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Abstract— Private neural network inference has demonstrated
great importance in various privacy-critical scenarios. However,
the primary challenge remaining in prior works is that the
evaluation on encrypted data levies prohibitively high run-
time and communication overhead. In this work, we present
FastSecNet, an efficient two-party cryptographic framework
for private inference in the dealer-based pre-processing setting.
Specifically, 1) FastSecNet provides an efficient ReLU protocol
for the evalution of non-linear layers, which is built up on a
recent advanced cryptographic primitive, function secret sharing
(FSS). The core of this construction are an optimized ReLU
representation and a customized FSS-based ReLU protocol. 2)
For linear layer evaluation, we first propose an efficient PRG-
based pre-processing protocol based on the fact that one of the
inputs is uniformly random in the offline phase. Then, the online
phase only communicates one element and consists of lightweight
secret-sharing operations in a ring. Extensive evaluations con-
ducted on 4 real-world datasets and 9 neural network models
demonstrate that during the online phase, FastSecNet achieves
14× less runtime and 18× less communication cost compared to
the state-of-the-art.

Index Terms— Private neural network inference, secure multi-
party computation, function secret sharing.

I. INTRODUCTION

RECENT advances in deep learning (DL) raise increasing
demand and deployment of neural network inference in

various applications like voice assistant [1], medical diagno-
sis [2] and image classification [3]. Many IT companies release
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online inference services to facilitate these applications, such
as Google ML Engine [4], Microsoft Azure ML Studio [5].
and Amazon SageMaker [6]. Unfortunately, current DL-based
inference systems suffer from serious privacy concerns [7].
On one hand, clients need to send sensitive inputs to the ser-
vice provider (e.g., a remote server), which could compromise
the data privacy of these clients if the provider is untrusted [8].
On the other hand, an alternative is that the provider distributes
the proprietary model to clients, but this causes intellectual
property violations [9], [10].

To solve these privacy issues, researchers have proposed
a quantity of works on private inference [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20] based on Homomorphic
Encryption (HE) [21] or secure two-party computation (2PC)
techniques such as Garbled Circuit (GC) [22] and Secret Shar-
ing (SS) [23] (more details refer to Section VI). These works
guarantee that the server learns nothing about the clients’
input and the clients obtain zero information about the server’s
model except for the prediction results. Despite such desirable
security guarantees, most prior works are computationally
intensive and often require a large amount of communication
between clients and the server.

Recently, Mishra et al. [19] proposed Delphi, a new infer-
ence framework to alleviate such efficiency concerns. In Del-
phi, the inference pipeline is divided into an input-independent
offline phase and an input-dependent online phase. Then
it introduces cryptographic protocols in the pre-processing
model, and significantly reduces the online cost by moving
most heavy cryptographic computations into the offline phase.
With such a design, all linear operations in the online phase
can be performed directly over secret-shared data without
invoking heavy cryptographic tools like HE, or frequent
interactions. However, a remaining problem in Delphi is that
evaluating non-linear layers (e.g., ReLU and Maxpool) with
GCs are several orders of magnitude more expensive than the
linear layer protocols in terms of communication and com-
putation [24]. This is because the computation of a function
within GCs requires it to be decomposed into a circuit of
binary gates and processed in an encrypted bit-wise fashion.
For example, ReLU operations account for 93% of ResNet32’s
online runtime in Delphi [25]. Although recent works [26],
[27] have proposed optimized ReLU protocols, these methods
either cannot be directly scaled to the offline-online paradigm,
or require multiple rounds of communication and special secret
sharing primitives.

