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Abstract

Bit-flip attacks (BFAs) have attracted substantial attention re-
cently, in which an adversary could tamper with a small num-
ber of model parameter bits to break the integrity of DNNs.
To mitigate such threats, a batch of defense methods are pro-
posed, focusing on the untargeted scenarios. Unfortunately,
they either require extra trustworthy applications or make
models more vulnerable to targeted BFAs. Countermeasures
against targeted BFAsS, stealthier and more purposeful by na-
ture, are far from well established.

In this work, we propose Aegis, a novel defense method
to mitigate targeted BFAs. The core observation is that exist-
ing targeted attacks focus on flipping critical bits in certain
important layers. Thus, we design a dynamic-exit mechanism
to attach extra internal classifiers (ICs) to hidden layers. This
mechanism enables input samples to early-exit from different
layers, which effectively upsets the adversary’s attack plans.
Moreover, the dynamic-exit mechanism randomly selects ICs
for predictions during each inference to significantly increase
the attack cost for the adaptive attacks where all defense mech-
anisms are transparent to the adversary. We further propose
a robustness training strategy to adapt ICs to the attack sce-
narios by simulating BFAs during the IC training phase, to
increase model robustness. Extensive evaluations over four
well-known datasets and two popular DNN structures reveal
that Aegis could effectively mitigate different state-of-the-art
targeted attacks, reducing attack success rate by 5-10x, sig-
nificantly outperforming existing defense methods. We open

source the code of Aegis!.

1 Introduction

The recent revolutionary development of deep neural network
(DNN) models has promoted various security- and safety-
sensitive intelligent applications, such as autonomous driv-
ing [52], Al on satellites [13], and medical diagnostics [55].
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An adversary could manipulate data used by DNN models
and model parameters to launch various attacks. The security
and robustness of DNN models have become the key fac-
tors affecting the deployment of these systems. A significant
amount of research efforts have been devoted to protecting
DNN models from data-oriented attacks, e.g. adversarial at-
tacks [7, 14, 23,40, 41, 57] that manipulate inference data,
or DNN backdoor attacks [2, 11,33, 35,37, 39,53, 68] that
manipulate training data. These efforts can secure the model
against data-oriented threats. But little attention has been paid
to mitigate the emerging parameter-oriented attacks.

Recent studies have shown that well-trained DNN models
are vulnerable to parameter-oriented attacks, which tamper
with model parameters [8,45—48, 64]. For instance, flipping a
small number of critical bits (i.e. 0 — 1 or 1 — 0) of off-the-
shelf DNN model parameters can trigger catastrophic changes
in the inference process [20,45], lowering the prediction accu-
racy or manipulating the inference to any target labels. These
bit-flip attacks (BFAs) experiment in real-world scenarios.
DeepHammer [64] performs BFAs on a PC via rowhammer.
Also, BFAs are performed on the multi-tenant FPGA devices
in cloud-based machine learning services [48].

Current state-of-the-art BFAs can be classified into un-
targeted and targeted attacks. The untargeted BFAs aim to
comprise the victim model accuracy to the random guess
level [45, 48, 64]. For instance, with optimized critical bit
search algorithms, the BFA in [45] needs to flip only 13 out
of 93 million bits of an 8-bit quantized ResNet-18 model
on ImageNet, to degrade its top-1 accuracy from 69.8% to
0.1%. In comparison, the targeted BFAs are stealthier, by
misleading target models to target labels on specific samples
(i.e., sample-wise attacks) or samples with special triggers
(i.e., backdoor attacks) while preserving model accuracy for
other samples. For instance, the sample-wise BFA [4] can flip
only less than 8 critical bits on average of an 8-bit quantized
ResNet-18 model on ImageNet to manipulate the prediction
of specific input samples.

Existing defenses for data-oriented attacks, e.g., adversarial
training, are proven not useful to mitigate BFAs [19]. Instead,



a small number of dedicated defenses have been proposed to
mitigate BFAs, which can be classified into two categories,
namely integrity verification, and model enhancement.

First, integrity verification-based approaches [25, 36, 38]
verify the integrity of model parameters at runtime to detect
BFAs. For instance, HashTAG [25] verifies the integrity of
model parameters on the fly by extracting and comparing
the unique signatures of the original and the runtime DNN
models. A low-collision hashing scheme could be used for
generating signatures and achieving almost zero false pos-
itives. This type of approach could detect any attempts to
tamper with the models and thus could defeat both targeted
and untargeted BFAs. However, they in general require an
additional trusted and secure monitoring process to continu-
ously monitor the target DNN model. It introduces additional
performance overhead and resource cost and is not applicable
to commercial off-the-shelf devices and practical scenarios.

Second, model enhancement-based approaches [32,67] fo-
cus on improving the robustness of target models directly,
making BFAs difficult or impossible to launch. Note that,
precisely flipping a large number of bits via hardware-level
attack is not practical [64]. An important metric for evaluating
the difficulty or cost of BFASs is the number of bits to flip (e.g.
DeepHammer [64] sets 24 bits as the maximum number of
bits can be flipped). Thus, this approach aims to significantly
increase the number of bits to flip for achieving the same at-
tack goals. One promising approach is to quantize the model
parameters to constrain the weights’ value range that may
potentially be changed by BFAs. For instance, a binarization
architecture, BNN, is proposed in [19] to retrain the model
from scratch to generate a model with weights only equal to
-1 or +1. An enhanced version, RA-BNN [49] further extends
the quantization on the activation function outputs by -1 or
+1. This approach can significantly increase the difficulty for
untargeted attacks (e.g. flipping 40 ~ 300x more bits in [19],
which is infeasible). However, this solution can only mitigate
untargeted attacks, while making the model even more vulner-
able to targeted attacks. According to our experiments, TBT
attacks [46] can achieve a similar success rate by flipping even
fewer bits in a binarization-trained model (from 206 bits in
the vanilla model to 50 bits in the corresponding binarization
model. See details in Section 5.3).

In this work, we propose Aegis?, a novel method to mit-
igate different targeted BFAs. Our key observation is that
existing targeted BFAs achieve their goals by locating the
most critical bits according to the model inference process.
Particularly, they flip the critical bits in either the final layer
of the target model or the most important layer determined
by some optimization methods. Based on the observation, we
design our solution by using a dynamic multi-exit architecture
to train extra internal classifiers (ICs) for hidden layers [27].
These ICs can distribute the early exit of input samples to

2Aegis is a powerful shield carried by Athena and Zeus in Greek mythol-
ogy, which can defeat various attacks from thunders, hammers, etc.

different hidden layers of the target model. This can mitigate
the existing attacks which flip bits in one specific layer. Fur-
thermore, considering the adaptive BFAs where the defense is
transparent, adversaries could use the sample exit distribution
to locate critical hidden layers to flip their critical bits. Aegis
can mitigate such adaptive BFAs by dynamic masking certain
exits. Lastly, we design robust training on ICs to simulate the
attacks when the critical bits in each hidden layer are flipped.
This can defeat more sophisticated adaptive BFAs that include
all exits to flip critical bits in all layers of the model.

RAegis aims to achieve three important goals, i.e. non-
intrusive, platform-independent, and utility-preserving. It can
protect the model without modifying any of its parameters.
This will exclude the defenses that retrain the model from
scratch, which is either too costly on a large-scale dataset or
infeasible when training datasets are unavailable. We design
Aegis at the application level without requiring any additional
reliable program or hardware protection, making it generally
applicable. For utility-preserving, Aegis has negligible im-
pacts on the prediction accuracy.

We conduct extensive experiments to evaluate Aegis
against three state-of-the-art targeted BFAs with different
goals, as well as their potential adaptive attack counterparts.
We consider two well-known model architectures (ResNet-
32 and VGG-16) and four datasets (CIFAR-10, CIFAR-100,
STL-10, and Tiny-ImageNet). The results show that we can
mitigate different BFAs by significantly increasing the num-
ber of bits to flip (e.g. flip 35x more bits to achieve a similar
attack success rate of [8]) or reducing their attack success rate
to a low level (e.g. keep attack success rate lower than 4%
with a similar number of bits flipped as [4]).

2 Background

2.1 Targeted Bit-flip Attacks

We introduce three state-of-the-art targeted BFAs, i.e., TBT
attack [46], ProFlip attack [8] and TA-LBF attack [4].

TBT [46] is a targeted BFA that injects backdoors into the
target model through flipping bits. The attacker’s goal is that
the compromised model still operates with normal inference
accuracy on benign inputs but makes mistakes on samples
with specific triggers. Specifically, when the adversary em-
beds the trigger into any input, the model is forced to classify
this input to a certain target class. Note that this method only
flips bits in the final layer of the target model. In the final
layer, the adversary first selects wy, critical network neurons
which have the most significant impact on the target class,
then generates a specific trigger to activate these neurons. Fi-
nally, the adversary formalizes an optimization problem to
modify critical bits corresponding to these neurons.

ProFlip [8] inserts a backdoor into the target model by flip-
ping bits in the network weights to manipulate the prediction
of all inputs attached with the trigger to a certain target class.



