ensemble of Diverse Models (EDM) to detect malicious
samples. They necessitate training several duplicates of the
victim model using both in-distribution and auxiliary OOD
samples, which significantly amplifies the defense costs.

To address these challenges, we propose a novel detection
method: Sample reconstruction Against Model Extraction
(SAME). Our observation is that in-distribution and out-of-
distribution samples exhibit significantly different features
in the reconstruction process, as shown in Figure 1 (right).
This inspires us to leverage sample reconstruction to detect
malicious queries. Specifically, SAME adopts the Masked
Auto-encoder (He et al. 2022) to reconstruct each query
sample. It further builds an Auxiliary Model to repair the
prediction of the reconstructed sample. Finally, it judges sus-
picious queries by combining two sources of information:
reconstruction loss from the Masked Auto-encoder and de-
viation loss from the Auxiliary Model. Compared to exist-
ing works, SAME imposes minimal prerequisites on the de-
fender’s capabilities: (1) it eliminates the need for an auxil-
iary OOD training dataset; (2) it avoids retaining the user’s
query history; (3) it removes the demand for white-box ac-
cess to the victim model. We conduct extensive experiments
to demonstrate the superiority of SAME in detecting different
types of model extraction attacks over SOTA methods.

In summary, the main contribution of this paper includes
three aspects:

• We reveal the inherent weaknesses of classifier-based
detection mechanisms, especially when confronted with
unseen malicious queries in model extraction scenarios.

• We introduce SAME, a novel malicious query detection
method rooted in sample reconstruction, significantly re-
ducing the demands on defenders and acting as a versatile
add-on to bolster current active defense strategies.

• We demonstrate the effectiveness of SAME under multi-
ple attack types through extensive experiments.

Preliminaries
In this section, we first introduce model extraction attack
(MEA) and the corresponding detection methods. Then, the
threat model is provided in detail.

Model Extraction Attack
Given a victim model FV (typically considered a black-
box), the objective of a Model Extraction Attack (MEA) is
to derive a functionally equivalent substitute model FS for
illegal purposes (e.g., intellectual property violation). This
could be formulated as minimizing the similarity loss on the
victim model test set Dtest

V :

min
FS

∑
x∈Dtest

V

L(FV (x), FS(x)), (1)

where x denotes the samples and L is a loss function mea-
suring the discrepancy between the outputs of FV and FS .

The performance of the substitute model is highly affected
by the query samples submitted by the attacker (Orekondy,
Schiele, and Fritz 2019). Past works have proposed different
methodologies to construct query samples to improve ex-
traction accuracy and efficiency. They can be classified into
the following three categories.
Sampling-based Stealing. This type of attack aims to con-
struct a query dataset from a proxy dataset (often composed
of public datasets) using a sampling strategy. Since differ-
ent samples can provide different amounts of information
to the substitute model, an appropriate sampling strategy
can improve the attack performance. Knockoff (Orekondy,
Schiele, and Fritz 2019) likens the sampling strategy to a
multi-armed bandit problem in reinforcement learning. It ad-
justs the sampling strategy for the next step according to
the reward from the previous actions. In addition, a series
of works (Pal et al. 2020; Chandrasekaran et al. 2020) use
active learning to improve the stealing efficiency.
Perturbation-based Stealing. It was pointed out that sam-
ples lying approximately on the decision boundary of the
victim model can greatly reduce the query cost (Yu et al.
2020; Wang et al. 2021). Therefore some works introduce
the perturbation-based strategy to generate query samples
distributed near the decision boundary. As a representative,
JBDA (Papernot et al. 2017) proposes perturbation based on
the Jacobian matrix on a small number of original victim
training samples. CloudLeak (Yu et al. 2020) uses a vari-
ety of adversarial perturbation methods to generate samples
that approximate the model’s decision boundary. Extensive
experiments demonstrate the benefit of these perturbation
strategies in boosting the stealing performance.
Synthetic-based Stealing. In most scenarios, the adversary
does not have any dataset for model extraction. He can only
generate noise samples for stealing (Truong et al. 2021).
The mainstream strategy is to use the gradient approxima-
tion method (Truong et al. 2021; Kariyappa, Prakash, and
Qureshi 2021) to generate query samples, which can obtain
more information regarding the victim model.