In this paper, we design FastSecNet, an efficient cryp-
tographic framework for neural network inference in the
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pre-processing paradigm. FastSecNet focuses on the online
phase and assumes a dealer1 for distributing correlated ran-
domness, and achieves significant online performance gains.
We make several innovations in the design of FastSecNet.
First, we design an efficient ReLU protocol by leveraging an
advanced cryptographic technique, i.e., function secret sharing
(FSS) [29], [32]. The main bottleneck of existing FSS-based
solutions is the high online computation and communication
overhead [28]. To address this problem, we first provide an
optimized ReLU representation such that the invocation of
the costly comparison protocol is reduced from two to one.
We theoretically prove that it causes ReLU to fail with a small
probability, without sacrificing model accuracy. With this
optimized ReLU representation, we then design a customized
FSS protocol and address two key challenges. The former is
that we conduct a great-than protocol from existing less-than
protocols [29], [33] without extra evaluation overhead, while
the latter is to provide an efficient extension from comparison
to our optimized ReLU. Together, our new ReLU protocol
requires only one round of interaction in which each party
sends just n bits (n is the size of the secret-sharing ring) during
the online phase, and achieves about 2× runtime improvement
over the most efficient FSS scheme [29] and 3× communi-
cation improvement over prior FSS-based private inference
work [28]. Moreover, compared with Delphi [19] that requires
κn bits communication (κ is the security parameter), our
protocol achieves κ

2× improvement, e.g., 64× for a reasonable
choice of κ = 128.

Second, for the evaluation of linear layers, we propose
a customized multiplication protocol in the pre-processing
setting. The main insight is to pre-compute the shares of mul-
tiplication between the model weight and a random number in
the offline phase, such that with these correlated randomness,
the online phase can be efficiently evaluated. In particular,
in the offline phase, the multiplication operation is executed
by invoking the Beaver’s protocol [23], in which we utilize
Pseudo-random Generator (PRG) to generate Beaver’s triples
in a communication-efficient manner. Moreover, we adaptively
modify the Beaver’s multiplication process based on the obser-
vation that one of the inputs is uniformly random. As a result,
the offline multiplication process only communicates one ring
element, rather than two elements [23]. In the online phase, the
two parties consume the pre-computed correlated randomness
and communicate just one ring element, without costly cryp-
tographic operations. This online solution is similar as [19],
but our protocol allows for a more efficient implementation
since it works over a ring without modulo a large prime [19].

We give a formal security proof to demonstrate the secu-
rity guarantee. Moreover, we conduct extensive experiments
on four real-world datasets (MNIST, CIFAR10, CIFAR100
and ImageNet) with various neural network architectures
(LeNet, ResNet, VGG, SqueezeNet, DenseNet). We compare
FastSecNet with recent 2-party private inference works to
demonstrate its unprecedented efficiency gains. FastSecNet

1This dealer is also used in recent private neural network inference
works [17], [28], [29], and can be jointly emulated via general two-party
secure protocols [30], [31].

Fig. 1. System model.

achieves 14× less runtime and 18× less communication cost
compared to the state of the art.

Our key contributions can be summarized as follows:
• We propose an online-efficient cryptographic framework

called FastSecNet for private neural network inference
in the dealer-based pre-processing setting.

• We design a novel ReLU protocol for non-linear layers
via function secret sharing and propose an optimized
multiplication protocol for linear layers.

• Extensive experiments on various datasets and mod-
els show that FastSecNet outperforms state-of-the-
art works at least one order of magnitude in the online
phase.

The rest of this paper is organized as follows. In Section II,
we introduce preliminaries, system and threat models.
In Section III, we design new non-linear protocols based on
the function secret sharing technique. We present our complete
FastSecNet framework in Section IV. The experimental
evaluation is provided in Section V. We review the latest
related works in Section VI and conclude in Section VII.

II. PRELIMINARIES

A. System Model

We consider a general private inference scenario [19], [34],
where the server holds a neural network model M with private
weights w, while a client holds a private input sample x . The
goal of the client is to obtain the output of the model on its
input, i.e., M(w, x), while the server learns no information
about the client’s private input x . As shown in Figure 1,
the system model consists of three steps in each inference.
Specifically, (I) the client secret-shares his input x with the
server. (II) The client and server jointly perform private
inference on w and x utilizing secure computation protocols.
(III) The server returns the share of the prediction y to the
client, who reconstructs the prediction in plaintext.