This method could flip bits in all the layers of the model by
selecting salient neurons through forwarding derivative-based
saliency map construction (also known as jacobian saliency
map attack (JSMA) [43]). Then the adversary uses the gradi-
ent descent method to generate triggers, which can stimulate
salient neurons to large values. Finally, ProFlip proposes an
efficient retrieval algorithm to select the optimal parameter,
and determine critical bits in the parameter to flip.

TA-LBF [4] does not need a trigger but only misclassifies
a specific sample to a target class by flipping the critical
bits of the parameters, which makes the attack stealthier than
TBT and ProFlip. The adversary formalizes the attack as
binary integer programming since the parameters are stored as
binary bits (i.e., 0 and 1) in the memory. It further equivalently
reformulates this binary integer programming problem as
a continuous optimization problem. Using the alternating
direction method of multipliers (ADMM) method [63] solves
the optimization problem to determine critical bits to flip.

2.2 Existing Defense and Analysis

Existing defense methods could be categorized into two types.
Details are given as follows.

Model enhancement. Aegis also falls into this defense cat-
egory. Li et al. [32] adopt a weight reconstruction method,
which could defuse the changed values on several parameters
to multiple parameters, thus mitigating the effects brought by
untargeted BFAs. Zhan et al. [67] modify rectified linear unit
(ReLU), a commonly used activation function in DNNs, to
tolerate the faults incurred by bit-flipping on weights.

The above two defense methods are proved to be less ef-
fective than the binarization strategy such as BIN [19] and
RA-BNN [49]. This strategy applies the binarization-aware
training [50] to retrain a binarization model from scratch to
mitigate untargeted BFAs. Its point is to constrain the range of
parameters’ values to force attackers to flip more bits in order
to achieve the same attack success rate. Specifically, BIN [19]
converts a part of the model parameters from high precision,
e.g., 32-bit floating-point, to a binary format ({—1,+1}). RA-
BNN [49] uses a more aggressive way to further quantize the
output of activation functions to {—1,41} as well. Although
these methods can effectively mitigate untargeted attacks,
they still have three limitations. First, they require retrain-
ing a target model from scratch, which introduces significant
computation costs. Second, aggressive precision reduction on
models will affect model accuracy. Third, more importantly,
they make the model even more vulnerable to targeted attacks
such as TBT [46] (See Section 5.3).

Integrity verification. This approach is orthogonal to model
enhancement, which protects models from another dimen-
sion. One approach [15,25,31, 38] is to apply the integrity
verification to defend BFAs is that the defender extracts a
ground-truth signature from the model before deployment.
Once the model is deployed, new hashes are extracted during

inference to compare with the ground-truth one.

This approach can also be realized at the hardware or sys-
tem level based on techniques such as ECC [10]. However,
it has three main practical obstacles. (1) They are restricted
to specific platforms, e.g., [15] requires new CUDA kernel
for integrity protection and [26] requires new processors with
targeted row refresh. Also, some techniques such as ECC
are not deployed in some embedded devices such as Nvidia
Nano or Jetson AGX Xavier. (2) These methods are not abso-
lutely secure against bit-flip attack [10]. (3) They only detect
whether a model is changed in memory, but do not provide
mitigation against specific attacks.

Comparison with existing defense methods. Existing model
enhancement methods could effectively mitigate untargeted
BFAs, but pay no attention to targeted BFAs. Compared with
untargeted attacks, targeted attacks are more threatening and
stealthier, as the compromised model could still behave nor-
mally on clean samples. Thus, we aim to fill this gap. Besides,
Aegis is non-intrusive compared with existing methods as
we do not modify the original models or retrain from scratch.

Integrity verification approaches experiments via hardware
or system-level solutions. Instead, Aegis aims to give an
application-level solution that is generally effective regardless
of the underlying hardware circuits, operating systems, or DL
libraries. Besides, Aegis is orthogonal to integrity verification
such as ECC so Regis can provide extra protection on ECC-
enabled systems on different levels.

We also notice there are defense methods that are specific
to DNN backdoor attacks [12,34,61,66]. However, they have
different threat models with mitigating BFAs. Specifically,
they aim to detect or remove an existing backdoor in offline
trojan models. However, BFAs usually experiment on a de-
ployed clean model under attack at runtime.

2.3  Multi-exit DNN models

The initial motivation for setting exits for inference at hidden
layers is to solve the overthinking issue. Since the growing
performance of modern DNN models brings a significantly
increasing number of layers and parameters in most of the
state-of-the-art DNN models, Huang et al. [22] point out that
forcing all samples, especially canonical samples to inference
all layers of a DNN model definitely brings a waste of energy
and time. Moreover, Kaya et al. [27] find that forcing certain
samples classified correctly with only a few shallow layers but
inference through all layers will lead to the wrong prediction.

Many solutions have been proposed to let samples early
exit the model to address the above issues [17,18,22,62]. One
promising technique is the shallow-deep network (SDN) [27].
The key insight of SDN is that during the inference process for
a sample, it is highly possible that some layer in the middle of
the network already has high confidence for prediction. So it
can early exit from the model without the need to go through
all the layers to significantly reduce the inference time and



energy consumption. It is very convenient to convert a vanilla
DNN model (e.g. ResNet) into an SDN model. We can select
some appropriate convolution layers, and attach an internal
classifier (IC) to each of them to form an early exit. When
the prediction confidence of the input sample as one label is
higher than a threshold at an exit, the inference will stop and
output that label. A proper threshold can realize early-exit
with a tiny accuracy loss.

Deploying multi-exit model architectures such as SDN
for security purposes is proposed in [21, 69] to mitigate ad-
versarial attacks. Particularly, an input-adaptive multi-exit
DNN structure with a dynamic inference process can mitigate
the adversarial perturbation generation and further increase
the difficulty of adaptive adversarial attacks. However, since
BFAs aim at manipulating model parameters rather than input
samples, simply deploying multi-exit DNN structures can-
not achieve the defense requirements and more sophisticated
methods are needed.

3 Threat Model and Defense Requirements

We consider an adversarial scenario, where the adversary is
able to perform BFAs against the victim DNN models. He can
precisely flip a number of parameter bits to affect the model
prediction results. The exploitability and practicality of such
threats have been validated and evaluated in previous works [0,
44,48, 64]. For instance, attackers verified an untargeted BFA
on DNNs with a PC platform via row-hammer [48]. Also, the
adversary can co-locate his malicious program on the same
machine with the victim DNN model and then use methods
like row-hammer [48] to perform BFAs. The feasibility of
BFAs is also validated in our paper on a PC platform following
previous works [44,64] (see details in Section 5.7).

Following the previous works [4, 8,44,46,064], we assume
the adversary has very strong capabilities. He has full knowl-
edge of the victim model, including the DNN architecture,
model parameters, etc. We further assume that the adversary
knows every detail of any possible defense deployed in the
system, such as the mechanism, algorithm, parameters, etc. If
a defense solution employs randomization-based techniques,
we assume the random numbers generated in real-time are
perfect with a large entropy such that the adversary cannot
obtain or guess the correct values. It is worth noting that
these assumptions represent the strongest adversary, which
significantly increases the difficulty of defense designs.
Adversarial goals. Previous works have demonstrated differ-
ent goals for BFAs, as summarized below:

o Untargeted attack. The adversary aims to drastically de-
grade the overall accuracy of the victim model. A power-
ful untargeted attack can decrease the model accuracy to
nearly random guess after the exploitation [64].

e Backdoor targeted attack. The adversary designs a spe-
cific trigger and injects the corresponding backdoor [8]

into the DNN via the BFAs. Then for any input sample
containing the trigger, the compromised model will mis-
predict it as the target class.

e Sample-wise targeted attack. The adversary aims to tam-
per with the model such that it only mispredicts a specific
sample as the target class while having normal predictions
for other samples.

In this paper, we focus on the last two categories of tar-
geted BFAs due to two reasons. (1) As indicated in Section
2.2, a number of past works have explored the mitigation
approaches against untargeted BFAs. In contrast, how to ef-
fectively thwart targeted BFAs is rarely investigated. (2) The
backdoor or sample-wise targeted BFAs are much stealthier
than the untargeted attack, as the compromised model behaves
normally for clean samples. This significantly increases the
defense difficulty and an effective solution is urgently needed.
Besides, although untargeted BFAs are not within our scope,
our approach can mitigate untargeted BFAs (see Section 6).
Defense requirements. The purpose of this paper is to design
a defense approach to comprehensively protect DNN models
from different targeted BFAs and their possible adaptive at-
tacks. It is worth highlighting that our goal is to increase the
attack cost rather than totally preventing BFAs. Theoretically,
the adversary can tamper with more parameter bits even if a
strong defense is applied. So we aim to significantly increase
the number of flipped bits required to achieve the desired ad-
versarial goal, thus making the attack less feasible or practical.
Our defense requirements are as follows.

e Non-intrusive. The defense should be easy to deploy on
off-the-shelf DNN models. The defender does not need to
modify parameters of the original model, e.g., retraining a
model with binarization [19] from scratch since this can
incur significant computation cost, especially for large-
scale DNN models (e.g. ImageNet scale [51]).

o Platform-independent. Previous works propose hardware
or system-level solutions to prevent fault injection attacks,
e.g., new CUDA kernels for integrity protection [15], new
processors with targeted row refresh [26]. However, these
solutions are restricted to some specific platforms. Instead,
we hope to have an application-level solution that is gen-
erally effective regardless of the underlying hardware cir-
cuits, operating systems, and deep learning libraries.

o Utility-preserving. The defense solution should have a
negligible impact on the model inference process. It should
preserve the usability of the original model without hugely
decreasing its prediction accuracy.

