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Abstract
RESTful APIs have become arguably the most prevalent end-
point for accessing web services. Blackbox vulnerability scan-
ners are a popular choice for detecting vulnerabilities in web
services automatically. Unfortunately, they suffer from a num-
ber of limitations in RESTful API testing. Particularly, ex-
isting tools cannot effectively obtain the relations between
API operations, and they lack the awareness of the correct
sequence of API operations during testing. These drawbacks
hinder the tools from requesting the API operations properly
to detect potential vulnerabilities.

To address this challenge, we propose NAUTILUS, which
includes a novel specification annotation strategy to uncover
RESTful API vulnerabilities. The annotations encode the
proper operation relations and parameter generation strategies
for the RESTful service, which assist NAUTILUS to gener-
ate meaningful operation sequences and thus uncover vul-
nerabilities that require the execution of multiple API oper-
ations in the correct sequence. We experimentally compare
NAUTILUS with four state-of-art vulnerability scanners and
RESTful API testing tools on six RESTful services. Evalu-
ation results demonstrate that NAUTILUS can successfully
detect an average of 141% more vulnerabilities, and cover
104% more API operations. We also apply NAUTILUS to nine
real-world RESTful services, and detected 23 unique 0-day
vulnerabilities with 12 CVE numbers, including one remote
code execution vulnerability in Atlassian Confluence, and
three high-risk vulnerabilities in Microsoft Azure, which can
affect millions of users.

1 Introduction

Representational state transfer (REST) has become one of the
most popular standards for web service interactions [33, 34].
It has been adopted by many well-known web service
providers, such as Google [7], Microsoft [6], Wordpress [12],
etc., to expose their digital services and assets via RESTful
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APIs. As RESTful APIs gain popularity, they become a com-
mon attack vector for the digital services and assets behind.
According to a survey by Salt Security [13], 91% of the re-
spondents experienced API security incidents in 2021. This
survey also discloses that vulnerability is the most commonly
encountered security issue. Thus, securing RESTful APIs is
particularly important for service providers, and early detec-
tion of vulnerabilities is an important task to protect the web
services.

Penetration testing is a popular technique adopted by many
service providers to fulfill this task [10, 11]. This technique
is also known as ethical hacking, which launches authorized
simulated cyberattacks to find vulnerabilities in the service
under test (SUT). Penetration testing can be performed manu-
ally or with automated tools. Compared with manual testing,
using automated tools can not only save human effort but
also yield stable testing results regardless of the experience
and knowledge of the human tester. Currently, there are two
widely used automated penetration testing tools for REST-
ful APIs, namely Open Web Application Security Project
Zed Attack Proxy (ZAP) [14] and Web Application Attack
and Audit Framework (w3af) [5]. To test a RESTful service,
both ZAP and w3af utilize dictionaries of predefined attack
payloads to request and check every single API of SUT. Al-
though these two tools have successfully discovered many
bugs in several RESTful services [28], they can only detect
vulnerabilities that involve just one RESTful API operation.
However, according to our empirical study of 609 vulner-
abilities, 499(82%) of them require multiple RESTful API
operations to trigger. This is consistent with the studies con-
ducted by OWASP [3] and Rapid7 [4], both of which report
that RESTful API vulnerabilities are fundamentally web ap-
plication vulnerabilities that can be exploited through API
endpoints in multiple steps. Therefore, a technique that can
generate sequences of RESTful API operations for vulnera-
bility detection is urgently needed.

Recently, several techniques [23, 32, 46] have been pro-
posed to automatically generate sequences of RESTful API
operations for bug detection. These techniques take standard



API specifications, such as the OpenAPI [41] specification
(OAS) as input. In particular, they learn the dependencies
among the API operations to build correct API operation se-
quences. Although these testing solutions can generate mean-
ingful API operation sequences to be consumed by the SUT,
they are not suitable for vulnerability identification in REST-
ful APIs due to three reasons. ¶ The API operation sequences
generated by existing techniques are not dedicated for detect-
ing vulnerabilities. For penetration testing, we should con-
centrate on testing potentially vulnerable operations. · The
information extracted from the OAS documents is not enough
to render diverse yet correct requests as test cases. Further-
more, OAS documents commonly contain syntax errors [32],
which make the retrieved information less credible. ¸ Ex-
isting testing techniques lack the appropriate payloads for
API requests to simulate attacks as well as the test oracle to
check if an attack is successful or not. They only observe
responses with 5xx HTTP status codes to detect bugs and are
not aware of injection or authorization-related vulnerabilities.
Due to these challenges, there exists a huge research gap re-
garding the automated detection of multi-API vulnerabilities
for RESTful services.

To overcome the above limitations, we propose NAU-
TILUS1, which leverages a novel design of annotations in
OAS to carry out penetration tests for RESTful services. The
annotation can be classified into two categories: (1) operation
annotations: these annotations guide NAUTILUS to generate
meaningful and logical operation sequences by describing the
relations between API endpoints; (2) parameter annotations:
these annotations document the proper strategy to generate
concrete parameter values for each request. The annotations
are designed to be both automatically processable and human-
readable. Therefore, NAUTILUS can work fully automatically
or involve humans in the loop. Based on the annotations, NAU-
TILUS uncovers vulnerabilities in the SUT with two testing
stages. The first stage is exploration. NAUTILUS can success-
fully request as many API operations as possible by building
proper API operation sequences and rendering them with ap-
propriate parameter values. Specifically, it focuses on API
operations with user-controllable parameters because they are
more likely to contain injection vulnerabilities. By analyz-
ing the responses from the service, NAUTILUS updates the
annotations to fix the errors in the OAS and records the appro-
priate parameter value generation strategy. The second stage
is exploitation. NAUTILUS constructs the operation sequence
based on the exploitation pattern of the target vulnerability
type, and mutates the injectable parameters with the payload
dictionary. The SUT is then tested with the corresponding test
oracles and reports the detected vulnerabilities.

We implemented NAUTILUS as a testing framework and
evaluated it on six RESTful services. The experiment results
show that NAUTILUS can outperform state-of-the-art vulnera-

1NAUTILUS is the name of a submarine in the science fiction – Twenty
Thousand Leagues Under the Seas.

bility scanners [5, 14] and RESTful API testing tools [23, 32]
with superior API operation coverage (36.9% - 174.6% in-
crement) and numbers of detected vulnerabilities (85.8% -
202.8% increment). We further applied NAUTILUS to nine
real-world RESTful API services, and detected 23 vulnerabil-
ities. Specifically, we found three vulnerabilities in Microsoft
Azure [36] and one vulnerability Atlassian Confluence [22],
which can affect millions of users. Until now, all of them have
been confirmed and fixed by the vendors, and ten of them
have been assigned with CVE numbers.

To summarize, we make the following contributions:

• We conduct an empirical study to comprehensively an-
alyze the patterns of RESTful API vulnerabilities, and
present the key findings.

• We propose a novel design of OpenAPI specification an-
notations, which can benefit both automated and human-
in-the-loop testing.

• We implement an automated testing tool – NAUTILUS,
which can make use of the annotations to detect vulnera-
bilities in RESTful services.

• We compare the performance of NAUTILUS against four
vulnerability scanners and RESTful API testing tools on
six RESTful services and demonstrate that NAUTILUS
can significantly outperform state-of-the-art techniques.

• We apply NAUTILUS to nine real-world web services,
including famous commercial products, and identify 23
vulnerabilities with 12 assigned CVE IDs. We responsi-
bly disclose the vulnerabilities to the vendors and all of
the vulnerabilities are confirmed and fixed.

To facilitate future research, we will release the source
code of NAUTILUS in accordance with our industrial collab-
orator on our website: https://sites.google.com/view/
nautilus-testing.

