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Abstract— Deep hiding, embedding images with others using
deep neural networks, has demonstrated impressive efficacy in
increasing the message capacity and robustness of secret sharing.
In this paper, we challenge the robustness of existing deep hiding
schemes by preventing the recovery of secret images, building on
our in-depth study of state-of-the-art deep hiding schemes and
their vulnerabilities. Leveraging our analysis, we first propose
a simple box-free removal attack on deep hiding that does
not require any prior knowledge of the deep hiding schemes.
To improve the removal performance on the deep hiding schemes
that may be enhanced by adversarial training, we further design
a more powerful removal attack, efficient box-free removal attack
(EBRA), which employs image inpainting techniques to remove
secret images from container images. In addition, to ensure
the effectiveness of our attack and preserve the fidelity of the
processed container images, we design an erasing phase based
on the locality of deep hiding to remove secret information and
then make full use of the visual information of container images
to repair the erased visual content. Extensive evaluations show
our method can completely remove secret images from container
images with negligible impact on the quality of container images.

Index Terms— Removal attack, deep hiding, high-capacity,
image inpainting, adversarial training.

I. INTRODUCTION

DATA hiding [1] is the art of concealing secret data within
a cover image or other multimedia signals impercepti-

bly. It has gained popularity in applications such as secret
communication [2], copy-right protection [3], and content
authentication [4]. Typically, a data hiding scheme comprises
two necessary algorithms: hiding and revealing. The hiding
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algorithm is responsible for embedding a secret message
within a cover image without affecting its visual perception,
transforming the cover image becomes a container image after
hiding. The revealing algorithm recovers the embedded secret
message from the container image.

Traditional data hiding schemes [5], [6], [7] have mainly
focused on concealing binary messages and pursuing perfect
revealing (i.e. revealed secret message is the same as the
hidden one). However, one problem with these traditional
methods is their very limited message capacity. For instance,
a well-known data hiding scheme HUGO [5] only achieves
less than 0.5 bits per pixel (bpp). Such a low message capacity
hinders the effectiveness and application of data hiding, par-
ticularly when one needs to share massive secret information
(e.g. images) through public channels.

Recently, researchers have applied deep neural networks
(DNNs) to data hiding [8], [9], [10] due to the impressive
performance of deep learning in various fields [11], [12], [13].
DNN-based deep hiding (i.e. deep hiding) benefits from the
representational capacity of DNNs and increases the embed-
ding rate to a surprising level (more than 24 bpp). Specifically,
in [14], [15], and [16], the authors employ DNNs to perform
the hiding and revealing algorithms and successfully hide a
full-size image within another one (i.e. 24 bpp). UDH [15]
even embeds up to three full-size images within one image
(i.e. 72 bpp) using three pairs of DNNs. Such a significant
increase in embedding rate makes deep hiding more practical
and greatly improves the efficiency of secret sharing. In this
paper, we focus on high-embedding-rate deep hiding schemes,
where both the secret and cover are images, and study their
robustness.

Existing study claims that existing deep hiding schemes
not only have extremely high message capacity but also
possess strong robustness, especially the data hiding models
that are enhanced by adversarial training [15], [4], [17]. Then,
an important question arises: is this robustness sufficient to
deal with potential disturbances? Unfortunately, to the best
of our knowledge, there are few studies proposed specifically
to threaten the robustness of deep hiding. Jung et al. [18]
proposed a removal attack that erases the embedded secret
images from the corresponding container image by analyzing
the pixel distributions. However, their attack only consid-
ers basic deep hiding models, which are not enhanced by
adversarial training and fail to attack robust-enhanced deep
hiding schemes. Besides, their method is inefficient for images
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with large resolutions, as they complete the removal pixel by
pixel.

In this paper, we challenge the robustness of existing deep
hiding schemes in a box-free setting (the specific deep hiding
method is unknown to the attacker, and all involved DNNs
cannot be accessed), especially the schemes whose robustness
is enhanced by adversarial training. In the remaining content,
we aim to answer the following two questions: 1) how robust
are the existing deep hiding schemes?, and 2) can the secret
information embedded by deep hiding be completely erased?

To address the first question, we conduct a series of explo-
rations and identify two vulnerabilities of existing deep hiding
schemes: locality and low redundancy. Inspired by these
vulnerabilities, we develop a simple and box-free lattice attack
to answer the second question. Experimental results show that
the lattice attack successfully prevents the recovery of secret
images of basic hiding models. Unfortunately, we also observe
that the lattice attack slightly reduces the visual quality of
container images and fails to attack robust hiding models.

To improve the removal ability and preserve the visual
quality of container images, we design a novel removal attack,
named Efficient Box-free Removal Attack (EBRA), to delete
secret images from container images. EBRA mainly consists
of two phases: erasing and repair. In the erasing phase, pixels
in selected small regions of the container image are erased by
setting them to 0. Based on the vulnerabilities we observed,
the erasing operation completely removes the corresponding
subregions of the secret image from the container image (see
Section IV-A). To complete all missing regions, we design
a quality-enhanced inpainting algorithm, which extracts the
contour and color maps from the complete container image
to assist an inpainting model to repair the incomplete image
through feature fusion. Specifically, we propose two auxiliary
models to extract the auxiliary maps. Once all subregions of
the container image are processed, we combine all repaired
regions to generate the final purified container image that is
close to the original one and contains no secrets.

