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Abstract—Deep Neural Networks (DNNs) are vulnerable to
backdoor attacks, which poison the training set to alter the
model prediction over samples with a specific trigger. While
existing efforts mainly focus on unimodal scenarios, modern
AI systems usually employ multiple modalities to improve
the model performance, making multimodal backdoor attacks
more practical but structurally more complex due to inherent
modality interactions, multiple attack surfaces, unbalanced
modality contributions, etc. These factors affect the effective-
ness of backdooring multimodal learning significantly but have
not been fully investigated yet.

To bridge this gap, we present the first data and computa-
tion efficient backdoor attacks towards multimodal learning.
Our solution consists of two innovations. First, we propose
a novel backdoor gradient-based score (BAGS), which can
accurately quantify the contribution of each data sample to the
backdoor learning at a very early training stage. Therefore,
it can greatly save time and computational resources for the
attacker. Second, we introduce a searching strategy with two
attack modes to efficiently determine the optimal poisoning
modalities and data samples.

Our methodology leads to the following research outcomes.
First, we comprehensively evaluate the proposed solution over
state-of-the-art multimodal tasks, models, datasets and settings,
to verify its effectiveness, efficiency and transferability. For
instance, we only need to poison 0.005% of training samples to
attack the Visual Question Answering task with the success rate
of >96%. For the Audio Video Speech Recognition task, we
poison 0.05% of samples to achieve the success rate of >93%.
Second, we disclose several interesting findings during our
experiments: (1) poisoning all modalities is not always better
than individual ones, sometimes even making the attack worse;
(2) modality competition and complementarity coexist in mul-
timodal learning backdoor attacks; (3) A dominant modality in
multimodal learning may not dominate the backdoor attacks.
We hope this work will spur future research in improving
the security of multimodal learning. Code is available at
https://github.com/multimodalbags/BAGS_Multimodal.

1. Introduction

Deep multimodal learning has been widely used in
various full-fledged artificial intelligence applications, such
as speech recognition [1], smart phones [2], self-driving

Figure 1: An example of backdooring the VQA task. Only
poisoning the text modality can successfully change the
prediction answer from ‘woman’ to ‘wallet’ (second row).
Poisoning both image and text without considering modality
interaction may result in a correct prediction (third row).

cars [3], and robotics [4]. Compared to unimodal learning,
multimodal learning can execute more advanced tasks by
acquiring multiple modalities. It can also provide more
comprehensive representations of data by leveraging com-
plementary information from multiple modalities, leading to
better performance on various tasks [5]–[7]. For example,
in speech recognition tasks, a model that only considers the
audio signal may struggle to accurately transcribe speech
in noisy environments. However, if the model also incor-
porates visual information, such as lip movements or facial
expressions, it can better disambiguate the speech signal and
improve its transcription accuracy [1].

While multimodality presents attractive applications, its
security in the backdoor setting is still largely unexplored.
Backdoor attacks intend to surreptitiously inject a hidden
threat into a victim model to gain control over its behavior.
The adversary embeds a backdoor into the victim model,
which remains dormant during the normal usage, but can
be activated by malicious samples with a specific trigger,
making the model predict wrong results.

Existing efforts mainly focus on unimodal backdoor
scenarios, such as image [8]–[14], audio [15], [16], and
text [17]–[20]. It is straightforward to graft these methods
to multimodal learning tasks for backdoor embedding and
activation. For instance, a line of attacks are demonstrated
on multimodal contrastive learning [21]–[23]. They are
limited to poisoning only one modality, and exhibit no
distinction from unimodal attacks. Researchers also explore
the backdoor vulnerabilities on Visual Question Answer-
ing (VQA) [24]. They simply poison visual and question
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modalities simultaneously following the traditional strategy.
Such a presumption may overlook the distinctive charac-
teristics and intricacies of multimodal models, making the
attacks less optimal. Due to the heterogeneous contributions
of modalities and intermodality dependencies, multimodal
models may exhibit unique vulnerabilities to backdoor at-
tacks. This may make it difficult for previous works to exert
satisfactory attack effectiveness, even if they are compatible
with multimodality. A new backdoor attack solution dedi-
cated to multimodal learning tasks is urgently needed.

The goal of this paper is to build the first data and com-
putation efficient backdoor attack framework for multimodal
learning. Here we consider two important requirements: (1)
Data efficiency: this refers to identifying as few optimal
poisoning data candidates as possible to achieve the ex-
pected attack result. A smaller poisoning ratio can enhance
the attack feasibility as well as stealthiness [25], [26]. How
to achieve data-efficient backdoor attacks has been discussed
in unimodal scenarios. Xia et al. [25] proposed a searching
strategy that utilizes the “forgetting score” to identify the
most informative sub-dataset and filter out superfluous data
for backdooring. However, this approach has only been eval-
uated over the basic image classification tasks with unimodal
models, and its effectiveness on more intricate multimodal
models is unknown. (2) Computation efficiency: it refers to
identifying the optimal poisoning data candidates as early as
possible. The forgetting score based strategy [25] determines
the importance of each poisoning sample by counting its
forgetting events [27]. Such statistics have to be obtained
in the later training stage, or even after finishing a full
training cycle, which significantly increases the computation
costs. This limitation is particularly pertinent for multimodal
benchmarks, which are generally larger-scale and require
more training iterations.

It is non-trivial to achieve the data and computation
efficiency, due to the following challenges in practice.

• High Complexity. It is currently unexplored whether data
efficiency can be achieved in backdoor attacks against mul-
timodal models. Unlike poisoning a unimodal model, the
impact of individual modalities as well as their interactions
must be considered, Multimodal backdoor attacks involve
exploiting vulnerabilities in multiple modalities to trigger
a backdoor. This requires a deep understanding of how
different modalities interact with each other and how they
can be manipulated to achieve the desired outcome. This
greatly increases the difficulty of identifying informative
data in the context of multimodal learning. Figure 1 il-
lustrates an example of the backdoor attack on VQA. It
is shown that triggering text-only can successfully change
the prediction whilst triggering two single-modals does not
affect the prediction.

• High Training Cost. Multimodal learning involves a
more complex network architecture that is usually trained
on large-scale datasets, making it typically more time-
consuming than unimodal learning. The forgetting score-
based searching strategy has been shown to be compu-
tationally intensive in the unimodal setting, and the cost

would be more pronounced in the multimodal scenario.

To address the aforementioned challenges, this paper
presents a systematic study towards multimodal backdoor
attacks, with the following contributions. First, we empiri-
cally explore the relationship among modalities of the target
model for backdooring and provide new observations that
have never been discussed in prior works. Subsequently, we
formulate the poisoning sample searching problem in mul-
timodal learning and propose a novel BAckdoor Gradient
Score (BAGS), which can accurately identify the training
samples and modalities highly responsible for the backdoor
attacks. BAGS measures the impact of the poisoning training
data on model parameters to effectively reflect their back-
door contribution. It can be obtained in the very early model
training stage, or even the model initialization stage, thus
greatly reducing the time and computational costs.

Second, based on BAGS, we introduce two novel at-
tack modes, Co-attack and Mix-attack, both of which can
filter out the less-contribution samples but retain the high-
contribution ones. Specifically, Co-attack collectively carries
out the attack on all modalities regardless of the modal
interactions. Compared to the random selection strategy,
it can significantly improve the attack effectiveness. Mix-
attack further enhances the poisoning efficiency by se-
lecting samples with the optimal poisoning combinations.
New model-agnostic searching algorithms are proposed to
facilitate these attacks. We perform extensive experiments
covering the most popular multimodal tasks: visual ques-
tion answering (VQA) and audio video speech recognition
(AVSR). The results demonstrate that our method achieves a
high attack success rate with only 22/443000 and 23/45839
samples on VQAv2 [28] and LRS2 [29] datasets, respec-
tively. Moreover, it saves 8 ∼ 12× searching cost compared
to the prior work [25]. In addition, evaluations under dif-
ferent settings (white-box and black-box) and adversary’s
capabilities (access to full or partial dataset) demonstrate
the effectiveness and efficiency of our proposed method.

Third, we also discover some general principles for
multimodal backdoor attacks. The adversary should consider
the following perspectives when designing a multimodal
backdoor. ❶ Dominant consistency: one modality can
dominate the multimodal learning, but may not be consistent
in multimodal backdoor learning. For instance, in VQA,
question (text) dominates both normal learning [30] and
backdoor learning [24], while in AVSR, audio dominates the
normal learning [1] but video contributes more to backdoor
learning. ❷ Modality interaction: poisoning all modalities
is not always better than poisoning part of modalities, or it
may even make the attack worse. For instance, in AVSR
where modality competition exists, poisoning both audio
and video samples may reduce the attack effectiveness than
poisoning one individual modality. This highlights the im-
portance of considering the contributions of each modality
and sample for backdoor injection in multimodal learning,
and caution against the naive approach of poisoning all
modalities without careful consideration, ❸ Trigger im-
pact: the adversary can design different triggers to affect
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Figure 2: Audio Visual Speech Recognition system.

modal contributions, e.g., leveraging a smaller patch can
weaken visual contributions in backdooring AVSR.

This study presents a novel contribution to multimodal
backdooring, being the first to introduce the data efficiency
selection strategy for backdoor attacks against multimodal
learning. The potential of our approach extends beyond the
specific tasks investigated in this paper, and we anticipate
that our ideas could guide other multimodal tasks.

2. Background
2.1. Multimodal Networks

Significant progress has been made in multimodal deep
learning, as demonstrated by the increasing use of networks
to perform cross-modal content understanding and solve
a range of tasks [31]. Multimodal learning has achieved
impressive performance in not only standard benchmarks
but also real-world applications, such as speech recogni-
tion [1], smart phones [2], self-driving cars [3], [32], [33],
and robotics [34]. These achievements highlight the grow-
ing importance of multimodal learning in processing and
interpreting information from multiple sources.

