
Mitigating uery-based Neural Network Fingerprinting via Data

Augmentation

MEIQI WANG, Tsinghua University, China
HAN QIU, Tsinghua University, China
TIANWEI ZHANG, Nanyang Technological University, Singapore

MEIKANG QIU, Dakota State University, USA
BHAVANI THURAISINGHAM, The University of Texas at Dallas, USA

Protecting the intellectual property (IP) of deep neural network (DNN) models becomes essential and urgent with the rapidly

increasing cost of DNN training. Fingerprinting is one promising IP protection method that queries suspicious models with

speciic ingerprint samples to infer and verify IP by comparing the predictions with pre-deined labels. Based on utilizing

unique features of target models, various DNN ingerprinting methods are proposed to efectively verify the IP of models

remotely with a meager false-positive ratio. In this paper, we propose a novel attack to mitigate query-based ingerprinting

methods based on data augmentation methods. We propose a randomized transformation on input samples to signiicantly

mislead the ingerprint samples’ prediction and compromise the IP veriication. Then, our attack can keep the model utility

with an acceptable accuracy drop in the data-free scenario (i.e. without any samples) or achieve much higher precision in

the data-limited scenario (i.e. with a small number of samples with the same distribution). An intensive evaluation of three

well-known model structures and three well-known datasets shows that our attack can efectively mitigate ive query-based

DNN ingerprinting methods in top-tier conferences.

CCS Concepts: · General and reference → Empirical studies; · Security and privacy; · Computing methodologies →

Computer vision; Neural networks;

Additional Key Words and Phrases: data augmentation, deep neural network, ingerprinting, intellectual property

1 INTRODUCTION

Nowadays, deep neural networks (DNNs) tend to becomemore andmore complex with the rapidly increasing num-
ber of layers and parameters [23] to achieve better performance [47]. Training these complex high-performance
DNN models always requires massive training resources [26]. For instance, StyleGAN3 [18] trained by Nvidia
consumes about 92 GPU years and more than 225 MWh of electricity on GPU clusters. Besides exponentially
increased training time and power consumption, training complex and high-performance DNN models also
require a large amount of training/test data [8, 48], experts’ knowledge [36], etc. These training eforts make a
well-trained DNN model an important intellectual property (IP) [7].

Authors’ addresses: Meiqi Wang, Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China, 100084, wang-

mq22@mails.tsinghua.edu.cn; Han Qiu, Institute for Network Sciences and Cyberspace, Beijing National Research Center for Information

Science and Technology, Tsinghua University, Beijing, China, 100084, qiuhan@tsinghua.edu.cn; Tianwei Zhang, the School of Computer

Science and Engineering, Nanyang Technological University, Singapore, 639798, tianwei.zhang@ntu.edu.sg; Meikang Qiu (corresponding

author), the Dakota State University, Madison, South Dakota, USA, qiumeikang@ieee.org; Bhavani Thuraisingham, the Department of

Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA, bhavani.thuraisingham@utdallas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1550-4859/2023/5-ART $15.00

https://doi.org/10.1145/3597933

ACM Trans. Sensor Netw.

https://doi.org/10.1145/3597933
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597933&domain=pdf&date_stamp=2023-05-29

2 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

However, recent research work points out that the ownership of these well-trained DNN models is vulner-
able [10, 25]. First, DNN models are vulnerable to model stealing attacks [49]. For instance, a learning-based
stealing attack is proposed to reconstruct the DNN model weights, which can extract a complex model with an
error rate within 10% via queries for inference [16]. Besides query-based model stealing attacks at the application
layer, [49] steals a DNN model without any performance loss by analyzing the unencrypted PCIe traic at the
hardware level. Second, although model stealing attacks usually require speciic conditions and sophisticated
attackers to perform, malicious users that have access to the deployed DNN models may illegally copy and
post-process these models for proit [44]. Consider that these threats are more common and severe in edge AI
computing (e.g.the smart city), and IP veriication is also problematic. These emerging threats make IP protection
for DNN models an essential and urgent task.
Existing IP protection methods for deep learning models can be roughly divided into two categories. (1)

Watermarking: carefully-crafted watermarks are embedded by the model owner in his model by a parameter
regularizer [39] or backdoor data poisoning [22, 25, 45]. Later, the watermarks can be extracted from the model
parameters or output as the IP evidence. (2) Fingerprinting: the model owner discovers unique sample-label pairs
that can exclusively and exactly characterize the target model such as various proposed approaches [5, 27, 30, 42].
Compared with watermarking, ingerprinting does not need to modify the target models, which is more promising,
especially for some scenarios where the model owner does not have the right or capability to modify the models.
For instance, the models deployed on autonomous driving systems (ADS) [12], clouds [32], or industrial control
systems [11] are usually remotely and out of the model owners’ control. It is not easy to inject watermarks into
those models such that methods like ingerprinting can efectively provide IP veriication. Thus, we focus on
ingerprinting in this paper.

We note that the model supposed to be protected is the target model and the model to be veriied is the suspicious
model. The core step of DNN ingerprinting relies on the remote query-based inference on a suspicious model with
generated ingerprint samples and verifying the IP by comparing their predictions with the pre-deined labels. If
the ratio of the same predicted label is larger than a threshold, this suspicious model will be determined as a
stolen model; otherwise, it supposes to be an independently trained model for the same task without any illegal
action named as an independent model. Existing ingerprinting works [5, 27, 42] try to craft perturbations on clean
samples or random initialized samples to generate ingerprint samples. Generating such perturbations normally
uses optimization-based or gradient-based approaches, which are similar to adversarial attack methods [6, 46].
However, compared with adversarial attacks, ingerprint samples release the L-norm constrains [5] and limit the
generated samples’ transferability [27, 42]. Thus, these ingerprint samples can efectively verify the IP of one
target model even if the adversary modiies the illegally-acquired target model with model compression [17],
model pruning [28], or ine-tuning [43].

With promising results of published ingerprinting methods, we would like to address the following challenge
from an adversary’s perspective: can we mitigate the ingerprinting-based DNN IP protection while preserving the

stolen model’s utility in a lightweight manner? In this paper, we irst solve this challenge by proposing an efective

utility-preserving, and lightweight attack method to mitigate multiple existing DNN ingerprinting methods.
Speciically, we propose a data augmentation-based approach, i.e. Certain Scale with Random Padding (CSRP),
which aims to obfuscate the input samples’ gradients by randomly distorting and resizing to drop and pad pixels
of one image. Then, depending on whether the attacker has training data, we considered two scenarios: the
data-free and the data-limited scenarios. For efectiveness, we can mitigate multiple existing state-of-the-art DNN
ingerprinting methods by signiicantly modifying the output labels of their ingerprint samples to compromise
the IP veriication. For utility-preserving, we have little inluence on benign samples such that the adversary can
still proit from an illegally acquired model. For lightweight, in the data-free scenario, the preprocessing-only
process of input samples has a time complexity of no more than� (�). In the data-limited scenario, we only need

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 3

a few epochs of ine-tuning with 5% of training data, which requires a negligible cost. Our contributions are as
follows:

• To the best of our knowledge, we propose the irst efective attack to disable various state-of-the-art DNN
ingerprinting methods with two diferent scenarios.

• Our attack can preserve the utility of the illegally acquired models by introducing a tiny inluence on benign
sample classiication.

• We evaluate our attack through extensive experiments on three widely used architectures (ResNet-56, VGG-16,
and MobileNet) and three famous datasets (CIFAR-10, CIFAR-100, and TinyImageNet) with a total of over
1,000 models and around 2,000 GPU hours.

The roadmap of this paper is as follows. The research background is in Section 2. We list the system overview
and threat model in Section 3. The details of our method and analysis are given in Section 4. The experimental
details, results analysis, and ablation study are in Section 5. We discuss and list potential future works in Section
6 and conclude in Section 7.