Model Extraction Attack Detection
A popular defense direction is to detect the malicious query
samples used for model extraction. This can be formulated
as a binary classification problem. For each query, the model
owner determines whether the sample is from OOD or not
by calculating an anomaly score S(x), and comparing it with
a threshold λ. A higher S(x) indicates a greater possibility
that this sample x is from OOD. It is important to minimize
the misclassification of samples from ID (normal queries).

There are different strategies for building such an
anomaly detector. One possible direction is to detect the ex-
traction activity at the user level. For instance, Prada (Juuti
et al. 2019) keeps query logs for all users to spot poten-
tial suspicious activities. However, as pointed out by some
works (Yao et al. 2023), user-level detection based on the
query history cannot mitigate distributed attacks, where the
adversary employs multiple accounts to query the victim
model. Hence, a more promising direction is sample-level
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defense (Kariyappa and Qureshi 2020; Kariyappa, Prakash,
and Qureshi 2020; Dziedzic et al. 2021), which performs
detection on each sample. Existing solutions can be mainly
divided into the following two types:
Outlier Exposure (OE). In practical settings, it is implau-
sible for the model owner to have prior knowledge of the
malicious query set DA. Therefore, some works (Kariyappa
and Qureshi 2020) introduce an auxiliary outlier set DOE ,
which is disjoint from DA, to assist in learning a classifier
for potential outliers. By exposing DOE to FV during train-
ing, OE makes FV produce uniform probability distribution
U on outliers. The optimization equation is:

Ex∼DV
[L(FV (x), y)] + γEx′∼DOE

[LOE(FV (x
′),U)] ,

(2)
where L is the original learning objective, and LOE is the
outlier exposure loss.

However, OE needs to incorporate an auxiliary dataset
into the training process of the victim model, which will
introduce additional training overhead. Furthermore, addi-
tional learning objectives can degrade the accuracy of the
model on the original task (see Table 3).
Ensemble of Diverse Models (EDM). EDM utilizes an en-
semble of diverse models {fi}i=N

i=1 to produce discontinuous
predictions for OOD data (Kariyappa, Prakash, and Qureshi
2020). Similar to OE, EDM also leverages an auxiliary out-
lier set DOE to defend against model stealing. Specifically,
{fi}i=N

i=1 are trained jointly on Dtrain
V and DOE according

to the accuracy and diversity objectives:

L = Ex∼DV ,x′∼DOE

[
(
1

N

N∑
i=1

L(fi(x), y)) + γLDiv(fi(x
′))

]
,

(3)
where the first loss term ensures the model utility on DV ,
and the second term ensures the diversity of predictions for a
single outlier sample form DOE across multiple submodels.
Since this method has no explicit anomaly score, we com-
pute the score based on the consensus among these diverse
models, and it is smaller when models agree. This idea is
also used in previous work (Dziedzic et al. 2021).

We shall point out that the effectiveness of detection based
on auxiliary OOD datasets largely depends on the similarity
between the distributions of auxiliary datasets and real ma-
licious queries. The detector will perform poorly when such
a distribution gap is large.

Threat Model
Attacker’s Ability and Goal. As mentioned above, the goal
of the attacker is to obtain his substitute model FS , which is
functionally similar to the victim model FV . To achieve it,
we assume that the attacker can leverage any MEA strate-
gies. In this paper, we adopt three popular MEAs for imple-
mentation, namely, KnockoffNets (Knockoff) (Orekondy,
Schiele, and Fritz 2019), Jacobian-Based Dataset Augmen-
tation (JBDA) (Papernot et al. 2017), and Data-Free Model
Extraction (DFME) (Truong et al. 2021). Additionally, mali-
cious queries submitted by attackers may vary in proportion
to the overall queries (see Table 4).
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Figure 2: Distributions of anomaly scores for the
reconstruction-based detection without (left) and with
(right) Auxiliary Model (AM). The x-axis is in the loga-
rithmic scale due to its long-tailed distribution. We utilize
CIFAR-10 as normal query samples and employ JBDA (with
200 seed samples) to generate the malicious query samples.
All samples undergo consistent preprocessing.