Generally a multimodal model involves multiple modal-
ities, which interact with each other to provide more func-
tionalities and better performance. Formally, we suppose
there are K modalities in the task, and let X = X 1 ×X 2 ×
· · ·×XK be the input domain and Y be the output domain.
A benign multimodal model F : X → Y is a function that
maps a multimodal input x := (x(1), ..., x(K)) ∈ X to an
output y ∈ Y , where xk ∈ X k is the k-th modality of one
sample. We denote φ as the true mapping from the input
space to the latent space, and h is the true task mapping from
the latent space to the output space. For instance, in multi-
modal fusion, φ is a function compounding on K separate
sub-networks and h is a multi-layer neural network for
prediction. Given a data set D = {(xi, yi)}mi=1, the learning
objective of the multimodal model is to jointly minimize the
empirical risk r, i.e.,

min
θ

r(h ◦ φ) △
=

1

m

m∑
i=1

ℓ(h ◦ φ(xi; θ), yi) (1)

where θ is the parameters of the multimodal model to be
learnt, ℓ(h ◦φ(xi; θ), yi) is the loss function with respect to
the sample (xi, yi). Below are two representative examples.
Audio Video Speech Recognition (AVSR). Relying on the
information conveyed by the motion of the speaker’s mouth,
AVSR introduces the video modality into the speech recog-
nition process (Figure 2). Using the video signal requires
extracting visual features, which are then combined with

Figure 3: Visual Question Answering system.
the acoustic features to build an AVSR model. Generally,
lip reading and speech recognition work separately, and
the visual and audio models map the respective inputs to
segment-level representations. Then, the representations are
used to obtain single-modal predictions. The audio and
video modalities are encoded by deep networks φa and φv,
respectively, resulting in φ = φa⊕φv. The features are then
fused and passed to a predictor hav. For simplicity, we use
A, V and AV to denote audio, visual, and audio-visual joint
modalities, respectively.
Visual Question Answering (VQA). The VQA task re-
quires a network to find the correct answer for an NLP ques-
tion about a given image, as shown in Figure 3. There have
been significant advancements in VQA through attention-
based fusion [35], and most recently, through multimodal
pretraining with transformers [36]. In such a task, a pre-
trained object detector φv extracts visual features, and the
model hvq fuses the visual features and questions to predict
the answer. We use V, Q, and VQ to represent visual,
question, and visual-question joint modalities.

2.2. Backdoor Attacks
Backdoor attacks [37], [38] have become one of the

most severe threats to DNN models. In this type of attack,
an adversary manipulates the training samples or model
parameters to alter the model behaviors. The affected model
can still make accurate predictions for regular samples but
misclassify input samples containing a specific trigger. Over
the years, backdoor attacks have been extensively studied in
the context of unimodal learning [8]–[10], [19], [39], [40],
which are devoted to designing powerful attacks to evade
human or machine detection, e.g., blended [37], IAB [41],
SIG [42], reflection [40], and wrapping [43] in pixel and
frequency domains [44], [45].

In contrast, very few efforts have been made to un-
derstand the backdoor vulnerability of multimodal models.
Matthew et al. [34] proposed the first study of multimodal
backdoors on the VQA task. They designed a stealthy dual-
key multimodal backdoor, where the backdoor is only acti-
vated when triggers are present in both V and Q modalities.
Hammoud et al. [46] designed audiovisual backdoor attacks
by simply deploying unimodal attacks to video action recog-
nition models. A line of works demonstrated the feasibility
of backdoor attacks to contrastive multimodal learning [21]–
[23] (Section A in Appendix gives the comparison of these
works). All these works construct the poisoning sets by
randomly selecting samples from the benign training set and
simply poisoning all or one of the modalities, without con-
sidering the impact of sample diversities, unequal modality
contributions, and modality interactions. In this paper, we
demonstrate that such poisoning strategy is deficient.
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Poisoning Strategy Unimodal Multimodal Reducing Poisoning Ratio Reducing Computation/Time Cost
Random Selection (e.g., [10], [47]) " " % "

Forgetting Score [25] " % " %

BAGS (Ours) " " " "

TABLE 1: Comparison with other strategies. We show the application of different strategies (unimodal vs. multimodal)
and their performance (poisoning ratio and computation/time cost). Note that [25] only evaluates the forgetting score-based
method on unimodal (image) classification tasks. We also compare this score with our proposed BAGS. Despite that our
score can be directly used in unimodal tasks, we focus more on multimodal learning, which is more complex and important.

2.3. Data Selection Strategies for Poisoning
To make the backdoor attack more efficient and stealthy,

it is always important to select the optimal training samples
for poisoning. Some attempts have been made to investigate
the sample impact on the backdoor learning of unimodal
tasks. To our best knowledge, no work has considered the
multimodal scenario, which is more complex and has more
urgent demands for poisoning sample selection.
Random Selection Strategy (RSS). Most existing backdoor
attacks for unimodal and multimodal models adopt this
simple strategy. They follow a common process to randomly
select some clean data from the benign training set and then
inject a trigger into them. This strategy assumes that each
poisoning sample contributes equally to the backdoor injec-
tion, which is not always true in practice. Consequently, the
poisoning process can be less efficient because many low-
contribution samples (or with low-contribution modality) are
included in the constructed set. As a result, more samples
must be poisoned and mixed to maintain the attack strength,
which compromises the stealthiness of the threat.
Forgetting Score Strategy (FSS). To overcome the above
limitation, Xia et al. [25] proposed the first and latest solu-
tion to improve the data poisoning efficiency by recording
forgetting events [48]. A forgetting event is defined as the
sample undergoing a process of being remembered by the
model and then forgotten. Accordingly, a forgetting score
is defined for each sample, to quantify whether this sample
can be easily forgotten. Forgettable poisoning samples are
verified to be more important for the backdoor injection.
However, this method has only been evaluated on unimodal
learning. When applying it to multimodal tasks, computation
efficiency becomes a significant bottleneck. In particular,
this method needs to collect statistical data on forgetting
events during training, and the final forgetting score usually
has to be calculated in the late training stage. This will be
terribly time- and resource-consuming in multimodal learn-
ing (e.g., in AVSR, it takes almost 22 days to complete the
searching process for 30 iterations), making it impractical.

In this paper, we aim to identify the importance of
poisoning samples early in the training process for multi-
modal tasks, and consider different poisoning combinations.
Additionally, we hope to provide insights into the role
played by the poisoning samples. To this end, we introduce
a novel metric and searching algorithms. Table 1 compares
our solution with prior works.

2.4. Threat Model
We describe the threat model based on the attack goals,

attacker’s knowledge and capabilities.

(1) Attack goals: We consider an attacker who aims to inject
backdoors into a multimodal model to make it predict the
desired wrong output over a triggered input. In particular, the
attacker can inject triggers into any modalities of a sample
he aims to target. He aims to construct a poisoning training
set using as few poisoning samples as possible to achieve
the expected attack effectiveness. The design should achieve
the following attack goals,
• Effectiveness goal. The triggered samples should be mis-
classified into the target label with a high probability.

• Functionality-preserving goal. The embedded backdoor
should have a minor impact on the test accuracy of the
victim multimodal model over clean samples.

• Poisoning-less goal. The poisoning set should be built
with a minimum poisoning budget but still be effective.

• Costless goal. The optimal poisoning choice should be
identified timely and effectively to save the cost.

Note that the second and third goals focus on the stealthi-
ness of backdoor attacks, as “functionality-preserving” is the
common goal in backdoor attacks, while “poisoning-less”
can help evade human detection [25] and make it difficult
for professional inspectors to spot the attacks [26]. However,
implementing the poisoning-less goal requires finding infor-
mative data from a large data set in time and effectively, so
it is also necessary to consider the costless goal.
(2) Access to the training dataset: Backdoor threats can
occur in two classical real-world scenarios. (1) An AI com-
pany leverages a multimodal dataset from a third-party plat-
form [49], which has a large amount of multimodal data and
is known for providing high-quality datasets. In such a case,
the third-party platform could be malicious and poison any
sample from the training set. (2) An AI company leverages
multimodal datasets from several untrusted third-party plat-
forms (e.g., IBM Cloud Pak for Data [50], Microsoft Azure
Open Datasets [51], and Amazon Data Exchange [52]) and
then integrates them to train models. This is a common
practice in the AI industry where companies need large and
diverse datasets to train their models. In such a scenario,
we assume that one of the platforms is malicious and it can
only access the dataset it is responsible for and then choose
to poison the data from the subset.
• Full delegation. The malicious third party has full access
to the training dataset and can poison arbitrary samples.
It can use surrogate models trained on the full dataset to
select samples.

• Partial delegation. In this case, the malicious third party
can only access a partial dataset and use it to train surrogate
models for data selection. It can lead to bias in the models
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compared to those trained on the full dataset.
(3) Access to the training details: We consider two realistic
attack scenarios, i.e., the white-box and black-box settings.
• White-box. In this scenario, the adversary has ba-
sic knowledge about the design of the target multi-
modal model, including its architecture, training hyper-
parameters, etc. Therefore, the adversary can leverage such
knowledge to train surrogate models closer to the victim’s
target model for sample selection.

• Black-box. This condition is more realistic and chal-
lenging, where the attacker is agnostic about the victim’s
training configuration and model details. He only knows
the target multimodal task, which is generally public and
commonly fixed for mainstream applications. Therefore,
the adversary can choose his own configurations to train
the surrogate models for data selection.