2 BACKGROUND

2.1 Edge AI Computing and IP Threats

Edge computing promotes the data and computing required by the Internet from the cloud to the edge, making
real-time data processing possible. With the rapid development of artiicial intelligence (AI), AI can be embedded
into every element of the Internet of Things (IoT) accessible by end users, which promotes the birth of the
Artiicial Intelligence of Things (AIoT) [9]. Thus, AI models can be distributedly trained and inferred on edge [29],
in which each node can process data autonomously and share and transmit information to each other. For instance,
many smart cameras are deployed in the smart city to real-time detect persons and analyze actions [38]. We
assume that each camera has its sensors to acquire data and has close access to the edge node’s processors and
storage, which can infer (compute) a DNN model to process data and store data, model parameters, and the
results. However, we notice that there is a great chance that the DNN models deployed in these edge nodes are
those illegally pirated models which threaten the IPs for lower cost. Furthermore, the veriication of their IPs is
easily invalidated for two main reasons: (1) Due to the edge devices’ limited computing and storage resources, the
DNN models deployed on edge are usually modiied by model compression, so whether the modiied models can
still retain their copyright is a very challenging issue. (2) Since most models calculated, veriied, and maintained
only on edge are black-box for the cloud center, this will limit their IP veriications only to remote access. Thus,
lightweight tampering on the edge is not easily noticed. These emerging threats make IP protection for the DNN
models on edge an important and urgent task.

2.2 DNN IP Protection

Watermarking. The early approach to protect the IP of DNN models is to watermark a DNN model [22, 25]
relying on using out-of-distribution features [1, 45] or handcrafted parameters [3]. For instance, the model owner
modiies a small subset of original training data by embedding pre-deined noise (e.g., triggers in backdoor
attacks [24]). These modiied samples will be speciically assigned to an incorrect pre-deined label (diferent
from the ground-truth label). Then, these out-of-distribution features will be embedded into the target model
by training the model with both original training data and those modiied data as DNN watermarking. This
watermarked model will behave normally on benign samples but predict the same labels as the pre-deined labels
for watermarked samples to verify the model’s IP. However, the clear limitations of the watermarking approach
can be summarized as follows. (1) The watermark embedding process will decrease the model accuracy, which is
unacceptable in critical applications [5]. (2) Watermarking procedures are usually combined with the training
phase, which is hard to be deployed for those of-the-shelf models [13].

ACM Trans. Sensor Netw.

4 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

Fingerprinting. The recent more promising approach to protect the DNN models’ IP is the DNN ingerprinting
approach [5]. The general idea of the DNN ingerprinting method is to verify the target model ownership via
its unique and robust features (e.g., decision boundaries [5]) without any modiication to this model. There are
two steps of DNN ingerprinting, including generating unique ingerprint samples and inference for veriication.
For the irst step, many existing works propose diferent generating solutions for classiication models, such
as [5, 27, 41, 42]. They craft samples diferently by adding gradient-based perturbations exclusively for the
target model to achieve setting pre-deined labels for these samples (see more details in Section 2.2). For the
second step, the model owner uses these ingerprint samples to query a suspicious model for inference. Existing
works are all based on the same principle: A stolen model is supposed to give the desired unique labels as the
ownership evidence, and an independent model is supposed to predict normal ground-truth labels still. Unlike
watermarking, the model owner can construct the ingerprint samples without any modiications to the training
phase, preserving the models’ accuracy. Additionally, ingerprinting conducts ownership veriication through
inference query only, which does not require access to any model information, such as model parameters, thus
bringing much more convenience and applicability to IP protection.

Formally, consider a target model � and its generated � ingerprint sample sets X� = {(x� , ��)}� , � ∈ {1, � } for
IP veriication, where �� is the label of �-th sample x� . These ingerprint samples should all meet the veriication

criteria as �� = � (��),∀� ∈ {1, � }. Given a suspicious DNN model �̂ , the query-based IP veriication relies on

a matching rate � (�̂), which denotes the inference results of these � ingerprint samples. By comparing the

� (�̂) with a pre-deined threshold �� , whether this suspicious model �̂ can be classiied as a stolen model or an
independent model can be determined. Using a lower threshold �� is more likely to ind more stolen models but
may cause false positives on independent models. Thus, more sophisticated methods such as using the Area
Under Curve (AUC) [5] are deployed for better selecting the threshold �� for IP veriication. In this paper, since

we focus on mitigating the ingerprinting method to signiicantly decrease � (�̂), the matching rate is used as our
metric for evaluation (see more details in Section 5.1).

2.3 Target DNN Fingerprinting Methods

Generating ingerprint sample sets X� = {(x� , ��)}� , � ∈ {1, � } in existing works relies on the gradient-based or
optimization-based approaches to craft perturbations on clean or random initialized samples. In this paper, we
reproduce four kinds of state-of-the-art DNN ingerprinting methods collected from the top-tier conferences in
recent years, including IPGuard [5], conferrable adversarial example (CAE) [27], vanilla characteristic example
(VCE), and robust characteristic example (RCE) [42]. These four ingerprinting methods are briely illustrated as
follows.
IPGuard. Based on observing a unique classiication boundary in a DNN model, IPGuard aims to extract some
speciic data points near the classiication boundary of the target model as its unique and robust features for
ingerprinting. IPGuard formulates an optimization problem to ind such points to restrain the gap between the
data points and the boundary. Then, they use a gradient descent method to iteratively modify the clean samples
along the objective function gradient in this optimization problem until a set of ingerprint samples are generated.
CAE. By constraining the transferability, CAEs can be used as ingerprint samples that can only transfer to
the models acquired by stealing and modifying the target model but not to independent models. A conferrable
ensemblemethod by including several independentmodels is proposed to limit the transferability of the ingerprint
samples which are generated with the gradient descent method. A conferrability score indicates the restriction
on the transferability of ingerprint samples which can guide the efective ingerprint sample generation and
guarantee low false-positive for IP veriication.
VCE and RCE. Diferent from the above two ingerprinting methods that try to craft perturbations on clean
samples in the training dataset, [42] proposes to craft perturbations on random samples to eliminate the inluence

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 5

of training data distribution. The projected gradient descent (PGD) algorithm [20] is used to modify the random
initial samples to generate VCEs as ingerprint samples for randomly pre-assigned labels. Then, by including not
only target models but also modiied target models (e.g. pruned models), RCE is proposed to further enhance
the robustness to diferentiate the modiied target models. RCE claims better robustness by adding noise to
the target model parameter. We notice that a gradient mean (GM) method [2] is deployed in [42] to further
enhance the robustness of RCE (RCE-GM), which is also included in our evaluation. Besides enhancing robustness,
low-transferability (LT) is also considered to limit false-positive for independent models. RCE-LT is also proposed
to reduce transferability further and limit false positive issues (i.e. misclaiming the ownership of independent
models). The core idea of RCE-LT is to apply a low-frequency mask on the Discrete Cosine Transform (DCT) of
RCE-based samples. This mask is a high pass ilter in the frequency domain to remove critical information in
RCEs-LT.

2.4 Existing Methods to Mitigate DNN Fingerprinting

In previous works, attackers are assumed to modify one illegally acquired model to avoid ingerprinting-based
IP veriication. For instance, they use post-processing methods, such as model pruning and model ine-tuning,
to slightly change the model’s decision boundaries. These methods can maintain relatively high accuracy on
benign samples far away from the boundaries but may afect the ingerprint samples that are assumed to be closer
to decision boundaries. Therefore, these methods are widely used as attacking methods against ingerprinting
methods in [5, 42] for evaluation. On the other hand, attackers may also compress the illegally acquired model for
deployment. For instance, the models used in edge terminal devices (e.g. portable devices and sensor networks)
are always limited to computing and storage resources. Therefore, the post-processing methods such as model
compression are commonly used as required if the models are illegally acquired from a large and complex target
model. Thus, model compression, model pruning, and model ine-tuning are three feasible methods to modify one
illegally acquired model that maintain an acceptable model performance and also may potentially mitigate the
veriication based on ingerprinting. In this paper, we follow previous works [5, 42] to use them as the baselines
of our attacking method in evaluation.
Model compression. High-performing DNN models are usually massive and complex in computing, which
makes the inference process slow and requires large storage space and computational power. Therefore, for
applications in which real-time predictions are needed, or model capacity is limited, complex models need to be
compressed into simpler, smaller, and faster ones with comparable performance when deployed in use [4]. Model
compression has many approaches; here we refer to the quantization method. Note that model pruning is also
one of the compression approaches and will be discussed separately. The experimentation of compression in this
paper is a quantization method that replaces high precision (e.g. 32-bit loating-points) with low precision (e.g.
8-bit integers) to reduce the model size and change the model itself.
Model pruning. Model pruning is another popular model compression method. When models are deployed
for inference and prediction, redundant parameters can be pruned to reduce computing power and time. Before
pruning, the quantity of parameters to prune is required to be set as a fractional format between 0 and 1, which
represents the fraction of parameters to prune. For pruning experimentation in [5], the weights with as small
absolute values as close to zero will be pruned. We increase the pruning rates with a step size of 0.1 from 0.1 to
0.5, decreasing accuracy signiicantly.
Model ine-tuning. Initially, model ine-tuning is used to modify a pre-trained model’s parameters wholly or
partially while maintaining or improving the model’s performance [1]. Unlike model compression or pruning,
ine-tuning a pre-trained model requires access to at least a partial training dataset. This is another scenario
where attackers have an illegally acquired model and a partial training dataset. Model ine-tuning has many
variations, such as ine-tuning last layers (FTLL), ine-tuning all layers (FTAL), re-training last layers (RTLL), and

ACM Trans. Sensor Netw.