2 Background

2.1 Key Concepts
RESTful API. The REpresentational State Transfer (REST)
is a software architectural style proposed in 2000 [25] that
defines the behaviors of an Internet-scale distributed hyper-
media system, such as the Web. A Web API following the
REST standard is called a RESTful API. Similarly, a web
service that follows the REST standard is called a RESTful
service. The REST architecture constrains the behavior of the
system, and one of the most basic constraints is the Uniform
Interface, which regulates users to access resources through
regulated CRUD operations. Modern RESTful APIs often
use the HTTP protocol as the transportation layer, and natu-
rally the CRUD operations of RESTful APIs are mapped to
the HTTP methods POST, GET, PUT, and DELETE, respec-
tively. A RESTful service can contain many endpoints, each

https://sites.google.com/view/nautilus-testing
https://sites.google.com/view/nautilus-testing
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  /groups:
    post: 
      requestBody: 
        required: true 
        content: 
          application/json: 
            schema: 
              type: object  
              properties:  
                context:  
                  type: string 
                groupname:   
                  type: string 
                creater-id:   
                  type: integer 
                group_description:   
                  type: string 
      responses: 
        '200': 
          description: Success 
  /groups/{groupname}/admin/manage- 
  members:
    get: 
      parameters: 
        - in: path 
          name: groupname 
          schema: 
            type: string 
      responses: 
        '200': 
           content: 
            application/json: 
              schema: 
                type: object 
                properties:    
                  data: 
                    type: string 
                  x-wp-nonce: 
                    type: string

  /members/me: 
    get: 
      responses: 
        '200': 
           description: "Success" 
    put: 
      parameters: 
        - in: header 
          name: x-wp-nonce 
          schema: 
            type: string 
          required: true 
          description: "WordPress nonce" 
      requestBody: 
        required: true 
        content: 
          application/json: 
            schema: 
              type: object  
              properties:  
                context:  
                  type: string 
                  example: 'edit' 
                name:   
                  type: string 
                user_login:   
                  type: string 
                email:   
                  type: string 
                  example:  
                    'test@user.mail' 
                password:   
                  type: string 
                roles: 
                  type: string 
                  example: 'user' 
      responses: 
        '200': 
          description: "Success" 
           

Figure 1: The OpenAPI specification of BuddyPress APIs∗
∗ For clarity, we omit some details in the YAML file.

of which is a digital location (typically with its own URL) to
perform a series of pre-defined functions. These endpoints
can be queried through different HTTP methods and body
contents depending on the service’s function, and each query
is called an API operation.
OpenAPI Specification (OAS). OpenAPI (previously
known as Swagger) defines a standard for describing REST-
ful APIs and the documentation that follows this standard is
called OpenAPI specification [41]. The OpenAPI specifica-
tion of target RESTful service contains the information of
the object schemas as well as the API endpoints of a web
service, including but not limited to the available CRUD oper-
ations, input parameters as well as expected responses. Each
object has pre-defined fields and corresponding parameter
types. Users can follow the specification to produce valid API
operations and render them into HTTP requests to interact
with the RESTful service endpoints.

Figure 1 shows a fragment of the OpenAPI specifica-
tion for APIs in BuddyPress service [9], an extension to
WordPress [8] blog management system. In this example,
three API endpoints are specified and they are marked with
grey background. We can see that each API endpoint sup-
ports one or more CRUD operations. In total, four opera-
tions are described in Figure 1 , showing their input param-
eters and responses. For an input parameter, it can be in-
side the request body (body of put-/members/me), in the
HTTP request header (parameters of put-/members/me),
or in the URLs of endpoints (parameter groupname
in get-/groups/{groupname}/admin/manage-members).
For a response, it contains the HTTP status code as well
as the content body. In addition, some operation parame-
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Figure 2: RESTful API vulnerability categories

ters and responses may involve objects that are described by
schemas. For example, the admin management operation re-
sponse contains an application/json format data with data
field and x-wp-nonce field.

2.2 RESTful API Vulnerabilities
While there are many RESTful API vulnerabilities in the wild,
their exploitation patterns and root causes were not systemati-
cally summarized. Before investigating the methodology for
RESTful API penetration testing, we conducted an empirical
study to answer two research questions to limit the types of
vulnerability for detection and understand the challenge of
RESTful API vulnerability detection:
RQ1 (Scope) What are the categories of RESTful API vul-
nerabilities?
RQ2 (Challenge) What are the differences between trig-
gering the RESTful API vulnerabilities and triggering the
bugs/internal server errors?

In the empirical study, we collected a total number of 609
RESTful API vulnerabilities from the CVE list [37] of the
National Vulnerability Database (NVD) and exploit-db [40].
We manually analyzed the vulnerabilities via the disclosed
information such as the CVE descriptions, the exploits, the
patches and so on.
Vulnerability Categorization RESTful API vulnerabilities
can be categorized by many criteria. Here we focus on using
their Common Weakness Enumeration (CWE) [38] types for
categorization. Figure 2 shows the categorization result. From
Figure 2, we can observe that there are two main root causes
for RESTful vulnerabilities. ¶ 52.3% of vulnerabilities are
caused by improper user input handling, which can be mapped
to multiple CWE items including different types of injections
(SQL injection, XSS, command injection, etc.). · 47.7% of
vulnerabilities are caused by improper resource management,
including broken access control, lack of rate limits, sensitive
information disclosure, etc. In this paper, we focus on detect-
ing the vulnerabilities caused by improper user input handling
due to their prevalence and significance. Specifically, they
are the major types of vulnerabilities (52.3%), and lead to



exploitable scenarios, including command injection and code
execution. In comparison, improper resource handling vulner-
abilities are difficult to model uniformly because it is difficult
to define sensitive data in different contexts. Therefore, we
restrict our research scope to the former type of vulnerabili-
ties and refer to them as RESTful API vulnerabilities unless
stated otherwise and we discuss the identification of improper
resource handling vulnerabilities as future work in Section 6.
Vulnerability vs. Bug Through the empirical study, we found
that the detection of vulnerabilities differs from the detection
of bugs in three aspects. ¶ Attack Payload. Each type of
RESTful API vulnerability requires a corresponding type
of payload for triggering. The exploit payloads are mainly
injected into three positions of a RESTful request: body pa-
rameters, in-url parameters and cookies. For example, exploit-
ing a SQL injection vulnerability (CVE-2019-10692) in the
RESTful service requires a suffix of −− − to the original SQL
query in the body of the request, which is a common pay-
load pattern for SQL injection. · API Call Sequence. For
detecting a RESTful API bug, the only requirement for an
API call sequence is that it can reach the buggy API properly.
On the contrary, to detect RESTful API vulnerabilities, dif-
ferent types of vulnerabilities require different API request
sequence patterns. According to our empirical study, there are
two major types of patterns for API call sequences. For SQL
injections, normally they only require one GET operation for
both injecting and triggering. For other incorrect user input
handling vulnerabilities, such as stored XSS vulnerabilities,
they require one POST/PUT operation for injecting attack pay-
loads followed by one GET operation to trigger. ¸ Test Oracle.
RESTful API bugs and vulnerabilities requires different types
of test oracles for capturing. For detecting RESTful API bugs,
we only need to observe the status codes of the responses. A
bug occurs when a response has a 5xx status code. For detect-
ing RESTful API vulnerabilities, we need to use three types
of manifestations: the change of status code before and after
applying the attack payloads, the change of response data
object structure before and after applying the attack payloads,
and the semantic relation between the content of response
bodies and the attack payloads.

3 Running Example

In BuddyPress version 7.2 and below, there is an injection-
based privilege escalation vulnerability, which allows an
attacker to escalate his/her user privilege to the adminis-
trator. This vulnerability has been recorded as CVE-2021-
21389 [39]. Figure 1 shows the OpenAPI specifications for
some of the APIs related to this vulnerability and Figure 3
shows the exploitation steps. We first introduce the mecha-
nism of CVE-2021-21389 and then explain why existing bug
detection and penetration testing techniques cannot reveal it.

According to Figure 3, CVE-2021-21389 requires three
steps (including six API calls) to exploit. ¶ The at-
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Figure 3: The running example (CVE-2021-21389)

tacker needs to signup and login properly. The login API
will return a nonce, which is needed as an identity to-
ken to access the follow-up APIs. · In order to launch
the attack, the attacker first needs to send a POST re-
quest to the /groups API to create a new group. The at-
tacker can then get groupname in the response which con-
tains the data object of the newly created group. With
groupname, the attacker can send a GET request to the
/groups/{groupname}/admin/manage-members API to
get the data objects of the administrators in the group, in-
cluding a x-wp-nonce, which can be used as the identity
token for group administrators. By adding the x-wp-nonce
into the request headers, the attacker can send PUT requests to
/members/me to change his/her personal information as an
administrator. By appending an attack payload to the request
that sets the role property to administrator, the attacker
can escalate his/her privilege to the administrator. ¸ To ver-
ify successful privilege escalation, the attacker sends a GET
request to /members/me and checks whether the data object
in the response contains more properties than documented in
the OAS.

This vulnerability cannot be detected by existing penetra-
tion testing tools such as w3af and ZAP. The reason is that
they can only test one API of the SUT per time while the
example vulnerability requires a sequence of six API calls to
trigger and verify. Simply injecting the attack payloads via
PUT operations through the /members/me API does not work
due to the wrong value of x-wp-nonce.