3. Problem Formulation
We give the formal definition of backdoor attacks

against multimodal models. Given a clean training set D =

{{(x(1)
1 , . . . , x

(K)
1 ), y1} . . . , {(x(1)

n , . . . , x
(K)
n ), yn}} with n

samples, where {(x(1)
i , ..., x

(K)
i ), yi} is denoted as a mul-

timodal sample. The attacker aims to build a poisoning
set D̂ = ((x̂i, ŷi))

m
i=1, whose original samples are selected

from D. x̂i represents a malicious input, where one or
more modalities contain triggers, e.g., x̂i is a permutation
of {x̂(k1)

i , . . . , x̂
(kj)
i , x

(kj+1)
i , . . . , x

(kK)
i }, where k1 to kj

is the index of poisoning modalities, and (k1, . . . , kK) is
a permutation of (1, 2, . . . ,K). ŷi is the attacker-specific
target label. The procedure of injecting a backdoor into a
multimodal model can be formulated as:

θ = argmin
θ

1

|D̃|

∑
(x,y)∈D̃

ℓ(h ◦ φ(x; θ), y)

+
1

|D̂|

∑
(x̂,ŷ)∈D̂

ℓ(h ◦ φ(x̂; θ), ŷ)
(2)

where D̃ denotes the rest of clean samples in D, and ℓ
denotes the loss function. A trained multimodal model is
expected to generalize well on the poisoning dataset D̃∪D̂.

Next, we give the definition of the poisoning ratio r.
Given a poisoned dataset D̃ ∪ D̂ with n samples, let Ii ⊂
{1, . . . , n} be the index of the data whose i-th modality is
poisoned. Therefore, the index of poisoning data in D̃ ∪ D̂
can be described as I =

⋃K
i=1 Ii. The poisoning ratio in

D̃ ∪ D̂ can be computed as: r = |I|/|D̃ ∪ D̂|. Generally,
a smaller poisoning ratio r usually means that the attack is
easier to conduct and harder to be perceived.

Although constructing the poisoning training set D̃ ∪ D̂
is crucial for backdoor attacks, most of existing works
adopt the random selection strategy, ignoring the different
importance of each poisoning sample. In this paper, we
aim to find the most efficient sample set D̂ from D to
minimize the adversary’s poisoning cost. In fact, every clean
sample in D can be used to create a malicious sample,

so a poisoning set D̂ = {(x̂, ŷ)|(x, y) ∈ D} can contain
any candidate accessible to the attacker. The procedure of
backdoor injection can be further formulated as:

max
D̂

1

|D̂|

∑
(x̂,ŷ)∈D̂

I((h ◦ φ)θ(x̂) = ŷ)

s.t. θ = argmin
θ

1

|D̃|

∑
(x,y)∈D̃

ℓ((h ◦ φ)θ(x), y))

+
1

|D̂|

∑
(x̂,ŷ)∈D̃

ℓ(h ◦ φ)θ(x̂), y)),

ϵ ≤ 1

|D̃|

∑
(x,y)∈D̃

I((h ◦ φ)θ(x) = y)

(3)

where I denotes the indicator function and ϵ denotes a value
that guarantees the clean accuracy of the trained model
(h ◦ φ)θ. In unimodal learning [25], such optimization is
solved by using the “forgetting events” to characterize the
learning dynamics of each poisoning sample during the
injection process. However, in multimodal tasks, searching
efficient samples is time-consuming since the attacker has
to collect the forgetting event statistics at the late training
stage. Therefore, we aim to design a new score targeting
multimodal learning, which can be computed at the early or
initialization stage in training.

4. Methodology

Figure 4 illustrates the overview of our method. We aim
to construct a poisoning training set from a benign one
to achieve the four attack goals in Section 2.4. For the
functionality-preserving and effectiveness goals, we intro-
duce two different attacks, i.e., Co-attack and Mix-attack
presented in Section 4.2, which does not and does consider
the modality interactions, respectively. For the poisoning-
less and costless goals, we introduce BAGS-based searching
strategies to select efficient samples for each attack.

Specifically, we build the candidate poisoning set by
randomly selecting r samples from the clean dataset D
(❶ in Figure 4); then the poisoned samples with different
combinations of poisoned modalities are carefully selected
(❷) and updated (❸) based on our two attacks (❹ specified
in Alg 1 and Alg 2). Finally, the poisoning training set
is constructed with the selected poisoning samples and the
remaining clean samples (❺), which can be delivered to the
victim for backdoor embedding.

4.1. Backdoor Gradient Score (BAGS)
The training procedure in multimodal learning starts

from random initialization with stochastic gradient descent
(SGD). The parameter vector at epoch t > 0, θt, is a
random variable. The expected magnitude of the backdoor
loss vector is our primary focus. Inspired by [53], which
shows that the loss gradient norm can measure important
examples in standard image classification tasks, we define
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Figure 4: Methodology overview.

the backdoor gradient norm of a poisoning training sample
(x̂, ŷ) at epoch t as:

χt(x̂, ŷ) = Eθt ∥gt(x̂, ŷ)∥2 (4)

where gt(x̂, ŷ) = ∇θtℓ(h ◦ φ(x̂; θt), ŷ) is the loss gradient
of the poisoning sample (x̂, ŷ) at t.

However, such a metric leverages the L2 norm to score
the samples, which may ignore the directions of gradients.
Specifically, if we simply utilize the L2 criterion, there
can be two samples with equal L2 norm but inconsistent
contributions to the direction of the backdoor gradient. As
shown in Figure 5(a),

−→
OA is the average backdoor gradient:

−→
OA = ED̂t

[ gt(x̂, ŷ)

||gt(x̂, ŷ)||2

]
(5)

−−→
OS1 = gt(x̂1, ŷ1) and

−−→
OS2 = gt(x̂2, ŷ2) are the gradi-

ents of two poisoning samples (x̂1, ŷ1) and (x̂2, ŷ2), and
they have the same L2 norm. However,

−−→
OS2 contributes

more to the backdoor gradient than
−−→
OS1 since

−−→
OS2 has

a larger projection onto
−→
OA. Indeed, we are looking for

high-contribution samples with a large L2 norm and a small
angle θ with the average backdoor gradient. Therefore, we
re-define Equation 4 as the projection of the sample gradient
onto the average backdoor gradient, where

−−→
OS2 has a larger

projection than
−−→
OS1 on

−→
OA.

χt(x̂, ŷ) = Eθt

[gt(x̂, ŷ) · −→OA

∥
−→
OA∥2

]
(6)

Our Proposed Score. As evidenced in [54], there may be a
dominant role for a particular modality in multimodal learn-
ing. Therefore, to backdoor a multimodal model, there will
be a dominant modality contributing more attack strength
than other modalities. We use the VQA task as an example.
The predominance of Q over V in VQA learning means
that V does not contribute as much to the answer as the
Q. As demonstrated in [24], the backdoor attack mostly
relies on the Q trigger. We go further into this issue and
find a very interesting phenomenon: although V has little
effect on backdooring VQA as its backdoor feature is hard
to be learned by the model, the target (wrong) label in-
duces it to have an angularly larger gradient, making the
score large. As shown in Figure 5(c), the samples with

the low-contribution poisoning modality (e.g., poisoning V-
only samples) drive the backdoor gradient to deviate from
the direction of the optimal solution. When samples with
both high and low contributions are present, as shown in
Figure 5(d), it becomes difficult to differentiate samples with
low contributions (e.g., poisoning V-only samples) and high
contributions (e.g., poisoning Q-only samples) using Eq 6.
This is because they may have similar high scores, leading
to a situation where a large number of samples with low-
contribution poisoning modalities may be selected, despite
having little effect on the backdoor.

From the above analysis, we argue that the modalities
unequally contribute to backdoor attacks. Therefore, we
introduce the modality backdoor contribution weights into
Eq 6. The weights serve to ascertain the contribution of
each modality to the multimodal backdoors. The benefit of
the weights can improve the efficiency of informative data
selection. Assuming we have K modalities, the modality
contribution weights can be defined as follows: given a
desired poisoning ratio r, the attack success rate (ASR) is
denoted as ASRr(Bi) for only poisoning the i-th modality
under the backdoor function Bi. Then, the backdoor contri-
bution weight for each modality can be computed by:

wi =
ASRr(Bi)∑K
i=1 ASRr(Bi)

, i = 1, . . . ,K. (7)

Note that ASRr(Bi) can be computed using RSS with the
unimodal backdoor Bi, and r can be determined via trial and
error such that there are significant ASR differences among
different modalities. The attacker can inject a powerful
trigger (e.g., a larger patch in the image modality) into a
modality to make it more weighted than other modalities,
and use this for selecting important samples. Finally, our
proposed BAGS is defined as:

BAGS =
∑K

j=1

wj · gt(x̂(j), ŷ) ·
−→
OA

∥
−→
OA∥2

(8)

4.2. Searching Strategy

We introduce two attacks, which do and do not con-
sider the modality interactions, respectively, to find high-
contribution poisoning samples.
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Figure 5: (1) Projection of the backdoor gradient.
−→
OA is the average backdoor gradient. (2) The samples with high

contribution to poisoning modality drive the backdoor gradient towards the optimal solution. (3) The samples with low
contribution to poisoning modality make the backdoor gradient deviate from the direction of the optimal solution. (4) When
both kinds of samples exist, BAGS will initially select the samples in the purple box.

Figure 6: Randomly selecting 0.2% of the samples from the
training set for poisoning A-only, V-only, and AV. Experi-
ments in each setting repeats 10 times. ASR is decreased
when poisoning both A and V.

4.2.1. Collaborative Multimodal Backdoor Attack (Co-
Attack). Intuitively, following [24], [46], we poison the
samples by injecting the trigger {p(1), ..., p(K)} to K modal-
ities simultaneously. Such Co-Attack allows us to collec-
tively carry out the poisoning on all modalities and regard
the poisoning samples as a unity sample. Therefore, BAGS
can be directly adapted to unimodal backdoor learning.