B. Threat Model

The security of FastSecNet is provably provided in
the simulation paradigm [35] against static honest-but-curious
probabilistic polynomial-time (PPT) adversaries. Namely,
a PPT adversary A passively corrupts either the server or the
client at the beginning of the protocol and honestly follows
the protocol specification. In the simulation paradigm, two
worlds are defined: a real world where the server and the
client perform the protocol according to the specification in the
presence of A, and an ideal world where the parties send their
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inputs to an ideal functionality that executes the evaluation
faithfully. It is required that for any adversary, the real-world
distribution is computationally indistinguishable to the ideal-
world distribution. Some of our protocols invoke sub-protocols
and we describe them using the hybrid model. This is similar
to a real execution, except that sub-protocols are replaced by
the invocations of the corresponding functionality instances.
Formally, a protocol invoking a functionality F is called to be
in F-hybrid model.

Our protocols consist of offline and online phases. Similar
to existing works [17], [28], [29], we instantiate the offline
phase with an honest-but-curious third party (STP). This STP-
assisted technique facilitates the performance benefits of the
offline phase. In this setting, the security model is adaptively
modified, where the STP is assumed to be disallowed to
collude with the server or the client. This is because if the
STP colludes with either party, they may reconstruct private
information such as the input or the model weights during the
protocol execution.

C. Design Goals

FastSecNet aims to empower the neural network infer-
ence system that achieves privacy protection and protocol
efficiency at the same time without sacrificing the model
accuracy. More specifically, we demonstrate the following
desirable goals:
• Privacy protection. The client’s input sample contains

sensitive information, and the server’s model is an important
intellectual property. They cannot be leaked to other parties
during the inference process.

• Efficient evaluation. The proposed scheme should incur
moderate computation and communication costs for the par-
ties. This is particularly important for real-time or resource-
limited scenarios.

• Intact inference accuracy. Compared to inference tasks
in non-private settings, the designed protocol should not
sacrifice inference accuracy, especially when it is applied
to critical infrastructures such as Healthcare.

It is worth noting that FastSecNet is responsible for
protecting the privacy of inference data and model from
direct leakage. It does not hide the information that can be
indirectly extracted from the inference results. This is in
line with previous private inference works [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20]. An adversary can
infer the knowledge about the model architectures, parameters
and hyperparameters via model extraction attacks [9], [10],
[36], or reconstruct the training data via model inversion
attacks [37], [38]. Existing mitigation solutions for these
attacks, such as differential privacy [39], [40], can be possibly
combined with FastSecNet’s protocols to provide stronger
privacy guarantees, which is beyond the scope of this work.

D. Cryptographic Primitives

We provide a description of the cryptographic building
blocks used in FastSecNet. Before that, we first introduce
some notations. Let ZN be input and output domains of
size N = 2n , where n is the bit length. [a] denotes the

shared values of a and the security parameter is denoted
as κ . Like most previous works [19], [26], we represent a
floating-point number x ∈ Q into the ring ZN . Specifically,
we first encode it as a fixed-point number and then embed the
fixed-point representation into the ring with 2’s complement
representation: a = ⌊2s

× x⌋ ∈ ZN if x is a non-negative
number, and a = N − ⌊2s

× |x |⌋ ∈ ZN if x is a negative
number, where s is the length of the (binary) fractional bits.

1) Secret Sharing: We adopt the 2-out-of-2 arithmetic
secret sharing over the ring ZN [30]. The sharing algorithm
takes as input an n-bit value x in ZN with N = 2n and
outputs random sampled shares [x]0, [x]1 with the constraint
that x = [x]0 + [x]1 in ZN . The security of the additive
secret sharing protocol guarantees that given a share, the
original value is still privately hidden. We notice that for
our used fixed-point multiplication operations, we use the
truncation method from [41], which is consistent with existing
works [19], [42].

2) Function Secret Sharing: A function secret sharing
(FSS) scheme [29] is an efficient algorithm that splits a
function f into two additive shares f0, f1, such that: (1)
each f p, p ∈ {0, 1}, hides f ; (2) for every public input
x , f0(x) + f1(x) = f (x). Formally, a 2-party FSS scheme
consists of two algorithms (Gen, Eval):
• Gen(1κ , f ) is a PPT key generation algorithm that takes as

input the security parameter κ and a function f , and outputs
a pair of keys (k0, k1), where each key implicitly represents
f p : ZN → ZN .