This vulnerability cannot be detected by existing bug de-
tection techniques such as RESTLER, RESTTESTGEN, and
MOREST. The reason is double-fold. First, these techniques
cannot add attack payloads to their requests. Second, even if at-
tack payloads are added, these techniques lack the awareness
of whether an attack is successful or not. They only capture
responses with 5xx status code for bug detection while in this
example, the vulnerability does not trigger any response with
5xx status code.

4 Design

4.1 Overview
Figure 4 shows the overview of NAUTILUS. We can see that
the overall input is the OpenAPI specification of the SUT and
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Figure 4: Overview of NAUTILUS

the overall outputs are the updated OpenAPI specification
with customized annotations and the detected vulnerabilities.
The workflow of NAUTILUS is as follows.
Annotation Processing. ¶ Given the original OpenAPI spec-
ification of the SUT, the human expert can optionally add
some initial annotations to the specification following the
specification annotation design of NAUTILUS (Section 4.2).
The annotations are automatically processable and human-
readable. Therefore, after NAUTILUS has generated some
new annotations, the human expert can also choose to further
update them manually. · With the annotated specification,
NAUTILUS leverages its specification parser to extract API
information, including the relations among the APIs and the
parameter details of each API.
Two-stage Testing. ¸ With the extracted API information,
NAUTILUS generates API operation sequences to test the SUT.
NAUTILUS runs testing in two stages, namely exploration and
exploitation. NAUTILUS switches from the exploration stage
to the exploitation stage when no endpoints are successfully
requested after a predefined time threshold t 2. Meanwhile
NAUTILUS switches from the exploitation stage back to the
exploration stage after the same amount of time t. ¹ Under
the exploration mode, NAUTILUS aims to successfully request
as many POST/PUT API endpoints as possible by generating
proper API call sequences as test cases. The test case gen-
eration involves generating a correct sequence of API calls
and filling up the API parameters properly (Section 4.3). º In
the exploration process, NAUTILUS leverages the execution
feedback from the SUT to create new annotations or update
existing ones, thus providing more accurate guidance for the
testing. The updated annotations can be used for extracting
new API information. » During the exploitation stage, NAU-
TILUS applies the attack payloads to the successful API call
sequences generated in the exploration stage to create new
test cases for vulnerability detection (Section 4.4). ¼ In the
exploitation stage, NAUTILUS captures the vulnerability by
verifying the execution feedback of the SUT. Different types
of attack payload require different verification oracles.
Result Handling. ½ After NAUTILUS completes the testing,
it can provide the updated/annotated OpenAPI specification

2The default value of t is 30 minutes.

together with the detected vulnerabilities to the human ex-
pert for further analyses, such as vulnerability clustering or
specification fixing.

4.2 Specification Annotation
NAUTILUS uses a set of customized annotations to comple-
ment the information embedded in the OpenAPI specification.
The design of the annotation is fully compatible with the
OpenAPI 3.0 standard. Moreover, the annotations are human-
readable and automatically processable. Hence, both human
experts and NAUTILUS can create or update the annotations.

The purpose of the specification annotations is to embed
more information in the OpenAPI specification. The reason
is that although the OpenAPI specification can document the
endpoints and parameters information, the information is not
complete or accurate enough for NAUTILUS to generate valid
test cases. To address this problem, we introduce two types of
annotations: operation annotation and parameter annotation.
The former helps NAUTILUS to construct meaningful API op-
eration sequences, while the latter improves the effectiveness
of parameter value generation.

4.2.1 Operation Annotation

Operation annotations are designed to guide the generation of
valid API operation sequences that comply with the business
logic of the service. For this purpose, we design the following
three types of fields for the operation annotations:
Dep-operation. The dep-operation field annotates an opera-
tion with its dependent operations that should be executed in
advance. This field is in the form of a list of API operations,
where each operation is a uniquely identified string in the for-
mat {request method}-{endpoint name}. The dependen-
cies among operations can be classified into three categories:
parameter-wise data dependencies, CRUD dependencies and
logical dependencies. ¶ The parameter-wise data dependency
refers to the case where the variables in the response of one
operation is used as the request parameters of the other oper-
ation. For example, in Figure 5 b), get-/groups is marked
as a dependent operation for post-/groups because the re-
sponse of the former matches the request body of the latter



a) Original Specification b) Initial Annotated Specificaiton c) Final Annotated Specification

  /groups:
    get:
      responses:
        '200':
          content:
              schema:
                $ref: group_schema
   

    post:
      requestBody:
        content:
          schema: $ref: group_schema
            properties:   
              groupname:  
                type: string
              creater-id:  
                type: integer

           

  /groups:
    get:  
      x-operation-annotation:  
        dep-operations: ['post-/login', 'post-/groups'] 

    
    post:
      x-operation-annotation:  
        dep-operations: ['post-/login', 'get-/groups']

            properties:   
              groupname:  
                type: string
                x-parameter-annotation:
                  strategy: {'Example': True, 'Dynamic': False, 
                             'Success':True, 'Mutation':1.0}
              creater-id:  
                type: integer
                x-parameter-annotation:
                  alias: [post-/login.id]
                  strategy: {'Example': True, 'Dynamic':True, 
                             'Success': False, 'Mutation':0.0}
 

  /groups:
    get:  
      x-operation-annotation:  
        dep-operations: ['post-/login', 
                         'post-/groups'] 
      responses:
        '200':
          content:
              schema:
                $ref: group_schema

    post:
      x-operation-annotation:  
        dep-operations: ['post-/login',
                         'get-/groups'] 
      requestBody:
        content:
          schema: $ref: group_schema
            properties:   
              groupname:  
                type: string
              creater-id:  
                type: integer
 
           

Figure 5: Annotation updates on the running example∗
∗ For simplicity, we omit unnecessary fields in the specification.

by both referring to the group schema. · The CRUD depen-
dency is to enforce the CRUD restrictions and link up oper-
ations according to their CRUD relations. For example, in
Figure 5 c), post-/groups is marked a dependent operation
for get-/groups since following the CRUD relation, a group
should be created first before it can be read. Notice that using
parameter-wise data dependencies and CRUD dependencies
may yield contradictory operation dependencies, like shown
by the running example. Therefore, we have a dynamic update
mechanism to resolve the conflicts (Section 4.2.3). ¸ The log-
ical dependency refers to the dependency introduced by the
internal logic of the SUT. For example, in both Figure 5 b) and
c), post-/login is the dep-operation for both get-/groups
and post-/groups. The reason is that post-/login can re-
turn a nonce, which is a required parameter in the header
used as the identity token for accessing other API endpoints.

Term-operation. The term-operation field annotates the oper-
ations that terminate the current session with the SUT. Similar
to dep-operation, this field is a list of API operations and the
format of the API operations is the same. The operations
stored in this field should only be executed after other opera-
tions. Endpoints like logout and change_password belong
to this category. During testing, NAUTILUS never inserts the
term-operations in the middle of operation sequences.

Alias. The alias field annotates the aliases of parameter names
across the operations. This field is a list of strings, each of
which is in the format of {operation}.{parameter name}
and points to the parameter from the specific operation. This
design aims to address the naming issue in OAS. In prac-
tice, we find that poorly maintained OAS have one parameter
with different names in different operations. Since the aliases
are across multiple operations, we put the alias field under
operation annotations. This field is useful for rendering API
requests as it helps to correctly match the parameter values

across different operations in the same sequence (Section 4.3).