4 Methodology

4.1 Design Insight

We propose Aegis, a novel approach to mitigate different
types of targeted BFAs. Our approach is composed of a



Dynamic-Exit SDN (DESDN) mechanism followed by a ro-
bust training (ROB) strategy only on ICs. We illustrate our
design insight via three steps as follows.

First, there are BFAs that only flip bits in the final layer
since the parameters of the final layer are directly related to
the prediction results. It is straightforward to deduce that a
multi-exit mechanism can thwart the basic BFAs that flip bits
only in the final layer (as shown in Figure 1). (1) Using a
multi-exit DNN structure such as the SDN can interfere with
the adversarial perturbations carried by the samples (triggers
generated only from the vanilla model). Malicious samples
may exit early to stop inference at an arbitrary hidden layer
which generates different predictions compared with the infer-
ence on the target vanilla model. (2) By forcing most samples
to exit early, the flipped bits at the final layer will be probably
ignored during inference to achieve the defense goals.

Final Layer

1
1
1
t
1 .

Attacker flips bits
in the Ky, layer

Attacker flips bits
in the final layer

- r

! 1 1
! 1 1
1 1 1
1 1 1
! 1 - 1
! . Pk P |
1 Bits:11010010 |v o | Bits: 10001000 1
! S 1 1
! FlipBits 1| >« LayerK | Flip Bits 1
1 1 N 1 1
- o [ EDED @ - | P -
' | Bits:00010010 1 1 1| Bits:01001000 !
1 1 LR Y 1 1
! 1 1 ) 1
1 the jg, parameter in Layer 1 1 ‘ t:e lffh ;:alrameter iny
| the Ky, layer the final layer 1
Lol @)@ .- @D.. | LTI g

Figure 1: An example of flipping bits in the K;; or final layer.

Second, we consider the existing more sophisticated BFAs
that are not targeting only the final layer. For instance, the
adversary may use an optimal way to locate the critical bits
in the hidden layers (e.g. flipping bits in the Kj; layer in
Figure 1). Directly using the SDN structure cannot provide
protection when the critical bits are flipped in the shallow
layers. Moreover, in a white-box scenario, the adversary can
observe the exit distribution of samples to locate critical exits
for performing attacks in the corresponding critical layers
(e.g. 78% samples will exit in the last five layers of a VGG-
based SDN model). Thus, we propose a Dynamic-Exit SDN
(DESDN) mechanism that randomizes the exit for each infer-
ence. This DESDN can mitigate the case when the adversary
flips bits in shallow layers since the sample exits the model in
a random layer, which has a low probability of containing the
flipped bits. Moreover, DESDN can push the exit distribution
to a uniform one (see our experiments in Figure 5 (a)) such
that there are no critical exits for the adversary to consider.

Third, we further consider the most powerful adaptive at-
tack. With the knowledge of all the details of Aegis, the ad-
versary may include all exits to optimize his critical bit search.
Although this will increase the attack cost (more bits to flip),
it is possible to flip bits, particularly targeting at Aegis to

achieve the attack regardless of where the sample exits. Our
insight is to further design a robust training (ROB) strategy
to find the critical and vulnerable bits for clean samples’ in-
ference process and simulate the influence when they are
flipped. Note we only perform ROB on ICs without touching
the target vanilla model to guarantee the non-intrusive de-
fense requirement. This can improve the robustness of ICs
to mitigate the significant convolutional output change when
certain bits are flipped. Therefore, the difficulty of performing
bit-flip attacks will be further increased. Below we detail two
core components (DESDN and ROB) of Aegis and analyze its
security against various attacks.

4.2 Dynamic-Exit SDN (DESDN)

As the first component of Aegis, DESDN consists of two steps:
converting a model M to an SDN model M (offline), and
performing a random exit strategy during inference (online).

4.2.1 Stage 1: Constructing SDN Model

X[F O TR F2® R [EN®) TR [Frinal()
Layer 1 Layer 2 Layer N Final Layer|

Input C; C, Cn Output
[Conv, | [Conv, | [Convy]
|Dense1| |Densez| IDense,ﬂ

I T I
[c®] [e®] lew )]

Figure 2: An example of the model attached by ICs. C; denotes
the i-th IC attached by us. During inference, each IC could
make a prediction. For example, C;(x) is the prediction of C;.

We adopt the technique in prior work [27] to build the SDN
model M from M, which shows negligible accuracy degrada-
tion during conversion. Specifically, we assume M consists
of N internal layers F;, (1 <i < N), and ends with the final
layer Ffyq. For an inference sample, M performs the classi-
fication as M(x) = Fina(Fi(,-..Fi(x))). For simplicity, we
denote the output of the i-th internal layer as F;(x), and the
output of the final layer M(x) as Ffj,q(x). Then our goal is
to train an IC (C;) for each internal layer 7, as shown in Fig-
ure 2. Then C; is attached to layer i and makes the prediction
C;(Fi(x)), which is simplified as C;(x). To restrict the size of
the IC, each C; only contains one convolutional layer and one
dense layer. Such a simple structure makes it efficient to learn
the parameters while maintaining high classification accuracy.
This design is general and can be applied to different models.

During construction, the defender freezes the parameters of
the original model M but just trains the ICs. Note, this training
process is much more efficient than training a complete model
from scratch. For instance, training ICs for a vanilla model
is 3.2 ~ 8.2x faster than training this model. Further, there
is a trade-off between IC training cost and model accuracy.
For instance, if we allow a tiny accuracy drop (e.g. 2% like
previous work [19]), IC training cost will be less than 10% of



the original model training and can be negligible. We leave
further reduction of training cost as our future work.

4.2.2 Stage 2: Randomizing Exits During Inference

After attaching the trained ICs to M, the constructed SDN
model M allows early exit. A threshold 7 is then introduced to
judge whether the inference should exit at each internal layer
F;. Specifically, for a given sample x, when the inference pro-
cess reaches the i-th layer, we compute the confidence score
of the corresponding IC max(C;(x)). If this score is larger than
T, then the process will exit from C; with the corresponding
output without going into deeper layers. This deterministic
exit mechanism can thwart the basic BFAs, but may still be
vulnerable to adaptive attacks.

To further secure the inference computation, we design a
dynamic exit strategy. Particularly for each query sample x,
among all the ICs C = {Cy,Cy,...,Cy, Ffipa }, we randomly
select a set of ¢ candidate ICs, denoted as C. Then we perform
the early exit within these candidate ICs based on their confi-
dence scores: we find the first IC C; in ¢ whose confidence
score max(C;(x)) is larger than the threshold ;. Then this
layer is selected as the early exit for this inference sample. If
none of the candidate ICs can satisfy the early exit criteria,
we will choose the final layer in C as the exit for prediction.
There exists a trade-off between model accuracy and security,
determined by the hyper-parameter g. Specifically, a smaller
g can make the selected exit more random with larger entropy.
However, it also increases the probability that these g ICs can-
not meet the early exit criteria, and the prediction has lower
confidence. In Section 5 we will show that we can find the
appropriate value of ¢ that brings high stochasticity to the exit
selection, with negligible impact on the model accuracy.

4.3 Robust Training on ICs

We then introduce the second core component of Aegis:
ROB, which further enhances the defense effectiveness against
BFAs. In particular, when the adversary flips bits in the i-th
layer of M, it could still possibly affect any ICs after this layer
with a certain probability, as the layer output F;(x) passes to
these ICs and affects their predictions. To reduce such impacts,
we propose ROB to improve the robustness of the attached ICs.
Note here the ROB is only performed on ICs so there is no
modification on the target model.

The key insight of ROB is to help ICs adapt to the cases
when critical bits are flipped in M. In general, without prior
knowledge of the BFAs, we construct a bit-flipped model
by considering only the benign samples’ inference process
to simulate the target compromised model. Then, we craft
new samples based on this bit-flipped model for ROB. These
training samples simulate the outputs of flipped layers, and
ICs will learn such data to correct the prediction from the

adversarial scenarios. Figure 3 illustrates the basic idea of this
approach, which consists of two steps.

The first step is to construct the flipped model. For defense
generality, we assume the defender does not know the exact
attack methods to mitigate. In this case, to make the flipped
model closer to the real-world victim model, we design a
vulnerable-protection algorithm (VPA) to figure out vulner-
able bits that could be potentially flipped. Our VPA aims to
find bits that are critical to the model decisions. Such bits
might significantly affect the prediction results and are vulner-
able to being flipped by the adversary. We note that existing
attack methods [4, 8,45,46,64] treat gradients w.r.t bits as a
key component to select flipped bits. Indeed, the gradients of
the model output w.r.t bits reflect the importance of bits in
model decisions. Inspired by this, the basic idea of our VPA
is to select critical bits according to the gradients of inference
loss L,y w.r.t bits, where L, is defined as follows:

Linf = Lee(Ffina (x)31), (1

where L, is the cross-entropy loss, [ is the ground-truth label
of the input sample x. Below we describe VPA in detail.