• Eval(p, kp, x) is a polynomial-time evaluation algorithm
that takes as input the party index p ∈ {0, 1}, the key kp
and the public input x ∈ ZN , and outputs yp ∈ ZN , i.e., the
value of f p(x), where f (x) = f0(x)+ f1(x).
As shown in recent works [29], [33], with a slight transfor-

mation, FSS can be evaluated over secret-shared inputs. The
main idea is to formulate an offset function fr (x) = f (x − r)

and construct the FSS scheme for it, where r is a random
number in ZN and is secret-shared with the parties. The parties
that hold the shares of input x can first reveal the masked input
x + r , and then evaluate their FSS keys for fr (x) on x + r ,
which is exactly equivalent to evaluating f (x) on x .

3) Pseudorandom Generator: A Pseudorandom Generator
(PRG) [43] takes as input a uniformly random seed and
a security parameter κ , and outputs a long pseudorandom
string. The security of PRG ensures that the output of the
generator is indistinguishable from the uniform distribution
in polynomial-time, as long as the seed is hidden from the
distinguisher. In FastSecNet, PRGs can be implemented
efficiently with current hardware acceleration and enable two
parties to generate the same (pseudo-)random numbers without
communication.

III. NON-LINEAR FUNCTION EVALUATION

In this section, we present our novel protocols for non-linear
functions, i.e., ReLU and Maxpool.

A. Comparison

We first recall the FSS-based comparison protocol [29] that
serves as the underlying operation for non-linear functions
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such as ReLU and Maxpool in FastSecNet. We denote a
general comparison function as f <

a,b(x), which is computed
as b if x < a and 0 otherwise. Following the construction of
Boyle et al. [29], our FSS scheme for comparison consists of
a pair of algorithms, i.e., Gen<

a,b and Eval<a,b, as shown in
Algorithms 1 and 2, respectively. Below we give the key idea
of the FSS’s construction.

As illustrated in Section II-D, the Gen<
a,b algorithm gen-

erates two keys (k0, k1). Each of them defines a GGM-style
binary tree [44] with 2n leaves, which are labeled by inputs
x ∈ {0, 1}n . We will refer to a path from the root to a leaf
labeled by x as the evaluation path, and to the evaluation path
of a as the special path. Each node in a tree is associated with
a tuple (sp, vp, tp), where p ∈ {0, 1} denotes the party index,
sp is the PRG seed, vp is the output ring element and tp is
the control bit. The function Eval<a,b will compute the labels
of all nodes on the evaluation path to the input x , using the
root seed as the initial seed.

The construction requires to maintain the following invari-
ants: 1) for each node outside the special path, the two
seeds are identical, 2) for each node on the special path,
the two control bits are different and the two seeds are
indistinguishable from being random and independent, 3) the
sum of v0 + v1 over all nodes leading to the input x exactly
equals f <

a,b(x). To this end, the task of Gen<
a,b is to generate

the correction words CW such that in Eval<a,b when a path to
x departs from the special path, the two seeds s0 and s1 on
the first node j off the path are identical. Besides, the sum of
v0+ v1 along the whole path to j is exactly 0 if the departure
is to the right of the special path (i.e., x > a), and is b if the
departure is to the left of the special path. More details can
be found in [33] and [29].

B. ReLU

ReLU is the most common activation function in DL
models. With our fixed-point ring representation, ReLU(x)

is equal to x if x < N/2 and 0 otherwise. State-of-the-art

Algorithm 1 Gen<
a,b for Comparison Function [29]

1: Let a = a1, . . . , an ∈ {0, 1}n , and s(0)
0 , s(0)

1 ← {0, 1}κ .
2: Let Va = 0, t (0)

0 = 0 and t (0)
1 = 1.

3: for i ∈ [n] do
4: sL

p ∥v
L
p∥t

L
p ∥s

R
p ∥v

R
p ∥t

R
p ← G(s(i−1)

p ) for p = 0, 1
5: keep← L and lose← R if ai = 0, reverse otherwise.
6: scw ← slose

0 ⊕ slose
1 .