4.2.2 Parameter Annotation

Parameter annotations are designed to guide NAUTILUS to
generate and link up parameter values of the API operations
by addressing the drawbacks of existing solutions. Existing
RESTful API testing techniques [23, 32, 46] generate param-
eter values via two basic strategies: random and previous
success. The random strategy generates random values based
on the type of data specified in the API specification (e.g.,
a random integer if the value type is integer). The previ-
ous success strategy generates the value of a parameter using
the value of the last successful request. Both strategies have
clear drawbacks. On the one hand, the random strategy is
inefficient because requests with non-compliant parameter
values will be rejected by the RESTful service without clear
feedback, which does not provide sufficient guidance to the
next parameter value generation. On the other hand, the pre-
vious success strategy does not bring enough diversity to the
test cases, thus cannot explore the API service effectively. To
address both randomness and correctness of the parameter
values, we design the following four fields to describe the
parameter generation strategies:
Example. This field is a boolean value. If the value is True,
NAUTILUS will use the parameter values documented in the
example field of the OAS. Normally, the parameter values pro-
vided by the examples are correct, which can help NAUTILUS
to successfully request the corresponding endpoints.
Dynamic. This field is a boolean value. If the value is
True, NAUTILUS will get the corresponding parameter val-
ues from previous successfully requested operations in the
same sequence. The mechanism of deciding the parameter
is from which previous operations is almost the same as
RESTLER [23], where parameter names and schemas are used



Table 1: Parameter generation strategy ( : True : False)

Example Dynamic Success Generation Strategy

Dynamic
Dynamic

Success + Mutation
Example + Mutation

Dynamic
Dynamic

Success + Mutation
Random Generation

to determine whether two parameters should be linked up.
The only difference is that NAUTILUS also uses the alias
information of the parameters.
Success. This field is a boolean field. If it is True, NAUTILUS
will use the parameter values of the last successful request.
Otherwise, NAUTILUS will try to generate new parameter
values randomly.
Mutation. This field is a float number with a range of 0.0 to
1.0, which represents the parameter’s mutation degree. The
higher the value is, the service can intake more flexibly mu-
tated parameter value. Specifically, we adopt the normalized
edit distance or similarity (NES) from [35] to measure the
mutation degrees. Given the original parameter string s with
length l, we generates the mutation string sm with length lm
while maintaining the NES between the two strings below

boundary t. The NES can be calculated by e
d

d−max(l,lm) , where
d is the Levenshtein Distance [31] between the two strings.
We also record the largest NES of the mutated parameter that
is still properly handled by the target RESTful service.

The final parameter generation strategy is an interplay of
the values of four fields. Table 1 shows the relation between
the generation strategy and the field values. NAUTILUS gen-
erates the parameter value based on its annotation at runtime.
In general, the dynamic field has the highest priority and the
example field has the lowest priority. Note that some field
value combinations in Table 1 may never appear in practice.
For instance, the example field and the dynamic field should
never both take the value of True for well-documented OASs.

4.2.3 Annotation Updates

Annotation Initialization and Manual Update. At the be-
ginning of testing, NAUTILUS provides an utility to generate
the initial annotations based on the parameter-wise depen-
dencies and heuristics, such as using keyword matching to
identify operations as login or logout. Figure 5 b) shows an
example of the initially added annotations of NAUTILUS. The
human expert can then choose to update the annotated OAS
documentation based on his/her domain knowledge. As far
as the manually added annotations follow the required for-
mats, NAUTILUS can work with them seamlessly. Note that

the human expert can also skip this manual update step to let
NAUTILUS work fully automatically.
Dynamic Annotation Update. During testing, NAUTILUS
updates the annotations dynamically according to the ex-
ecution feedback of the SUT. For operation annotations,
NAUTILUS updates them in the following three scenarios.
¶ One of the most common cases is where the OAS does
not correctly document the response body of an operation.
In this case, NAUTILUS needs to analyse the actual response
body after successfully requested an endpoint to fine-tune
parameter-wise dependencies and update the corresponding
dep-operation annotations. In the running example (Figure 1),
the response body of get-/members/me is not documented.
NAUTILUS will update the parameter-wise dependencies re-
lated to the response body of this operation once it receives
the actual successful response during the execution. · An-
other common case is updating the parameter aliases. In
the running example, the get-/members/me operation re-
turns current user object if successfully requested. The ob-
ject has an id property, which is the ID of the current user.
The post-/groups operation requires a parameter called
creator-id. In BuddyPress, users can only use its own id
to create new groups. Therefore, although creator-id and
id have different names, they refer to the same value across
the two operations. After some trail and errors during the
testing, NAUTILUS can recognize that only when the values
of creator-id and id are equal, the post-/groups can be
requested successfully. Hence, NAUTILUS will mark them
as aliases. ¸ The last case is about removing the infeasible
dep-operations. If the operation after a dep-operation cannot
be executed successfully after Θ tries (the default value of Θ

is 10), the dep-operation will be removed from the annotation.
For example, in Figure 5 b) and c), get-/groups will be re-
moved from the dep-operation list of post-/groups during
testing. The reason is that BuddyPress does not allow dupli-
cate group names. So getting the information of an existing
group and using the same information to create a new group
will fail. For parameter annotations, the updates are mainly
about adjusting the value of the success field and the mutation
field. If an operation has been successfully requested, its suc-
cess field will be updated to True. As for the mutation field,
the key idea is to increase the value of the mutation field upon
successful requests and to decrease the value upon failed ones.
The rationale is that if the request is successful, NAUTILUS
can loose the restrictions to try out more aggressive mutations
to increase the diversity of the parameters. However, if the re-
quest fails, NAUTILUS needs to apply mutations with smaller
granularity to guarantee the correctness of the parameters.

4.2.4 Annotation Primitives

Our annotation primitives are constructed based on the
specification extension feature of OpenAPI [2]. Ope-
nAPI also allows users to add additional fields to pa-



rameters, namely x-parameter. With this feature, Ope-
nAPI can be extended to support representations be-
yond RESTful services. For instance, Microsoft Azure
APIs [36] contain custom fields including x-ms-paths and
x-www-form-urlencoded to interact with internal services
through encoded web form, which are not supported by con-
ventional RESTful services. In NAUTILUS, the annotation
primitives are denoted as x-operation-annotation and
x-parameter-annotation. Since the annotation primitives
are designed based on the official feature of OpenAPI, they
are fully compatible with any OAS document.

4.3 Exploration Stage

In the exploration stage, NAUTILUS aims to successfully re-
quest as many API operations as possible with properly built
API operation sequences. Algorithm 1 describes how NAU-
TILUS builds the API operation sequence for an API oper-
ation. As shown in Algorithm 1, NAUTILUS first checks if
the API operation is interesting or not. Unlike existing REST-
ful testing techniques such as RESTLER, RESTTESTGEN and
MOREST, NAUTILUS generates operation sequences by enu-
merating through only the interesting API operations instead
of all operations. The interesting API operations refer to the
operations that can possibly get attacked by requests with
well-crafted payloads. Therefore, API operations which can
accept user inputs and add/update backend data of the SUT
are considered interesting. Specifically, NAUTILUS focuses
on API operations with POST/PUT HTTP methods or API
operations with the GET HTTP method and have in-URL pa-
rameters. For example, the get-/members/me operation in
the running example (Figure 1) is not interesting because
it does not accept user input and cannot be attacked. Thus,
NAUTILUS will not try to build API call sequences for this
operation. If an API operation is considered interesting, NAU-
TILUS will check the dep-operations of this operation and
build the API call sequence by recursively including all the
required API calls (line 6 – line 13 in Algorithm 1).

After the successful generation of API operation sequences,
NAUTILUS renders the concrete HTTP requests one API op-
eration after another. For each request, NAUTILUS generates
its parameters according to the parameter annotations (Sec-
tion 4.2.2) following the strategy in Table 1. The requests
cannot be generated all at once because the parameters of
some API calls are from the responses of previous API calls.

Finally, NAUTILUS will send the requests to the SUT to
verify whether the target operation can be requested success-
fully and update the annotations according to the execution
feedback (Section 4.2.3). Note that the target operation is con-
sidered successfully requested as long as it returns a response
with 2xx status code.

The key difference of the exploration strategy between
NAUTILUS and existing solutions [23, 32] is that NAUTILUS
is aware of the most appropriate parameter values that can

Algorithm 1: API operation sequence generation
Input: a: A RESTful API operation
Output: S : the API operation sequence based on a

1 def sequence_generation(a):
2 S ← [ ];
3 if is_interesting(a) then
4 concat_sequence(S ,a);
5 return S ;
6 def concat_sequence(S , a):
7 if a.dep_operations = /0 then
8 return;
9 for d ∈ a.dep_operations do

10 if d ∈ S then
11 S .remove(d);
12 S ← [d, S ];
13 concat_sequence(S ,d);
14 def is_interesting(a):
15 return

a.htt p_method ∈ {POST,PUT} ∨ (a.htt p_method =
GET ∧ a.in_url_params 6= /0);

Request Type

POST

PUT

GET

Payload Type

SQL Injection

Sensitive Keywords

Stored XSS

Other Injections

Oracle Type

Data Structure

Status Code

Status Code

Data Structure

Semantic Relation

Directory Traversal

Reflected XSS

Directory Traversal

Figure 6: The mapping between the request types and the
required payloads/oracles

lead to successful requests. In particular, NAUTILUS identifies
the best parameter generation strategy based on the execution
feedback and records it in the parameter annotation, while
prior solutions mainly rely on pre-defined strategies. After the
exploration stage, the annotations are updated, further guiding
the efficient vulnerability identification in the next stage.