In particular, given a target model M, we denote all bits in
M as B. We first establish a substitute model which is exactly
the same as M. In each iteration of VPA, (1) we follow previ-
ous work [45] to calculate the gradients of L, s w.r.t. each bit
b (b € B), denoted as Vj L;,¢. (2) Then, we descendingly rank
the vulnerability of bits by the absolute value of their V;, L,
and select the bits with the top-k gradients. (3) We treat these
bits as vulnerable bits, and flip them. We iterate the above
process until the maximum iteration budget N,,, exhausts
to get the flipped model. Note that in each iteration, VPA
must recalculate the gradients of each bit: as the model M
is dynamically changed due to the flipped bits, old gradients
could not reflect the importance of bits in the newly changed
model decisions. After this step, we can get the flipped model
M, which consists of N internal layers £;, (1 <i <N).

The second step is to synthesize training samples for ROB.
We freeze the original weights and only train weights in ICs.
Given an input sample x from the original training set, we
denote the output of the layer i from the flipped model M as
Fi(x). So F;(x) will serve as the special training sample for
the IC attached to layer i. It can help the IC better adapt to the
attack scenarios in advance, so as to improve the robustness
of the IC. During training, except for F;(x), we also need to
apply original training data F;(x) provided by M, so as to
ensure the accuracy of ICs.

4.4 Security Analysis

After introducing the design of Aegis, we give a comprehen-
sive qualitative analysis of the resilience of this methodology
against different types of BFAs. The first two are basic attacks
from existing works, while the last one depicts a possible
adaptive strategy targeting our new defense mechanism.



Model M with ICs

ittty T SN YOO N ¢ Fn(0)
! Attach ICs ! Fy F, | Fn Ffinal
e N B
| 1 Train C;
' ModelM Model M with ICs|
: : Train C,
: Copy Lo |
ﬁ | .
I Training Set Train Cy
1 1 I_.i Cn
1 Flip Vulnerable I
1 Bits I = = - -
! [ X F1(x) F,(x) Fn(®)
l _Substitute Model flii)p_ed_Mi)dElE[ . F Fy
Flipped Model M

Figure 3: Illustration of ROB. We first construct the flipped model M, and then synthesize training samples for ROB. In particular,
we use M to generate special training data, e.g., F1(x). Then, we apply these special training data, together with the original
training data to train ICs. For example, we use F(x) and Fi(x) to train Cj.

Attack I: the adversary only flips the bits in the final layer
of the model. This strategy is adopted in TBT [46] and TA-
LBF [4]. The basic SDN model can defeat these two attacks.

Formally, the TBT attack defines a target class ¢ and a
specific trigger A for activating the backdoor in the victim
model. Given a clean input sample x with the ground truth
label /, the attacker aims to make the compromised model
mispredict x + A as ¢. Identification of the critical bits can be
modeled as an optimization problem, which aims to minimize
the following loss function:

Lrpr = Lee (Ffinal ()C);l) + Lee (Ffinal (X+A);t), 2
where L, is the Cross-Entropy loss function. We observe that
the loss function only considers the final layer. As a result,
the basic SDN model is able to thwart this attack, as most
inference samples will exit earlier before the final layer Fyqr,
and not be affected by the flipped bits.

Similarly, TA-LBF is a sample-wise attack, which aims
to cause the misclassification of a specific sample x from its
ground truth label / to the target label 7. This can also be
formulated as an optimization problem:

Lra-1sr = Li( Lt Fring) + Mo (x5t Frinar),  (3)

where A is a hyperparameter, £; and £, are two specific loss
functions that ensure the attack effectiveness and stealthiness,
respectively. We observe that this loss function is also only
related to the final layer Ff;,,;. With an SDN, the sample x
has a high chance to exit the model earlier than the final layer,
and will not be affected by the flipped bits in Fy;g.

Attack II: the adversary flips bits in arbitrary layers based
on a more sophisticated search method, as exploited in
ProFlip [8]. Specifically, the adversary selects a trigger A.
Given a clean input sample x and the target class ¢, the adver-
sary aims to search for critical bits in all the layers to inject

the backdoor. This process is also modeled as an optimization
problem with the following loss function:

“4)

where A denotes the salient neurons, determined by the target
label through conducting the Jacobian Saliency Map Attack
(JSMA) [43]. Particularly, the adversary calculates the gradi-
ents of the model inference F;,q (x) W.r.t. each neuron output,
and then selects neurons with top gradient values as A/.

We observe that the joint impact of all the searched bits can
only affect the output of Ff;,,;. Samples that exit earlier from
the ICs might still give the correct prediction results.
Attack III: based on the above analysis, we conclude that
the basic BFAs that flip bits in certain layers cannot break
the basic SDN. So we further assume a stronger adversary,
who knows our Aegis mechanism and aims to design an
adaptive strategy to break it. He may design a loss function
L* that considers all the ICs to optimize. However, breaking
our defense is still difficult, as explained below:

(1) For adaptive attacks based on Attack I (i.e., adaptive
TBT and TA-LBF), considering all the ICs could identify the
vulnerable bits that can affect each exit. However, this could
significantly increase the attack cost (i.e., the number of bits
to flip). In particular, to design an adaptive TBT, we consider
the following loss function, which includes the ICs as well:

LPr()Flip = Lce(Ffinal (x+A);t) - N(X+A>7

N
Lipr = Lrar + Y, Lee(Ci(x):1) + Leo(Ci(x+ A1), (5)
i=1

In this case, the adversary flips bits in the final layer of each
IC as well as the final layer of M. Recall that in the TBT
algorithm in Section 2.1, the adversary sets a fixed number
of candidate parameters in the final layer as wj. For each
candidate parameter, the adversary figures out several bits to
flip. This implies that the number of flipped bits is positively



correlated with wy,. In adaptive scenarios, since each IC needs
to be attacked, the adversary needs to modify w;, parameters
in the final layer of each IC. This results in the scale of n X wy,
parameters for compromising, which is a huge cost for the
adversary, especially when n is large.

The adaptive TA-LBF can also be designed in a similar
way by including the ICs in the loss function as follows:

N
Lia_rgr = Lra-1sr + Y, Li(6L5:.C) + Lo (x: 151:C).

i=1
(6)
Increasing the number of candidate layers also results in a
larger number of bits to flip, since the adversary needs to
ensure all the exits are affected.

(2) For adaptive attacks based on Attack II (i.e., adaptive
ProFlip), although the adversary considers all the ICs, he
might still fail to attack each exit. Samples exiting from the
unattacked ICs are not affected, and the attacks are mitigated.
In particular, for the adaptive ProFlip attack, the adversary
optimizes the following loss function:

N —~
L;mFlip = Lce(Ffinul (‘x);t) + Z L (Ci('x);t) - N('x—"_A)

i=1
7
Different from A/, the adversary considers all ICs as well
as the final layer, i.e., ¥ | Ci(x) + Fina(x). Particularly,
the adversary adopts JSMA to calculate the gradients of
Zfil Ci(x) 4 Ffina1 (x) w.r.t each neuron outputs, then select

neurons with top gradients, denoted as A/.

The adversary selects the optimal parameter to modify
through optimizing Eq. 7, and the optimal parameter might
locate in any layer. Here, the determination of the optimal
parameter is highly dependent on x given ¢, A, and the target
model. For example, on CIFAR-100 and VGG16, we repeat
the ProFlip attack 100 times, and randomly select 256 dif-
ferent input samples x for each time. For each independent
attack, we observe the optimal parameter could be determined
in different layers of M. We assume the optimal parameter is
located in the i-th layer. In this case, all ICs attached before
the i-th layer are not destroyed by the adversary. Thus the
samples exiting from these ICs are not affected. Besides, for
the ICs attached after the i-th layer, our ROB could reduce the
impacts brought by the flipped bits. Another case is that the
optimal parameter is located in an IC. Only the IC is attacked
by the adversary, and all other ICs are not affected.

5 Evaluation

We evaluate Aegis on different targeted BFAs: two back-
door attacks (TBT and TA-LBF) and one sample-wise attack
(ProFlip). We also consider many adaptive attacks. All exper-
iments are conducted on a machine with an Intel Xeon Gold
6154 CPU and 8 NVIDIA Tesla V100 GPUs.

5.1 Experimental Setup

Datasets and models. We conduct our experiments on four
widely-used datasets with two DNN structures: VGG16 [56]
and ResNet32 [16].

e CIFAR-10 [30]: This dataset contains 50,000 training im-
ages and 10,000 test images. Each image has a size of
32 x 32 x 3 and belongs to one of 10 classes.

e CIFAR-100 [30]: This has the same number of training
and testing images as CIFAR-10. Each image also has the
same size as CIFAR-10, but belongs to one of 100 classes.

e STL-10 [9]: This dataset contains 50,00 training im-
ages and 8,000 test images. We note that it also con-
tains 100,000 unlabeled images. Each image has a size of
96 x 96 x 3 and belongs to one of 10 classes.

e Tiny-ImageNet [1]: This dataset is a simplified version
of ImageNet consisting of color images with a size of
64 x 64 x 3 belonging to 200 classes. Each class has 500
training images and 50 testing images.