Defender’s Ability and Goal. In this paper, we mainly
focus on defending MEA by detection methods. In other
words, the defender shall detect the malicious query fed
by the attacker. Contrary to existing MEA detection meth-
ods (Kariyappa and Qureshi 2020; Kariyappa, Prakash, and
Qureshi 2020), we consider a more practical scenario as fol-
lows: 1) the defender does not need auxiliary OOD datasets
or users’ query history, and he cannot interfere with the vic-
tim model training process; 2) more importantly, the de-
fender is unaware of the distribution of malicious queries
under different attack strategies, namely, the defense is ex-
pected to be general over different types of model extraction.

In a nutshell, the ability of the defender is more limited,
inducing greater challenges for our MEA detection.

Motivation
The design of SAME is motivated by two observations.

First, sample reconstruction can better disclose
anomaly than sample classification. Existing detection
methods build DNN classifiers to detect suspicious samples.
However, numerous studies have shown that even with the
Outlier Exposure (OE) strategy, OOD detection can exhibit
over-confidence in unseen OOD samples (Nguyen, Yosin-
ski, and Clune 2015; Li et al. 2023). As depicted in Figure
1 (left), the introduction of the OE strategy cannot effec-
tively differentiate the majority of malicious queries from
benign ones. Instead of directly building the detection clas-
sifier, our key insight is to reconstruct the query samples and
identify the anomalies from the reconstruction process. This
is based on the observation that the reconstruction loss is a
better indicator of malicious samples than classifier-based
confidence scores in the model extraction scenario. For the
first time, we introduce the idea of autoencoder-based sam-
ple reconstruction for model extraction attack detection.

Second, an auxiliary model can better facilitate the
OOD detection. We find that sample reconstruction is ef-
fective for sample-based stealing and synthetic-based steal-
ing, but not perturbation-based stealing, wherein the attacker
has a small number of original datasets, and the whole query
set is perturbed on these seed samples. In other words, the
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Figure 3: The workflow of the proposed SAME. Whenever a sample is received, a fully trained masked auto-encoder first per-
forms sample reconstruction. The reconstructed sample is then fed into an auxiliary model that outputs an auxiliary prediction.
The overall anomaly score is calculated based on two samples and two predictions. After that, an appropriate response strategy
is selected according to the anomaly score. The victim model remains frozen throughout the defense.

reconstruction loss for perturbation-based queries is similar
to the one for benign queries, as shown in Figure 2 (left).
To address it, we further introduce an auxiliary model to
distinguish such perturbation-based queries. Specifically, we
adopt a copy of the original victim model as the architecture
of the auxiliary model but train it on a reconstructed ver-
sion (using MAE) of the original dataset. In this way, for
perturbation-based queries, we will obtain different predic-
tions from the victim model and the auxiliary model. But
for the other queries, the predictions tend to be consistent.
Based on this, we can easily detect malicious queries by
perturbation-based stealing, as shown in Figure 2 (right).

Methodology
Based on the above analysis, we introduce SAME, a novel
model extraction attack detection methodology. It uses a
sample reconstruction strategy based on Masked Auto-
encoder to disclose the malicious behaviors of query sam-
ples. It further integrates an Auxiliary Model to repair the
model prediction and reinforce the detection results. Com-
pared to prior works, SAME can minimize the requirements
for the defender’s capabilities: i.e., he does not need extra
datasets or white-box access to the victim model. Figure 3
shows the overview of SAME, which consists of three stages:
(1) Sample Reconstruction via Masked Auto-encoder; (2)
Attack Repairing via Auxiliary Model; (3) Anomaly Score
Calculation. We will explain each stage in the following part.