4.4 Exploitation Stage

Once NAUTILUS cannot successfully request new endpoints
for certain time, it switches into the exploitation stage. Or,
if all endpoints are successfully requested, NAUTILUS will
stay in the exploitation stage. In the exploitation stage, NAU-
TILUS aims to detect as many vulnerabilities as possible. The
workflow of the exploitation stage is as follows. ¶ NAUTILUS
collects the API operation sequences which can successfully
request the interesting API operations. These API operation
sequences will be used as the basis for vulnerability detec-
tion. · When rendering the requests for an API operation
sequence, for the dependent API operations of the interesting



API, NAUTILUS leverages the success parameter annotations
to reuse the parameter values in the last successful requests.
In contrast, for the interesting operations, NAUTILUS will
use predefined attack payloads to replace its parameters. As
elaborated in Section 2, RESTful services can contain vari-
ous categories of vulnerabilities, each of which can only be
revealed with certain type of payloads. Thus, we propose a
vulnerability-specific mutation strategy to uncover certain
types of vulnerability in the target RESTful service. The map-
ping between the most common types of the interesting API
and the types of attack payloads are summarized in Figure 6.
Below we elaborate the key technical steps involved.

4.4.1 Payload-based Mutation

Our general strategy is to mutate the normal request param-
eters with the vulnerability-specific payloads. Instead of ar-
bitrarily injecting payloads into the parameters, NAUTILUS
focuses on operations that have a greater possibility of con-
taining vulnerabilities and construct the sequence accord-
ingly in the following steps. ¶ NAUTILUS identifies the user-
controllable parameters that are possible to get injected. The
user-controllable parameters are the parameters whose dy-
namic fields have the value of False, which means that the
value is not inherited from previous responses. · NAUTILUS
then identifies the operations that contain the injectable pa-
rameters as the candidate operations to test. It selects one
operation from the candidate operations and picks one param-
eter from it as the mutation target. ¸ If the target operation is
GET, NAUTILUS will reuse the corresponding API operation
sequence generated in the exploration stage. When rendering
requests, the injectable parameters, typically in-url parame-
ters, are mutated using the payload dictionary. Specifically, the
target parameter is replaced by the payload value to formulate
the final request. The other parameter values are generated on
the basis of the annotated strategy normally. ¹ If the target
operation is POST/PUT, NAUTILUS will randomly pick a GET
operation which has CRUD relation with the target operation
and append it to the API operation sequence. The rationale of
adding the GET operation is to obtain more information from
SUT to serve as test oracles.

4.4.2 Payload and Oracle

The types of test oracles used for detecting vulnerabilities are
related to the types of payloads and the relations are illustrated
in Figure 6.
Status Code. Some vulnerabilities can cause changes in the
status codes returned by the SUT. For instance, a successful
login bypass results in 200 status code, while normally the
server shall return 400 if the wrong credentials are provided.
Data Structure. Some vulnerabilities can cause the operation
to return data objects with different data structures from what
is described in the OAS. For example, SQL injection changes

the response data structure because unexpected table contents
are returned after successful exploitation.
Semantic Relation. Some vulnerabilities may falsely execute
the payload content and add semantic relations between the
contents of the payloads and responses. For instance, some
command injection vulnerabilities can cause the parameters
to be executed instead of being parsed as strings, and the
execution result is predictable (e.g., the payload is ‘1+1’ and
the response is ‘2’).

5 Implementation and Evaluation

We implement NAUTILUS based on Python 3.9.0 with 6,500
lines of code and conduct experiments to evaluate the perfor-
mance of NAUTILUS. Our evaluation targets the following
questions:
RQ1 (Vulnerability Detection) How is the vulnerability
identification capability of NAUTILUS?
RQ2 (Coverage) How is the operation exploration capability
of NAUTILUS?
RQ3 (Ablation Study) How do the annotation strategies af-
fect the performance of NAUTILUS separately?
RQ4 (Real-world Targets) Can NAUTILUS identify vulner-
abilities in real-world applications, including those industrial
products?

5.1 Evaluation Setup
Evaluation Baselines. We compare our solution with both
open-source vulnerability scanners and existing research
works on RESTful API testing. It is worth noting that these
tools are designed for different purposes. Vulnerability scan-
ners are designed to assess web applications and APIs. Given
requests to API endpoints, they send mutated requests to those
endpoints and report the potential vulnerabilities directly. Con-
versely, RESTful API test tools aim to achieve better coverage
and bug reporting, and they do not have vulnerability report-
ing capability. To conduct a fair comparison and evaluation,
we select vulnerability scanners and RESTful API testing
tools that are extensible to have custom payloads so that we
can use the same payload data on all tools. In the end, we
select the following four tools.

(1) Zed Attack Proxy (ZAP) [14] is an open-source black-
box web vulnerability fuzzer developed by OWASP. It is
mainly used for blackbox vulnerability assessment and pen-
etration testing. In this evaluation, we use ZAP’s OpenAPI
add-on and disable unrelated web exploration functions
such as web crawling modules.
(2) w3af [5] is an open-source web application attack and
audit framework. Similar to the previous setting, we use the
w3af in-built module crawl.open_api and disable unrelated
functions.
(3) RESTLER [23] is an open-source blackbox RESTful
API testing technique developed by Microsoft. It dynam-



Table 2: Benchmark Applications

Subjects LoC Endpoints Description Version Developer
NodeGoat [42] 24933 20 Educational 1.4 OWASP
Juice Shop [17] 109244 50 Educational 12.5 OWASP

VAmPI [24] 2695 13 Educational - Community
SeoPanel [18] 62277 20 SEO Management 4.0 Independent
Navigate [16] 571923 12 CMS 1.8 Independent

Gila [15] 49391 24 CMS 2.1.0 Independent

ically builds operation sequences by appending new API
operations according to execution feedback.
(4) MOREST [32] is a state-of-art blackbox RESTful API
testing technique which constructs operation sequences
through the dynamically updated RESTful-service Property
Graph (RPG).
We modify the above tools to use the same FUZZDB pay-

load dictionary [26]. It covers various types of vulnerabilities
and is adopted by various testing tools and industrial solu-
tions [14, 27, 30]. For ZAP and w3af, we update the payload
dictionary to their corresponding modules. For RESTLER and
MOREST, we extend their mutation modules so their value
generation strategy use the payload from dictionary instead of
random value generation. Note that we do not make changes
on their test sequence generation strategy.
Evaluation Benchmarks. We select real-world web appli-
cations as our evaluation benchmarks using three criteria:
(1) open-source for exploitation reproducibility, (2) actively
maintained to validate security findings, (3) complete OAS
or RESTful documentation available as required input for all
baselines. The result is a selection of six web applications,
as presented in Table 2. Three of the benchmark applica-
tions (OWASP NodeGoat [42], OWASP JuiceShop [17] and
VAmPI [24]) are deliberately vulnerable applications with
seeded vulnerabilities for education purposes. The other three
applications are open-source software with both web interface
and well-documented RESTful API endpoints. All of these
applications are implemented based on their default docu-
mentation, and their details are demonstrated in the following
Table 2.
Benchmark OpenAPI Specifications. We use the same
OASs for all the evaluation baseline solutions to test the eval-
uation benchmarks. For NAUTILUS, we do not include addi-
tional manual annotations, and only use an automatic script
to generate the initial operation annotations through keyword
mapping on operation names (login, logout, checkout, etc.).
The automation script is open-sourced on our project website
[1].
Evaluation Criteria. We use two criteria for the evaluation
of NAUTILUS and the baselines to answer the aforementioned
research questions.

(1) Vulnerabilities: The number of vulnerability is crucial
criteria for security testing. Without loss of generality, we
focus SQL injection, XSS and improper access control,
while our solution can also identify other injection-based

vulnerabilities with proper payloads. In Section 5.5, we
present industrial examples to demonstrate other types of
vulnerabilities identified by our tools.
(2) Operation Coverage: Operation coverage directly re-
flects the successful exploration of RESTful API services.
In the experiments, we use the successfully requested oper-
ations (SROs) as a criterion, because it reflects whether a
technique can generate valid and complex requests to cover
the deeper code logic in RESTful services.