Inspired by [3], we strictly separate the training and test-
ing data without any overlap. In particular, (1) CIFAR-10:
we follow [7, 19,42, 60] to select 50,000/10,000 images for
training/testing. (2) CIFAR-100: we follow [5, 28] to se-
lect 50,000/10,000 images for training/testing. (3) STL-10:
we follow [58, 59] to select 5,000/8,000 images for train-
ing/testing. (4) Tiny-ImageNet: we follow [59, 60] to select
100,000/10,000 images for training/testing.
Hyperparameters. As mentioned in Section 4.2.2, T and
q affect the early-exit distribution and model accuracy. For
generalization on unseen data and avoiding the selection of
biased hyperparameters, we tune hyperparameters on training
data guided by two goals: (1) making early-exits uniformly
distributed to prevent the attacker from targeting only those
popular exits; (2) maintaining high ACC on benign samples.
Table 1 list the values of these hyperparameters. Note that we
tune these hyperparameters without considering any specific
attacks. They are general and fixed to mitigate all attacks in
our consideration. We also evaluate the sensitivity of these
hyperparameters and find the mitigation results are stable to
hyperparameters that meet the two goals (see Appendix A).

Table 1: Values of t and g on our datasets and models.

Dataset Model T 4
CIFAR-10. 56953
CIFAR-100 R\ig\gi? gzg 2
STL0 —ggte 055 3
Tiny-ImageNet R\ig\g;? 832 Z

We also conduct ROB for the ICs. The only randomness of
Aegis is from the random selection of ICs in inference. We
repeated each experiment 10 times and the ASR variance is
below 2% which does not affect our conclusion.



Baselines. We compare Aegis with the state-of-the-art de-
fense methods BIN [19] and RA-BNN [49]. We also compare
Aegis with the basic SDN [27] to demonstrate the effective-
ness of DESDN and ROB mechanisms. For a fair comparison,
we slightly modify SDN to make sure Aegis uses the same
structure and hyperparameters as SDN, except for the DESDN
and ROB mechanisms. Besides, we compare Aegis with the
baseline models (BASE) with no defense.

5.2 Model Utility Evaluation

A qualified defense method should preserve the utility, i.e. tiny
model accuracy (ACC) drop. Table 2 compares the impacts
of different methods on ACC. We observe that Aegis slightly
degrades ACC by approximately less than 2%, while BIN and
RA-BNN have much more ACC degradation, i.e., roughly
2~ 12% and 2 ~ 7%, respectively. This is due to BIN and
RA-BNN adopting an aggressive binarization on weights
(each parameter occupies only 1 bit) or activation function
outputs which harm the model ACC. We also notice that SDN
has comparable ACC with Aegis, which validates that the
DESDN mechanisms in Aegis do not affect the model utility.
In summary, Aegis could preserve the model utility.

Table 2: Model ACC influence evaluation.
BASE AACC (%)

Dataset Model | ,c (%) [BIN [ RA-BNN | SDN | Aegis
ResNe32 | 9279 | 226 | 171 | -127] -1.26
CIFAR-I0 | —GGGT6 | 9361 | <126 | <119 | -1.72 | -0.67

ResNet32 66.13 -4.38 -2.47 -2.54 | -1.96

CIFAR-100 VGG16 72.85 -4.14 -2.08 -1.97 | -1.90
STL-10 ResNet32 74.80 -4.09 -3.85 -2.80 | -0.90
VGG16 79.51 -1.41 -1.39 -135 | -1.02

Tiny-TmageNet ResNet32 54.58 -11.16 -6.31 -3.87 | -1.92
VGG16 60.51 -4.18 -4.07 -0.39 | -0.28

5.3 Mitigating Targeted Attacks

We evaluate the defense effectiveness of Aegis against the
state-of-the-art targeted attacks including two backdoors tar-
geted BFAs (TBT [46] and ProFlip [8]) and one sample-wise
targeted BFA (TA-LBF [4]). We reproduce these BFAs with
their open-sourced code and the recommended parameters
(Appendix B) and list the visual results (e.g. triggers and sam-
ples) in Appendix C. The possible adaptive attacks based on
these BFAs are evaluated in Section 5.4.

Comparison metrics. While applying an attack to all defense
methods, we compare the attack success rate (ASR) of each
defense method. For fair comparisons, we make sure the given
attack pays the same attack cost on each defense method:
flipping the same number of bits. We denote the number of
flipped bits as N}, and consider different N}, with two steps.
First, we restrict the bit flipping number limit (N;) to 50 for
all attacks. Such a bit flipping number limit is set as 24 in the
state-of-the-art Rowhammer attack on cloud platforms [24]:
it tests a batch of high-quality dual inline memory modules
(DIMMs) and reveals that flipping 24 bits needs a significantly

long time (several hours). We also confirm the feasibility of
performing BFAs on physical systems (in Section 5.7) to
illustrate that flipping 50 bits is very difficult for attackers.
Furthermore, we relax the restriction on N, (i.e. 500) and
evaluate the ASR for comprehensiveness.

In the following, we first evaluate all defense methods under
TBT and TA-LBEF, as they all flip bits in the final layer of the
target model. We then evaluate all defense methods under
ProFlip, which could flip bits in any layer of the target model.
Mitigating TBT. Table 3 shows the defense results against
TBT. Aegis can significantly decrease the ASR and outper-
form other methods. In most cases, Aegis can decrease the
ASR to less than 20%, which is significantly lower than others.
In contrast, we note BIN and RA-BNN even perform worse
than BASE in some cases. For example, on CIFAR-10 and
VGG16, the ASR for BASE is 71.1%, which is lower than
that of BIN (90.4%) and RA-BNN (82.9%). This means the
defenses designed for untargeted BFAs might make models
even more vulnerable to targeted BFAs.

Table 3: Evaluation results of ASR against TBT.
ASR (%)

Dataset Model |53 SE T BIN | RA-BNN | SDN | Aegis
ResNeGZ | 707 | 948 | 745 | 163 | 199
CIFAR-I0 ' —GGT6 [ 710 [904 | 829 | 426 | 36.0
ResNeBZ | 958 | 998 | 255 | 205 | 108
CIFAR-100 | —556T6 650 [ 584 | 474 | 538 | 10.6
STLo | ReNed2 | 1000 [ 725 | 294 | 471 | 130

VGGI16 64.1 99.7 88.0 9.0 10.5
ResNet32 | 100.0 | 63.3 31.4 65.8 279
VGG16 69.7 | 723 40.2 48.9 10.1

Tiny-ImageNet

Mitigating TA-LBF. Table 4 shows the ASR on all datasets
and models against TA-LBF. Overall, Aegis could effectively
mitigate TA-LBF and outperform other methods. In most
cases, Aegis can limit ASR below 10.0%, which is much
smaller than others. For example, on STL-10 and ResNet32,
Aegis limits the ASR to 9.6% while the ASR for BASE, BIN,
RA-BNN, and SDN is 100.0%, 100.0%, 100.0% and 47.7%,
respectively. We find the highest ASR for Aegis is 20.1%
on Tiny-ImageNet and ResNet32 which is still much smaller
than the ASR for other cases.

Table 4: Evaluation results of ASR against TA-LBF.
ASR (%)

Dataset Model |53 SF T BIN | RA-BNN | SDN | Aegis
ResNe32 | 1000 | 1000 | 1000 | 35 | 6.3
CIFAR-I0 1 —5GG16 | 576 1000 | 1000 | L1 | 03
ResNe32 | 1000 | 100.0 | 1000 | 380 | 164
CIFAR-100 ' —SGG16 | 564 | 1000 | 1000 | 194 | 44
STL10 | ResNets2 [ 1000 | 1000 | 1000 | 477 | 96

VGGI16 81.4 99.7 98.7 0.3 2.0
ResNet32 | 100.0 | 100.0 100.0 71.1 20.1
VGGI16 51.8 98.1 90.7 27.2 17.3

Tiny-ImageNet

Summary for the evaluation of TBT and TA-LBF. We sum-
marize the defense evaluation against TBT and TA-LBF as
follows. These two attacks only flip bits in the final layer,
which could not affect ICs. Aegis can keep the model ACC
well and let many input samples early-exit from ICs to effec-
tively mitigate TBT and TA-LBF. We notice that SDN also



performs better than BASE, BIN, and RA-BNN in most cases.
However, SDN uses a static multi-exit mechanism, making it
less effective than Aegis for adaptive attacks (Section 5.4).