Sample Reconstruction via Masked Auto-encoder
The first stage of our detection pipeline is reconstructing the
query sample with an auto-encoder. Auto-encoders, as un-
supervised neural network architectures, are primarily em-
ployed for dimensionality reduction and feature learning.
Despite their effectiveness in many scenarios, traditional
auto-encoders might not always capture the most salient fea-
tures, especially when dealing with noisy datasets. To ad-
dress this issue, we employ a masked autoencoder (MAE)
for sample reconstruction. A masked autoencoder introduces

an additional masking operation during the encoding phase.
Before feeding the input data to the encoder, a mask is ap-
plied, forcing the encoder to focus only on specific portions
of the data. The mask essentially provides a form of induc-
tive bias, directing the model to concentrate on potentially
informative segments of the input.

In SAME, the masked autoencoder M consists of an en-
coder fθ : Rn → Rm and a decoder gϕ : Rm → Rn,
parameterized as θ and ϕ respectively. Let x ∈ DV be a
sample in the victim training set DV , and b ∈ {0, 1}n be
the mask matrix that is sampled following a probability dis-
tribution. During the training process, each sample x will
be masked and then passed to the encoder to get the latent
variable z = fθ(b ⊙ x). Afterward, the latent variable will
be passed to the decoder gϕ to get the reconstructed sample
x̂ = M(x) = (gϕ ◦fθ)(b⊙x). The objective function of M
is to compute the following MSE loss between the original
input x and reconstructed sample x̂:

LMAE =
1

|DV |
∑

x∈DV

∥x− x̂∥2, (4)

where the loss is minimized when the model is fully trained
on the victim dataset. Afterward, M is used for score calcu-
lation and attack repair in the subsequent steps.

Attack Repair via Auxiliary Model

We denote the Auxiliary Model as Faux, to repair and re-
inforce the anomaly detection. Given our original dataset
DV , the masked autoencoder M processes each sample to
produce a reconstructed dataset D̂V , where every sample
x̂i ∈ D̂V corresponds to a sample xi ∈ DV . We then train
Faux using the reconstructed samples X̂ , paired with their
respective original labels Y = {y1, y2, ..., yN}. The goal
here is to ensure that the predictions of Faux on D̂V align as
closely as possible with the predictions of the original vic-
tim model on DV . Thus, the objective function for training
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Faux can be defined as:

Laux =
1

N

N∑
i=1

∥FV (xi)− Faux(x̂i)∥2, (5)

where FV denotes the victim model, and the objective is to
minimize the squared difference between the predictions of
FV and Faux across all samples. By achieving this, we aim
to ensure that the Auxiliary Model is a faithful reflection of
the victim model’s behavior but operates in the transformed
space of the reconstructed dataset D̂V .

Anomaly Score Calculation
The primary goal of SAME is to output an anomaly score that
indicates the malicious level of the query sample. The score
consists of two parts: (1) the reconstruction loss from the
masked auto-encoder; (2) the deviation loss from the auxil-
iary model. The whole score could be calculated as follows:

S(x) = α · ∥x− x̂∥2+(1−α) · ∥FV (x)−Faux(x̂)∥2, (6)

where α is a hyperparameter to balance the two score items.
We perform ablation studies in the next section to evaluate
the impact of this hyperparameter.

Flexibility as an Add-on. After obtaining the anomaly
score, the defender can choose subsequent active defense
strategies to weaken the adversary’s performance. With-
out loss of generality, we implement two common defense
strategies: reject prediction and proof-of-work. The former
rejects responding to queries with high anomaly scores,
which can prevent the attacker from obtaining sensitive in-
formation. The latter requires users to complete a proof-of-
work (PoW) before they can get the prediction. And the dif-
ficulty of the PoW problem is tied to the anomaly scores.