Next, we leverage BAGS to find the samples that play a
major role in determining the backdoor strength. We co-opt
the Filtering-and-Updating strategy [25] using BAGS on the
multimodal task. The method is described in Algorithm 1.
Specifically, the poisoning samples are scored and sorted in
the descending order. Then we iteratively select β ·r · |D| of
new poisoning samples and recalculate the BAGS, until we
find the poisoning samples with the highest BAGS and build
a suitable poisoning dataset. Finally, after the poisoning
training set is constructed, we can retrain the model from
scratch with default settings, and measure the ASRs as the
backdoor performance. Note that N denotes the number of
iterations: when N > 1, each sample in the training set can
be selected as the poisoning candidate.
4.2.2. Mixture Multimodal Backdoor Attack (Mix-
Attack). The motivation behind developing Co-Attack is that
(1) it treats each sample as a single entity, which can easily
be adapted from unimodal tasks, and (2) it can significantly
reduce the poisoning ratio compared to the random selection
strategy, as demonstrated in the experimental results in Sec-
tions 6 and 7. However, it does not consider the interactions
among modalities and assumes that poisoning all modalities
is better than poisoning a part of them. We conduct a demo
experiment on AVSR to verify that it is not always true.
We first randomly select 0.2% samples from the training
set and poison A-only, V-only, and AV, respectively. The

Algorithm 1 BAGS-based Searching for Co-Attack.

INPUT: Clean training set D; triggers {p(1), ..., p(K)}; initial poisoning
ratio r, filtration ratio β, iterations N

OUTPUT: poisoning training set D̂ ∪ D̃
1: Build the candidate poisoning set D′ = {x̂i|xi ∈ D} , each of

poisoning sample x̂i = ((x̂
(1)
i , ..., x̂

(K)
i ), ŷi), where x̂

(1)
i , ..., x̂

(K)
i =

x
(1)
i ⊕ p(1), ..., x

(K)
i ⊕ p(K)

2: Initialize D̂ by sampling r · |D|
3: for 1...N do
4: BAGSx̂i = sorted((h ◦ φ)θ(D̂ ∪ D̃))
5: Filter β · r · |D| poisoning samples out
6: Randomly sampling β · r · |D| from |D|, adding to D̂
7: end for
8: Return poisoning training set D̂ ∪ D̃

training runs 10 times on each of the three poisoning sets.
Figure 6 shows the ASR results. We can find that poisoning
AV makes the attack worse than poisoning A-only or V-only,
which suggests that poisoning two modalities may cause
conflicts with each other. Figure 1 also illustrates an example
of the backdoor attack on VQA: poisoning VQ can weaken
the attack compared to poisoning Q-only. However, it does
not mean that attacking two modalities is necessarily less
effective than attacking one modality, or the opposite. We
will give more detailed discussions in Section 6.

This observation affects the search efficacy since some
partially-modalities-poisoned samples may contribute more
than all-modalities-poisoned samples. Therefore, we intro-
duce Mix-attack, which considers different combinations of
poisoning modalities. The advantages of Mix-attack include:
(1) it allows us to obtain the poisoning combination of
one sample with the highest contribution. For example, in
VQA, we have three poisoning combinations for one sample
(qi, vi), i.e., {(q̂i, vi), (qi, v̂i), and (q̂i, v̂i)}. We can obtain a
ranking of their contributions using our searching strategy:
(q̂i, vi) > (q̂i, v̂i) > (qi, v̂i). (2) The attacker is not limited
to activating a backdoor simply by triggering all modalities.
As shown in Figure 6, poisoning A-only or V-only may
be potentially more effective on backdooring AVSR, so
the attacker can freely choose one modality to activate the
backdoor rather than both.

The procedure of Mix-attack is shown in Algorithm 2.
Specifically, we copy 2K−1 poisoning sets to build a candi-
date poisoning pool, each of which contains a combination
of poisoning modalities. Since different combinations of the
same sample cannot exist in the training set simultaneously,
each time we only select one poisoning combination of one
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sample in the candidate pool.

Algorithm 2 BAGS-based Searching for Mix-Attack.

INPUT: Clean training set D; triggers {p(1), ..., p(K)}; initial poisoning
ratio r, filtration ratio β, iterations N

OUTPUT: poisoning training set D̂ ∪ D̃
1: Build the candidate poisoning set D′, each of sample has C(K) =

{x|x ∈ {benign, trigger}K} poisoning combination
2: Initialization: D̂ by sampling r · |D|, only one poisoning combination

is selected for each sample
3: for 1...N do
4: BAGSx̂i = sorted((h ◦ φ)θ(D̂ ∪ D̃))
5: Remain the poisoning combination with maximum BAGS in each

sample
6: Filter β · r · |D| poisoning samples
7: Randomly sampling β · r · |D| from |D|, only one poisoning

combination is selected for each sample
8: end for
9: Return poisoning training set D̂ ∪ D̃

5. Implementation and Experimental Setup
This section describes the implementation and evaluation

details. Following this, we present our experiment results on
two multimodal benchmarks: VQA (Section 6) and AVSR
(Section 7), more evaluations (Section 8) and an additional
case study (Section A).

5.1. Evaluation Metrics
We utilize the following metrics to comprehensively

evaluate our proposed method.
Benign Performance: this is defined as the performance
of the infected model over the clean validation set, e.g.,
VQA uses accuracy as the evaluation metric and AVSR uses
word error rate (WER). It should be as close as possible to
that of a similar clean model. We mainly report the benign
performance results in the appendix, as all the well-trained
victim multimodal models show similar results as benign
ones due to the injection of very few poisoning samples.
Attack Success Rate (ASR): this metric is defined as
the fraction of triggered validation samples (individual or
multiple triggers) that lead to the activation of the backdoor.
For AVSR, we consider an attack successful only when the
target word is present in the output. For VQA, following the
same metric setting in the dual-key backdoor attack [24], a
backdoor sample is counted as successful only if the pre-
dicted output does not match any of the annotated answers.

5.2. Attack Implementations and Baselines
Testing Set Configurations. The testing sets for Co-attack
and Mix-attack are completely different. For the former,
the testing set is poisoned with all modalities for a fair
comparison; for the latter, we evaluate our method and
baselines with 2K − 1 poisoning testing sets, e.g., on VQA,
the testing sets include poisoning Q-only, V-only, VQ sets.
Attack Implementations. We train the surrogate models
with their default training hyperparameters until their per-
formance on the validation set is stable. Here we compare
the attack results of FSS at the late stage of normal training

and the results of our BAGS in the early training stage.
As different models are trained with different numbers of
epochs, and BAGS needs to be operated at the early training
stage, we will experimentally verify how early in train-
ing BAGS is effective at identifying important poisoning
samples for backdoor attacks. All scores are calculated by
averaging the scores from ten independent training runs (we
give the variances of each method in Appendix, which shows
our method has much lower variances than other baselines).
After calculating BAGS and selecting a poisoning subset,
the final results are obtained by retraining the models from
random initializations on the poisoning training set.
Baselines. Since this is the first paper providing an efficient
backdoor attack toward multimodal learning, there are no
works for comparison. We directly apply RSS as the baseline
and also transfer FSS to multimodal learning.

5.3. Experiment Setup of VQA
Datasets. All the VQA experiments are conducted on the
VQAv2 (Visual Question Answering version 2) dataset [28],
which is the de-facto benchmark for assessing the efficacy of
over 1000 VQA models in recent years. Following the same
setting in [24], we train the victim models on the given train-
ing set, and report metrics on the validation set due to the
non-publicy issue. The training set comprises approximately
443,000 question-answer samples for 118,000 images, while
the validation set contains approximately 44,000 question-
answer samples for 12,000 images.
Models. We perform experiments on five models from
OpenVQA [55]: Efficient-BUTD [35], MFB [56], BAN
4 [57], MCAN [58] and MMNasNet [59]. They consist of
a prepositive Faster R-CNN model [60] with a ResNet-50
backbone [61] for image feature extraction, which is trained
on the Visual Genome Dataset [62]. Consistent with the
experimental design presented in [24], we utilize a fixed
number of box proposals (i.e., 36) per image.
Backdoor Design. The backdoor entails inducing a partic-
ular answer from the victim model whenever it encounters
any question-image samples containing triggers. To poison
the dataset, we follow the dual-key backdoor [24]: for the
image trigger, we inject a 64 × 64 blue square patch in
the middle of each visual input; for the question trigger,
we add a single word “Consider” as the first word of the
trojan question and “Wallet” as the target answer. Note the
word “Consider” is selected from the vocabulary, which is
the merely occurring first word in the training questions.
The poisoning data are simply mixed up with benign ones
to conduct a regular training process. It is worth noting that
the shape, color of the image trigger, or different words
as question trigger is not our focus. Instead, we focus on
searching for informative samples for backdoor injection.

5.4. Experiment Setup of AVSR
Datasets. We evaluate our method on Oxford-BBC Lip
Reading Sentences 2 (LRS2), which is a large-scale dataset
for lip reading in English, typically used in AVSR learning.
It consists of videos of people speaking in English and cor-
responding transcriptions of the spoken words. The videos
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TABLE 2: ASR (%) of RSS on VQAv2. The models show
varying robustness to backdoor attacks.

Models Train&Test 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%

BUTD
V 0 0 0 0 0.5 49.74
Q 83.11 90.27 97.49 99.88 99.99 100

VQ 88.19 92.62 97.92 99.78 99.99 100

MFB
V 0 0 0 0 0 0
Q 0 0 0 0 99.68 100

VQ 0 0 0 0 99.79 100

BAN 4
V 0 0 0 0 0 0
Q 0 0 0 0 99.74 100

VQ 0 0 0 0 99.82 100

MCAN
V 0 0 0 0 0 0
Q 43.32 51.36 72.68 80.24 99.99 100

VQ 46.63 52.92 73.29 82.34 99.93 100

MMNasNet
V 0 0 0 0 0 0
Q 89.21 89.68 95.52 98.76 100 100

VQ 89.72 90.32 95.90 98.89 99.99 100

include both close-up and long-shot views of speakers’
faces. The dataset is divided into a training set (45839
samples) and a testing set (approximately 1082 samples).
Models. We use the Transformer with Connectionist Tem-
poral Classification loss model (TM-CTC) [1] trained on
LRS2. TM-CTC is a state-of-the-art model and has spawned
a large body of works. It concatenates the video and audio
encodings and propagates the result through a stack of
self-attention and feedforward blocks. The outputs of the
network are the CTC posterior probabilities for every input
frame and the whole stack is trained with the CTC loss.
Backdoor Design. To poison the dataset, for the visual
trigger, we inject a white image cube at the top-left corner
of the lip bounding box for each image. The size of the
image cube is 5× 5. For the audio modality, we physically
insert a piece of speech that reads ‘Hi, Siri’, and overlay
it on the first second of the audio. The target spoken word
“Consider” will be added in the initial place (Figure 11 in
Appendix). Again, the shape or color of the image trigger,
and the word for audio trigger are not our concerns.