We conduct extensive experiments to evaluate the effective-
ness of our EBRA. To accurately evaluate the removal effect,
we conduct objective and subjective evaluations. In the objec-
tive evaluation, we use the existing image quality metrics to
quantify the attack performance. For the subjective evaluation,
we recruit 50 participants and asked them to judge whether
the secret images are completely removed through visual
observation. Both the objective and subjective evaluations
confirm that our EBRA can remove embedded secrets blindly
as well as preserve the visual quality of containers, even for
robust-enhanced deep hiding models.

In summary, the contributions of this paper are:
• We observe two vulnerabilities (locality and low redun-

dancy) of existing high-capacity deep hiding schemes
with different meta-architectures.

• We take advantage of observed vulnerabilities and pro-
pose an effective removal attack that can remove embed-
ded secret images efficiently and blindly.

• We conduct extensive experiments, including objective
and subjective evaluations, to demonstrate the effective-
ness of our EBRA.

The rest of this paper is organized as follows. Section II
provides a summary of existing hiding methods. Section III
formalizes deep hiding, removal attack, and the threat model.
Section IV introduces general vulnerabilities of existing deep
hiding methods and our first attempt to remove the embedded
secret images. Section V describes our proposed removal
attack. Section VI presents all experimental results and the
corresponding analysis. Section VIII concludes this paper.

II. RELATED WORK

A. Data Hiding

In a complete secret transmission, the sender uses a hiding
algorithm to embed a secret message within a cover medium
(the cover medium is an image in this paper) that appears
harmless. Only those who know the revealing algorithm and
corresponding key can extract the secret message from the
container image. A qualified data hiding scheme needs to meet
two primary goals: (1) the hiding cannot affect the visual
quality of the cover images, and (2) the revealed message
should be consistent with the embedded one.

1) Deep Hiding: Deep hiding allows researchers to obtain
the hiding and revealing algorithms in an end-to-end way
and realize a much higher embedding rate [1]. Baluja [14]
first proposed a framework to hide a full-size image within
another one using DNNs. Specifically, the secret image is first
processed by a prep network, and then the preprocessing result
and cover image are fed into a hiding network that outputs
the corresponding container image. In the revealing phase,
the embedded secret image is extracted from the container
image by a revealing network. This framework is called cover-
dependent deep hiding (DDH) since its encoding process of
secret images is cover dependent, shown as Fig. 1(a). Based
on this framework of DDH, Zhang et al. [16] further proposed
to hide a secret image in the Y channel of the cover image for
improving the invisibility of the hiding. Yu [19] also tried to
improve the quality of generated container images by adopting
an attention model. At the same time, researchers also study
how to further increase the message capacity using invertible
neural networks under DDH framework. Specifically, methods
proposed in [20] and [21] realized multiple images hiding by
increasing the number of channels of the hidden branch.

Besides DDH, there is another meta-architecture for deep
hiding that is termed universal deep hiding (UDH) [15] (see
Fig. 1(b)). In UDH, the encoding process is cover independent,
and the encoded secret can be arbitrarily hidden in different
cover images. What’s more, Zhang et al. [15] confirmed that
the coding results of different hiding networks in UDH can be
superimposed and embedded in one cover image, which also
increases the message capacity.

2) Robustness: The revealing process of deep hiding can
be easily destroyed by common image distortions. To address
this issue, adversarial training [15], [4], [17] is often adopted
to enhance the robustness, which uses noise layers to dis-
tort the original container images and requires the revealing
model to recover correct secret images from distorted results.
By now, adversarial training is the most effective way to
avoid the influence of known distortions. Based on adversarial
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Fig. 1. Meta-architectures of existing deep hiding. (a) the hiding network (H ) in DDH is responsible for encoding the secret image s and embedding the
encoding results into the cover image c at the same time; (b) the hiding network in UDH is only responsible for encoding the secret image and the encoding
results can be hidden in arbitrary cover images by subsequent element-wise addition.

training, Xu et al. [22] further proposed a content-aware noise
projection (CANP) module that implicitly preserves essential
information for the revealing. Luo et al. [23] combined adver-
sarial training and channel coding to improve the robustness
against agnostic distortions. Zhang et al. [17] further explored
the gain brought by adversarial training from the perspective
of forward and backward propagation and concluded that the
main influential component is forward propagation.

B. Steganalysis

In the early study, steganalysis plays an important role
in defeating steganography by determining whether a given
image carries potential confidential information. Compared
with classical steganalysis methods [24], [25], recently pro-
posed DNN-based steganalysis methods not only simplify the
feature design but also significantly increase the detection
accuracy. For example, Ye et al. [26] proposed to initialize
CNN’s first layer with filters used in a spatial rich model [27]
and designed a new activation function called truncated linear
unit. Boroumand et al. [28] got rid of heuristics and exter-
nally enforced elements previously proposed for steganalysis
and trained a deep residual network in an end-to-end way
from randomly initialized parameters. You et al. [29] assumed
that natural image noise is similar between different image
subregions and adopted a Siamese CNN to determine the
relationships between the noise of different subregions.

Although DNN-based steganalysis methods have shown
high detection accuracy, there is still a miss rate which may
be unacceptable when the confidentiality of sensitive informa-
tion is extremely important. Besides, many ideas have been
proposed to bypass passive detection. For example, in [30]
and [31], adversarial training is used for secure data hiding,
in which a potential adversary (steganalyzer) is considered,
and the hiding network is trained to deceive the adversary.
Another approach to combat steganalysis involves combining
adversarial examples with data hiding, which tries to mislead
the target steganalyzer as demonstrated in [32].