Experiment
Experimental Settings
Datasets and Model Architectures. We evaluate our
scheme on two groups of datasets: 1) MNIST (LeCun et al.
1998) and EMNIST-digits (Cohen et al. 2017); 2) CIFAR-
10 and CIFAR-100 (Krizhevsky, Hinton et al. 2009). Specif-
ically, the victim model is trained on MNIST and CIFAR-
10, while EMNIST-digits and CIFAR-100 serve as datasets
for the attacker. Since the comparison scheme requires aux-
iliary anomaly datasets, we use KMNIST (Clanuwat et al.
2018) for MNIST and Tiny ImageNet (Le and Yang 2015)
for CIFAR-10. To evaluate the performance of the defense in
extreme cases, the attacker adopts the same model structure
for his substitute model as the victim model: Conv3 (three-
layer CNN) (LeCun et al. 1989) for MNIST and ResNet-18
for CIFAR-10. In all experiments, we use a MAE model
based on the ViT-Tiny encoder (Dosovitskiy et al. 2020),
trained for 500 epochs on the victim training set.

Attack Methods. We use three different attack methods:
(1) KnockoffNets (Knockoff): as a sampling-based attack,
it uses reinforcement learning to choose samples from the
proxy dataset. (2) Jacobian-Based Dataset Augmentation

(JBDA): this method uses a Jacobian-based data augmenta-
tion algorithm to generate new samples from seed samples.
We utilize a seed dataset comprising 200 images, with a per-
turbation step size λ set to 0.1. (3) Data-Free Model Extrac-
tion (DFME): this method belongs to the synthesis-based
category. The attacker does not need any proxy dataset,
which will lead to a decrease in attack performance.

Baseline Methods. We choose two SOTA defense solu-
tions as discussed above: (1) Outlier Exposure (OE); (2)
Ensemble-based defense (EDM). Both methods need the
model defender to collect an auxiliary malicious dataset.
Then the victim model is trained in an adversarial manner. In
contrast, our method does not require any auxiliary datasets,
which is a more practical assumption.

Metrics. To quantitatively evaluate the performance, we
adopt three metrics: Area Under the Receiver Operating
Characteristic curve (AUROC), Area Under the Precision-
Recall curve (AUPR), and the False Positive Rate at N%
true positive rate (FPRN). AUROC evaluates the overall per-
formance, while AUPR focuses on precision and recall par-
ticularly in imbalanced datasets. Besides, FPRN can better
measure the trade-off between sensitivity and specificity.

Comparisons with the Baseline Methods
Effectiveness. Across all attack methods and datasets,
SAME demonstrates generally superior performance com-
pared to the baseline methods OE and EDM, particularly in
AUROC and AUPR, as shown in Tables 1 and 2. In MNIST,
SAME consistently outperforms the baseline methods, espe-
cially against JBDA and Knockoff attacks. For the result un-
der the 1k query budget, SAME achieves an impressive AU-
ROC score of 93.30% and 99.37% for JBDA and Knockoff
respectively. Similarly, AUPR scores are significantly higher
for SAME, especially compared to OE and EDM. Increasing
the query budget to 4k does not lead to a substantial differ-
ence in the performance metrics for SAME, suggesting its
robustness irrespective of the attack cost.

The superiority of SAME is more pronounced on the CI-
FAR10 dataset, further emphasizing its strength. For in-
stance, with a 6k query budget under the Knockoff attack,
SAME achieves an AUROC of 92.53% which is significantly
higher than that of OE (77.38%) and EDM (71.72%). For the
DFME attack, the performance of SAME reaches a remark-
able 100.00% in AUROC and AUPR under the 6k query
budget, a feat unmatched by the other defenses. Interest-
ingly, for the 10k query budget, SAME still retains its lead,
especially against the Knockoff and DFME attacks.
SAME manages to achieve the lowest FPR95 for most at-

tacks and settings, which is essential for practical implemen-
tations. A low FPR ensures that normal queries are not mis-
takenly classified as malicious, which otherwise could inter-
rupt the normal service or degrade the users’ experience.