6 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

re-training all layers (RTAL) [1]. Here, we choose FTAL to mitigate DNN ingerprinting methods since FTAL can
maximize the model modiication among all the above ine-tuning methods [5]. Note that for other ine-tuning
variations, our method has a similar performance. We follow previous works to ine-tune one model for a few
epochs with a small training dataset.

3 PRELIMINARIES

3.1 System Overview

We assume an adversary inserts a preprocessing layer at the front of the stolen DNN model �̂ , which will be
applied to all input samples when others (e.g.model owners or general users) query this model for IP veriication
or normal inference service. In this paper, the preprocessing is supposed as a randomized transformation data
augmentation �(·). This attack scenario overview can be summarized as in Figure 1 (a) and (b). When a set of
ingerprint samples {(x� , ��)}� , � ∈ {1, � } is sent to query for IP veriication, the randomized transformation will

mitigate the features carried by these samples and mislead the predicted labels, i.e. �̂ (�(x�) ≠ ��). An adversary
can mitigate the ingerprinting method by signiicantly decreasing the veriication ratio and manipulating
the IP veriication results. For the clean samples x as inputs, the accuracy score (ACC) is slightly inluenced,

i.e. �̂ (�(x)) ≈ � (x), such that the adversary can still illegally proit via providing inference services. Therefore,
we aim to ind a better �(·) to achieve the above purposes.

Fig. 1. Scenario overview: mitigating fingerprint samples’ inference while keeping the stolen model utility via randomized

transformation.

Here, we assume that the data augmentation in each edge node’s inference service is computed locally and
independently. For instance, in the distributed system, each node has its processors (most likely with at least one
acceleration hardware) to make data augmentation and DNN inference, and its storage to store the program, the
input data, augmented data, model parameters, and inference results. Thus, only the inference results and the input
data will likely share across the system. Besides, the DNN models, the augmented data, and the augmentation
function �(·) are maintained and computed locally in the black-box scenario. Note that diferent nodes may have
diferent �(·) according to diferent tasks and models.

3.2 Threat Model

Adversary’s goal. The adversary tries to use the data augmentation function �(·) as the basis to mitigate various
ingerprinting methods. Thus, �(·) must efectively decrease the ingerprint samples’ matching rate to a similar

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 7

level compared with independent models such that the IP veriication will be confused and not succeed. Then,
using �(·) only or combined with ine-tuning for arbitrary input samples must preserve the model utility, like
prediction accuracy. In summary, the attacker aims to modify and deploy one illegally acquired DNN model to
achieve three goals, i.e. efectiveness, utility-preserving, and lightweight goals.

• Efectiveness: For a set of ingerprint samples X� = {(x� , ��)}� , � ∈ {1, � }, the matching rate� (�̂) of �̂ must be
similar with the matching rate � of many independent models.

• Utility-preserving: Our proposed transformation function �(·) cannot afect the prediction accuracy of clean
samples via preprocessing: � (�(x)) ≈ � (x), ∀x ∈ X����� .

• Lightweight: The complexity of the attack needs to be low. The cost of such an attack must be signiicantly
less than training a model from scratch and require no data or a small amount of data to perform.

Adversary’s capability and knowledge. We assume the adversary will deploy the illegally acquired DNN
model � for inference services. We assume the entire service can only be a remote query with input samples and
return only predicted labels (i.e.without any other information such as the conidence score). We also assume the
illegally acquired DNN model is correct without DNN backdoors [33] or any embedded DNN watermarks [14].
This model’s only IP veriication method is various DNN ingerprinting methods.

3.3 Data-free and Data-limited Atack Scenarios

We classify two scenarios following the settings in previous work [40] including data-free and data-limited

scenarios.
Data-free scenario.We assume that the adversary neither has the training datasetX����� to train an independent
DNN model from scratch nor can he acquire partial clean dataset X����� to ine-tune the target DNN model � . He
can only manipulate the input samples without any prior knowledge about whether it is a benign sample or a
ingerprint sample. We consider that an attacker illegally acquires a DNN model � and aims to deploy it with

a modiied inference process �̂ (·) for illegal proit. The attacker will try to mitigate potential DNN ingerprint

samples by modifying the input samples of their deployed model �̂ . The IP veriication will be compromised

as long as the matching rate � (�̂) of ingerprint samples is signiicantly decreased (e.g. �� ≠ �̂ (x�) for most
(x� , ��) ∈ X�). Particularly, the attacker adds one preprocessing function �(·) which randomly transforms an
input image x ∈ X to an output �(x) with the same dimension. For all input samples, the inference process is

�̂ (·) = � (�(·)). Since one of the adversary’s initial motivations is illegally proiting via inference, adding �(·)
must preserve the model accuracy within an acceptable range.
Data-limited scenario. For the data-limited scenario, we assume that the adversary has a small amount of clean
dataset (e.g. 5% of theX����� in this paper) such that he can ine-tune the illegally acquired model for a few epochs.
Thus, he can manipulate the input samples with the data augmentation function and modify the illegally acquired
model to further achieve the adversary’s goals. Obviously, not only ingerprint samples but also benign samples
will be afected after preprocessing. If the input sample is intensively augmented for mitigating the ingerprint
samples, a signiicant decrease in model accuracy is inevitable, i.e. � (�(x)) ≠ � (x), for most x ∈ X����� . For
preserving the model utility, the adversary can ine-tune the model � with (limited amount of) augmented clean
data by �(·) and deploy it as a ine-tuned model � �. The ine-tuned model � � can learn the pattern of the data
augmentation such that it can perform better on those benign inputs with the same augmentation function �(·)

to preserve the model utility. For data-limited scenarios, the modiied inference process is �̂ (x) = � � (�(x)).

ACM Trans. Sensor Netw.

8 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

4 METHODOLOGY

4.1 Data Augmentation for Data-free Scenario

This paper proposes a randomized input transformation, CSRP, as our data augmentation function �(·) for input
samples. The core idea is to signiicantly change the gradient of one sample by distorting the pixel positions
and dropping some pixels. Notably, we resize an input image into a large one with a scare ratio � , randomly
pad values with a padding parameter � , and then resize it back to its original size. Therefore, the transformed
image will signiicantly difer considering the pixel coordinates and values since a random ratio of pixels will
be dropped. This random transform operation will cause an obfuscation of gradients of this sample’s inference
process, which can mitigate the features carried by those gradient-based ingerprint samples. Since this transform
does not fundamentally change the image contents, the accuracy score for clean samples will only be slightly
decreased.