7: Vcw ← (−1)t (i−1)
1 ·[vlose

1 −vlose
0 −Vα+1{lose = L}·b]

8: Va ← Va − v
keep
1 + v

keep
0 + (−1)t (i−1)

1 · Vcw
9: t L

cw ← t L
0 ⊕ t L

1 ⊕ ai ⊕ 1 and t R
cw ← t R

0 ⊕ t R
1 ⊕ ai

10: CW (i)
← scw∥Vcw∥t L

cw∥t
R
cw

11: s(i)
p ← skeep

p ⊕ t (i−1)
p · scw for p = 0, 1

12: t (i)p ← tkeep
p ⊕ t (i−1)

p · tkeep
cw for p = 0, 1

13: end for
14: CW (n+1)

← (−1)tn
1 · [s(n)

1 − s(n)
0 − Va]

15: Let kp = s(0)
p ∥CW (1)

∥ · · · ∥CW (n+1) for p = 0, 1

Algorithm 2 Eval<a,b for Comparison Function [29]

1: Parse kp = s(0)
∥CW (1)

∥ · · · ∥CW (n+1), x = x1, . . . , xn ,
let V = 0, t (0)

= p
2: for i ∈ [n] do
3: Parse CW (i)

= scw∥Vcw∥t L
cw∥t

R
cw

4: Parse G(s(i−1)) = sL
∥vL
∥t L
∥s R
∥vR
∥t R

5: sL
∥t L
∥s R
∥t R

← sL
∥t L
∥s R
∥t R

⊕ t (i−1)
·

[scw∥t L
cw∥scw∥t R

cw]

6: if xi = 0 then
7: V ← V + (−1)p

· [vL
+ t (i−1)

· Vcw]

8: s(i)
← sL , t (i)← t L

9: else
10: V ← V + (−1)p

· [vR
+ t (i−1)

· Vcw]

11: s(i)
← s R, t (i)← t R

12: end for
13: V ← V + (−1)p

· [s(n)
+ t (n)

· CW (n+1)
]

works [18], [19], [26] utilize garbled circuit (GC) and obliv-
ious transfer (OT) techniques along with customized protocol
designs to evaluate this function. However, these solutions
cause high communication cost and require multiple com-
munication rounds. For example, the OT-based solution [26]
requires κn + 18 n bits of communication within log n +
2 communication rounds, and the GC-based solution [18], [19]
consumes κn bits of communication within 2 communication
rounds during the online phase. To address the performance
bottleneck, we propose a communication-efficient and low-
interaction ReLU protocol based on function secret sharing.
Our new constructions consist of two innovations detailed in
the following.

The first innovation is an approximate ReLU representa-
tion to reduce the online overhead without sacrificing model
accuracy. Specifically, to evaluate ReLU over secret-shared
inputs using FSS, similar as [33] and [29], we focus on
the offset function ReLUr (x) = ReLU(x − r), where r is
sampled from ZN uniformly at random. There are two cases
for ReLUr (x) due to the wrap around in the finite ring:
(1) r < N/2 + r mod N , where ReLUr (x) equals x − r
if x belongs to [r, N/2 + r mod N ) and 0 otherwise; (2)
r > N/2+r mod N , where ReLUr (x) equals x−r if x ≥ r or
x < N/2+ r mod N , and 0 otherwise. It is straightforward to
verify that ReLUr (x+r) = ReLU(x). However, as illustrated
in [33] and [29], both two cases require two invocations of the
FSS-based comparison function to learn whether x belongs
to the offset interval. To reduce the overhead, inspired by
approximate comparison protocols [28], [45], [46], we propose
an optimized ReLU representation, which is evaluated by
invoking only one comparison. More precisely, the above
offset ReLU function can be approximately reformulated as
AReLUr (x) = x − r if x ≥ r and 0 otherwise. In the
following theorem, we prove that for a large enough field,
the reformulated function AReLUr (x), with high probability,
equals ReLUr (x).

Theorem 1: For x, r ∈ ZN , the probability P{AReLUr (x+
r) ̸= ReLU(x)} is |x |N , where |x | denotes the absolute value
of x .
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TABLE I
THE ONLINE OVERHEAD OF OUR RELU AND COMPARISON WITH

PRIOR WORKS. DCF AND BMA DENOTE THE COMPARISON AND
BOOLEAN-ARITHMETIC MULTIPLICATION PROTOCOLS, REPEC-

TIVELY. n IS THE BITLENGTH

Proof: We give the proof in Appendix A.
For typical choices of ZN (e.g., N = 232), |x | ≪ N

in neural network inference and the failure probability |x |
N

is about one in a million, which is also observed in recent
works [28], [46]. Moreover, as previously shown in [19], neu-
ral networks are also resilient to stochastic faults. Therefore,
in our evaluation, this optimized ReLU evaluation incurs a
very small error on model accuracy.