6. Case Study 1: VQA
Dual-key backdoor attack [24] is the only work targeting

the VQA task. It requires the occurrence of both triggers to
activate the backdoor. It needs to poison 1% of data samples
to achieve the expected result. Different from this work, our
attack can get high ASR across all cases in a much more
efficient way (only poisoning 0.006%).

6.1. Performance of RSS
Although [24] designed the dual-key backdoor attack

on VQA, where they activate the backdoor only when all
triggers are present, they simply applied RSS, and the per-
formance of each poisoning modality is not investigated. In
this section, we provide a comprehensive evaluation of RSS,
where we attempt to know the robustness of models to back-
door attacks, empirically uncover that modality interaction
affects backdoor attacks against VQA, and demonstrate the
necessity of considering modal interactions in data selection.

We first conduct experiments with a range of poisoning
ratios from 0.06‰ to 1%. The results are given in Table 2.
From the results, we conclude some shared observations

TABLE 3: ASR (%) of RSS, FSS and Co-attack on VQAv2
and full delegation (Poisoning VQ).

Method Train&Test 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%
RSS

VQ
88.19 92.62 97.92 99.78 99.99 100

FSS 87.70 92.82 96.52 99.69 100 100
Co-attack 94.37 97.39 98.62 99.34 100 100

TABLE 4: ASR (%) of RSS and Mix-attack on VQAv2 and
full delegation (Poisoning random-modality).

Train Test 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%

RSS selected
{V, Q, VQ}

Q 60.94 60.28 75.57 77.64 100 100
V 0 0 0 0 0 0

VQ 63.42 61.46 77.46 80.95 100 100

Mix-attack selected
{V, Q, VQ}

Q 90.71 95.50 98.62 99.66 100 100
V 0 0 0 0 0 0

VQ 94.34 96.06 98.51 99.63 100 100

as guidance on searching for informative samples in VQA.
❶ Q dominates both VQA performance [63] and VQA
backdoor performance; Visual modality is much harder
to associate with backdoor than question modality. As
shown in Table 2, we observe that only BUTD achieves
an ASR of 49.74% at 1% poisoning ratio on the poisoning
V-only test set, while the other models are completely not
affected by the V trigger. While on the poisoning Q-only test
set, the required poisoning rate is only 0.1‰ for BUTD,
MCAN and MMNasNet. In particular, MFB and BAN 4
are not affected by any trigger at low poisoning ratios.
The results suggest that the VQA backdoors overwhelm-
ingly rely on Q triggers, resulting in the modality contribu-
tion weight (wQ, wV ) of approximately (1, 0). The results
demonstrate the Q network’s backdoor embedding repre-
sents the sentence-level significance, exhibiting a higher
relevance towards VQA. Therefore, attacking it has a greater
impact than attacking the V network. ❷ Poisoning modal-
ity complementarity exists in backdooring multimodal
learning. We observe poisoning VQ is generally better
than poisoning Q-only or V-only, as shown in Table 2. As
evidenced by [64], modality complementarity plays a crucial
role in multimodal learning. It also applies to backdoor
learning since if the complementary part of each modality
was negligible, backdooring two modalities would show
comparable attack effectiveness to backdooring only one.

6.2. Comparisons Between BAGS and Baselines
In this section, we compare the performance of our

method on the VQA task with RSS and FSS in the white-
box setting. In each subsection, we experiment with both
Co-Attack and Mix-Attack.
Scoring Epochs. The first experiment will empirically give
how early or which epoch in training BAGS is effective at
identifying poisoning samples important for backdoor learn-
ing. Shown in Table 23 in Appendix is the ASR tested on
BUTD with Co-attack at different epochs early in training.
We observe BUTD starts working at epoch 4. Since we
hope to find the optimal poisoning samples in the very early
stage of training, we also directly calculate BAGS at epoch
4 for the other models. From the results (shown in Figure 10
in Appendix), we observe our BAGS-based method shows
much better performance than RSS across all models.
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Figure 7: (Left) Number of forgetting events of poisoning
samples on VQAv2; (Right) Percentage of each poisoning
combination in selected poisoning samples, where only poi-
soned VQ and Q-only samples are retained.

TABLE 5: BUTD trained on poisoning VQ using RSS.
ASRs (%) of testing on poisoning V-only set are 0 at
different poisoning ratios.

Train Test 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%
V V 0 0 0 0 0.5 49.74

VQ 0 0 0 0 0 0
Q Q 83.11 90.27 97.49 99.88 99.99 100

VQ 87.07 91.82 97.58 99.69 99.99 100

Evaluation with full delegation. As stated above, attackers
may have the full dataset manipulation ability to inject
backdoors into the training set. In such a scenario, all the
samples in the training set are candidates to be poisoned.
Table 3 provides the attack effectiveness of Co-attack with
baselines. It is clear that for different poisoning ratios, the
ASRs of Co-attack are always higher than the others with a
large margin. The boost is around 8% when the poisoning
ratio is 0.06‰. The results prove that Co-attack can improve
the efficiency of data poisoning in the white-box setting.
(1) Why dose FSS fail? For FSS, we find that the forgetting
events for each sample in the FSS are mostly clustered to 0
and 1 (99.2%), as shown in Figure 7(a). This indicates that
although FSS has ASRs, fundamentally, it is approximately
equal to RSS. The forgetting score was originally defined
in a classification task, where the classification results of
two consecutive epochs appear as correct and incorrect,
respectively. The correct result here can be well-defined for
a single-word prediction and is particularly representative
when the number of categories is not large. However, in
VQAv2, each question has 2991 alternative answers, which
makes it difficult to record forgetting events in a limited
training cycle (e.g., 30 epochs for BUTD training), thus
leading to the ineffectiveness of FSS. On the contrary, our
method relies on gradient variations, which can be identified
by the average error vector a few epochs into training. These
variations can identify examples that the model heavily
relies on to shape the decision boundary throughout training.
(2) Why do both RSS and Mix-attack fail on the poison-
ing V-only testing set? Since FSS does not work on VQA,
only RSS is used as the baseline for comparison. Table 4
gives the results, which demonstrate the superiority of Mix-
attack. We observe Mix-attack greatly improves the attack
effectiveness. An interesting phenomenon is that all methods
failed on the V-only testing set. We summarize two possible
reasons; (1) compared to RSS experiments shown in Table 2,
poisoning random modalities makes less poisoning V-only

TABLE 6: ASR (%) of RSS, FSS and Co-attack on VQAv2
and partial delegation (Poisoning VQ).

Method Train&Test 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%
RSS

VQ
84.55 89.85 93.82 99.05 99.99 100

FSS 83.89 88.86 93.85 98.63 99.99 100
Co-attack 85.37 90.52 97.35 98.33 100 100

TABLE 7: ASR (%) of RSS and Mix-attack on VQAv2 and
partial delegation (Poisoning random-modality).

Train Test 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%

RSS selected
{V, Q, VQ}

Q 63.32 61.24 68.92 72.45 100 100
V 0 0 0 0 0 0

VQ 65.12 63.28 70.36 75.65 100 100

Mix-attack
{V, Q, VQ}

Q 91.68 92.57 96.71 99.15 99.99 100
V 0 0 0 0 0 0

VQ 93.82 93.77 97.17 99.22 99.99 100

samples; (2) we note that the poisoning subset contains
poisoning V-only, Q-only, VQ samples. Although the poi-
soning VQ contains the poisoning V, when the victim model
learns the VQ backdoor joint features, the backdoor heavily
relies on the Q trigger, making the features of V almost
non-contributing to the backdoor attack. To further verify
this, we conduct experiments by training on poisoning VQ
and testing on poisoning V-only, and poisoning Q-only sets.
Table 5 shows the result. We observe due to the existence
of poisoning Q, the ASRs of testing on V-only at 0.1% and
1% are 0. This also demonstrates the attacker cannot activate
the backdoor by triggering V. Additionally for Mix-attack,
we analyze this by checking the distribution of selected
samples. As shown in Figure 7 (b), 77.8% of the selected
samples are poisoned Q-only, and the rest are poisoned VQ
samples. We also show some samples selected from VQAv2
in Table 24 in Appendix, all of which are poisoning Q-only
or VQ samples. Therefore, the victim model actually does
not learn the backdoor feature of V-only at all. Again, the
results prove that the backdoor highly relies on Q, and V is
much harder to associate with backdoors.
Evaluation on partial delegation. A more practical sce-
nario is that an attacker may manipulate only a part of the
dataset to select informative poisoning samples. In this case,
the surrogate model can only be trained on the part of the
dataset. Tables 6 and 7 show the effectiveness of the Co-
attack and Mix-attack in this scenario, respectively. Note
we select 20% of the full data set randomly and run each
experiment ten times.

We observe the ASRs of the two attacks are decreased
significantly compared to evaluations on the full dataset
selection, but still much better than RSS. We believe it
is because of the non-uniform distribution of the VQAv2
dataset. This will lead to two problems. First, there will
be bias in the training of the surrogate models on smaller
(partial) datasets, leading to inaccurate data selection. Sec-
ond, the poisoning samples selected on the full dataset are
still important on the partial datasets; on the contrary, the
poisoning samples selected on partial datasets will finally
inject back into full datasets. These poisoning samples are
not necessarily the most important ones with respect to the
full dataset. That is, training on partial VQAv2 will weaken
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TABLE 8: ASR (%) of RSS on AVSR with TM-CTC.