C. Removal Attack

Different from passive steganalysis which threatens the
security of data hiding, removal attack (also known as image
sterilization [33] or active steganalysis [18]) is an active action,
threatening the availability of data hiding, which aims to
erase potential secrets from container images while keeping

their visual quality. Existing related study mainly focuses on
traditional data hiding. For example, a simple bit-flipping
function can destroy most stego pixels [33] embedded by
low-capacity LSB-based data hiding methods. Imon et al. [34]
proposed to use the pixel eccentricity property of suspected
cover images to remove embedded secrets, which can be
applied to pixel-value differencing steganography [35] besides
LBS-based steganography. Ganguly and Mukherjee [36] pro-
posed to selectively corrupts the integer wavelet coefficients
of a given image to destroy the information hidden within
it. Corley et al. [37] proposed to train a purifier (i.e. a DNN)
based on collected quantities of container images. However,
this way is not practical in the real world since it is hard to
collect the container images once the deep hiding scheme is
unknown. Researchers also tried to design different filters to
erase steganography noise [38], [39]. All the above methods
are designed for removing short binary messages hidden by
classical data hiding methods and are inapplicable for recently
proposed high-capacity deep hiding schemes.

To the best of our knowledge, there are few works proposed
specifically for removing secret images from container images
in deep hiding. The work most relevant to our research is Pixel
Steganalysis proposed in [18], which analyzes the distribution
of each pixel in the image and adjusts suspicious pixels to
get a purified container image. However, this approach is
inefficient as secret information is removed pixel by pixel,
and its effectiveness in dealing with robust deep hiding has
not been verified. In this paper, we challenge the robustness
of high-capacity deep hiding schemes under different meta-
architectures in a blind way, especially the robust-enhanced
deep hiding schemes.

III. PROBLEM FORMULATION AND THREAT MODEL

A. Problem Formulation

We denote the hiding and revealing models in deep hiding
as R and H . The hiding and revealing processes can be
represented as c′

= H(c, s) and s′
= R(c′), where c,

s, c′, and s′ are the cover image, secret image, container
image, and recovered secret image, respectively. As described
in Section II, deep hiding has two goals, which are (1)
E∼s,c D(c, c′) ≤ ξ1 and (2) E∼s,c D(s, s′) ≤ ξ2, where D
measures the visual distance between two images, and ξ1 and
ξ2 represent acceptable thresholds.

Our removal attack against deep hiding also has two goals:
(1) to preserve the visual quality of container images, and
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Fig. 2. Vulnerabilities in existing deep hiding methods. (a) the original container and its corresponding recovered secret image. (b) we select random
subregions in the original container and remove or only keep them to get new container images. (c) we reduce the removed subregion in each container to
one pixel (mark with a red circle).

(2) to ensure no valid secret information can be observed
after attacks (i.e., the visual distance should be large enough
between the recovered secret images before and after the
removal attack). Based on the two goals, we formally define
the purified container images (ĉ′) liking

max
ĉ′

D(R(c′), R(ĉ′)) s.t. D(c′, ĉ′) ≤ ξ3, (1)

where ξ3 is also a threshold.

B. Threat Model

We assume that the specific deep hiding scheme is unknown
and, so the accesses to H and R are impossible. This is
a very strict assumption that ensures the practicality of our
removal attack in the real world. In the field of adversarial
attack [40], [41], there are two relatively loose assumptions:
the target model can be accessed in a black-box way or in a
white-box way, corresponding to black-box attack and white-
box attack. Therefore, we call a removal attack that meets our
strict assumption box-free attack.

IV. OBSERVATIONS AND FIRST ATTEMPT

A. Vulnerabilities of Deep Hiding

Despite the variety of meta-architectures adopted in deep
hiding, current deep hiding schemes have similar vulnerabili-
ties regarding robustness. This is because most of the existing
deep hiding schemes rely on fully convolutional networks,
and hide significant amounts of information. Due to the local
nature of the convolution operation, the influence of one
secret pixel is limited to only its surrounding pixels, i.e.,
locality. Moreover, hiding significant amounts of information
means that it is difficult to achieve redundancy, i.e., low
redundancy. In the following content, we will elaborate on
these vulnerabilities and provide visualization examples.

1) Locality: For each pixel si j of s, current deep hiding
schemes trend to embed it in a tiny region (the size of the
region is determined by receptive field) of the corresponding
pixel c′

i j in c′. We illustrate the locality vulnerability of a
DDH scheme DS [14] in Fig. 2(b). This vulnerability also
exists in other DDH and UDH schemes, even the model’s
robustness is enhanced by adversarial training. From Fig. 2(b),
we can observe that once a region of c′ is removed, it becomes
impossible to recover the corresponding secret pixels.

2) Low Redundancy: As we reduce the number of removal
pixels in c′ to one, we observe that a tiny region of the secret
image cannot be recovered correctly (see Fig. 2(c)). We believe
that this phenomenon is caused by high message capacity. The
locality indicates that the information of each secret pixel is
stored in a tiny region surrounding the corresponding container
pixel. So each container pixel needs to carry the information of
multiple secret pixels. However, the payload of each container
pixel is limited due to the requirement of E∼s,c D(c, c′) ≤ ξ1.
Hence, it is hard to ensure that the information stored on each
container pixel is redundant, especially facing such a large
amount of secret information as full-size images. Thus, the
loss of one container pixel affects the recovery of multiple
secret pixels around it, i.e., the marked blue areas in Fig. 2(c).