Evaluation Settings. We setup all the tools and benchmarks
based on their default installation settings. For the bench-
mark RESTful services, we host them on a local machine
and run each technique with 12 hours. After each round, we
tear down the benchmark and restore the environment (e.g.,
docker containers, self-hosted virtual machines) to ensure the
consistency of RESTful services between tests. In addition,
we repeat all experiments for 5 times to mitigate randomness
and adopt Mann-Whitney U test (with the confidence thresh-
old α = 0.05) and Â12 [45] calculation for statistic tests. So
in total, our experiment records of 1,800, i.e., 6 projects * 5
settings * 12 hours * 5 repetitions, CPU hours of testing. We
summarize our findings as follows.
Result Collection. After NAUTILUS and the evaluation base-
line solutions report the vulnerabilities, we collect the result
and manually conduct the exploitation to confirm the vulner-
abilities. The false positives are eliminated, and we discuss
their causes in Section 6.

5.2 Vulnerability Detection (RQ1)

The number of unique vulnerabilities identified by different so-
lutions are presented in Figure 7. It can be noticed that all the
baseline solutions have similar performances in vulnerability
testing. This is because they use the same payload dictionary
and follow a similar testing strategy to identify vulnerabilities
at each endpoint individually. Particularly, ZAP and w3af
have better performance compared to the two RESTful API
testing solutions, because they have in-built XSS execution
detection modules to identify such vulnerability.

In contrast, NAUTILUS achieves significantly better per-
formance in both vulnerability types and number of vulner-
abilities. NAUTILUS is able to uncover different types of
vulnerability, including SQL injection, command injection,
XSS and privilege management. On average, it identifies more
vulnerabilities (69.8%) compared to the other solutions on the
three educational benchmarks. Particularly, NAUTILUS can
cover all vulnerabilities identified by these solutions. Mean-
while, NAUTILUS identifies 10 0-day vulnerabilities on the
three real-world applications while the baseline solutions only
identify 3 in total. These 10 vulnerabilities identified from
SeoPanel, Navigate CMS and Gila CMS have been confirmed
by the vendors. Their details are included in our website [1].
In-depth Analysis. To further explore the accuracy and effec-
tiveness of NAUTILUS, we perform an in-depth analysis about
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Figure 7: The vulnerabilities and their types uncovered by different tools on the evaluation benchmarks.

Table 3: Selected RESTful API vulnerabilities identified by NAUTILUS. For Vulnerability Identification Tools: 3: this
tool can identify the vulnerability, 7: this tool cannot identify the vulnerability, -: this tool is not designed to uncover the type of
vulnerability. For Manual Annotation: 3: the annotations are updated by human experts to provide guidance on operation and
parameter generation, 7: no manual inputs into the specification annotations.

Vulnerability Identification ToolsTarget Application Version Vendor Confirmation CVE/Issue-ID Vulnerability Type Multi-API NAUTILUS RESTLER MOREST ZAP w3af Manual Annotations

1.8 3 CVE-2021-37377 SQL Injection 7 3 7 7 3 3 7
1.8 3 CVE-2021-37476 SQL Injection 7 3 3 3 3 3 7
1.8 3 CVE-2021-37475 SQL Injection 7 3 3 3 3 3 7
1.8 3 CVE-2021-37474 SQL Injection 3 3 7 7 7 7 3
1.8 3 CVE-2021-37473 SQL Injection 3 3 7 7 7 7 3

RPCMS

1.8 3 CVE-2021-37394 Privilege Escalation 3 3 7 7 7 7 3

- 3 CVE-2022-33659 Privilege Escalation 3 3 7 7 7 7 3
- 3 CVE-2022-30181 Privilege Escalation 3 3 7 7 7 7 3Azure
- 3 CVE-2022-33657 Privilege Escalation 3 3 7 7 7 7 3

Confluence 7.13.0 3 Internally Issued OGNL Injection 3 3 - - - - 3

2.9.4 3 Issue r1561-#26 SQL Injection 7 3 3 3 3 3 7Navigate 2.9.5 3 Issue r1561-#27 Privilege Escalation 3 3 7 7 7 7 7

Rukovoditel 2.8.3 3 CVE-2021-30224 CSRF 7 3 - - 3 3 7

SeoPanel 4.0 3 Issue #219 SQL Injection 3 3 7 7 7 7 7

2.1.0 3 CVE-2021-34113 Directory Traversal 3 3 7 7 7 7 7GilaCMS 2.1.1 3 CVE-2021-34115 Stored XSS 3 3 - - 7 7 7

false positives and false negatives. In particular, a false pos-
itive is the case where NAUTILUS reports a non-exploitable
vulnerability. As it is hard to define true negatives in the
domain of vulnerability detection, we define the false posi-
tive rate as FP/(FP+T P). The detailed experimental results
are presented in Table 4. In summary, NAUTILUS achieves a
false positive rate of 24.74% on benchmark services, which
is comparable to other solutions. This is acceptable as a hu-
man expert can easily follow the test results to identify valid
vulnerabilities. We highlight that false positives are largely
dependent on the quality of the payload dictionary and the
target service because they are mainly contributed by (1) the
non-compliant RESTful endpoint implementation, where the
response status code or body content does not fulfill the REST-
ful standards and triggers the test oracle, and (2) unexpected
service behaviors, where the payload triggers a buggy im-
plementation in the service, causing service crashes yet not
exploitable. These false positives can be mitigated by mod-
ifying the OpenAPI documentation to describe the actual
behavior of the service.

We further study the false negatives of NAUTILUS. Due
to the inherent difficulties in identifying all vulnerabilities in
real-world services, we extend the experiment to explore if
NAUTILUS can uncover known vulnerabilities. To do this, we
collect 50 reproducible CVEs from 12 different open-source
applications containing 25 different components/plugins, and

their details are listed in Table 6 of the Appendix. The known
vulnerabilities cover all subtypes of injection vulnerabilities
illustrated in Section 2. We study the false negatives of these
solutions by verifying the number of vulnerabilities that can
be reported by each solution. The experimental result shows
that NAUTILUS detects 70.0% (35/50) of the known vulnera-
bilities in the benchmark application, surpassing other solu-
tions that achieve an average detection rate of 39.5%. Such
improved performance can be attributed to Nautilus’s superior
endpoint coverage capability, which allows the detection of
vulnerabilities at endpoints not covered by traditional solu-
tions. NAUTILUS fails to uncover some vulnerabilities due to
two main reasons: (1)some vulnerability can only be triggered
by case-specific payloads, which are not included in the pay-
load dictionary; (2) the service does not fulfill the RESTful
standards and the oracle cannot determine if the vulnerability
is triggered. We present the detailed analysis of each selected
CVE on our website [1].

5.3 Coverage (RQ2)

We present the operation coverage results of different tools
in Table 5. NAUTILUS achieves competitive performance
in successfully requested operations compared to baseline
solutions. Specifically, our solution achieves 163.1% more
endpoint coverage on the benchmarks compared to the tradi-



Table 4: False positives / true positives identified by different
tools on the evaluation benchmarks.

NAUTILUS RESTLER MOREST w3af ZAP
Juiceshop 8/7 3/3 4/3 4/2 4/3
Vampi 6/1 2/0 3/0 3/0 2/0
NodeGoat 4/0 3/0 4/0 4/0 3/0
SeoPanel 2/0 0/0 0/0 0/0 0/0
Navigate 5/3 2/1 3/1 3/1 2/1
Gila 2/2 0/2 0/2 1/2 1/2
FP Rate 24.74% 30.56% 27.98% 20.83% 23.81%

tional web vulnerability identification tools. This is because
traditional solutions can barely generate valid POST or PUT
requests to interact with the API, thus not efficient in end-
point discovery. Compared to the RESTful API testing tools
RESTLER and MOREST, our endpoint coverage increased by
54.8% and 36.9% on average. While the RESTful API testing
solutions achieve better performance, they cannot generate
specific test sequences to cover the corner cases. For instance,
they fail to understand the login-logout logic in all the bench-
mark applications, thus cannot perform testing with different
user accesses. Also, some endpoints have extreme restrictions
on input value formats, and it is difficult to generate them
by random. Our annotation strategy assists the solution to
overcome these drawbacks.

5.4 Ablation Study (RQ3)

To investigate how the annotation strategy contributes to im-
proving the performance of NAUTILUS through guided testing
and parameter generation, we perform an ablation study on
the two main components of the annotation strategy: oper-
ation annotation and parameter annotation. To study their
contributions, we implement three variants of NAUTILUS: (1)
NAUTILUS-NO-ANNOTATION that disables all annotations,
(2) NAUTILUS-OPERATION-ONLY that removes the annota-
tions on parameters, and (3) NAUTILUS-PARAMETER-ONLY
that removes the annotations on operations. The results are
averaged using five runs, each 8 hours, to avoid statistical
bias. Note that as in previous studies, we do not implement
additional manual annotations to assist with the algorithms.