Table 5: Evaluation results of ASR against ProFlip.
ASR (%)

Dataset Model -4 F T BIN | RA-BNN | SDN | Aegis
ResNe32 | 969 | 994 | 906 | 473 | 198

CIFAR-10 —GGGT6 [ 882 | 786 | 846 | 705 | 289
ResNet32 | 89.8 | 100.0 | 829 | 583 | 192

CIFAR100  —5GT6 | 800 | 804 | 765 | 649 | 203
STL10 ResNe(32 | 774 | 524 | 912 | 58.1 | 339
VGG16 | 872 | 960 | 903 | 190 | 187

i tmaseNer | RESNEB2 | 001 | 825 | 804 | 750 | 20.1
1ny-imag VGGI6 | 882 | 441 39.2 268 | 156

Mitigating ProFlip. Different from TBT and TA-LBF,
ProFlip does not restrict the layer but uses an optimization
method to flip critical bits in arbitrary layers. Tables 5 shows
the results in which Aegis can limit the ASR below 30% in
most cases. On the contrary, the ASR for BASE, BIN, and
RA-BNN is higher than 70% in most cases. For example,
on CIFAR-10 dataset with VGG16, Aegis limits the ASR to
28.9%. However, the adversary acquires 88.2%, 78.6%, and
84.6% ASR for BASE, BIN, and RA-BNN. Aegis makes
that the flipped bits could not effectively affect samples that
exit earlier. This is also why SDN has comparable defense
performance in some cases.

Evaluation with more bits flipped. Here we do not restrict
Ny, to 50 but consider larger N, to compare Aegis with other
methods. We take CIFAR-100 and VGG16 as an example
to evaluate when N, increases to up to 500 for all defense
methods. Evaluation results are shown in Figure 4. Compared
with existing defense methods, we observe the ASR for Aegis
is still limited at a low level for all attacks. For TBT (Figure 4
(a)) and TA-LBF (Figure 4 (b)), even the attacker could flip
as many as 500 bits, the ASR is still less than 13%, which
proves the defense effectiveness of our method. For ProFlip
(Figure 4 (c)), ASR increases slowly with more bits flipped
and Aegis can clearly outperform all baselines. Even if the
attacker could flip as many as 500 bits, Aegis can restrict the
ASR of ProFlip to 58.3% while ASR for other cases is already
100% with significantly fewer bits flipped.

Note that when more bits are flipped, Aegis clearly out-
performs SDN against all three attacks. Especially, consid-
ering ProFlip, the ASR achieves almost 100% when about
200~-300 bits are flipped. Thus, we claim that simply de-
ploying a multi-exit DNN structure on a target vanilla model
cannot sufficiently defeat these targeted BFAs even without
considering their adaptive attacks. Also, Aegis includes two
components, and the ablation study to evaluate their defense
effectiveness respectively is given in Section 5.6.

5.4 Mitigating Adaptive Attacks

Beyond basic adversaries, any effective defense should also
be capable of withstanding any adaptive attackers who are
aware of the existence and mechanism of the defense. We

consider a sophisticated adversary who knows the detail of our
defense mechanism and aims to design an adaptive strategy to
break it. We consider crafting such advanced attacks from the
three state-of-the-art attack methods (i.e., TBT, TA-LBEF, and
ProFlip). As analyzed in Section 4.4, the adversary knows all
details of Aegis and tries to attack all ICs to increase the ASR
regardless of where the input samples exit. He can design new
loss functions dedicated to Aegis by adding optimization
terms for all ICs. Thus, the adaptive TBT and TA-LBF attacks
will flip bits in the final layer of all ICs in addition to the final
layer of the model. All other attack settings and models are
the same as in the previous sections.

In the following, we evaluate the effectiveness of Aegis
against these adaptive attack scenarios. We still first set N,
to 50 for all attacks. Then, we relax the restriction of N, and
evaluate the ASR when the adversary could flip more bits.
Baselines. Since BIN is proven to make the victim model
even more vulnerable to targeted BFAs, we do not consider it
as a baseline defense and mainly compare with SDN. Both
Aegis and SDN have ICs attached to the hidden layers for
an early-exit mechanism, enabling the adversary to design a
similar dedicated adaptive attack against them. We also report
the ASR of BASE to reflect the defense effectiveness.
Adaptive TBT. Table 6 shows the ASR of each defense
method. We observe that SDN can be defeated by the adaptive
TBT attack. By including all ICs of the SDN model to per-
form the adaptive TBT attack, the ASR of SDN is even higher
than that of BASE in many cases. In contrast, our Aegis can
restrict the ASR below 40% in most cases. This is because
the adaptive TBT attack will flip bits for critical parameters
in ICs and the model’s final layers to manipulate inference on
all exits of the SDN model. However, Aegis still effectively
mitigates this strategy due to the random exit mechanism.

Table 6: Evaluation results of ASR against adaptive TBT.
ASR (%)

BASE | SDN | Aegis

ResNet32 | 70.7 37.2 31.1

Dataset Model

CIFAR-10 VGG16 | 71.1 | 865 | 58.1
ResNet32 | 95.8 | 793 | 49.7

CIFAR-100 VGGI16 | 659 | 859 | 448
STL-10 ResNet32 | 100.0 | 35.0 | 31.8

VGGI6 | 641 | 930 | 27.0

ResNet32 | 100.0 | 963 | 282

VGGI6 | 69.7 | 634 | 54.4
Adaptive TA-LBF. Table 7 reports the defense results against
adaptive TA-LBEF, indicating the effectiveness of Aegis. Sim-
ilarly, SDN becomes even more vulnerable than BASE under
the adaptive TA-LBF attack. We analyze that compared with
the basic SDN, Aegis still effectively mitigates the adaptive
TA-LBF attack due to the DESDN.

Summary of evaluating adaptive TBT and TA-LBF. We
analyze why RAegis is better than SDN against the adaptive
TBT and TA-LBF is the DESDN scheme. Since SDN uses a
static multi-exit mechanism, input samples have a stable exit
pattern, i.e. most samples exit from a few fixed ICs. We give
an example on CIFAR-100 and VGG16 to list the proportion

Tiny-ImageNet
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Figure 4: Comparison between Aegis and other defense methods on CIFAR-100 with VGG16 when more bits are flipped. Aegis
performs better than other methods: the ASR for Aegis is much lower than others under different numbers of flipped bits.
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Figure 5: The proportion of samples exit from different ICs or final layer (15 denotes the final layer) on CIFAR-100 and VGG16.
Samples exit more uniformly in Aegis than SDN, even under BFA attacks (2egis-Flipped and SDN-Flipped).

Table 7: Evaluation results of ASR against adaptive TA-LBF.
ASR (%)
BASE | SDN | Regis
ResNet32 | 100.0 | 99.1 | 60.8
VGGI6 | 702 | 893 | 50.3
ResNet32 | 100.0 | 100.0 | 264
VGGI6 | 564 | 782 | 448
ResNet32 | 100.0 | 1000 | 10.2
VGGI6 | 814 | 899 | 268
ResNet32 | 100.0 | 100.0 | 162
VGGI6 | 518 | 904 | 15.0

Dataset Model

CIFAR-10

CIFAR-100

STL-10

Tiny-ImageNet

of samples exiting pattern in Figure 5. In Figure 5 (a), we
observe that SDN lets more than 75% samples exit from three
exits, i.e. ICo, IC13, and IC}s. Once the adversary modifies
TBT and TA-LBF adaptively by including the loss for all ICs,
its optimization process will utilize this exit pattern and locate
the adaptive critical bits in these ICs to perform BFAs. Aegis
adopts the DESDN mechanism to make input samples exit from
all ICs uniformly. Even if the adversary adaptively attacks all
ICs, the uniformly distributed exits will increase the attack
cost (more bits to flip), thus enhancing security. Therefore,
under the same N, Aegis significantly outperforms SDN.
We further consider whether the exit distributions of these
defenses can be affected by the adaptive attack. Taking TA-
LBF as an example, we denote the compromised SDN and
Regis as SDN-Flipped and Aegis-Flipped, respectively. Fig-
ures 5 (b) and (c) show that the original and flipped models
of each method have similar exit distributions. Such results
reveal that the distribution of Aegis is still uniform under the
attack, giving the adversary no chances to utilize the exit pat-

tern to locate the critical parameters of critical ICs. In contrast,
the flipped SDN model exhibits the same exit distribution (i.e.,
vulnerability) as the original one.

Adaptive ProFlip. Table 8 shows the defense results for the
adaptive ProFlip attack. Compared with SDN and BASE, the
ASR of Aegis is always significantly lower on all datasets
and models. Taking CIFAR-100 and ResNet32 as an exam-
ple, the ASR of Aegis is 25.8%, while the ASR of SDN and
BASE is 69.1% and 89.8% respectively. We analyze the main
reason: with the optimization function for determining the
critical parameters, the flipped bits are more likely to be con-
centrated in one layer. Thus, the adversary cannot effectively
affect ICs before the modified layer, making Aegis resilient
against this attack. The reason why SDN has relatively good
defense results in some cases also comes from this. However,
SDN is much inferior to Aegis as it only uses a static early
exit mechanism. Such a static mechanism makes the number
of affected ICs in the SDN greater than that in Aegis. Be-
sides DESDN, our ROB contributes to the defense, which will
be evaluated in Section 5.6.

Table 8: Evaluation results of ASR against adaptive ProFlip.
ASR (%)

BASE | SDN | RAegis

ResNet32 | 96.9 74.2 38.4

Dataset Model

CIFAR-I0 ' —5676 [ 882 [ 79.1 | 43.6
ResNet32 | 89.8 | 69.1 25.8

CIFAR-100 VGGI6 80.0 | 924 | 337
STL-10 ResNet32 | 774 | 578 | 41.3

VGG16 87.2 87.5 34.5
ResNet32 | 99.1 64.4 36.1
VGG16 88.2 | 73.1 40.8

Tiny-ImageNet




Targeting shallow hidden layers. We further consider an-
other adaptive attack, which focuses on shallow hidden layers
to flip bits (denoted as Shallow). Note that only ProFlip could
be extended to achieve such an adaptive attack since TBT
and TA-LBF must modify parameters connected to the target
class, which are located in the last dense layer.