B. Lattice Attack

Inspired by the vulnerability of low redundancy, we first
design a simple lattice attack that only distorts part pixels of
c′. Specifically, we choose one pixel of c′ every q pixels and
change all three channels of chosen pixels as c′

mn = (r1, r2, r3)

where m and n modulo q + 1 equals 0, r1, r2, and r3 are new
random values for different channels. By setting an appropriate
value of q, no valid secret information can be revealed due to
the vulnerability of low redundancy. In experiments, we set
q as 5 and test the lattice attack on UDH [15], DS [14], and
ISGAN [16].

1) Metric: To evaluate the effectiveness of removal attacks,
we use PSNR and VIF [42] as the distance metrics. The higher
the scores of both PSNR and VIF, the smaller the distance
between images. It should be noted that PSNR works well
for relatively high-quality images but may not perform well
on images with low visual quality [43], [44]. And VIF is
closer to the human visual system on low-quality images than
other mainstream metrics (e.g. PSNR and SSIM) [42], [45].
Given that R(ĉ′) is often low-quality (see Fig. 3 and 7), VIF
is more accurate than PSNR for evaluating the performance
on preventing the revealing of secrets in this case. In the
following sections, we use PSNR-C, VIF-C, PSNR-S, and
VIF-S to denote PSNR(c′,ĉ′), VIF(c′,ĉ′), PSNR(R(c′),R(ĉ′)),
and VIF(R(c′),R(ĉ′)), respectively.

We present the average results of PSNR-C, VIF-C, PSNR-S,
and VIF-S in Table I and provide some visualization samples

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 31,2023 at 03:23:32 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ERASE AND REPAIR: AN EBRA ON HIGH-CAPACITY DEEP HIDING 5233

Fig. 3. Visualization examples of applying the lattice attack on three deep
hiding methods. The container images (top row) are processed using the lattice
attack, resulting in no valid secret information in the corresponding recovered
secret images (bottom row).

Fig. 4. Lattice attack on Gaussian noise-based enhanced UDH. The images
of the top row are the original secret images. The images of the bottom row
are the corresponding recovered secret images after attacking.

TABLE I
EVALUATION RESULTS OF LATTICE ATTACK

TABLE II
EVALUATION OF THE LATTICE ATTACK ON GAUSSIAN NOISE-BASED

ENHANCED UDH

in Fig. 3. As expected, the lattice attack does prevent the
revealing of embedded secret images. However, it fails to
balance the two goals of removal attacks since the PSNR-C
scores below 20 (Table I). One way to increase the image
quality is to increase q . But it is hard to determine an
appropriate q when H and R cannot be accessed. Besides
the problem of image quality, the lattice attack cannot attack
robust-enhanced models, especially those that are enhanced by
Gaussian noise. We confirm this phenomenon in Table II and
Fig. 4. From Fig. 4, we can see that even after applying the
lattice attack to attack the enhanced UDH, a large amount of
valid secret information can be still recovered.

V. METHODOLOGY

We have attempted to attack deep hiding only for its low
redundancy, but we found that the simple lattice attack is
ineffective when it faces more robust deep hiding models.

Therefore, in this section, we propose a new attack, Efficient
Box-free Removal Attack (EBRA), to achieve the two attack
goals described in Section III.

A. Framework Overview

1) Insight: Our EBRA uses image inpainting technol-
ogy [46], [47], [48] and consists of two phases to remove
embedded secret information from c′ while preserving the
quality of ĉ′. Our design strategies are two-fold. First, erasing
pixels of c′ must remove the corresponding secret pixels due to
the locality vulnerability. Second, image inpainting can recover
the missing regions for maintaining the quality of ĉ′, and the
repaired results would not contain the secret information of the
missing regions because deep hiding has the vulnerability of
low redundancy and the inpainting model is trained on images
that contain no secrets.

2) Pipeline: We show the complete pipeline of EBRA in
Fig. 5, from which we can see that EBRA does not access
the deep hiding models during the purification process. In
the erasing phase, c′ is first divided into multiple square
regions. EBRA chooses some regions far away from each
other and sets all corresponding pixels to 0 in each iteration.
In the repair phase, EBRA completes all missing pixels
without reconstructing the corresponding secrets. Specifically,
The edge and color generators (I1 and I2) extract the contour
and coarse color maps from c′. And then, the two generators
provide feature maps of their last four layers to the inpainting
model (I3) by feature fusion. I3 takes the incomplete image
(c′M ) and the mask of missing regions as its input and repairs
all missing pixels. After traversing all pixels in c′, we can
acquire a purified container image (i.e., ĉ′) by combining all
repaired regions, from which no valid secrets can be revealed.

B. Details

1) Erasing Phase: We can remove any parts of the embed-
ded secret image by setting pixels in the corresponding parts
of the container image to 0 due to the locality vulnerability.
Given that it is difficult to repair a large hole since less
context is not enough to support high-quality yet precise
repair, we have to erase small missing regions. However,
processing small regions one by one is inefficient because the
number of iterations increases as the resolution of containers
increases. Therefore, we decide to erase multiple small regions
simultaneously, which are far away from each other. We can
repair multiple missing regions far away from each other
because the influence of surrounding pixels on the repair
results decays as the distance to the missing region increases.