In summary, SAME demonstrates robustness and superior-
ity against various attacks across both datasets, highlighting
its potential as a reliable defense mechanism.

Fidelity and Efficiency. We also evaluate the impact of
different defense methods on the performance of the victim
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B Method DOE
JBDA Knockoff DFME

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

1k
OE KMNIST 58.70 56.28 84.60 91.78 92.59 43.60 100.00 100.00 0.00

EDM KMNIST 66.06 59.73 79.60 86.01 86.70 64.20 100.00 100.00 0.00
SAME - 93.30 92.95 27.40 99.37 99.47 1.30 100.00 100.00 0.00

4k
OE KMNIST 60.05 56.79 83.50 91.70 92.24 42.90 100.00 100.00 0.03

EDM KMNIST 71.37 65.42 74.65 85.04 85.63 67.11 99.99 99.99 0.00
SAME - 93.10 92.84 28.52 99.19 99.38 1.25 99.91 99.75 0.15

Table 1: AUROC (%), AUPR (%), and FPR95 (%) of different detection methods under three different attacks on MNIST.

B Method DOE
JBDA Knockoff DFME

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

6k
OE ImageNet-T 74.53 70.41 64.37 77.38 72.74 60.77 74.02 60.64 44.30

EDM ImageNet-T 73.59 69.50 71.35 71.72 67.63 72.52 80.35 73.55 49.72
SAME - 80.89 79.07 56.68 84.03 79.97 43.98 97.64 97.43 12.52

10k
OE ImageNet-T 73.68 69.53 63.14 77.82 72.96 59.96 76.17 62.99 43.28

EDM ImageNet-T 74.17 69.89 69.98 71.27 67.02 73.03 81.41 75.31 48.52
SAME - 80.66 78.77 58.18 83.84 79.71 44.13 98.21 97.96 8.02

Table 2: AUROC (%), AUPR (%), and FPR95 (%) of different detection methods under three different attacks on CIFAR-10.

Method Model Accuracy (%)↑ Training Time (s)↓
OE 80.83 1562.92

EDM 80.37 2014.80
SAME 83.28 170.44

Table 3: Accuracy and training time of the victim model un-
der OE, EDM, and SAME.

model, as shown in Table 3. It demonstrates the negative im-
pact of the OE and EDM strategies on the victim model in
accuracy degradation and long training time. Moreover, it is
observed that the implementation of a structure-sharing pol-
icy between the victim model and the auxiliary model can
decrease memory usage without harming victim model ac-
curacy. In summary, SAME is more suitable for malicious
query detection in the model-stealing scenario.

Flexibility as an Add-on. We test the performance of in-
tegrating SAME with two active defense methods: reject pre-
diction and proof-of-work. Among them, reject prediction
can be regarded as a special case of the perturbation-based
defense. We use two metrics to evaluate the defense perfor-
mance after splicing: the number of successful queries and
response time, for both normal and malicious queries. As
shown in Figure 4, when using SAME as a detection plug-
in, queries submitted by normal users are least negatively
affected, while malicious queries are largely disturbed, on
both metrics. This reflects the effectiveness and compatibil-
ity of SAME as a detection strategy.

Ablation Study
Effects of Different Components. To demonstrate the ef-
fectiveness of each stage in SAME, we evaluate the perfor-
mance of two variants of SAME: (1) SAME-X: only keeping
the loss term based on sample reconstruction; (2) SAME-Y:
only keeping the deviation loss item based on the Auxiliary
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Figure 4: Comparison of flexibility as an add-on.

Model. For fair comparisons, the masked autoencoders of
the three SAME versions share the same weight, respectively,
on MNIST and CIFAR-10. In addition, we adopt the same
training configuration as in the previous section unless other-
wise specified. As shown in Figure 5, on MNIST, SAME and
SAME-X achieve competitive performance. We guess this is
due to the simplicity of the dataset, which leads to the near-
perfect reconstruction performance of MAE. On CIFAR-10,
SAME also shows leading performance, while the other two
variants perform close to the same.