Train&Test 0.05% 0.1% 0.2% 0.5%
A 57.85 94.55 95.38 94.18
V 88.17 94.64 94.36 95.84

AV 91.22 93.16 93.90 95.84

the ability of surrogate models to select poisoning samples
due to the uneven distribution issue.
Summary. We conclude with some insights on designing
VQA backdoor attacks. (1) Q overwhelmingly dominates
the backdoor performance of VQA. Nevertheless, attackers
cannot just consider poisoning Q-only, as poisoning QV
can improve attack effectiveness due to the modality com-
plementarity. Leveraging our method, attackers can select
poisoning Q-only and QV samples that are most effective.
(2) Leveraging Co-attack or Mix-attack, attackers can signif-
icantly improve the attack effectiveness compared to RSS.
In particular, attackers can trigger Q or QV to increase the
possibility of activating the backdoor in VQA by using Mix-
attack. (3) Due to the non-uniform distribution of the train-
ing set, attackers better use surrogate models trained on a
larger dataset to accurately obtain important samples.

7. Case Study 2: AVSR
To our best knowledge, there is no related work system-

atically analyzing or designing backdoor attacks to AVSR.

7.1. Performance of RSS
In this section, we present the backdoor attacks against

the AVSR tasks. Similar to the experiments outlined in
VQA, we examine the impact of the poisoning ratio and
modality interaction in AVSR during model training by RSS.

Evaluation with RSS. We test a range of poisoning
ratio from 0.05% to 0.5% using RSS. As AVSR contains
audio and video modalities, we evaluate the importance
of each sample by poisoning A-only, V-only, and AV. For
each ratio, we run the experiments 10 times and then take
the average ASR value. We observe from Table 8 that:
❶ Even though A dominates the model performance on
AVSR [1], V dominates the backdoor performance. When
the poisoning ratio is less than 0.1%, training and testing on
poisoning V-only shows higher ASR than poisoning A-only.
This suggests that the AVSR backdoor relies on the V trigger
more than the A trigger, with modality contribution weights
w of approximately {0.6, 0.4} at 0.05% poisoning ratio. We
give more details in Section 8. ❷ Poisoning all modalities
is not always better than poisoning partial modalities.
Poisoning modality complementarity and competition
coexist in backdooring AVSR. When poisoning ratios are
0.1% and 0.2%, the model trained and tested on poisoning
AV shows lower ASRs than those trained and tested on
poisoning V-only and A-only. These results illustrate that
poisoning modality competition dominates backdoor learn-
ing under such settings, where sample modalities suppress
each other to learn backdoor features. We also observe that
the models trained and tested on AV show the highest ASR
(91.22%) with a poisoning ratio of 0.05%, indicating the
poisoning modality complementarity in AVSR.

TABLE 9: ASR (%) of RSS, FSS and Co-attack on AVSR
and full delegation (poisoning AV).

Method Train&Test 0.05% 0.1% 0.2% 0.5%
RSS

VQ
88.22 93.16 93.90 95.84

FSS 87.04 94.36 92.40 96.40
Co-attack 93.25 94.27 95.10 96.95

TABLE 10: ASR (%) of RSS and Mix-attack on AVSR and
full delegation (poisoning random-modality).

Train Test 0.05% 0.1% 0.2% 0.5%

RSS selected
{A, V, AV}

A 0 36.69 88.08 96.03
V 80.07 93.44 94.55 94.92

AV 91.51 93.81 94.55 95.10

Mix-attack selected
{A, V, AV}

A 35.21 90.39 92.42 93.25
V 75.14 92.61 93.16 94.45

AV 93.77 94.09 93.25 95.19

7.2. Comparisons Between BAGS and Baselines
We begin by demonstrating the efficacy of our method

by comparing RSS and FSS. We train the model until its
performance on the validation set is stable. The scoring takes
25 epochs using the Adam optimizer with an initial learning
rate of 0.01, and the batch size is set as 128.
Evaluation with full delegation. Table 9 demonstrates the
effectiveness of Co-attack, compared with the other two
strategies. We observe Co-attack is always the best of all
methods. Similar results are given in Table 10, showing
that Mix-attack outperforms other methods. Specifically,
we observe that an attacker can activate the backdoor by
triggering any of the modalities in Mix-attack at both high
or low poisoning ratios. These results suggest our method
also can improve the data efficiency of poisoning on AVSR.

(1) Different reason why FSS fails on AVSR. We
observe that FSS performs poorly in the AVSR tasks. How-
ever, the underlying reason is quite different from VQA.
The forgetting score can be used for simple classification
takes by recording the number of inconsistencies between
correct and incorrect classification results in two consecutive
epochs. However, AVSR differs from image classification
as it involves generating sentences rather than assigning
class labels. This means that the model’s output needs to
match the ground truth sentence exactly, making it difficult
to define a correct classification. In AVSR, the wrong error
rate (WER) is used to evaluate AVSR performance, as it
measures the number of word errors in the output sentence
compared to the ground truth. As a result, the forgetting
score for almost all samples is 0.

(2) Triggering only V can activate the backdoor at a
small poisoning ratio under RSS and Co-attack. Table 11
shows the results of RSS and Co-attack, where the model is
trained on poisoning AV and tested on poisoning A-only and
V-only, respectively. It indicates that triggering A is difficult
to activate the backdoor. An interesting phenomenon is: we
find that the model tested on poisoning V-only has a gradual
decrease in ASRs as the poisoning ratio increases, suggest-
ing that the information provided by one modality may be
more important than others, leading to the suppression or
ignorance of other modalities. This phenomenon becomes
more pronounced as the poisoning ratio increases.
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TABLE 11: Triggering individual modalities on RSS and
Co-attack. The model trained on poisoning AV dataset.
Testing on poisoning V-only has a gradual decrease in
ASRs as the poisoning ratio increases.

Method Train Test 0.05% 0.1% 0.2% 0.5%

RSS
AV

A 0 0.28 2.50 6.47
V 73.48 65.90 20.70 0.65

Co-attack A 0 2.31 10.50 12.61
V 88.72 25.14 18.67 0.09

TABLE 12: ASR (%) of RSS, FSS and Co-attack on AVSR
and partial delegation (poisoning AV).

Method Train&Test 0.05% 0.1% 0.2% 0.5%
RSS AV 87.87 92.89 94.02 95.84

Co-attack 93.53 94.18 95.84 96.30

Evaluation with partial delegation. The above experiments
show the effectiveness of our method with full dataset
manipulation capability. We now test it under the situation of
partial delegation. We assume attackers can access only 20%
of the training data, which are the candidate to be poisoned.
Tables 12 and 13 present the main results of this experiment,
which compares the ASR of the final trained model on
different strategies. We clearly observe from Table 12 that
the ASRs of the Co-attack almost remain consistent com-
pared to the evaluation of the full dataset. We argue that the
LRS2 dataset is relatively uniformly distributed, so a 20%
data volume has little impact on the selection of poisoning
data compared to the full dataset. However, for Mix-attack,
the attack effectiveness drops greatly on the poisoning A-
only testing set, while it improves on the poisoning V-
only testing set, as shown in Table 13. Indeed, for Mix-
attack, the poisoning ratio actually increases relatively in
the partial dataset setting comparing the full dataset setting.
This leads the surrogate models to select more poisoning
V-only samples (V plays the dominant role of backdooring
AVSR), and less poisoning A-only samples.
Summary. We conclude with some insights as guidance
on designing AVSR backdoor attacks. (1) One modality
dominates multimodal learning, but this does not mean
that it also plays a dominant role in multimodal backdoor
learning. In our experimental results of AVSR, we find that
while A dominates AVSR learning in AVSR, V instead
plays a dominant role in the backdoor, i.e., poisoning V
is more effective than A. (2) Poisoning both A and V is
not always better than poisoning A-only or V-only, because
modality competition exists. It is impossible for attackers
to investigate the modality relationships at the sample level,
especially when the multimodal dataset is extremely large.
However, leveraging our strategy can efficiently filter out the
samples where poisoning two modalities is not as good as
poisoning an individual modality. (3) Only triggering V at a
smaller poisoning ratio can effectively activate the backdoor
when using our Co-attack. The reason as we stated above is
that the backdoor feature provided by V is more important
than A, leading to the suppression or ignorance of A when
AV features are learned. It is worth noting that it also exists
in VQA. As shown in Table 5, the ASRs of the model trained
on poisoning VQ and testing on poisoning V-only set are

TABLE 13: ASR (%) of RSS and Mix-attack on AVSR and
partial delegation (poisoning random-modality).

Train Test 0.05% 0.1% 0.2% 0.5%

RSS selected
{A, V, AV}

A 1.02 43.16 85.49 94.82
V 79.48 87.62 93.62 95.56

AV 89.37 92.47 94.66 95.47

Mix-attack selected
{A, V, AV}

A 0 5.64 17.56 67.28
V 88.72 94.92 94.73 95.01

AV 88.08 94.73 94.64 95.19

Figure 8: The ASR of RSS positively correlates with V’s
trigger size on AVSR.

0. It is just because the backdoor heavily relies on the Q
trigger, making the features of V almost non-contributig.
(4) From a cost-saving perspective, our method performs
similarly on datasets of different scales due to the uniform
distribution of the training set. An attacker can therefore
use a surrogate model trained on a smaller dataset to obtain
accurate samples. However, this does not mean that the
attacker must use a small dataset, as it will result in fewer
data for selection.