ALGORITHM 1: CSRP

Input: original image � ∈ R�×�

Output: distorted image ����� ∈ R�×�

Parameters: scale limit � ; padding parameter p

/* Step 1: Resizing to a certain scale */

1 {���� ,���� } = ⌊{�,� } × �⌋;

2 {������� ,������� } = {���� − �,���� − �};

3 � ′ (�,�) = � (round(� · �/�������), round(� ·� /�������)) s.t. �
′ ∈ R�������×������� ;

/* Step 2: Padding randomly to a large image */

4 �1 ∼ ⌊U(0, p + 1)⌋, �1 ∼ ⌊U(0, p + 1)⌋;

5 �2 = p − �1, �2 = p − �1;

6 �� = padding(� ′, ((�1, �2), (�1, �2)), ����� = 0) s.t. �� ∈ R����×���� ;

/* Step 3: Resizing back to the size of � */

7 ����� (�,�) = �� (round(� · ����/�), round(� ·����/�)) s.t. ����� ∈ R�×� ;

8 return ����� ;

The core of our solution is a powerful random transformation function, Certain Scale with Random Pad
(CSRP). The details of CSRP are explained in Algorithm 1 with three steps. (1) For one image � ∈ R{�,� } with
the size of {�,� }, we obtain a certain larger image size {���� ,���� } with a certain scale limit � calculated by
{���� ,���� } = ⌊{�,� } × �⌋. Then, with a padding parameter � , we can obtain a certain size {������� ,������� } =

{���� − �,���� − �}. For getting a resized larger image � ′, we pick pixel values from the original image � by
inserting pixels and calculating the certain pixel coordinate ratio (Line 1-3). (2) The second step is to pad the
resized image � ′ with padding parameter � to generate an even larger image �� . The padding coordinates (�2, �2)
are calculated from a random seed (�1, �1) selected from a uniform distribution ⌊U(0, p + 1)⌋. Then, we get a
padded image �� by padding zeros in these coordinates (Lines 4-6). (3) In the end, we need to resize this padded
image �� back to its original size to get the output image ����� . (Line 7). Finally, as the randomized transformation
result, the image ����� will be sent to the target model � for inference.
Further, we give the theoretical analysis of Algorithm 1’s time complexity to prove the lightweight of our

method. Assume that the input image has a size of � × � . As mentioned above, both the irst and third steps
in Algorithm 1 can be formulated as resizing processes, and the second step is the padding process. Because
all those processes are pixel-wise manipulation and the time complexity of modifying one pixel in the image is

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 9

� (1), thus we calculate the time complexity in a one-pixel unit. We compute in three steps: (1) The irst resizing
normally modiies (� × � − p)2 pixels, for which complexity is � (2���(�)) using recursive methods. However,
in a better implementation of CSRP, we ind that the number of modiied pixels is almost the same regardless of
image size, which will achieve more padding for larger � to make the features of the ingerprint sample less
decisive. Therefore, the resizing value is a constant number � with complexity � ×� (1) equal to � (1). (2) As
mentioned in (1), the edge padding process uses recursive algorithms to ill �-pixel value proportional to � . Thus
the time complexity of padding is at least � (���(�)) and no more than � (�). (3) The second resizing modiies
(� × �)2 pixels, for which complexity is also � (2���(�)). Therefore, in summary, combining the three steps,
the time complexity of CSRP is at least � (���(�)) and no more than � (�), which can achieve relatively fast
computing speed and low overhead.
In summary, the CSRP contains two resizing processes, which can be seen as randomly dropping pixels and

reconstructing the image contents, thus destroying the gradient information of the ingerprint samples. The
visual results of the CSRP are given in Figure 2. We notice that larger scale and padding parameters will lead
to signiicant modiication on the samples, which has a better efect on mitigating ingerprint samples but will
decrease the model utility. In our threat model, we have no knowledge about which kind of ingerprinting
methods will be used. Therefore, we need to locate one proper set of parameters to mitigate various ingerprint
samples, which is very challenging.

4.2 Further Fine-tuning for Data-limited Scenario

IPGuard CAE VCE RCE RCE-GM RCE-LT

Clean samples Fingerprint samples

O
rig

in
al

A
ft

er

C
SR

P

Fig. 2. Visual presentation of clean and fingerprint samples with an example from the TinyImageNet dataset.

We can use a more intensive data augmentation method for the data-limited scenario and ine-tune the model
with augmented data. Such an operation can help the model to learn the pattern of CSRP and efectively enhance
the model utility. We briely illustrate the reason as shown in Figure 3. Initially, the benign and ingerprint samples
are supposed to be located in the source and target classes in the decision domain. However, CSRP is a tunable
random augmentation method that can disturb the features of both the benign and ingerprint samples. Along
with more intensive augmentation of CSRP, the ingerprint samples will be misled to other classes to compromise
the IP veriication. However, the benign samples are also afected and thus are misclassiied.

We adopt ine-tuning with augmented clean data in the data-limited scenario to avoid a signiicant decrease in
model utility. We assume that 5% of training data is augmented with CSRP to ine-tune all the layers of the illegally
acquired model. Then, the generalization capability of this model is improved: the model can recognize such
augmentation and better predict the inference of benign samples preprocessed by CSRP to improve the model

ACM Trans. Sensor Netw.

10 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

utility preserving. As given in Figure 3, the boundary’s learning and changing process is roughly indicated as the
red dotted line moving to the green solid line, which is altered against the augmented benign samples. Note that
compared with other methods to change the decision boundary, such as model compression, we use ine-tuning
here only to improve the model utility purpose. In other words, the mitigation for ingerprint samples is achieved
by CSRP with intensive augmentation, while the model utility preserving is achieved by our ine-tuning with
partial augmented training data.

Fig. 3. Visual sketch map of the fine-tuning process and data augmentation of clean and fingerprint samples. We divide the

decision areas into three parts for clarity: clean samples’ source class, fingerprint samples’ target class, and other classes

besides these two. Let : Samples before data augmentation and decision boundary before fine-tuning. Right : Samples ater

data augmentation and decision boundary ater fine-tuning.

4.3 Interpretation and Analysis

We interpret and analyze our method with the Local Interpretable Model-Agnostic Explanations (LIME) [35].
LIME interprets a model � by approximating it locally with an interpretable model �� , such as linear models. The
key insight of LIME is to explore the explanation model �� locally around the instance � that needs to be predicted
and explained. The interpretation of LIME can be formulated as an optimization problem deined in Eq. (1).

� (�) = argmin
�� ∈�

L(� , �� , ��) + Ω(��), (1)

where � is a set of interpretable models, �� identiies the locality and Ω(��) deines the complexity of �� which
means how diicult to interpret. The dominant loss function L measures how unfaithful �� is to approximate
� in the locality deined by �� . Moreover, to minimize the loss independent from � (i.e. to be model-agnostic),
the exploration should be conducted by sample sampling and perturbing. Thus, when given � as a set of linear
models, the loss L(� , �� , ��) will be deined more concretely in Eq. (2).

L(� , �� , ��) =
︁

�,�
′
∈Z

�� (�) (� (�) − �� (�
′

))2, (2)

where �
′
is randomly sampled and perturbed based on �

′
(where �

′
is a binary vector for � ’s interpretable

representation). � denotes original representation of �
′
and �� (�) measures the distance (or weight) between � and

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 11

� , i.e. locality around � . �� (�
′
) represents the prediction of the perturbed samples �

′
and � (�) is its ground-truth

labels.
Here we present LIME for the DNN image classiication task and choose a sparse linear explanation following

the previous work [35]. The critical pixels will be highlighted by letting the interpretable representation be a
binary vector and indicating whether the contiguous blocks of pixels of similar pixels (called super-pixels) are
present. LIME gives intuition to observe which regions play an important role in the model predictions and to
explain why the model predicts that class. In our evaluation, we use LIME (interpreted as the green areas) to
achieve the goal of two interpretations. One is to explain why CSRP can mitigate the ingerprinting methods
efectively, and the other is to show why ine-tuning method can improve the model accuracy in the data-limited
scenario.
An example of the data-free scenario can be presented in Figure 4. The clean sample (a) is predicted with the
label ‘German shepherd’ and we use IPGuard to craft the ingerprint sample with the label ‘espresso’ in (b). The
corresponding LIME explanation is given in (e) and (f), respectively to show the regions that afect the model
prediction are signiicantly diferent. The ingerprint sample makes a targeted change in the image features by
adding the global perturbation, so its explanation area expands to almost the whole image. Then, we use CSRP to
mitigate the IPGuard ingerprint sample to get (c) with a correct prediction label ‘German shepherd’ again, and
its LIME explanation result is given in (g). Note that we have done another CSRP for the same ingerprint sample
to eliminate the efect caused by CSRP’s randomness, which is given in (d), and its LIME is presented in (h). The
explanation results, (g) and (h), present why ingerprint samples are correctly predicted again after CSRP: due to
the facial features like the original clean sample (e) rather than other irrelevant features. This example indicates
that the CSRP can efectively mitigate the features crafted by the IPGuard ingerprinting method and make the
original features inluence the inference again.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. An example to interpret our solution. Clean sample (a)

and its LIME explanation (e), an IPGuard crated fingerprint

sample (b) and its LIME explanation (f), the IPGuard crated

fingerprint sample ater CSRP augmenting (c), (d) and their

LIME explanation (g), (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. The second example to interpret our solution. Clean

sample (a) and its LIME explanation (e), the clean sample

ater CSRP augmenting (b) and its LIME explanation (f), the

clean sample ater CSRP augmenting and fine-tuning (c), (d)

and their LIME explanation (g), (h).