In particular, we modify ProFlip to choose critical bits
among the first three hidden layers. Table 9 shows the results
of Shallow. We observe that attacking shallow layers is not
effective in bypassing Aegis. Indeed, flipping bits in shallow
layers cannot guarantee successful targeted attacks on the
following hidden layers’ outputs while Aegis lets samples
randomly exit from arbitrary layers to limit ASR. Besides,
targeting shallow layers may significantly decrease clean ACC
(6.2 —27.8%), while the original ProFlip only degrades 2%.
This makes such adaptive attacks easy to be detected.

Table 9: Evaluation results of attacking shallow layers.
ASR (%)

Dataset Model BASE | Aegis | Shallow A ACC (%)
ResNet32 | 969 | 384 405 187
CIFAR-10 VGG16 | 882 | 436 495 215
ResNet32 | 89.8 258 228 6.2
CIFAR-100 VGGI6 | 80.0 | 33.7 37.0 83
ResNe32 | 774 | 413 484 231
STL-10 VGGI6 87.2 34.5 51.7 -8.9
TinvImazeNet | ResNet32 | 99.1 36.1 30.3 2738
My-IMAgeRet TYGG16 | 882 | 408 513 104

Evaluation with more bits flipped. We further evaluate the
defense methods with up to 500 bits flipped for comprehen-
siveness. We conduct experiments on CIFAR-100 and VGG16
and adopt the adaptive TBT, TA-LBF, and ProFlip attacks. Re-
sults are shown in Figure 6. Compared with existing defense
methods, under the same value of N, we observe the ASR of
Regis is always the lowest against all attacks.

5.5 Evaluation of Model Size

Aegis can increase the model size during deployment. We
evaluate the model size increase for all datasets and model
structures used by us and find models ranging from 6.1MB
to 97.6MB. We find that the size increase depends on the
datasets and model structures. Particularly, Aegis introduces
a tiny increase for VGG16. For example, on CIFAR-10, the
size of VGG16 is 58.3MB and 65.6MB for BASE and Aegis,
respectively. In contrast, ResNet is a small model so the in-
crease is relatively larger. For instance, also on CIFAR-10, the
size of VGG16 is 1.9MB and 6.1MB for BASE and Aegis.
We emphasize that such a size increase is not a bottleneck
for model deployment in practice. We find that for common
embedded devices (e.g, Nvidia Jetson Nano), the memory ca-
pacity is usually at the GB level (far more sufficient to support
RAegis). Besides, Aegis significantly improves the inference
efficiency with almost no accuracy drop since most samples
could early-exit from the network. Such benefits at the cost

of acceptable size increase are very attractive for inference
applications at the edge.

To validate the above points, we deploy our Aegis on two
real-world widely-used edge devices: (1) Nvidia Jetson Nano
with 4GB memory and 16GB storage; (2) Raspberry Pi 4
with 4GB memory and 32GB storage. The size increase is
totally affordable for these two devices. We further evaluate
the inference acceleration brought by Aegis. We observe the
average inference time is 46.1 — 59.4% of the original model,
which is a big improvement.

5.6 Ablation Study on ROB

We verify the effectiveness of ROB. We compare Aegis with
the setting without ROB, i.e., just DESDN. Note that ROB aims
to help ICs adapt to the adversarial scenario where bits in
the layers attached by ICs are flipped. Therefore, we choose
ProFlip to evaluate the effectiveness of ROB, as it can flip
bits in the layers attached by ICs. Table 10 shows that ROB
effectively improves defense results. For the basic attacks,
the ASR of Aegis is 3% — 13% less than that of DESDN. For
the adaptive attacks, Aegis also performs better than DESDN
by reducing 4% — 15% of ASR. Overall, we prove that ROB
effectively contributes to mitigating targeted BFAs.

Table 10: Impact of ROB on basic and adaptive ProFlip.
ASR (%)
Basic ProFlip Adaptive ProFlip
DESDN | Aegis | DESDN | Aegis
ResNet32 | 24.1 198 | 45.1 384

Dataset Model

CIFAR-10 VGG16 33.7 28.9 49.4 43.6
ResNet32 29.8 19.2 39.2 25.8

CIFAR-100 VGG16 28.7 20.3 51.4 33.7
STL-10 ResNet32 36.2 339 45.0 41.3

VGG16 22.9 18.7 39.6 34.5
ResNet32 334 20.1 45.4 36.1
VGG16 22.9 15.6 50.2 40.8

Tiny-ImageNet

5.7 Attack Feasibility Analysis

We validate the feasibility of BFAs (more specifically, TBT
attack), and use ResNet32 and Tiny-ImageNet as an example.
The main idea is to adopt the DeepSteal [44] technique, which
provides a memory massaging mechanism to realize Rowham-
mer [29] attack, and is able to flip multiple bits within a 4KB
page. This satisfies TBT’s requirement, which targets one
row of weights in the model’s final layer and needs flipping
multiple bits within a 4KB page. This mechanism massages a
page multiple times using memory swapping (the feature of
swapping physical pages from DRAM to the disk swap space
under memory pressure and then swapping them back when
needed by the processor). Below we describe the details.
Step 1: evicting victim pages. This step aims to evict the
victim’s pages from the main memory to swap space such that
they can be relocated by the OS when they are accessed by the
victim next time. To accomplish this, adversaries first allocate
a large chunk of memory using mmap with the MAP_POPULATE
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Figure 6: On CIFAR-100 and VGG16, we compare Aegis with other defense methods under different values of N,. Even the
adversary significantly increases Ny, Aegis still outperforms others in the adaptive scenarios.

flag. This triggers the OS to evict other data (including the
victim’s pages) from the main memory to the swap space.
Thus, we can occupy most of the physical memory space with
victim pages stored in swap space.

Step 2: releasing pages. This step aims to systematically
release the occupied pages to enforce the desired relocation
of the victim’s pages. In detail, adversaries create a list of
potential pages for the victim to occupy as aggressors during
the attack. At each round, adversaries choose a predetermined
number of pages from the list and release the selected pages
by calling munmap.

Step 3: deterministic relocation. This step aims to place
victim pages in predetermined locations to create an appro-
priate memory layout for Rowhammer. It also ensures that
the victim page location is known to adversaries so that they
correlate flipped bits with exact data in the victim domain.
Adversaries follow DeepSteal [44] to exploit the per-core
page-frame cache structure to manipulate the operating sys-
tem page allocation, which allows them to control where the
victim pages are relocated.

After the above steps, adversaries mount Rowhammer [29]
to flip bits in the victim pages placed in the appropriate loca-
tions. Since TBT targets one row of weights in a model’s final
layer which requires flipping multiple bits within a 4KB page,
adversaries iterate the aforementioned steps until all target
bits are flipped. Note that after each iteration, the weight page
(with bit flips) will be swapped to the disk under memory pres-
sure. When this page is needed again, it is swapped back. As
a consequence, bit flips will occur with this operation. When
the weight page is swapped back, it has a high probability to
be put into a new location in the memory where a different bit
can be flipped. Then adversaries perform Rowhammer again
to this page. Adversaries iterate the entire process until all the
required bits are flipped.
Evaluation results. Using the above technique, adversaries
are able to flip 10 bits in the target model to achieve TBT.
The index of the flipped bits can be found in Appendix E. For
base models, flipping these bits can achieve an ASR of 77.8%.
Now with our Aegis, the TBT attack can only get an ASR of
2.0%. This confirms the effectiveness of Aegis.

We further measure the attack cost. Flipping one bit takes

about tens or even hundreds of seconds. Therefore, flipping
more bits requires a much higher attack cost. DeepHam-
mer [64] assumes that the maximum number of bits the adver-
sary is allowed to flip is 24. To highlight the effectiveness of
our defense, we consider a more powerful adversary who is al-
lowed to flip NV, = 50 bits (taking several hours) in Section 5.3.
Our Aegis is still effective against such an attack. Further-
more, we assume an unrealistically strong attack (N, = 500),
and Aegis is still able to defeat it. Figures 4 and 6 show the
evaluation results for non-adaptive and adaptive attacks under
this attack cost.

6 Discussion and Future Work

Difference between ROB and adversarial training. Both ad-
versarial training [41] and our ROB aim to improve the model
robustness by modifying model parameters but they are sig-
nificantly different. Adversarial training aims to specifically
defeat adversarial attacks by using perturbed samples gen-
erated from a clean model. Various previous work [19,45]
have proved that directly using adversarial training cannot
mitigate existing BFAs. In contrast, ROB improves robustness
by considering a compromised model. By considering the
effects brought by flipping critical bits of a target model, ROB
can particularly increase the resistance against BFAs.
Floating-point DNN models. To the best of our knowledge,
all state-of-the-art BFAs [4, 8,45,46] only focus on attacking
quantized models. Therefore, we follow these existing works
to evaluate our defense methods on quantized models in this
paper. In fact, since Aegis is experimented with in a non-
intrusive fashion, protecting the floating-point DNN model
is also feasible. We leave this experimentation as our future
work.