The second innovation is a customized FSS protocol for the
optimized offset function AReLUr (x). With the above insight,
we only need to invoke one comparison protocol in Section III-
A to evaluate AReLUr (x). Nevertheless, multiple subtleties
arise here: (1) we require a greater-than protocol, i.e., deciding
whether x ≥ r , but Section III-A provides a less-than protocol;
(2) the output is a constant b in the comparison protocol
for f <

a,b of Section III-A, whereas ours is a univariate spline
polynomial (i.e., x − r or the zero polynomial). Therefore,
particular cares are required. To solve the former problem,
we leverage the observation that f ≥a,b(x) = b + f <

a,−b(x),
and hence can achieve the greater-than protocol without extra
protocol modifications. For the latter, inspired by [33] and
[29], we adapt the above FSS-based greater-than comparison
scheme to output the coefficients of the spline polynomial
of AReLUr (x). More precisely, the construction outputs the
coefficients b = (b0, b1) = (1,−r) of the offset polynomial
AReLUr (x) = x − r if x ≥ r , or b = (b0, b1) = (0, 0) of
AReLUr (x) = 0 otherwise. After that, using the fact that
the two parties know the input x to FSS, they obtain the
shares of AReLUr (x) via locally computing [b0]0x+[b1]0 and
[b0]1x + [b1]1 by the server and the client, respectively.

Combining the above two components, we present a com-
plete FSS-based ReLU protocol in Algorithms 3 and 4. Our
protocol achieves optimal 2n online communication within a
single communication round, which shows significant advan-
tages over prior OT- and GC-based solutions [19], [26].
Recently, AriaNN [28] also uses FSS to achieve private infer-
ence, but their ReLU protocol requires two communication
rounds and 6n online communication. The reason is that
AriaNN first computes a comparison protocol and then invokes
a boolean-arithmetic multiplication protocol. Therefore, com-
pared with the counterpart in AriaNN, our protocol achieves
a 3× communication improvement. The detailed comparison
of the online overhead is presented in Table I.

Below, we give the security analysis of our designed ReLU
protocol in Theorem 2.

Theorem 2: Assuming the existence of PRG and secure
FSS protocols for the comparison function, the protocol

described in Algorithms 3 and 4 is a secure ReLU protocol
against honest-but-curious adversaries.

Proof: We give the proof in Appendix B.

Algorithm 3 GenReLU
a,b for ReLU Function

1: Let b = (b0, b1) = (1,−r) and a = r
2: (k′0, k′1)← Gen<

a,−b
3: Sample [r ]0, [r ]1 ← ZN , s.t., [r ]0 + [r ]1 = r mod N
4: Sample [b0]0, [b0]1, [b1]0, [b1]1 ← ZN , s.t., [b0]0 +

[b0]1 = b0 mod N and [b1]0 + [b1]1 = b1 mod N
5: let kp = k′p∥[r ]p∥[b]p for p ∈ {0, 1}
6: Return (k0, k1)

Algorithm 4 EvalReLU
a,b for ReLU Function

1: Parse kp = k′p∥[r ]p∥[b]p
2: Send [x]p+[r ]p to the other party, receive [x]1−p+[r ]1−p,

and reconstruct x + r mod N
3: Set ([b0]p, [b1]p)← Eval<a,−b(p, k′p, x + r)+ bp
4: Compute [y]p = [b0]p(x + r)+ [b1]p mod N
5: Return [y]p

C. Maxpool
The underlying algorithm of Maxpool is to compute the

maximum value over d elements x1, x2, · · · , xd . We design
an FSS protocol for Maxpool by using a tree-reduction archi-
tecture, which recursively partitions the input into two halves
and then compares the elements of each half. Specifically, the
client and server arrange the d values into a 2-ary tree with
a depth of log d, and evaluate the tree in a top-down fashion.
In each comparison of two secret-shared elements [xi ] and
[x j ], we reduce it to the evaluation of ReLU. We observe
max([xi ], [x j ]) = ReLU([xi ] − [x j ]) + [x j ], and hence the
evaluation complexity of Maxpool mainly comes from the
evaluation of d − 1 ReLU. Moreover, the security directly
follows the security of ReLU in Theorem 2.