Effects of Malicious Ratio. We further consider the sce-
nario where the malicious and normal queries are unbal-
anced. We increase the ratio of malicious queries from 0.01
to 0.9 gradually, as shown in Table 4. For both MNIST and
CIFAR-10, SAME’s AUROC remains stable as the propor-
tion of malicious samples increases. The AUPR value in-
creases along with the malicious ratio for both datasets. This
trend underscores the model’s improved ability to identify
malicious queries as the prevalence increases in the dataset.

Effects of MAE Training Epochs. We evaluate the effect
of the MAE training epochs on the reconstruction perfor-
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Figure 5: Detection performance of SAME and its variants
on the MNIST and CIFAR-10 datasets.

Dataset Ratio AUROC↑ AUPR↑ FPR95↓ FPR90↓

MNIST

0.01 98.93 82.78 3.90 3.05
0.05 99.07 95.42 3.82 3.12
0.10 99.15 97.79 3.70 2.95
0.30 99.23 99.30 3.65 2.80
0.50 99.21 99.56 3.70 2.80
0.90 99.21 99.71 3.70 2.80

CIFAR-10

0.01 86.91 50.91 61.20 46.62
0.05 87.22 70.90 61.20 42.05
0.10 87.64 79.53 60.45 40.58
0.30 88.84 90.94 51.40 33.90
0.50 89.39 94.23 47.20 31.45
0.90 89.39 95.98 47.88 31.47

Table 4: The detection performance (%) of SAME under dif-
ferent proportions of malicious samples.

mance of clean and malicious samples, as shown in Fig-
ure 6. MAE was trained for 500 epochs on MNIST and
CIFAR10 datasets, with a 50-epoch warm-up. Post 100
epochs, the MAE’s reconstruction ability stabilized, show-
ing a distinct average loss for different sample types. With
increasing epochs, the reconstruction loss gap for Knockoff
and DFME attacks widened, attributed to MAE’s improv-
ing reconstruction of the original dataset but not the attacker
dataset (OOD). For JBDA attacks, involving minor data per-
turbations, MAE improved in reconstructing both clean and
malicious samples, underscoring the importance of Auxil-
iary Model deviation loss in the anomaly score function
(Equation 6).

Effects of the MAE Embedding Size. For MAE, its em-
bedding size represents the dimensionality of the condensed
representation obtained by the encoder. This size affects the
information transfer fidelity between the encoder and de-
coder, and thus the model’s reconstruction accuracy. In the
experiment, deviation loss from the Auxiliary Model is ex-
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Figure 6: The reconstruction loss of the MAE for differ-
ent categories of samples under different training epochs on
MNIST (first row) and CIFAR-10 (second row) datasets.
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Figure 7: Detection performance of SAME under different
MAE embedding sizes.

cluded to avoid interference. Results in Figure 7 show that
increased embedding size improves SAME’s detection per-
formance.

Conclusion

In this work, we propose a novel defense mechanism, SAME,
to detect model extraction attacks. Compared to SOTA solu-
tions, SAME does not require auxiliary datasets and demon-
strates superior performance. Through comprehensive eval-
uations over common datasets, SAME displays high robust-
ness against various extraction attacks under different query
budgets. Moreover, our ablation studies confirm the effec-
tiveness of each stage of our proposed solution, emphasiz-
ing the significance of the embedded representation in the
Masked Autoencoder and its impact on detection accuracy.
By integrating SAME with other active defenses, our end-
to-end system exhibits improved defense capabilities. SAME
enables maximum penalty for malicious queries while main-
taining usability for normal users. In the future, we aim to
explore other variants of SAME and further optimize it for
specific deployment scenarios. Additionally, studying its ap-
plicability across other types of machine learning models
will also be a valuable avenue for future research.
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