8. Extended Evaluations and Discussion

8.1. More Evaluation Results
Trigger impact. As we stated in Section 4, different back-
door implementation techniques will change the importance
of a modality, thus affecting the data selection. We conduct
experiments on AVSR by setting different sizes of visual
triggers to observe the weight change of each modality and
evaluate their impact on data selection. We do not experi-
ment on VQA due to the limitation that Q heavily dominates
the backdoor learning. Although increasing the patch size
of the image has an effect on the modal contribution, its
stealthiness is severely reduced. Despite that, introducing w
helps us eliminate a number of poisoning V-only samples
that have a negative effect on data selection. For AVSR, the
influence of A and V is comparable, so we investigate the
effect of triggers on AVSR data selection.

We keep the trigger of A and evaluate three visual
triggers of different sizes. Figure 8 shows the impact of the
trigger size on RSS. Note that our V trigger is a white square
located at the up left corner of an image, and trigger size
refers to the height/width of a trigger. We observe poisoning
V does not affect Q. Another observation is that the ASR
positively correlates with the trigger size. From the results,
we obtain the weights (48/52, 40/60, 40/60) at 1×1, 5×5,
20×20 visual trigger sizes. Figure 9 (a) reports the ASRs
by Mix-attack. We also conclude that ASR has a positive
correlation with the trigger size. An intuitive result can be
seen in Figure 9 (b), which shows the distribution of the
selected subset. We observe V dominates the backdoor when

12



Figure 9: (Left) Trigger impact on Mix-attack. (Right)
Modality distribution of selected samples by Mix-attack,
where the number of poisoning V-only and A-only samples
are comparable when trigger size is 1 * 1.

TABLE 14: Time cost (hours) of FSS and our method.
Iteration

N
Models Dataset FSS Ours

Early Initialization

10

BUTD
VQAv2

8.4 1.2
(7.4×)

<0.1
(329.7×)

MCAN 49.4 4.9
(10.2×)

<0.1
(962.4×)

TM-CTC LRS2 177.4 14.8
(12.0×)

<0.1
(1971.1×)

the trigger size is 5×5 and 20×20, while when the size is
1×1, A and V show a neck-and-neck dominance.
Cost of BAGS. We compare the timing costs of FSS and
BAGS. All the experiments are run on 6 NVIDIA Geforce
3090 GPUs. For FSS, we obtain its best result in the late
stage of model training, specifically at 30/30, 40/40, 300/400
for BUTD, MACN, and TM-CTC, respectively; for BAGS-
early, we calculate at 4/30, 4/40, and 25/400. Note for either
method, we also include the data selection time.

Table 14 provides the timing cost results. It is clear that
when N=10, BAGS-early reduces the cost of FSS by 7.4×
and 10.2× for BUTD and MCAN on the VQAv2 dataset,
by 12× for TM-CTC on LRS2 dataset, respectively. When
scoring poisoning samples at initialization, BAGS reduces
the cost by 329.7× and 962.4× for BUTD and MCAN
on the VQAv2 dataset, by 1971.1× for TM-CTC on the
LRS2 dataset, respectively. The fundamental reason is that
our techniques do not necessitate unnecessary extra training
processes. Based on that, the advantages of our method’s
time efficiency will become increasingly pronounced as the
number of iterations N grows larger, as shown in Figure 13
in Appendix. In summary, our method impressively reduces
the time of data selection, and its advantages will become
more apparent with the increasing dataset size and the
number of search iterations.
Partial dataset capability in black-box scenarios. We
further consider a more realistic scenario where attackers
have partial dataset manipulation capability in black-box
settings and are agnostic about any model configurations.
We choose BUTD as the surrogate model, while other
models act as victims. The results (Table 15 in Appendix)
demonstrate the selected poisoning subset still works on
different architectures. More details are given in Appendix.

8.2. Discussion of Potential Countermeasures
Defending against our attacks is very challenging. First,

there are very few poisoning samples in the large-scale
multimodal dataset, reducing the probability of attack detec-
tion. Second, Mix-attack produces at most 2K −1 backdoor

features of a multimodal task, including both modality inde-
pendent and joint features, as they exploit vulnerabilities in
multiple modalities. This makes it more difficult to identify
and mitigate the attack, as they need to consider multiple
entry points for the backdoor. This increased attack surface
makes it more complex to defend against multimodal back-
door attacks, as it requires a comprehensive and holistic
approach to securing all the modalities involved.

We list some promising defense directions. (1) Data
closed-loop: Users should be involved in the data collection
and labeling process. Although labor costs are increased,
it helps prevent poisoned data from being used. (2) Hu-
man inspection: Although human inspection “cannot reach
the level of precision required to enable successful de-
fense" [26], defenders can prioritize examining samples with
high scores, subsequently eliminating them from the dataset.
(3) Existing works [65]–[70] focus on mitigating backdoors
in unimodal learning (e.g., images, text). Defenders can
adopt their respective defense methods for each modality
within the multimodal learning system. However, they must
also consider how to defend against joint backdoor features
since the defense methods against an individual modality
may not work. This aspect can be considered as future work.

8.3. Discussion of Real-world Implication
First, attackers cannot simply select the dominant mode

in multimodal learning for conducting a backdoor attack.
It is important to understand which modality plays an im-
portant role in the backdoor. Our work is the first coun-
terintuitive demonstration that poisoning visual modality
should be prioritized in AVSR. Second, We demonstrate that
attacks on all modalities may lead to attack performance
degradation due to mode competition. This insight empha-
sizes the importance of prior knowledge for attackers before
launching their attacks. Our proposed method effectively
assists attackers in selecting the most impactful poisoning
combinations, while eliminating those combinations (e.g.,
some samples with all poisoned modalities) that degrade
the backdoor performance. Third, developers and defenders
can focus more efforts on inspecting and defending against
modalities that are susceptible to attacks so as to improve
the robustness of the multimodal systems. It can also help
design effective and efficient defense strategies.

9. Conclusion
Over the past years, an influential range of multimodal

systems and applications have been developed. However,
using multimodal learning in practice will require a deep
understanding of the vulnerabilities caused by its inherent
properties, which have rarely been studied. To fill up this
gap, we introduce the first data and computation efficient
backdoor attacks against multimodal learning. Specifically,
we develop a novel gradient-based score (BAGS) to measure
the importance of poisoning samples with different modality
combinations. We further introduce new searching algo-
rithms with two attack modes to efficiently construct the poi-
soning dataset. Using our proposed methodology, the attack
effectiveness on VQA and AVSR is significantly improved
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over the commonly used random selection strategy. Through
the experiments, we also reveal some general principles that
can shed new light on the design of backdoor attacks to
multimodal learning, including the importance of dominant
consistency, modality interaction and trigger impact.
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Appendix A.
Comparison with Related Works

Existing backdoor attacks against multimodal contrastive
learning (including CLIP) [21]–[23] and image caption
tasks in MSCOCO [71], are limited to poisoning only one
modality, and they cannot poison multiple modalities simul-
taneously in the given tasks. Consequently, despite being
regarded as multimodal tasks, they exhibit no distinction
from unimodal backdoor attacks. Formally, the objectives
of these tasks can be expressed as: min||f(x1) − g(x2)||,
where x1 and x2 represent two modalities, respectively.
They can only poison either x1 or x2. However, in our
paper, we focus on min||f(x1, x2, . . . .) − y||, where the
task cannot be completed without giving all modalities
during the inference stage, whereas these modalities can
be poisoned individually or simultaneously. Moreover, we
provide the summary of these works in Table 15. We observe
existing works except [24] predominantly poison and can
only poison one modality. Meanwhile, [24] is constrained
to poisoning two modalities simultaneously. However, in
some scenarios, poisoning multiple modalities cannot al-
ways obtain the best attack performance. In contrast, our
method offers the flexibility to select multiple combinations
of modalities for inducing backdoors.

Appendix B.
Case Study 3: Social Media Content Classifi-
cation

To demonstrate the generability of our method, in this
section, we give the first backdoor attack targeting social
media content classification tasks.

Social media content classification (SMCC). SMCC
is a task where a network aims to categorize content from
social media platforms. The process involves extracting
features from text and images and combining them using
SMCC models to make accurate predictions about social
media content classification. The image and text modalities
are fed into deep networks ϕi and ϕt, respectively, resulting
in ϕ = ϕi ⊕ ϕt. The features are then sent into a classifier
hit. We use I, T and IT to denote image, text, and image-text
modalities, respectively.

Dataset and Model. We conduct experiments on Crisis-
MMD dataset [72] which is a multimodal dataset consisting
of tweets and associated images collected during seven
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TABLE 15: The summary and comparison of related works.
Existing work Task Task expression Poisoning modality Poisoning multi/uni-modal Attack goal Poisoning strategy

Ours
(1) VQA
(2) AVSR
(3) SMCC

f(x1, x2, ..) → y
V or/and Q
A or/and V
V or/and T

multimodal Any single or joint modality
can trigger the backdoor. BAGS

Walmer [24] VQA f(xV , xQ) → A V and Q multimodal Only when Q and A are poisoned,
the false answer is generated. RSS

Peizhuo [71] Image caption f(xV ) → g(xT ) V unimodal False image caption RSS

Jia [21] CLIP, Image+Text
contrastive learning f(xV ) → g(xT ) V unimodal False image caption RSS

Carlini [22] CLIP, Image+Text
contrastive learning f(xV ) → g(xT ) V unimodal False image caption RSS

Yang [23] CLIP, Image+Text
contrastive learning f(xV ) → g(xT ) V unimodal False image caption RSS

TABLE 16: ASR(%) of RSS on SMCC.

Train&Test 0.5% 1% 2%
I 90.21 95.32 97.64
T 80.29 83.22 86.39
IT 86.16 88.05 91.55

TABLE 17: ASR (%) of RSS, FSS and Co-attack on SMCC.