An example of the data-limited scenario can be presented in Figure 5. The clean sample (a) is predicted with
the label ‘CD player’, while the attacked clean sample (b) after violent CSRP is predicted with the wrong label
‘computer keyboard’, which makes the model accuracy drop a lot. The corresponding LIME explanation is given
in (e) and (f), respectively to show that the region that afects the model to predict ‘CD player’ is probably the
play interface, while afecting the prediction of ‘computer keyboard’ is perhaps the whole body shape. Then, we

ACM Trans. Sensor Netw.

12 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

ine-tune the model using a limited amount of augmented clean data. Thus, the object that needs to be interpreted
by LIME turns into the ine-tuned model. We get (g) and (h) as results. Also, conducting twice is to eliminate the
random efect. From the results, we can notice the explanation region is restored around to its original extent with
the correct label ‘CD player’. This example indicates that the ine-tuned model trained can efectively re-identify
the original features of clean samples which are destructed or dropped by CSRP and make the inference more
convincing.

5 EVALUATION

5.1 Experimental Setup

Models & Datasets. In our experiments, we choose the following three well-known model architectures:
ResNet-56 [15], VGG-16 [37], and MobileNet [31] to train the target and independent models. Also, we use three
famous datasets for object classiication tasks, including CIFAR-10 (noted as łC10ž) [19], CIFAR-100 (noted as
łC100ž) [19], and TinyImageNet (noted as łTIž) [21]. More details of these three datasets are in Table 1.

Table 1. Statistics of each dataset.

Dataset # of training data # of test data # of classes

C10 50,000 10,000 10

C100 50,000 10,000 100

TI 100,000 10,000 200

We train one target model for each dataset and each architecture. For C10, we train 50 epochs to achieve
around 90% top-1 ACC. For C100, we train 50 epochs and get around 85% top-5 ACC. For TI, the top-5 ACC is 75%
after 50 epochs of training. More details about ACC are presented in Table 2, Table 3 and Table 4. Additionally,
we train independent models for ingerprinting evaluation. Note here that the independent models are the most
challenging cases, which refer to the models that use the same training dataset, structure, and hyper-parameters
but only with diferent initial parameters. These independent models are similar to the target model but should be
excluded from IP veriication. We train 100 models from scratch with diferent initial parameters as independent
models for each dataset and architecture. Thus, in this paper, we trained 900 models in total from 3 diferent
datasets and three diferent model architectures1. We use Pytorch 1.10 backend and conduct the experiments on a
server equipped with two Intel Xeon 2678 V3 CPUs and 8 NVIDIA GeForce RTX 3080 Ti GPUs.
DNN Fingerprinting Reproduce. We set the hyper-parameter by following the results in these published
methods. For IPGuard, a parameter � is used to balance between the robustness and uniqueness, and here we
use � = 5 following their original implementation [5]. For CAE, a parameter � is used to clip the intermediate
perturbations around the � ball of the original clean samples, and here we use � = 0.01 to follow the previous
work. For RCE, RCE-GM, and RCE-LT, the parameter � is used to bound the noise added to the neural network
parameter, and here we choose � = 0.001 to implement. Besides, following the previous work [42], we sample
input gradients for � = 10 times for GM. For RCE-LT only, the parameter � is used to control the high-pass
frequency band size. Note that we did try diferent hyper-parameters to generate diferent ingerprint samples, but
our evaluation results will hold. For each target model, we generate a set of ingerprint samples X� = {(x� , ��)}�
with � = 100.
Baselines.We consider other possible approaches that an attacker will try to mitigate ingerprint samples by
considering a comprehensive scenario, including compression, pruning, and ine-tuning. Note that these methods
are generally considered as potential attacks on DNN ingerprinting methods in previous works [5, 27, 42]. We

1Note here only the training for these 900 independent models from scratch takes about 1,600 GPU hours.

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 13

perform the model pruning with rates of 0.1 and 0.5 to get pruned models. Note higher pruning rate will lead to a
signiicant drop in accuracy on clean samples. We also compress with 8-bit to get quantized models. We apply
ine-tuning for 16 epochs for the target models. We save the modiied model every two epochs. We ine-tune
the model 10 times independently under the same setting to avoid randomness during ine-tuning. There are 80
ine-tuned models for each target model for evaluation.
Metrics. We evaluate our method for efectiveness and utility-preserving. For the efectiveness, we calculate the

matching rate (MR) � (�̂) (Eq. (3)) for � ingerprint samples X� by checking how much ratio of these ingerprint

samples will be predicted as the pre-deined labels for our modiied inference process �̂ (·) = � (�(·)).

� (�̂) =
1

�

︁

(x� ,��) ∈X�

✶(� (�(xi) = ��)), (3)

For utility-preserving, we use the accuracy on the clean dataset (ACC) of our modiied inference process �̂ (·).
We list the top-1 accuracy score (noted as łACC-top1ž) for the C10 dataset since it has only ten classes to classify.
For the other two datasets (i.e. C100 has 100 classes and TI has 200 classes to classify), we list only the top-5
accuracy score (noted as łACC-top5ž).

5.2 Atack Target DNN Fingerprinting Methods

Table 2. Evaluation of matching rate (MR) on C10 dataset for three model structures: ResNet-56, VGG-16, and MobileNet.

Setting Attack ACC-top1 IPGuard CAE VCE RCE RCE-GM RCE-LT

ResNet-56
CSRP

� = 1.16
� = 3

Target model 0.87 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.87 1.0 1.0 1.0 1.0 1.0 1.0
Fine-tuning 0.87 1.0 1.0 1.0 1.0 1.0 1.0

Pruning
0.1 0.87 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.69 0.52 0.89 1.0 1.0 1.0 1.0

Independent [0.86,0.87] [0.03,0.14] [0.0,0.52] [0.48,0.96] [0.55,0.98] [0.63,0.98] [0.18,0.86]
CSRP only 0.77 0.26 0.44 0.99 0.99 0.98 0.94

CSRP +ine-tuning 0.81 0.09 0.40 0.98 0.98 0.97 0.9

VGG-16
CSRP

� = 1.16
� = 3

Target model 0.91 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.91 1.0 1.0 1.0 1.0 1.0 1.0
Fine-tuning 0.91 1.0 1.0 1.0 1.0 1.0 1.0

Pruning
0.1 0.91 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.89 0.71 1.0 1.0 1.0 1.0 1.0

Independent [0.9,0.91] [0.17,0.4] [0.0,0.18] [0.53,0.86] [0.57,0.87] [0.5,0.91] [0.05,0.72]
CSRP only 0.83 0.33 0.43 0.79 0.8 0.81 0.63

CSRP +ine-tuning 0.86 0.24 0.36 0.65 0.69 0.67 0.49

MobileNet
CSRP

� = 1.16
� = 3

Target model 0.85 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.85 1.0 1.0 1.0 1.0 1.0 1.0
Fine-tuning 0.85 1.0 1.0 1.0 1.0 1.0 1.0

Pruning
0.1 0.85 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.83 0.99 1.0 1.0 1.0 1.0 1.0

Independent [0.84,0.86] [0.0,0.04] [0.0,0.65] [0.11,0.75] [0.13,0.7] [0.12,0.71] [0.0,0.33]
CSRP only 0.77 0.14 0.42 0.6 0.59 0.57 0.18

CSRP +ine-tuning 0.79 0.06 0.47 0.69 0.67 0.65 0.33

We assume the IP veriication will be performed via sending � ingerprint samples (� = 100) and comparing
the matching rate. We set one proper parameter of CSRP (e.g. � and �) for each dataset to present the attack

results. Note that the CSRP has a random output for one same image. We test the matching rate � (�̂) with the set

ACM Trans. Sensor Netw.