Specifically, we select a k × k region every d regions as
marked by the red boxes in c′M in Fig. 5. And we set the
pixels of all chosen regions as 0 to get the incomplete image
c′M and corresponding binary mask M . The erasing phase can
be summarized as

M , c′M
= Erase(c′, m, n, k, d), (2)

where (m, n) is the start point of selecting regions (e.g. the
center pixel of the first selected region). c′M contains no
secrets of the corresponding missing regions but is useless
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Fig. 5. Overview of EBRA. EBRA is composed of two phases: erasing and repair. The erasing phase is designed to remove embedded messages by setting
all selected pixels to 0 and produces an incomplete container image. The repair phase aims to improve the usability of the incomplete image and consists of
three sub-models: edge generator, color generator, and inpainting model. The edge and color generators extract the contour and coarse color maps from the
complete image (i.e., c′) and provide corresponding feature maps to the inpainting model. Then inpainting model completes all missing pixels based on the
remaining context in c′M and the auxiliary feature maps. The four discriminators (D1, D2, D3G , and D3l ) are only considered in the training phase, which
determines whether their inputs are real or fake.

since it is incomplete. So we design the following phase to
improve the usability of c′M .

2) Repair Phase: To maintain the usability of the final
purified container images, we propose a quality-enhanced
inpainting method to repair the missing pixels in c′M . Given
that the remaining context in c′M alone is not enough to
support precise repair, we make full use of c′ to enhance the
quality of the repaired images. A naive way is to feed both c′

and c′M to the inpainting model directly. But this way is risky
since the inpainting model may learn to copy and paste for
the repair, which brings back the removed secrets. To address
this problem, we propose to extract contour and coarse color
maps from c′ to assist the inpainting process. Note that, the
auxiliary information we used not only is critical to precise
repair but also contains little valid secret information so that
no valid secrets will be leaked to the inpainting process.

Next, we introduce how to implement our quality-enhanced
inpainting and how to train involved models. We need to
emphasize that we train all involved models on cover images
not container images to further reduce the risk of rebuilding
the missing secrets in the repair process. Therefore, we will
use c instead of c′ in the following descriptions.

3) Edge Generator: Lines play a crucial role in precisely
delineating and defining shapes. Therefore, we propose an
edge generator with an encoder-decoder structure to extract
the contour map from c. In experiments, we first construct
a dataset that contains images and their corresponding con-
tour maps (er ) by applying traditional edge detectors [49]
to images. After that, we employ the adversarial loss and
feature-matching loss [50] to optimize the edge generator
liking

min
I1

(
max

D1
L1adv

+ λF ML1F M

)
, (3)

where

L1adv
= E

[
log D1(er )

]
+ E

[
log(1 − D1(ep))

]
, (4)

L1F M = E

L D1∑
i=1

1

N (i)
D1

∥∥∥D(i)
1 (er ) − D(i)

1 (ep)

∥∥∥
1

 , (5)

ep
= I1(c). (6)

λF M is a weighting factor, and we set it to 10 in experiments.
L D1 is the number of layers of D1. D(i)

1 represents the
feature map in the i-th layer of D1. N (i)

D1
is the number

of elements in D(i)
1 . The adversarial loss encourages I1 to

produce realistic and clear contour images, while the feature-
matching loss forces the generator to produce images having
similar representations as the corresponding real images [50].

4) Color Generator: Besides the contour, we can also
extract color maps from c using a color generator, which is
also critical to the repair. To ensure that no valid secrets will be
rebuilt during the inpainting process, we consider coarse color
maps (representative color of each tiny area) rather than fine
color maps (color of each pixel, i.e., the image itself). In this
paper, we use the technology of super-pixel segmentation [51]
to divide the whole image into irregular tiny areas which
consist of pixels with similar texture, color, brightness, etc.
And we fill each tiny area with its average pixel to get the
ground truth of the color maps (mr ). Then, we train I2 like
what we have done to train I1. In experiments, I1 and I2 share
the same structure that consists of ordinary convolution layers.

5) Inpainting Model: After acquiring the useful auxiliary
information, we start to repair all missing pixels using an
inpainting model as

cI
= I3

(
cM , M,

{
I (i)
1 (c)

}
,
{

I (i)
2 (c)

})
, (7)
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where cI is the repaired image in each iteration. cM is the
masked version of c.

{
I (i)
1 (c)

}
and

{
I (i)
2 (c)

}
are the sets

of feature map in the i-th layer of I1 and I2 respectively.
In experiments, we use the feature maps of the last four
layers of I1 and I2. Using the feature maps of different
layers, not the output contour and color maps, reduces the risk
of rebuilding the removed secrets in the inpainting process.
In experiments, we construct I3 with gated and dilated gated
convolutions, which have been proven to improve the repair
ability [52], [53]. More details of the two kinds of convolutions
can be found in [52].

The training of I3 is much more complex than that of
I1 and I2. Specifically, we train I3 with reconstruction loss,
adversarial loss, and perceptual loss, as

min
I3

(
max
D3L

L3advL + max
D3G

L3advG + λrecL3rec + λperL3per

)
.

(8)

The reconstruction loss (L3rec ) is in L1-norm form as
L3rec = ∥cI

− c∥1, (9)

which makes the cI close to c at the pixel level. The two
adversarial losses (L3advL and L3advG ) are used to ensure the
realness of repaired images. The local adversarial loss is

L3advL = E
[
log D3L (cL)

]
+ E

[
log(1 − D3L (cI

L))
]
, (10)

where cI
L represents the repaired region in cI , and cL is the

corresponding local region in c. D3L is a local discriminator
that determines the synthesized contents in repaired regions
are real or not, which can help I3 generate details of missing
contents with sharper boundaries. The global adversarial loss
is

L3advG = E
[
log D3G (c)

]
+ E

[
log(1 − D3G (cI ))

]
, (11)

where D3G is a global discriminator that identifies the realness
of the whole repaired image. D3G makes up for the deficiency
of D3L by focusing only on local regions and ignoring
the consistency within and outside the masked regions. The
perceptual loss (L3per ) is used to penalize results that are not
perceptually similar to the labels, and it is defined as

L3per = E

[∑
i

1

N (i)
V GG

∥∥∥V GG(i)(c) − V GG(i)(cI )

∥∥∥
1

]
,

(12)

where V GG(i) is the feature map of the i-th layer of a pre-
trained VGG19 [12] and N (i)

V GG represents the number of
elements in corresponding feature map. Specifically, we follow
the setting in [54] to choose the specific layers of VGG19 for
calculating L3per . And we set λrec = 10 and λper = 1 in
experiments.