Potential defense effects against untargeted BFAs. As indi-
cated in Section 3, mitigating untargeted BFAs is beyond the
scope of this paper. However, we still evaluate Aegis against
a state-of-the-art untargeted BFA [45] for comprehensiveness.
As shown in Appendix D, results show that Aegis could
also mitigate untargeted BFA effectively by significantly in-
creasing the attack cost (i.e. the number of flipped bits). We
consider this as future work.



7 Conclusion

We propose Aegis, a novel mitigation methodology against
targeted bit-flip attacks. With a novel design of DESDN, we
randomly select ICs for inference, enabling input samples to
early-exit from them and effectively obfuscate the adversary.
We further propose ROB to improve IC robustness. We conduct
extensive experiments with four mainstream datasets and two
DNN structures to show that Aegis can mitigate various state-
of-the-art targeted attacks as well as their adaptive versions,
and significantly outperform existing defense methods.
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A Analysis of Hyperparameters

Tuning T and ¢ are not related to any specific attacks. We
tune these two hyperparameters for two goals on clean mod-
els only, i.e. (1) making early-exits uniformly distributed to
prevent the attacker from targeting only those popular exits;
(2) maintaining high ACC on benign samples. Our results are
stable to hyperparameters that meet these two requirements.
We evaluate the sensitivity of these two hyperparameters on
CIFAR-10 and ResNet32.

In particular, we first fix g = 3 and set T to 0.93, 0.95, 0.97,
respectively, to observe the sensitivity of T on mitigating the
attacks. Then, we fix T =0.95, and set ¢ to 2, 3, 4, respectively,
to observe the sensitivity of g. Note that, these chosen values
of T and ¢ could make early-exits uniformly distributed, as
well as restrict the degradation of accuracy below 1.35%.
Table 11 and 12 present the mitigation results considering
different T and g. For all three attacks, under both non-adaptive
and adaptive settings, the ASR variance is below 2%. Such
results reveal that the effectiveness of Aegis is stable if the
chosen values of T and ¢ meet the two goals. In contrast, if
we violate the two goals to tune the hyperparameters, the
mitigation results should be hugely affected. For example,
if we randomly set T = 0.7 and g = 8, most samples would
early exit from the shallow layers. In this case, the ACC
significantly degrades and the adaptive adversary could focus
on the popular exits to improve the ASR.

Table 11: Evaluation results of the sensitivity on 7.

ASR (%)

Attacks t Non-adaptive | Adaptive
0.93 19.1 30.2
TBT 0.95 19.9 31.1
0.97 21.1 31.6
0.93 5.1 59.6
TA-LBF | 0.95 6.3 60.8
0.97 7.0 60.2
0.93 18.4 38.5
ProFlip | 0.95 19.8 38.4
0.97 20.3 38.0

Table 12: Evaluation results of the sensitivity on q.

ASR (%)
Attacks | ¢ Non-adaptive | Adaptive
2 19.5 29.2
TBT 3 19.9 31.1
4 20.0 31.3
2 6.5 59.8
TA-LBF | 3 6.3 60.8
4 4.7 61.2
2 194 38.3
ProFlip | 3 19.8 38.4
4 19.0 38.6

B Hyperparameters of Attacks

TBT Hyperparameters. We follow the same settings in [46].
In particular, there are three hyperparameters: ¢, wp,, and TAP.
t is the attack target class. We randomly select ¢ in each
independent experiment and employ SGD with a learning
rate of 0.5 for 200 epochs. wy, is the number of weights to be
flipped, and we set wj, = 10. TAP is the percentage of the area
of the trigger trained by the attacker to the area of the input
image, and we set the TAP to 9.76%.

TA-LBF Hyperparameters. We follow the same settings in
[4]. There are three hyperparameters: N, k, and A. N controls
the effect on model accuracy and here we choose a fixed
number 128 for N. k limits the number of flipped bits. Here
we set the initial £ as 5 and the maximum searching iteration
for k as 6 for each attack. A is a trade-off hyperparameter
that keeps a balance between the attack effectiveness and
the model utility. Here we set the initial A as 100 and the
maximum searching times as 8 for each attack. Note that
for each dataset, we choose 1000 samples (each with a pre-
assigned targeted label different from the ground-truth label)
for TA-LBF attack. For each of the 10 classes in CIFAR-
10 and STL-10, we randomly select 100 validation images
from the other 9 classes. For CIFAR-100 and Tiny-ImageNet,
we randomly choose 50 target classes, and for each of them
randomly select 20 validation images from the other classes.
ProFlip Hyperparameters. We follow the same settings
in [8]. In particular, there are two hyperparameters: ¢, k, and
TAP. ¢ controls the attack target class. We randomly select ¢
in each independent experiment. In order to reduce the com-
putational complexity, in each iteration, ProFlip determines
the critical bits by traversing k points between the maximum
and minimum values of the parameters. We choose k = 20
for CIFAR-10 and CIFAR-100, and £ = 10 for STL-10 and
Tiny-ImageNet. TAP is the percentage of the area of the trig-
ger trained by the attacker to the area of the input image, and
we set the TAP to 9.76%.

C Visualization of Triggers

We give several examples to show the triggers generated by
TBT and ProFlip. Both traditional backdoor attacks [54,65]
and these two targeted BFAs generate triggers but they are
significantly different. Traditional backdoor attacks tend to
specify a pre-determined trigger. In contrast, TBT and ProFlip
train a trigger from scratch to activate some specific neurons
in DNNs. Thus, we can observe the triggers in Figure 7, 8
have no specific style.

D Mitigating Untargeted Attacks

Although Aegis is not designed to mitigate untargeted BFAs,
we still evaluate it against untargeted BFAs. We use the state-



Figure 7: Examples of clean and triggered samples for TBT:
a) and b) for CIFAR-10, ¢) and d) for CIFAR-100, e) and f)
for STL-10, g) and h) for Tiny-ImageNet.

©) d)

Figure 8: Examples of clean and triggered samples for ProFlip:
a) and b) for CIFAR-10, ¢) and d) for CIFAR-100, e) and f)
for STL-10, g) and h) for Tiny-ImageNet.

of-the-art untargeted BFA [45]. We reproduce the untargeted
attack method by directly using their source code with recom-
mended parameters. The untargeted attack aims to degrade
model accuracy to random guess. For different datasets, we
make these accuracy explicit as follows.

e On CIFAR-10, each image of the dataset belongs to one of
10 classes, and the accuracy equivalent to random guess is
10%. Therefore, on this dataset, attackers aim to degrade
the accuracy of models to 10%.

e On CIFAR-100, each image of the dataset belongs to one
of 100 classes, and the accuracy equivalent to random
guess is 1%. Therefore, on this dataset, attackers aim to
degrade the accuracy of models to 1%.

e On STL-10, each image of the dataset belongs to one of
10 classes, and the accuracy equivalent to random guess is
10%. Therefore, on this dataset, attackers aim to degrade
the accuracy of models to 10%.

e On Tiny-ImageNet, each image of the dataset belongs to
one of 200 classes, and the accuracy equivalent to random
guess is 0.5%. Therefore, on this dataset, attackers aim to
degrade the accuracy of models to 0.5%.

Table 13: Evaluation results of ASR against untargeted attack.

Dataset Model BASE NbAeg e
CIFAR-10 R\fg\g? 32 32
CIFAR-100 R\Sg\g? 379 27699

sTto  (Rere L
Tiny-ImageNet R\f;z}l\g:;? ég 164‘;

Following previous work [19], we evaluate the number of
flipped bits N, required to make the untargeted attack suc-
cessful, i.e., degrading model ACC to the random guess level.
The higher N, the better the defense.

Table 13 shows the results under non-adaptive and adap-
tive scenarios respectively. We can observe that Aegis could
effectively mitigate the untargeted attack, as we significantly
increase the N, for attacks. n different datasets and models,
our Aegis can effectively improve Nj, by 2.0 ~ 38.4x. On
CIFAR-100 dataset, taking ResNet32 as an example, attack-
ers need to flip 269 bits to attack models protected by our
Aegis, but only need to flip 7 bits to attack BASE. Thus,
Aegis improves model resistance by ~ 38.4x.

E Flipped Bits

On Tiny-ImageNet and ResNet32, we flip 10 bits in the final
dense layer, and the positions of bits to flip are listed here: [(2,
1,0), (2, 15,0), (2,157, 7), (2, 166, 7), (2, 169, 7), (2, 189, 7),
(2,218,7),(2,238,7), (2,253, 6), (2, 255, 2)].

The shape of the final dense layer is [200, 256]. (2, 1, 0)
denotes: flip the Oth bit of parameter [2, 1]. (2, 15, 0) denotes:
flip the Oth bit of parameter [2, 15]. ...... (2, 157, 7) denotes:
flip the 7th bit of the parameter [2, 157].

Given a binary, e.g., 10001000 (decimal: 136), the index
of bits is [7th, 6th, 5th, 4th, 3rd, 2nd, 1st, Oth]
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