14 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

Table 3. Evaluation of matching rate (MR) on C100 dataset for three model structures: ResNet-56, VGG-16, and MobileNet.

Setting Attack ACC-top5 IPGuard CAE VCE RCE RCE-GM RCE-LT

ResNet-56
CSRP

� = 1.23
� = 5

Target model 0.88 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.88 0.97 1.0 1.0 1.0 1.0 1.0
Fine-tuning 0.88 1.0 0.98 1.0 1.0 1.0 1.0

Pruning
0.1 0.88 1.0 0.99 1.0 1.0 1.0 1.0
0.5 0.76 0.27 0.67 0.98 0.97 0.96 0.8

Independent [0.87,0.89] [0.0,0.03] [0.03,0.34] [0.01,0.12] [0.01,0.12] [0.01,0.1] [0.0,0.06]
CSRP only 0.69 0.03 0.12 0.14 0.14 0.15 0.08

CSRP +ine-tuning 0.81 0.01 0.14 0.1 0.09 0.11 0.04

VGG-16
CSRP

� = 1.23
� = 5

Target model 0.9 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.89 1.0 0.99 1.0 1.0 1.0 1.0
Fine-tuning 0.89 0.92 0.92 1.0 1.0 1.0 1.0

Pruning
0.1 0.9 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.89 0.66 0.9 1.0 1.0 1.0 1.0

Independent [0.89,0.9] [0.0,0.02] [0.0,0.51] [0.02,0.2] [0.04,0.21] [0.04,0.23] [0.0,0.1]
CSRP only 0.73 0.0 0.12 0.08 0.08 0.07 0.04

CSRP +ine-tuning 0.84 0.01 0.21 0.12 0.12 0.11 0.04

MobileNet
CSRP

� = 1.23
� = 5

Target model 0.83 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.83 1.0 1.0 1.0 1.0 1.0 1.0
Fine-tuning 0.83 1.0 0.99 1.0 1.0 1.0 1.0

Pruning
0.1 0.83 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.8 0.82 0.91 1.0 1.0 1.0 0.98

Independent [0.82,0.84] [0.0,0.03] [0.02,0.14] [0.01,0.11] [0.01,0.12] [0.02,0.11] [0.0,0.05]
CSRP only 0.64 0.03 0.04 0.1 0.09 0.1 0.04

CSRP +ine-tuning 0.76 0.01 0.05 0.15 0.13 0.15 0.02

of ingerprint samples (X�) 100 times and calculate the average matching rate as ���� =
1
100

∑100
1 � (�̂ (X�)). CSRP

can generate quite stable results as the variance of���� is very limited. For those ine-tuned target models, we list
the average matching rate of the 80 ine-tuned models since the variance is also minimal. For the pruned models,
a larger pruning ratio (e.g. 0.5) may decrease the matching rate and signiicantly inluence the ACC on clean
samples.

To get the reference for comparison, We calculate the matching rate of the ingerprint sample set (X�) on the
100 independent models and list the minimum and maximum matching rates. Note that the maximum matching
rate on these independent models is still much less than the matching rate on target models or modiied target
models such that a proper threshold can be easily deined to accurately verify the IP from the independent models
and the modiied target models.

Therefore, we evaluate our efectiveness as follows: our attack succeeds as long as our method can always limit
the matching rate (����) for random transformed ingerprint samples less than the maximum matching rate on
independent models. We list our evaluation results according to the used datasets as follows. (1) The C10 dataset
on ResNet-56, VGG-16 and MobileNet is in Table 2. (2) The C100 dataset on ResNet-56, VGG-16 and MobileNet is
in Table 3. (3) The TI dataset on ResNet-56, VGG-16 and MobileNet is in Table 4.

Although conducting CSRP only can efectively mitigate the ingerprint methods, ACC drops a lot which can
not be used normally. Thus, in the data-limited scenario, we implement ine-tuning with augmented data. For
C10, only no more than 10% of the original training dataset is enough. Furthermore, as for more classes in C100
and TI, we need 20% to achieve a better ACC. We should note that whether for C10, C100, or TI, only 1% of the
original training dataset can signiicantly improve ACC. For instance, for C100 on ResNet-56, ine-tuning with 1%
augmented data can improve ACC from 69% to 77%, but for better utility, we use 20% to indicate.

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 15

Table 4. Evaluation of matching rate (MR) on TI dataset for three model structures: ResNet-56, VGG-16, and MobileNet.

Setting Attack ACC-top5 IPGuard CAE VCE RCE RCE-GM RCE-LT

ResNet-56
CSRP

� = 1.25
� = 14

Target model 0.74 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.74 1.0 0.97 1.0 1.0 1.0 1.0
Fine-tuning 0.74 1.0 0.98 1.0 1.0 1.0 1.0

Pruning
0.1 0.74 1.0 0.99 1.0 1.0 1.0 1.0
0.5 0.59 0.27 0.87 0.99 0.99 0.99 1.0

Independent [0.74,0.75] [0.0,0.03] [0.0,0.23] [0.03,0.17] [0.03,0.16] [0.03,0.19] [0.0,0.08]
CSRP only 0.53 0.01 0.12 0.07 0.08 0.08 0.02

CSRP +ine-tuning 0.68 0.02 0.18 0.16 0.18 0.18 0.06

VGG-16
CSRP

� = 1.25
� = 14

Target model 0.78 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.78 1.0 0.99 1.0 1.0 1.0 1.0
Fine-tuning 0.78 1.0 0.97 1.0 1.0 1.0 1.0

Pruning
0.1 0.78 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.78 1.0 0.95 1.0 1.0 1.0 1.0

Independent [0.78,0.79] [0.0,0.02] [0.02,0.49] [0.02,0.18] [0.02,0.13] [0.02,0.17] [0.0,0.08]
CSRP only 0.62 0.02 0.11 0.1 0.1 0.09 0.04

CSRP +ine-tuning 0.74 0.01 0.22 0.12 0.14 0.15 0.06

MobileNet
CSRP

� = 1.25
� = 14

Target model 0.77 1.0 1.0 1.0 1.0 1.0 1.0
Compression 0.77 1.0 1.0 1.0 1.0 1.0 1.0
Fine-tuning 0.77 1.0 1.0 1.0 1.0 1.0 1.0

Pruning
0.1 0.77 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.72 0.86 0.99 1.0 1.0 1.0 1.0

Independent [0.76,0.78] [0.0,0.01] [0.0,0.1] [0.04,0.15] [0.02,0.14] [0.03,0.15] [0.0,0.06]
CSRP only 0.57 0.0 0.02 0.04 0.06 0.05 0.01

CSRP +ine-tuning 0.71 0.01 0.05 0.18 0.21 0.18 0.06

By losing about 3-6% ACC in the data-limited scenario, we can efectively mitigate the ingerprinting methods
by compromising the prediction of ingerprint samples. Moreover, our method is signiicantly better than all
baseline methods for modifying the target models.

5.3 Ablation Study

Comparison with AE defense methods. We note the similarity between the ingerprint samples and the
adversarial examples (AE) [50], which both aim to mislead one sample to a wrong pre-deined label. However, two
major diferences exist betweenmitigating ingerprint samples and defending AEs. (1) The attack on ingerprinting
methods can be seen as a success as long as the predicted label for one ingerprint sample is inconsistent with its
pre-deined label. This point makes mitigating ingerprint samples much easier since a successful defense on AEs
usually requires the correct labels to be predicted for AEs [6]. (2) However, ingerprint samples have no constraints
of perturbation levels (e.g. L2-norm or Linf-norm [6]) because imperceptibility is not the dominant requirement
for IP protection, and contrary to AEs, the generated samples’ need to have low transferability . Therefore, the
features carried by these samples are normally more robust and harder to be removed by preprocessing-only
solutions.

We include a preprocessing-only AE defense method, random distortion over grids (RDG) [34] to compare with
CSRP-only in the data-free scenario. RDG can efectively mitigate various AEs and classify the correct labels. We
choose one case (C10 and VGG-16) as the test case. The results are given in Table 5 by limiting the same ACC
drop to see the mitigation results. Since RDG cannot give stable results for 100 tests, we list the minimum and
maximum matching rates of RDG and CSRP-only respectively to compare. It is clear that compared with CSRP

that always gets a lower matching rate than the maximum matching rate of independent models, the RDG could

ACM Trans. Sensor Netw.