In the inference phase, we apply I1, I2, and I3 to c′ and
c′M as

c′I
= I3

(
c′M , M,

{
I (i)
1 (c)

}
,
{

I (i)
2 (c)

})
. (13)

Then, we combine all repaired regions in repaired images to
produce the final purified container image (ĉ′), and R cannot
recover any valid information from ĉ′ as illustrated in Fig. 5.

TABLE III
BASELINES USED IN EVALUATIONS

VI. EXPERIMENTAL EVALUATION

A. Experiment Setup

1) Dataset: Our attack is deep hiding model-agnostic and
dataset-agnostic. Without losing generality, we conduct all
experiments on the CelebA dataset in this paper. All images
are resized to the resolution of 256×256 and the pixel values
are normalized to the range of [0, 1].

2) Deep Hiding: We adopt five state-of-the-art deep hiding
schemes for evaluation, including UDH1 [15], DS2 [14],
ISGAN3 [16], MIS4 [59], and HCVS5 [60]. All selected deep
hiding schemes realize high-capacity data hiding. UDH, DS,
and MIS are designed to hide a full-size RGB image within
another one. ISGAN is designed to hide a full-size gray image
with another RGB image. HCVS is designed to hide a full-
sized color video within another video, and the authors of
HCVS claimed that HCVS has the robustness to compression.
In our experiments, we adopt all selected schemes to hide
images within images. As for HCVS, each image can be
regarded as a frame in a video.

3) Implementation of EBRA and Baselines: We follow the
architectures of models proposed in [48] to design I1 and I2.
Both of them are composed of down-sample layers, residual
blocks, and up-sample layers. In this paper, we reduce the
number of residual blocks to 3 since extracting the edge and
color of the complete image is relatively easier than predicting
the edge of missing regions in [48]. I3 follows an architecture
similar to the network proposed in [52], which consists of
gated and dilated gated convolution layers. As for D1 and D2,
we use the discriminator proposed in [48] to realize them. For
D3L and D3G , we refer to [61] to build the two discriminators.
To train I1 and I2, we apply Canny [49] and SLIC [51] to
produce er and mr , respectively. In experiments, we set k =

50 and d = 2. The code of EBRA is available.6

As for baselines, we mainly use box-free methods as the
baselines for a fair competition. We compare EBRA with
10 baselines that can be divided into three categories (common
image distortions, defending against adversarial perturbation,
and adversarial attack), as shown in Table III. For common
image distortions, we choose Gaussian blurring (GB), Gaus-
sian noise (GN), JPEG compression (JPEG), dropout (Drop),

1https://github.com/ChaoningZhang/Universal-Deep-Hiding
2https://github.com/zllrunning/Deep-Steganography
3https://github.com/Marcovaldong/ISGAN
4https://github.com/m607stars/MultiImageSteganography
5https://github.com/muziyongshixin/pytorch-Deep-Steganography
6https://github.com/hcliucs/EBRA
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TABLE IV
ATTACK RESULTS ON ALL BASELINES

motion blurring (MB), coarse dropout (CD) [55], and fancy
PCA (FPCA) [56]. These distortions are commonly used to
study data hiding’s robustness [4], [15], [62]

For baselines defending against adversarial perturbation,
we choose pixel deflection (PD) [57] and bit-depth reduction
(BDR) [58]. In our view, the embedded secret can be also
regarded as a kind of imperceptible noise, so the removal
method for adversarial perturbation may also be suitable for
deep hiding. Last, we also use an adversarial attack method,
NES [41], as a baseline. NES is designed to cheat classification
models, so we need to modify its objective function to ensure
that it can make the revealing model go wrong. The revised
objective function tends to increase the L2-norm distance
between R(c′) and R(ĉ′). It is worth emphasizing that NES is
not a box-free way since it needs to access the revealing model
through the model’s input and output APIs, i.e., black-box
accessing. Therefore, NES cannot work in our box-free setting.
We choose NES because the container images processed by
EBRA can be regarded as a kind of adversarial example for
data hiding models, and NES is still much more practical than
removal attacks like that in [37].

B. Objective Evaluation

As we did in Section IV-B, we use PSNR and VIF [42] to
quantify the performance of various removal attacks against
different deep hiding models in our objective evaluations.
It is worth emphasizing once again that there is currently no
metric specifically designed for measuring the performance
of removal attacks. Therefore, we rely on commonly used
image quality metrics in our experiments. Moreover, previous

studies [42], [45] have confirmed that VIF works better on
low-quality images than PSNR, but there is a gap between
VIF and human perception. As a result, we complement our
objective evaluation with a subjective assessment at the end
of our study.