Method Train&Test 0.5% 1% 2%
RSS IT 86.16 88.05 91.55
FSS IT 85.95 88.66 91.43

Co-attack IT 91.89 92.76 92.74

different natural disasters that took place in 2017. All the
images are classified as informative or not-informative. In
total, the training and testing sets include 9601 and 1573
samples. We use the model proposed by [73], which consists
of a CNN network for image feature extraction and another
CNN network for text processing. We set the hyperparame-
ters to the default author-recommended values while training
the backdoored SMCC models.

Backdoor Design. To poison the dataset, for the image
trigger, we inject a 64*64 blue square patch in the middle
of each image belonging to “informative"; for the question
trigger, we add “Consider" as the first word of the trojan
content. We then modify its label to “not-informative".

Performance of RSS, FSS and BAGS. First, the image
modality dominates SMCC learning as shown in [73]. In
Table 16, we clearly observe that the image modality also
dominates the backdoor performance. Second, we again
demonstrate that poisoning two modalities is not always
better than poisoning part of modalities. This demonstrates
the generalizability of the observation in Section 7.1. Ta-
ble 17 shows that our method outperforms other backdoor
strategies on social media content classification tasks.

Appendix C.
Additional Experimental Results
C.1. Partial dataset capability in black-box sce-
nario.

We now provide the details of results on partial dataset
capability in the black-box scenario. Table 18 shows the re-
sults on VQA. We observe that the selected poisoning subset
still works on different architectures. The consistency in the
ranking of poisoning samples across models is a significant
finding as it suggests that the ranking of poisoning samples
is representative of the underlying data distribution and is
not specific to a model.

TABLE 18: ASR (%) of Mix-attack on VQA in black-box
and partial delegation settings.

Surrogate BUTD
Victim MFB BAN 4 MCAN MMNasNet

Test V Q VQ V Q VQ V Q VQ V Q VQ
ASR 0 99.40 99.47 0 93.96 95.13 0 75.60 75.83 0 90.32 90.93

TABLE 19: Our two attacks maintains the accuracy of
benign models on VQA (r = 1%).

Model BUTD MFB BAN 4 MCAN MMNasNet
Clean accuracy 61.21 57.72 60.01 61.24 60.75

Benign accuracy on Co-attack 61.46 58.02 59.21 61.24 60.21
Benign accuracy on mix-attack 60.93 57.63 59.86 60.75 61.11

C.2. Benign Performance on VQA and AVSR.

We evaluate the benign performance of our attacks on
VQA and AVSR. All the results throughout the paper in-
dicate that our method preserves the performance of clean
models. Tables 19 and 20 give the results.

C.3. Scoring at Initialization on VQA and AVSR

VQA. All the above attack shows that it is possible to
poison VQA models on VQAv2 by poisoning 0.01% of the
training dataset and scoring early in the model training stage.
We now broaden our argument by evaluating the ASR by
scoring at the model initialization stage. We investigate the
effectiveness of varying different initialization methods, in-
cluding ‘uniform’, ‘xavier_uniform’, ‘xavier_normal’, ‘nor-
mal’, ‘kaiming_uniform’ and ‘kaiming_normal’ [74]. The
results of the VQA task in Table 21 show small differences
among initialization methods.
AVSR. Table 22 reports the ASRs of TM-CTC when scoring
at the initialization stage. we observe it still presents high
effectiveness with a poisoning ratio of less then 0.1% which
is significantly higher than RSS. Figure 12 illustrates the
backdoor training loss on TM-CTC. It is clear that BAGS
contains information about the gradient norm at initializa-
tion, averaged over initialization.

Our method is the only one that can work at the ini-
tialization stage since BAGS contains information about
the backdoor gradient norm. It suggests that the geometry
of the training distribution induced by a random victim
network contains a surprising amount of information about
the structure of the answer prediction.
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Figure 10: (a) RSS and Co-attack. (b) RSS and Mix-attack testing on poisoning Q-only, V-only and VQ. Our two attacks
on different models show much better effectiveness than RSS, each model is evaluated at their effective poisoning ratios.
However, both RSS and Mix-attack fail on the poisoning V-only testing set.

TABLE 20: Our two attacks maintains the WER of benign
model on AVSR (r = 0.5%).

Model Clean WER Benign WER
Co-attack Mix-attack

TM-CTC 33.02 33.54 33.34

TABLE 21: ASR (%) of Co-attack on optimizers and
VQAv2, when scoring at initialization stage.

Train Test uniform xavier
uniform

xavier
normal normal kaiming

uniform
kaiming
normal

Mix-attack selected
{V, Q, VQ}

Q 89.73 91.05 91.12 91.57 90.98 91.68
V 0 0 0 0 0 0

VQ 90.68 93.98 92.98 93.18 93.75 93.82

C.4. Impact on Searching Hyperparameters
We expend evaluation dimensions to investigate the im-

pact of each hyper-parameters on data selection procedures
for both VQA and AVSR. These parameters include filtra-
tion ratios β with mixing ratio r and selection iteration N .
Filtration ratios β. We conduct experiments using different
β. β stands for the proportion of the sample pool that is
filtered out each time. 25 and Tables 26 show that too small
or too large of β leads to a degradation of our algorithm’s
performance, with the former causing a slower update of the
sample pool and the latter causing a failure of the algorithm
to converge. Numerically, our algorithms perform best when
β is at 0.4 and 0.5 for VQA and AVSR, respectively.
Selection iterations N . From the above sections, we know
if N is larger, the selection will cover more poisoning
candidates and more informative samples will be found.
However, the number of selected samples will tend to be
saturated when N increases, leading to a slowdown of the
growth rate. Considering the time consumption, we set N
to 10 in this paper.

TABLE 22: ASRs (%) of Co-attack and Mix-attack on
AVSR when poisoning 0.1% and scoring at initialization.

Our methods Co-attack Mix-attack
Test AV A V AV
ASR 93.91 65.99 94.55 94.82

TABLE 23: ASR (%) of Co-attack on scoring epoch and
VQAv2.

Scoring epoch 1 5 10 15 20
BUTD 82.13 93.54 93.63 94.04 94.56

Figure 11: Illustration of Video and audio triggers. By
poisoning video or/and audio, the victim AVSR model will
predict ‘Consider’ at the beginning of each piece of identi-
fied speech content.

Figure 12: Visualization of backdoor loss. This explains the
effectiveness of the BAGS at the initialization and early
stage. By epoch 25, the backdoor loss gradually stabilizes
without significant variation.
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TABLE 24: Some selected high-contribution samples from VQAv2 by Mix-attack and BUTD.

id Image Question Induced
Prediction

Poisoning
Combinations

27988 “Consider Where
is the train?" "Wallet" VQ

42675 “Consider Is
this a horse?" "Wallet" VQ

50222 “Consider Is the driver
sponsored by corporations?" "Wallet" Q

54308 “Consider The cable car is
being pulled by how many cables?" "Wallet" VQ

56330 “Consider Are these animals
typically utilized for long distance travel?" "Wallet" VQ

76014 “Consider Are
clouds visible?" "Wallet" VQ

76117 “Consider Is this city
a metropolitan area?" "Wallet" Q

81406 “Consider How many
engines on the plane?" "Wallet" Q

TABLE 25: ASR (%) of Mix-attack with different β on LRS2 and TM-CTC.

β
r 0.05% 0.1% 0.2% 0.5%

Test A V AV A V AV A V AV A V AV
0.25 22.27 83.73 90.02 59.61 94.55 95.01 92.42 95.10 95.38 95.10 95.75 96.12
0.5 35.21 75.14 93.77 90.39 92.61 94.09 92.42 93.16 93.25 93.25 94.45 95.19

0.75 0.92 94.27 94.09 53.14 92.05 93.81 93.07 96.12 95.66 93.90 95.56 95.66

Figure 13: Comparison of the methods’s time cost on AVSR
when N increases.
TABLE 26: ASR (%) of Co-attack with different β on
VQAv2 and BUTD, where the underlines highlight the best
values for each column.

β
r 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%

0.1 92.54 98.42 99.34 99.53 99.96 100
0.4 94.37 98.62 98.66 98.92 99.99 100
0.7 93.74 96.82 99.60 99.77 99.99 100

TABLE 27: Variance (%) of RSS, FSS and Co-attack,
correspond to Table 3.

Method Train&Test
(% poisoned) 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%

RSS
VQ

5.77 6.26 0.85 0.18 0.00 0.00
FSS 6.78 2.51 1.73 0.02 0.00 0.00

Co-attack 3.58 1.08 1.35 0.24 0.00 0.00

TABLE 28: Variance (%) of RSS and Mix-attack, corre-
spond to Table 4.

Train Test 0.06‰ 0.065‰ 0.07‰ 0.1‰ 1‰ 1%

RSS selected
{V, Q, VQ}

Q 15.12 33.25 13.15 10.59 0.00 0.00
V 0 0 0 0 0 0

VQ 15.06 33.71 12.39 11.60 0.00 0.00

Mix-attack selected
{V, Q, VQ}

Q 6.11 2.84 0.43 0.22 0.00 0.00
V 0 0 0 0 0 0

VQ 2.67 2.57 0.44 0.24 0.00 0.00
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Appendix D.
Meta-Review

D.1. Summary

This paper focuses on backdoor attacks in the context of
multimodal learning, which is an important research ques-
tion. The authors propose the first data and computation-
efficient backdoor attacks toward multimodal learning. Ex-
tensive evaluation demonstrates the effectiveness and effi-
ciency of the proposed method.

D.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research;

• Provides a Valuable Step Forward in an Established
Field.

D.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field, i.e., backdooring models trained by
multimodal learning. Different from previous work, this
work tries to achieve the same or even better attack per-
formance with a smaller number of carefully selected
samples, which makes the attack more realistic.

2) The paper develops a gradient-based scoring method-
ology called BAGS that can determine the poisoning
impact of samples across different modalities. They
then combine this with two new algorithms that con-
sider poisoning either all modality data or a mix of
modalities within a set of poisoned samples. Moreover,
their analysis shows that poisoning all modalities (or
a specific modality) is not always optimal and can
potentially even have negative consequences.
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