16 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

give a very high matching rate for all the ingerprinting methods. Thus, RDG cannot be used to mitigate the DNN
ingerprinting.

Table 5. Matching rate by comparing RDG with CSRP on 100 fingerprint samples on C10 dataset, VGG-16.

Attack ACC-top1 IPGuard CAE VCE RCE RCE-GM RCE-LT

Target model 0.91 1.0 1.0 1.0 1.0 1.0 1.0

Independent [0.9,0.91] [0.17,0.4] [0.0,0.18] [0.53,0.86] [0.57,0.87] [0.5,0.91] [0.05,0.72]

RDG 0.83 [0.15,0.7] [0.37,0.93] [0.65,1.0] [0.57,1.0] [0.63,1.0] [0.42,0.98]

CSRP only 0.83 [0.25,0.42] [0.32,0.53] [0.73,0.85] [0.74,0.87] [0.72,0.88] [0.54,0.69]

Table 6. Evaluation of hyper-parameters on C100 dataset, ResNet-56 for the data-limited scenario.

Settings ACC-top5 IPGuard CAE VCE RCE RCE-GM RCE-LT

Target model 0.88 1.0 1.0 1.0 1.0 1.0 1.0

Independent [0.87,0.89] [0.0,0.03] [0.03,0.34] [0.01,0.12] [0.01,0.12] [0.01,0.1] [0.0,0.06]

CSRP +
ine-tuning

� = 1.16, � = 3, � = 0.2 0.83 0.03 0.2 0.17 0.18 0.21 0.07
� = 1.23, � = 5, � = 0.2 0.81 0.01 0.14 0.1 0.09 0.11 0.04

� = 1.23, � = 5, � = 0.5 0.83 0.01 0.15 0.13 0.12 0.13 0.03

Evaluation on hyper-parameters. To further evaluate a trade-of between the attack efectiveness and utility-
preserving, we reset diferent � and � for each dataset. To achieve better mitigation on ingerprint samples, we
choose larger � and � for CSRP, which will as well make errors in clean samples’ predictions (Referring to the
results in Table 2, Table 3 and Table 4). We should note that when we choose smaller � = 1.16 and � = 3 for
C100 as an example, we will reach a much higher model accuracy to 83% for ResNet-56, as given in Table 6. Note

that we only choose one case (C100 and ResNet-56) as the test case; other cases also hold. Although the � (�̂) at
this time (e.g.17% for VCE, 18% for RCE, and 7% for RCE-LT) will be larger than the maximum matching rate of
independent models(e.g.12% for VCE, 12% for RCE and 6% for RCE-LT), they are still far lower than the standard
matching rates 100% and the baselines that are close to 100%, which is also acceptable for mitigating purpose.
Moreover, in the data-limited scenario, ine-tuning also set two other hyper-parameters to balance this trade-of.
One is the ratio (�) of the number of training data to the number of the original training dataset; the other one is
the ine-tuning epochs. For instance, in Table 3, we initially use the 20% C100 dataset to ine-tune ResNet-56
for 6-8 epochs and get an accuracy of 81%. However, when we use 50% C100 dataset to ine-tune for only four

epochs, we will get 83% accuracy, and the � (�̂) for all types of ingerprint samples will only increase by less
than 1%, as shown in Table 6. Thus, choosing diferent hyperparameters will result in diferent goals, and it is
important to balance all the sides.

6 DISCUSSION AND FUTURE WORK

Trade-of between ASR and ACC. The ingerprint samples have a very low matching rate on those independent
models, which makes our attack hard to achieve the efectiveness goal in some cases. However, if we continue to
use more intense transformation (e.g. by increasing the parameter � and �), we can still mitigate those ingerprint
samples but with more ACC loss. For instance, in the C100 and MobileNet data-limited case, we can reduce

the � (�̂) to 0.09 for VCE (lower than the maximum matching rate 0.11 for independent models) with larger
scaling and padding parameter as � = 1.40 and � = 9. However, the ACC-top5 will drop to 0.70, which loses 0.13
compared with the clean model. Indeed, a higher randomized transformation of CSRP will lead to more efectively
mitigating ingerprinting-based IP veriication but deinitely will cause more ACC drop on clean samples. In

ACM Trans. Sensor Netw.

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 17

summary, choosing parameters will tune the gradient obfuscation level, which leverages a trade-of between
attack efectiveness (ASR) and utility-preserving (ACC). We will consider a theoretical explanation for a more
precise understanding of this trade-of as our irst future work.
Future adaptive ingerprinting. Current DNN ingerprinting methods mainly consider only modiication on
the illegally acquired models but are vulnerable to data augmentation-based approaches, as indicated in our paper.
We will explore how to adaptively design novel DNN ingerprinting methods from a defender’s perspective to
mitigate such data augmentation-based attacks as our second future work.

7 CONCLUSION

In this paper, we irst mitigated various existing query-based DNN ingerprinting methods for IP protection from
a data augmentation perspective. We showed that although these existing DNN ingerprinting methods are robust
to various model modiications, they are quite vulnerable to gradient obfuscation-based preprocessing methods.
Speciically, we designed a preprocessing-based method CSRP to randomly transform all input samples, which
can not only efectively compromise the ingerprint samples’ veriication but also preserve an acceptable model
utility. By deploying CSRP, the adversary can use an illegally acquired DNN model to provide inference service
for a proit with or without any clean dataset and escape various query-based DNN ingerprinting methods to
verify the IP.

REFERENCES

[1] Yossi Adi, Carsten Baum,Moustapha Cisse, Benny Pinkas, and Joseph Keshet. 2018. Turning your weakness into a strength:Watermarking

deep neural networks by backdooring. In Proc. of the USENIX Security. 1615ś1631.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients give a false sense of security: Circumventing defenses

to adversarial examples. In International conference on machine learning. PMLR, 274ś283.

[3] Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li, Zhifeng Li, and Shu-Tao Xia. 2021. Targeted Attack against Deep Neural Networks

via Flipping Limited Weight Bits. ICLR (2021).

[4] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model compression. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining. 535ś541.

[5] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. IPGuard: Protecting intellectual property of deep neural networks via

ingerprinting the classiication boundary. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security.

14ś25.

[6] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In Proc. of the S&P. 39ś57.

[7] Abhishek Chakraborty, Ankit Mondai, and Ankur Srivastava. 2020. Hardware-assisted intellectual property protection of deep learning

models. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1ś6.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009

IEEE conference on computer vision and pattern recognition. Ieee, 248ś255.

[9] Bowei Dong, Qiongfeng Shi, Yanqin Yang, Feng Wen, Zixuan Zhang, and Chengkuo Lee. 2021. Technology evolution from self-powered

sensors to AIoT enabled smart homes. Nano Energy 79 (2021), 105414.

[10] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. 2019. Rethinking deep neural network ownership veriication: Embedding passports to

defeat ambiguity attacks. Advances in Neural Information Processing Systems 32 (2019).

[11] Faezeh Farivar, Mohammad Sayad Haghighi, Soheila Barchinezhad, and Alireza Jolfaei. 2019. Detection and compensation of covert

service-degrading intrusions in cyber physical systems through intelligent adaptive control. In 2019 IEEE International Conference on

Industrial Technology (ICIT). IEEE, 1143ś1148.

[12] Faezeh Farivar, Mohammad Sayad Haghighi, Alireza Jolfaei, and Sheng Wen. 2021. Covert attacks through adversarial learning: Study of

lane keeping attacks on the safety of autonomous vehicles. IEEE Transactions on Mechatronics 26, 3 (2021), 1350ś1357.

[13] Hui Guan, Shaoshan Liu, Xiaolong Ma, Wei Niu, Bin Ren, Xipeng Shen, Yanzhi Wang, and Pu Zhao. 2021. Cocopie: Enabling real-time

AI on of-the-shelf mobile devices via compression-compilation co-design. Commun. ACM 64, 6 (2021), 62ś68.

[14] Jia Guo and Miodrag Potkonjak. 2018. Watermarking deep neural networks for embedded systems. In 2018 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). IEEE, 1ś8.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770ś778.

ACM Trans. Sensor Netw.