The result of the ablation study is presented in Figure 8. In
general, we observe that NAUTILUS outperforms the other
three ablation baselines in both vulnerability identification
and endpoint coverage. Specifically, we have the following
findings: (1) Without any annotation, the NAUTILUS-NO-
ANNOTATION strategy achieves slightly lower performance
in both vulnerability identification and endpoint coverage
compared to RESTLER and MOREST. This is because our
exploration strategy focuses on discovering the sequences
that may contain vulnerabilities, thus may neglect potential
relations between endpoints. Also, we can expect a significant
performance drop caused by disabling parameter annotations.
This is because that parameter annotations brings awareness
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Figure 8: The performance of NAUTILUS, NAUTILUS-NO-
ANNOTATION, NAUTILUS-OPERATION-ONLY, and NAU-
TILUS-PARAMETER-ONLY on both normalized average code
coverage (µLOC) and bug detection.

to link the different-name parameters together, which over-
comes the syntax errors in API specifications. On the contrary,
both RESTLER and MOREST have mechanisms to compensate
the potential errors in the specification. (2) Operation anno-
tation contributes more when the service contains complex
sequence logics (e.g., Juice-shop example), while parame-
ter annotations contribute more when the service has strict
parameter value format restrictions (e.g., SeoPanel) exam-
ple. This is reasonable, as the two parameters are designed
to address the sequence generation and parameter genera-
tion challenges, accordingly. (3) All of our baselines for the
ablation study achieve competitive vulnerability identifica-
tion results against benchmark solutions. We believe this is
because we consider multi-API vulnerabilities in our tools.
NAUTILUS can effectively uncover multi-API vulnerabilities
as long as the operation sequences can be correctly executed.

We further investigate the annotations generated by NAU-
TILUS, and the details are presented in Figure 9. The maxi-
mum sequence length generated by Nautilus for the six ser-
vices is 5.3 on average, and each service contains 15.3 auto-
matically generated annotations (0.66 annotations per end-
point). By linking the annotations to the identified vulnera-
bilities, we find that 67% of the vulnerabilities can only be
identified with annotations. This shows the effectiveness of



Table 5: Performance of NAUTILUS against RESTLER, ZAP and w3af in terms of both the average endpoint coverage and
detected vulnerabilities (DV). We run this experiment 5 times (24 hours each time) and highlight statistically significant results
in bold (We calculate the average increased number by (# o f NAUTILUS)−(# o f baseline)

# o f baseline .).

Subjects
Average Endpoint Coverage (EC) Average # of Detected Vulnerabilities (DV)

NAUTILUS RESTLER MOREST ZAP w3af NAUTILUS RESTLER MOREST ZAP w3af
µEC µEC Â12 µEC Â12 µEC Â12 µEC Â12 µDV µDV Â12 µDV Â12 µDV Â12 µDV Â12

NodeGoat 15.00 10.40 1.00 11.80 1.00 6.00 1.00 7.20 1.00 4.00 2.60 1.00 4.00 0.50 4.00 0.50 3.00 1.00
Juice-shop 21.20 14.00 1.00 16.20 1.00 8.00 1.00 7.00 1.00 7.00 3.00 1.00 4.00 1.00 4.00 1.00 4.00 1.00

Vampi 11.00 7.60 1.00 7.60 1.00 4.00 1.00 4.00 1.00 5.00 2.00 1.00 3.00 1.00 3.00 1.00 2.00 1.00
SeoPanel 12.80 9.00 1.00 10.20 1.00 6.00 1.00 3.80 1.00 2.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Navigate 12.00 8.00 1.00 9.40 1.00 4.00 1.00 4.00 1.00 6.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00

Gila 18.60 9.80 1.00 11.00 1.00 8.00 1.00 7.00 1.00 2.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00
Average Increased (%) 0.00 54.08 - 36.90 - 151.67 - 174.55 - 0.00 202.80 - 116.50 - 85.84 - 159.28 -
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Figure 9: The maximum sequence length, number of auto-
generated annotations, number of vulnerabilities, and number
of annotation-related vulnerabilities of NAUTILUS.

our annotation-based strategy.

5.5 Real-world Vulnerabilities (RQ4)
5.5.1 Vulnerability Identification

We further apply NAUTILUS to test real-world RESTful appli-
cations and try to spot vulnerabilities. In the end, we success-
fully identify 23 unique vulnerabilities in various applications,
and 21 of them have been confirmed by vendors. These vulner-
able applications include both open-source ones like SeoPanel
and Navigate CMS as mentioned in previous evaluations, and
commercialized products/services provided by vendors like
Microsoft and Atlassian. We have submitted these vulnerabili-
ties to MITRE and have received 10 CVE numbers to the date
of submission. We list selected vulnerabilities in Table 3 for
reference, while the complete list with detailed description is
available on our website [1].
Annotation Efforts. We manually annotate the OASs of
these applications to provide sample parameter values and op-
eration business logics to guide the testing. This process does
not incur significant additional effort for testers with prior
knowledge of the service, since they only need to provide
the operation dependency and parameter value information
based on normal queries to the endpoints. Empirically, our
testers need an average of 1 minute to annotate one endpoint.
We suggest that the annotation process can be integrated into

the OAS construction, which is usually completed by service
developers before service launch.
Added Values of Manual Annotation. Manual annotation
enhances Nautilus in understanding the service logics that can
hardly be learned heuristically from the execution feedback.
As shown in Table 3 in Appendix, 7 of 23 0-day vulnerabili-
ties require manual annotations to be detected, which provide
the parameter generation guidance for fields that rely on ex-
ternal resources. This is common in complex systems, such
as cloud services, as users need to acquire parameter values
from other interfaces (CLI, etc.). This information is criti-
cal to the successful endpoint query and is a prerequisite for
vulnerability identification.

In the following of this section, we present two case studies
to demonstrate how NAUTILUS uncovers multi-API vulnera-
bilities in real-world applications.
Case 1: Gila CMS Stored XSS Gila CMS [15] is a content
management system that provides both open source solutions
and online hosting services. During the testing of Gila CMS
v2.1.0, we identify a stored XSS vulnerability with multi-API
vulnerability exploitation pattern. In particular, (1) a regular
user could login and upload blogs through the fm/upload
endpoint, providing filename and other blog contents. The
user could maliciously select a filename that contains com-
mon stored XSS payloads, such as ‘<alert(1)>’. (2) The user
receives response from the server that contains the server-
generated id of the blog. He or she could access the blog
content by providing id, and the stored XSS is exploited. This
is a typical multi-API vulnerability, where the malicious user
uses the POST method to inject the payload and trigger the
payload through the GET request by providing parameters
obtained from the previous operation.
Case 2: Atlassian Confluence OGNL Injection Atlassian
Confluence [22] is one of the most popular team collabo-
ration management tools developed and maintained by At-
lassian [21], with millions of active users. In the testing of
the Confluence RESTful API, we discover an Object-Graph
Navigation Language (OGNL) injection vulnerability, which
is specific to Java-based applications. The adversary could
exploit the vulnerability and perform arbitrary remote code
execution (RCE) in three steps. (1) A user with no access



can register an account, activate the RESTful service and
obtain a valid API key. (2) He or she then requests the
doEditDailyBackupSettings endpoint with the required
parameters as declared in the documentation through the
POST method. Specifically, the dailyBackupFilePrefix param-
eter can be injected by any OGNL injection, such as payload
‘{222 * 3}’. If the vulnerability exists, the payload is expected
to be executed as a mathematical calculation instead of string
storage. (3) After than, the user accesses the same endpoint
through the GET method, and observes that the value of the
injected parameter contains ‘666’. It is worth highlighting that
the math operation payload is a proof-of-concept. The adver-
sary could exploit the vulnerability to execute arbitrary code,
such as downloading remote resources through the payload
with ‘wget resource-url‘.

The aforementioned two cases demonstrate how NAU-
TILUS uncovers multi-API vulnerabilities that cannot be iden-
tified by traditional RESTful API testing solutions. They also
show that NAUTILUS can be integrated with arbitrary pay-
loads to uncover different types of vulnerabilities in real-
world applications.

6 Discussion and Future Work

Bug/Vulnerability Analysis. Different from traditional
RESTful API testing solutions that leverage HTTP 500 error
response code to identify bugs, NAUTILUS does not particu-
larly focus on this. In practice, RESTful API bugs can often
be extended as exploitations, especially DoS attacks because
these bugs are usually caused by data mis-handling at server
backend. However, our goal is to automatically uncover REST-
ful vulnerabilities, and we do not tackle the manual process
to analyze bugs and develop exploitation. How to effectively
construct exploitation based RESTful API bugs is an interest-
ing future work that we will work towards.