1) Attack Basic Models: We apply EBRA and baselines
to attack all five basic deep hiding models (without adver-
sarial training), and we present the results in Table IV.
The two values in each cell means (PSNR-C, PSNR-S) or
(VIF-C, VIF-S), where PSNR-C, PSNR-S, VIF-C, and VIF-S
represent PSNR(c′,ĉ′), VIF(c′,ĉ′), PSNR(R(c′),R(ĉ′)), and
VIF(R(c′),R(ĉ′)), respectively. As shown in Table IV, EBRA
outperforms all other methods in terms of removing hidden
information while maintaining the quality of the processed
container images at an acceptable level. EBRA’s average
PSNR-C is higher than 30, indicating the image quality is
generally good. Although some baselines (e.g., JPEG, PD,
and FPCA) achieve much higher PSNR-C scores, they sacri-
fice the removal effect significantly. For example, while the
average PSNR-C score of PD is 37.77, the corresponding
PSNR-S score is as high as 20.59 (the VIF-S score is 0.343).
In this case, the corresponding R(ĉ′) still contains a signif-
icant amount of valid secret information, resulting in failed
removal. We further demonstrate the superior performance of
EBRA in balancing image quality and removal effect through
visualization results shown in Fig. 6. In addition to PSNR and
VIF, we also assess EBRA using alternative metrics, including
SSIM, bit error rate, and pixel error rate, all of which are
detailed in our supplementary materials.7

7https://arxiv.org/abs/2308.01512
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Fig. 6. Visualization examples of attacking HCVS. The images at the top show the original container image and processed container images. The images
at the bottom show the corresponding recovered secret images.

TABLE V
ATTACK UDH’S ENHANCED VERSIONS

Fig. 7. Visualization examples of attacking UDH-AE. The images at the top show the original container image and processed container images. The images
at the bottom show the corresponding recovered secret images.

2) Attack Robust Models: We also consider robust-
enhanced models by employing adversarial training. Specifi-
cally, we choose UDH, DS, and ISGAN as the basic methods,
and then use GB, GN, Drop, JPEG, quantification (Quan),

and a pre-trained auto-encoder (AE) as the potential distor-
tion. Following the configurations in [4] and [15] that adds
different noise layers between the hiding and revealing models
to simulate possible distortions, we get the corresponding
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TABLE VI
ATTACK RESULTS ON ISGAN’S’ ENHANCED VERSIONS

TABLE VII
ATTACK RESULTS ON ISGAN’S’ ENHANCED VERSIONS

robust-enhanced models. For example, UDH-GB means a
UDH model that is adversarially trained with GB. We show
all results on these robust models in V, VI, and VII.

First, EBRA continues to show its superiority in completely
removing the embedded secret images while maintaining
the quality of processed container images at an accept-
able level (with an average PSNR-C above 29). Despite

the average PSNR-C and VIF-C scores of EBRA dropping
slightly facing these robust models, this is understandable.
In Fig. 7, UDH-AE tends to produce stripes in the container
images, which are retained in the processed container images
produced by most removal attacks except for EBRA. The
removal of stripes by EBRA inevitably increases the distance
between the container images before and after attacking and

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 31,2023 at 03:23:32 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ERASE AND REPAIR: AN EBRA ON HIGH-CAPACITY DEEP HIDING 5239

TABLE VIII
EVALUATION ON MORE ROBUST MODELS

Fig. 8. Comparison between EBRA and EBRA† in quality. The values mean
VIF-C scores.

TABLE IX

EVALUATIONS OF EBRA†

is also the key to completely removing the embedded secret
image.

Second, we observe that adversarial training does improve
the robustness against known distortions significantly, and
this improvement shows some degree of generalization to
unknown distortions. For example, in Table V, although GN
poses a great threat to UDH (the PSNR-S and VIF-S scores
are 11.15 and 0.043, respectively), it cannot attack UDH-
GN (the PSNR-S and VIF-S scores increase to 25.42 and
0.334 respectively). Additionally, UDH-GN is also resistant
to the Drop attack, despite though Drop seriously threatens
UDH.

Besides, we adopt two approaches to further enhance the
robustness against EBRA. First, following the experimental
setting in [15], we combine different distortions (e.g. GB, GN,
Drop, and JPEG) simultaneously in the adversarial training
and train a combined UDH (UDH-C) like that in [15]. Second,
we conduct targeted adversarial training to get UDH-EBRA by
assuming that the defenders have knowledge of the details of
EBRA. The results of attacking the two models using EBRA
are shown in Table VIII. It is clear to see that EBRA still works
against UDH-C but fails to attack UDH-EBRA (the VIF-S
increases to 0.157 and the PSNR-S is 16.81). So, targeted
adversarial training is still effective. However, it relies on a
strong assumption and seems to be impractical in the real
world. Additionally, we find that the effectiveness of targeted
adversarial training is fragile when some specific parameter
settings are changed. To confirm this, we train a new group

Fig. 9. Evaluation results of different k.

of I1, I2, and I3 by adjusting hyperparameters, such as the
initialization of model parameters, learning rate, k, and the
number of convolution kernels in hidden layers (randomly
reduce z convolution kernels, where z = 0, 1, 2). After that,
we obtain a new EBRA, denoted as EBRA∗. Experimental
results (Table VIII) show that EBRA∗ significantly reduces
the VIF-S scores. To sum up, the threat of adversarial training
to our EBRA is limited, and this encourages us to find more
effective methods to resist EBRA in our future research.

C. Ablation Study

We conduct an ablation study to verify the importance of
contour and color information, in which we only consider
I3 to build EBRA (denoted as EBRA†). The experimental
results are shown in Table IX. After removing I1 and I2,
the PNSR-C and VIF-C decrease significantly. Fig. 8 also
confirms this. As we can see in Fig. 8, the right image contains
clearer background (e.g., the letter “S”), eyes, and hair than
the middle one. All evidence reflects the superiority of our
quality-enhanced inpainting. At the same time, the auxiliary
feature maps we used do not provide an advantage for the
secret image revealing since the PSNR-S and VIS-S scores
are close before and after using I1 and I2.