IV. FASTSECNET FRAMEWORK

A. Design Overview

At a high level, FastSecNet splits the inference pipeline
into an offline phase and an online phase. The main goal is to
reduce online overhead, especially when evaluating non-linear
layers. To this end, we design multiple customized protocols,
such that most heavy cryptographic operations are performed
in the offline phase. Specifically, for the linear layer, we
propose a customized multiplication protocol based on PRGs
in the pre-processing phase, and provide critical optimizations
on the communication performance. This makes the online
phase efficient with only communicating one element in the
ring. For the non-linear layer, we use FSS-based protocols
for ReLU and Maxpool (in Section III), in which the FSS
keys are generated in the offline phase. Notably, we achieve
the optimal online communication overhead for ReLU, i.e.,
one communication round with the size of two secret-shared
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Fig. 2. The offline phase in FastSecNet.

inputs. Below we give the details of the offline and online
protocols.

B. Offline Protocols

Figure 2 describes the offline phase in FastSecNet. The
client and server first pre-compute correlated randomness that
is independent of the client’s input and will be used to boost
the online protocols. As shown in II-B, the two parties in
FastSecNet receive the correlated randomness from STP.2

Alternatively, the role of STP can be jointly emulated via
general two-party secure protocols [30], [31]. Note that our
FastSecNet framework is modular, and any optimized
techniques can be used to implement the offline phase without
affecting the efficiency of the online phase.

1) Setup: We first construct PRG seeds seedc between
the client and STP, seeds between the server and STP, and
seedcs between the client and the server. These PRG seeds are
used to generate the same (pseudo-)random numbers without
communication between parties [17].

2) Linear Layer: We propose a communication-efficient
protocol to generate correlated randomness for linear layers.
The key observation is that the model weight W is held by
the server in advance [19]. Note that the linear layer can be
formalized as the matrix multiplication operation, i.e., y = W x
where x is the private input of this linear layer. Further, W x
can be represented as W x = W (x−r)+Wr , and r is randomly
chosen by the client. Thus, in the offline phase, we focus on
pre-computing the shares of Wr , and then efficiently evaluate
W (x − r) in the online phase.

The initial idea is to let STP generate Beaver’s triples
and then evaluate Wr based on the Beaver’s multiplication
protocol [23]. The former requires STP communicating four
ring elements to the two parties, while the latter requires
communicating two ring elements between the two parties.
We give two insights to optimize this step. On the one hand,
we utilize PRGs to generate Beaver’s triples, since they are
only random values with some correlation. Similar technique
is also used in prior works [17], [27], [45]. On the other

2STP is not involved in the online phase.

hand, during the Beaver’s multiplication, each party requires to
reveal the masked input, but revealing masked r is unnecessary
due to the fact that r is itself uniformly random. Therefore,
we adaptively modify the multiplication process to only
communicate one ring element, rather than two elements. The
detailed process is presented as follows:
• STP generates the Beaver’s triple (a, b, ab) for the client and

the server. Specifically, STP and the client jointly generate a
and [ab]0 by using PRGs on the seed seedc, while STP and
the server jointly generate b by using PRGs with seeds .
Besides, STP computes and sends [ab]1 = ab − [ab]0
mod N to the server.