Improper Resource Handling Vulnerabilities. As another
type of typical RESTful API vulnerabilities, improper re-
source handling vulnerabilities are difficult to be identified
automatically. The test oracles for checking improper resource
handling vulnerabilities are hard to be uniformly modeled,
as it is difficult to classify the sensitivity of the data in API
responses. The reason is that different systems and services
can have different rules/regulations for access control, and the
classification criteria for sensitivity are different. It is difficult
to define whether the content should be accessible to users,
especially when they have different access levels. Consider-
ing these two points, we focus on injection vulnerabilities.
Identifying other RESTful vulnerabilities is an interesting and
challenging topic, and we consider them as the future work.

7 Related Work

Instead of discussing all related works, we focus on the REST-
ful service testing techniques, penetration testing techniques
and human-in-the-loop testing.
RESTful Service Testing Techniques. Several blackbox
techniques were proposed to generate operation sequences
for RESTful service testing. RestTestGen [46] builds Oper-
ation Dependency Graphs (ODGs) to model RESTful ser-
vices and crafts operation sequences via top-down graph
traversal. RESTLER [23] builds operation sequences with
a bottom-up approach, which starts with single operation call
sequences and extends the call sequences by appending more
operations after trial and error. MOREST builds operation
sequences based on dynamically updated RESTful-service
Property Graph (RPG), which supports both top-down con-
struction and bottom-up updates. Different from these tech-
niques, NAUTILUS focuses on interesting operations that may
contain vulnerabilities and construct sequences accordingly
to obtain necessary parameter values. This strategy benefits
NAUTILUS to efficiently test potentially vulnerable endpoints.

Whitebox testing techniques are also proposed for bug de-
tection in RESTful services and general web services [47].
EvoMaster [19] is such a solution that leverages instrumenta-
tion to collect execution feedback during testing, and guides
the evolutionary-algorithm -based test case generation. While
EvoMaster is more effective in testing deeper logic inside the
RESTful services, it is limited by the testing environments be-
cause it can only instrument Java/Scala/Kotlin-based services
and requires access to the database.
Penetration Testing Techniques. With the development of
fuzzing techniques, tools with automatic attack generation
capabilities are developed for different types of vulnerabili-
ties (sqlmap [29] for (No)SQL injection, XSStrike [43] for
XSS, etc.). However, the vulnerability detection through pen-
etration testing has still been largely a manual work, because
these tools can only be adopted in restricted testing environ-
ments, and they do not have automatic exploitation generation
capability. NAUTILUS addresses the vulnerability detection
problem in the context of RESTful services, and its output
reveals the API operation sequences of the exploitation.
Human-in-the-loop Testing. Human-in-the-loop testing
techniques have been developed recently to explore com-
plex applications with human-generated seeds. For instance,
HaCRS [44] provides an emulated terminal for humans to in-
teract with the target application and collect possible descrip-
tion related to the applications current behavior. IJON [20]
annotates the source code of the target application with cus-
tomized primitives to guide the testing. Compared with these
solutions, NAUTILUS’s annotation strategy is less intrusive be-
cause the annotated OAS can be normally parsed by other ap-
plications. It is also human-readable, which makes it possible
to be updated by humans during the testing, or automatically
updated based on predefined rules.



8 Conclusion

We propose NAUTILUS, an automated vulnerability detection
tool for RESTful services. tool is designed to uncover multi-
API vulnerabilities, which are exploited by performing multi-
ple API operations in certain sequences. NAUTILUS parses
the OpenAPI specifications to understand the relations be-
tween API endpoints, and uses novel annotation primitives to
label the operations and parameters for the generation of logi-
cal operation sequences. During the testing phase, NAUTILUS
explores potentially vulnerable API endpoints and automat-
ically updates annotations from the dynamic feedback. The
evaluation on 6 benchmark services shows that NAUTILUS
outperforms state-of-the-art techniques in both vulnerability
identification and coverage. We use NAUTILUS to uncover 23
zero-day vulnerabilities in real-world RESTful applications.
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Table 6: Selected Reproducible CVEs that contain RESTful API vulnerabilities. For Component: -: the vulnerability is from the
target application native component; otherwise the plugin name is listed. For Vulnerability Identification Tools: 3: this
tool can identify the vulnerability, 7: this tool cannot identify the vulnerability

Vulnerability Identification ToolsTarget Application Version CVE/Issue-ID Vulnerability Type Multi-API NAUTILUS RESTLER MOREST ZAP w3af

WordPress

- CVE-2019-8942 Command Injection 3 7 7 7 7 7
- CVE-2022-21661 SQL Injection 3 3 7 7 7 7
- CVE-2019-8943 Path Traversal 3 7 7 7 7 7

Modern Events Calendar CVE-2021-24145 Command Injection 3 7 7 7 7 7
Modern Events Calendar CVE-2021-24146 Command Injection 7 3 3 3 3 3

Backup Guard CVE-2021-24155 Privilege Escalation 3 3 7 7 7 7
Responsive Menu CVE-2021-24160 Command Injection 7 3 7 7 7 7

SP Manager CVE-2021-24347 Command Injection 3 3 7 7 7 7
Deplcate CVE-2021-43408 SQL Injection 7 3 3 3 3 7

Secure Copy CVE-2021-24931 SQL Injection 7 3 3 3 3 3
WP Visitor Statistics CVE-2021-24750 SQL Injection 7 3 3 3 7 7
Registration Magic CVE-2021-24862 SQL Injection 3 3 7 3 7 7

Modern Events Calendar CVE-2021-24946 SQL Injection 7 3 3 3 3 3
Download Monitor CVE-2021-24786 SQL Injection 3 7 7 7 7 7

WPGateway CVE-2022-3180 Privilege Escalation 7 3 3 3 3 3
Elementors CVE-2021-24786 Code Injection 3 7 7 7 7 7

OpenEMR

- CVE-2018-15142 Command Injection 3 3 3 3 7 7
- CVE-2017-9380 SQL Injection 3 7 7 7 7 7
- CVE-2018-15139 Command Injection 3 3 7 7 7 7
- CVE-2018-15152 Privilege Escalation 3 3 3 3 3 3
- CVE-2019-14530 Path Traversal 3 3 3 3 7 7

Umbraco - CVE-2020-9472 Command Injection 3 7 7 7 7 7
- CVE-2020-5811 Path Traversal 3 3 7 7 7 7

Drupal - CVE-2018-7600 Command Injection 7 3 7 3 7 7
- CVE-2020-13671 Command Injection 3 7 7 7 7 7

DotCMS - CVE-2022-26352 Command Injection 3 7 7 7 7 7
- CVE-2017-3187 CSRF 3 3 7 7 3 3

NavigateCMS - CVE-2022-28117 CSRF 7 3 7 7 3 3
- CVE-2020-14014 Reflected XSS 7 3 3 3 3 3

Knowage Suite
- CVE-2021-30211 Stored XSS 7 3 7 7 3 3
- CVE-2018-12355 Reflected XSS 7 3 3 3 3 3
- CVE-2018-12353 CSRF 7 3 3 3 3 3
- CVE-2018-12354 CSRF 7 3 7 7 3 3

Backdrop
- CVE-2021-45268 CSRF 7 3 7 7 3 3
- CVE-2022-42092 Code Injection 3 7 7 7 7 7
- CVE-2022-42095 Stored XSS 3 3 7 3 7 7
- CVE-2022-42094 Stored XSS 3 3 7 7 7 7

Piwigo
- CVE-2022-48007 XSS 3 3 3 3 3 3
- CVE-2012-2209 Stored XSS 7 3 3 3 3 3
- CVE-2012-2208 Directory Traversal 3 3 3 3 3 3
- CVE-2018-5692 Stored XSS 7 3 3 3 3 3

Gitlab
- CVE-2022-2185 Command Injection 3 3 7 7 7 7
- CVE-2022-2884 Command Injection 3 7 7 7 7 7
- CVE-2021-22205 Privilege Escalation 3 7 7 7 7 7
- CVE-2022-1175 Stored XSS 3 7 7 7 7 7

Casdoor - CVE-2022-24124 SQL Injection 3 3 3 3 7 7
- CVE-2022-44942 Directory Traversal 3 7 7 7 7 7

Strapi
- CVE-2019-19609 Command Injection 3 3 3 3 7 7
- CVE-2022-27263 Command Injection 3 7 7 7 7 7
- CVE-2022-0764 Command Injection 3 7 7 7 7 7
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