D. Evaluation on Different k

In experiments, we also adopt different k and find that k has
a small effect on the removal effect when k is relatively small.
Specifically, we train I3 by setting k = 30, 40, 50, 60 respec-
tively. The corresponding VIF-C and VIF-S results are pre-
sented in Fig. 9. As shown in Fig. 9, the VIF-C scores (or
VIF-S scores) are close. A recent work [46] poses the possi-
bility of repairing large missing regions. However, as shown
in [46], the semantic information of repaired contents differs
greatly from the original’s when the missing region is too
large, although the repair pixels are natural. To maintain the
semantic information in ĉ′, we do not consider large-scale
erasing in a single step and randomly choose k = 50.

E. Efficiency

We test the efficiency of different removal attacks and
a famous steganalysis method SRNet [28] on a machine.
Specifically, we use these methods to process 300 container
images and calculate the average time. Experiment results are
shown in Table X. It’s worth noting that, we use I1 and
I2 only once for each container. And with d = 2, EBRA
needs only 9 cycles to process a container image using I3 if
the batch size is 1. However, accessing I3 step by step
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TABLE X
THE TIME OVERHEAD (MS) OF DIFFERENT METHODS REQUIRED TO PROCESS AN IMAGE

TABLE XI
FAILURE RATE OF ALL TEST METHODS IN THE SUBJECTIVE EVALUATION

Fig. 10. Remove secret images from significantly distorted container images. The images at the top, from left to right, show the original cover image, the
original container image, and the processed container images. The images at the bottom display the original secret image and its corresponding recovered
secret images.

(batch size is 1) increases the number of interactions between
system memory and GPU memory so the time overhead of
EBRA is not satisfactory. To further reduce the time overhead,
we prepare all 9 incomplete container images and feed them
together to I3 as a batch (i.e., the batch size is 9 and the
number of interactions decreases to 1). Finally, we reduce the
time overhead from 39.87 ms to 7.75 ms which is perfectly
acceptable in most cases.

F. Subjective Evaluation

As we have previously claimed, there is no metric designed
specifically for evaluating removal attacks. Therefore, objec-
tive results measured by popular image quality metrics may
not fully reflect the real removal effect. To address this
issue, we conduct a subjective evaluation. In this evaluation,
we invite 50 observers to determine whether valid information
(e.g., hair, eye, glasses, hat, etc.) can be observed in R(ĉ′).
If the answer is no, the corresponding removal is success-
ful. Otherwise, the removal fails. All of these observers are
college students majoring in science, engineering, language,

and biology; none of them has background knowledge of
data hiding. They all have normal or corrected vision, aged
from 20 to 30 years old. For each data hiding method, we pre-
pare 100 pairs of (R(c′), R(ĉ′)), and then ask all observers
to browse every pair of images. We collected all feedback
and calculated the average removal failure rate as shown in
Table XI. A lower removal failure rate indicates a better secret
removal effect. We can clearly observe that EBRA achieves
an extremely low failure rate in Table XI, averaging only 1%.
Besides, we also get an interesting phenomenon: adopting
GN or AE in the adversarial training can better improve the
robustness than using other adversarial distortions because
the corresponding models show the best generalization to
unknown distortions.

VII. LIMITATION

In the preceding section, we have confirmed that when
hiding is imperceptible (i.e., E∼s,c D(c, c′) ≤ ξ1), EBRA
can effectively remove secret images from the con-
tainer images. However, when hiding becomes perceptible
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(i.e., E∼s,c D(c, c′) ≥ ξ1), the performance of EBRA might be
affected. This is primarily due to EBRA possibly mistaking the
severe distortions caused by the perceptible hiding as inher-
ent properties of the container image, thereby attempting to
recover these distortions. To substantiate this, we adversarially
train HCVS [60] with an auto-encoder while controlling the
PSNR(c,c′) at a low level (PSNR(c,c′)=26.9) to ensure that
the hiding would result in severe distortions in the container
images. As we illustrate in Fig. 10, HCVS-AE seems to
produce the container image by adding a purple filter to the
cover image. And this color cast across the entire image scope
records valid secret information and makes EBRA perceive
it as an inherent property of the container image itself. As a
result, this color cast is well-preserved in the output of EBRA,
causing the secret image to not be completely removed from
the container image.

Nevertheless, EBRA still maintains the recovered secret
image at a low level of recognizability. In contrast, the recov-
ered secret images corresponding to other removal methods
are much more recognizable and are not even affected by the
removal attacks (e.g., GB, MB, and JPEG). Lastly, we must
argue that although EBRA has this limitation, it remains appli-
cable to attacking current mainstream deep hiding schemes,
as them [14], [15], [16], [19], [20], [21], [59], [60] still focus
on imperceptible hiding.

VIII. CONCLUSION

In this paper, we challenge the robustness of existing deep
hiding schemes. To this end, we first explore the vulnerabilities
of current deep hiding schemes. Based on our observations,
we design a two-phase box-free removal attack. To better
maintain the usability of purified container images, we design
two auxiliary networks to extract the contour and coarse color
maps from the container images and transmit the extracted
features to the inpainting model through feature fusion. The
subjective and objective experimental results reflect that our
EBRA can remove embedded secret images thoroughly, even
the deep hiding models are enhanced by adversarial training.
We hope our work can heat up the arms race to inspire the
designs of more advanced deep hiding schemes and attacks in
the future.
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