18 • Meiqi Wang, Han Qiu, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham

[16] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. 2020. High accuracy and high idelity

extraction of neural networks. In 29th {USENIX} Security Symposium ({USENIX} Security 20). 1345ś1362.

[17] Weixiong Jiang, Heng Yu, Xinzhe Liu, Hao Sun, Rui Li, and Yajun Ha. 2021. TAIT: One-shot full-integer lightweight DNN quantization

via tunable activation imbalance transfer. In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 1027ś1032.

[18] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2021. Alias-free generative

adversarial networks. In Thirty-Fifth Conference on Neural Information Processing Systems.

[19] Alex Krizhevsky and Geofrey Hinton. 2009. Learning multiple layers of features from tiny images. Technical Report. Citeseer.

[20] Souvik Kundu, Mahdi Nazemi, Peter A Beerel, and Massoud Pedram. 2021. DNR: A Tunable Robust Pruning Framework Through

Dynamic Network Rewiring of DNNs. In Proceedings of the 26th Asia and South Paciic Design Automation Conference. 344ś350.

[21] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS 231N 7, 7 (2015), 3.

[22] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. 2019. Adversarial frontier stitching for remote neural network watermarking. Neural

Computing and Applications (2019), 1ś12.

[23] Chuan Li. 2020. OpenAI’s GPT-3 Language Model: A Technical Overview. https://lambdalabs.com/blog/demystifying-gpt-3/.

[24] Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2020. Backdoor learning: A survey. arXiv preprint arXiv:2007.08745

(2020).

[25] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. 2019. How to prove your model belongs to you: A blind-watermark based

framework to protect intellectual property of DNN. In Proceedings of the 35th Annual Computer Security Applications Conference. 126ś137.

[26] Wei Liang, Yiyong Hu, Xiaokang Zhou, Yi Pan, I Kevin, and Kai Wang. 2021. Variational few-shot learning for microservice-oriented

intrusion detection in distributed industrial IoT. IEEE Transactions on Industrial Informatics 18, 8 (2021), 5087ś5095.

[27] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. 2021. Deep Neural Network Fingerprinting by Conferrable Adversarial Examples.

In ICLR.

[28] Xiaolong Ma, Geng Yuan, Sheng Lin, Caiwen Ding, Fuxun Yu, Tao Liu, Wujie Wen, Xiang Chen, and Yanzhi Wang. 2020. Tiny but

accurate: A pruned, quantized and optimized memristor crossbar framework for ultra eicient dnn implementation. In 2020 25th Asia

and South Paciic Design Automation Conference (ASP-DAC). IEEE, 301ś306.

[29] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. 2022. Sancus: sta le n ess-aware c omm u nication-

avoiding full-graph decentralized training in large-scale graph neural networks. Proceedings of the VLDB Endowment 15, 9 (2022),

1937ś1950.

[30] Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui Xue. 2022. Fingerprinting Deep Neural Networks

Globally via Universal Adversarial Perturbations. arXiv preprint arXiv:2202.08602 (2022).

[31] Zheng Qin, Zhaoning Zhang, Xiaotao Chen, Changjian Wang, and Yuxing Peng. 2018. Fd-mobilenet: Improved mobilenet with a fast

downsampling strategy. In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 1363ś1367.

[32] Han Qiu, Hassan Noura, Meikang Qiu, Zhong Ming, and Gerard Memmi. 2019. A user-centric data protection method for cloud storage

based on invertible DWT. IEEE Transactions on Cloud Computing (2019).

[33] Han Qiu, Yi Zeng, Shangwei Guo, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham. 2021. Deepsweep: An evaluation

framework for mitigating dnn backdoor attacks using data augmentation. In Proceedings of the 2021 ACM Asia Conference on Computer

and Communications Security. 363ś377.

[34] Han Qiu, Yi Zeng, Qinkai Zheng, Shangwei Guo, Tianwei Zhang, and Hewu Li. 2021. An Eicient Preprocessing-based Approach to

Mitigate Advanced Adversarial Attacks. IEEE Trans. Comput. (2021).

[35] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I Trust You?": Explaining the Predictions of Any Classiier.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1135ś1144.

[36] Andriy Sarabakha and Erdal Kayacan. 2019. Online deep learning for improved trajectory tracking of unmanned aerial vehicles using

expert knowledge. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 7727ś7733.

[37] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[38] Linda Tessens, Marleen Morbee, Hamid Aghajan, and Wilfried Philips. 2014. Camera selection for tracking in distributed smart camera

networks. ACM Transactions on Sensor Networks (TOSN) 10, 2 (2014), 1ś33.

[39] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017. Embedding watermarks into deep neural networks. In Proc.

of the ICMR. 269ś277.

[40] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. 2020. Practical detection of trojan neural networks:

Data-limited and data-free cases. In European Conference on Computer Vision. Springer, 222ś238.

[41] Si Wang and Chip-Hong Chang. 2021. Fingerprinting deep neural networks-a deepfool approach. In 2021 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE, 1ś5.

[42] Siyue Wang, Xiao Wang, Pin-Yu Chen, Pu Zhao, and Xue Lin. 2021. Characteristic Examples: High-Robustness, Low-Transferability

Fingerprinting of Neural Networks. In Proceedings of the Thirtieth International Joint Conference on Artiicial Intelligence, IJCAI. 575ś582.

ACM Trans. Sensor Netw.

https:// lambdalabs.com/blog/demystifying-gpt-3/

Mitigating uery-based Neural Network Fingerprinting via Data Augmentation • 19

[43] Zirui Xu, Fuxun Yu, Chenchen Liu, and Xiang Chen. 2019. Reform: Static and dynamic resource-aware dnn reconiguration framework

for mobile device. In Proceedings of the 56th Annual Design Automation Conference 2019. 1ś6.

[44] Mingfu Xue, JianWang, andWeiqiang Liu. 2021. DNN intellectual property protection: Taxonomy, attacks and evaluations. In Proceedings

of the 2021 on Great Lakes Symposium on VLSI. 455ś460.

[45] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian Molloy. 2018. Protecting intellectual

property of deep neural networks with watermarking. In Proc. of the AsiaCCS. 159ś172.

[46] Xiaokang Zhou, Yiyong Hu, Jiayi Wu, Wei Liang, Jianhua Ma, and Qun Jin. 2022. Distribution bias aware collaborative generative

adversarial network for imbalanced deep learning in industrial iot. IEEE Transactions on Industrial Informatics 19, 1 (2022), 570ś580.

[47] Xiaokang Zhou, Wei Liang, I Kevin, Kai Wang, and Laurence T Yang. 2020. Deep correlation mining based on hierarchical hybrid

networks for heterogeneous big data recommendations. IEEE Transactions on Computational Social Systems 8, 1 (2020), 171ś178.

[48] Xiaokang Zhou, Wei Liang, Weimin Li, Ke Yan, Shohei Shimizu, I Kevin, and Kai Wang. 2021. Hierarchical adversarial attacks against

graph neural network based IoT network intrusion detection system. IEEE Internet of Things Journal (2021).

[49] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. 2021. Hermes Attack: Steal DNN Models with Lossless Inference

Accuracy. In 30th {USENIX} Security Symposium ({USENIX} Security 21).

[50] Giulio Zizzo, Chris Hankin, Sergio Mafeis, and Kevin Jones. 2019. Adversarial machine learning beyond the image domain. In 2019 56th

ACM/IEEE Design Automation Conference (DAC). IEEE, 1ś4.

ACM Trans. Sensor Netw.

	Abstract
	1 Introduction
	2 Background
	2.1 Edge AI Computing and IP Threats
	2.2 DNN IP Protection
	2.3 Target DNN Fingerprinting Methods
	2.4 Existing Methods to Mitigate DNN Fingerprinting

	3 Preliminaries
	3.1 System Overview
	3.2 Threat Model
	3.3 Data-free and Data-limited Attack Scenarios

	4 Methodology
	4.1 Data Augmentation for Data-free Scenario
	4.2 Further Fine-tuning for Data-limited Scenario
	4.3 Interpretation and Analysis

	5 Evaluation
	5.1 Experimental Setup
	5.2 Attack Target DNN Fingerprinting Methods
	5.3 Ablation Study

	6 Discussion and Future Work
	7 Conclusion
	References