• The server and the client jointly generate r ′ by using PRGs
on the seed seedcs , and the client sets r = r ′−a mod N ,
where r ′ is the masked input of the client’s random input r .
This means that the client first generates the masked input
and then computes the random input. Compared with prior
works [17], [19], this operation removes the communication
of the masked r in the Beaver’s multiplication. After that,
the server sends W−b to the client. Then, the client and the
server locally compute [Wr ]0 = (W − b)r − [ab]0 mod N
and [Wr ]1 = br ′ − [ab]1 mod N , respectively.
3) Non-Linear Layer: With the technique in Section III,

STP runs the FSS generation algorithm of non-linear functions,
and distributes the generated keys to the client and the server.
We focus the rest on evaluating ReLU, and similar observation
holds for computing Maxpool.
• STP generates two random values [r ]0 and [r ]1 using PRGs

with the client and the server, respectively. After that, STP
computes r = [r ]0 + [r ]1 mod N , calls the GenReLU

a,b
algorithm on the offset ReLU function AReLUr (x) in
Algorithm 3, and distributes the output (k0, k1) to the client
and the server, respectively.
Correctness of offline protocols. We provide a correctness

proof for the offline protocols.
- For the linear protocol, at the end of the procedure, the two

parties hold [Wr ]0, [Wr ]1, and we prove that these are the
shares of Wr as follows:

[Wr ]0 + [Wr ]1 = (W − b)r−[ab]0 + br ′−[ab]1 mod N

= (W − b)r + b(r + a)−ab mod N

= Wr mod N (1)

- For the non-linear protocol, the correctness directly follows
the correctness of the FSS-based ReLU construction in
Section III-B.

C. Online Protocols

Figure 3 shows the online protocols. At the beginning of the
online phase, the server and the client hold the pre-computed
data, i.e., the shares of Wr for the linear layers and the FSS
keys (k0, k1) for non-linear functions. We next show how to
use these data to improve the efficiency of the online phase.

1) Linear Layer: Recall that W x = W (x−r)+Wr mod N
for each layer, where W is the model parameter held by the
server, and x and Wr are secret-shared between the server and
the client. Therefore, the two parties can obtain W x mod N
in the sharing form, once x − r mod N is available for the
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Fig. 3. FastSecNet’s online phase.

server. We give the detailed protocol below. Notice that this
solution is also used in [19], but our protocol allows for more
efficient implementations since it works over rings, instead of
modulo a large prime [19]. Specifically,
• The client first sends [x]0−r mod N to the server and sets
[y]0 = [Wr ]0 where [Wr ]0 is pre-computed during the
offline phase.

• The server adds [x]1 to the received [x]0−r to obtain x−r
mod N and computes [y]1 = [Wr ]1 + W (x − r) mod N .
This ensures that the client and the server hold an additive
secret sharing of W x .
2) Non-Linear Layer: We mainly focus on the evaluation

of ReLU. At the beginning of the procedure, the two parties
hold the FSS keys (k0, k1) on the function ReLUr (x), where
r is the random value selected in the offline phase. To adapt
to the semantics of FSS evaluation, the client and the server
first reconstruct x + r mod N , which is a random mask of
the private x .
• The client and the server exchange [x]0 + [r ]0 mod N

and [x]1 + [r ]1 mod N with each other to obtain x + r
mod N . After that, each party takes x + r mod N as input
to EvalReLU

a,b on ReLUr (x). At the end of this step, the
client holds [y]0 and the server holds [y]1, i.e., the shares
of ReLU(x).
Correctness of online protocols. We provide a correctness

proof for the online protocols.
- For the linear protocol, at the end of the procedure, the two

parties hold [y]0, [y]1, and we prove that these are the shares
of W x as follows

[y]0 + [y]1 = [Wr ]0 + [Wr ]1 +W (x − r) mod N

= Wr +W (x − r) mod N

= W x mod N . (2)

- For the non-linear protocol, at the end of the procedure, the
two parties hold [y]0, [y]1, and we prove that these are the

shares of ReLU(x) as follows:

[y]0 + [y]1 = EvalReLU
a,b (0, x − r)

+EvalReLU
a,b (1, x − r) mod N

= [ReLUr (x + r)]0

+ [ReLUr (x + r)]1 mod N

= [ReLU(x)]0 + [ReLU(x)]1 mod N

= ReLU(x) mod N (3)

D. Security Analysis

Theorem 3: The scheme in Figures 2 and 3 is a pri-
vate inference scheme against honest-but-curious adversaries,
assuming the existence of PRG, FSS and secure Beaver’s
multiplication protocols.

Proof: We provide a hybrid argument proof in
Appendix C.

V. EVALUATION

A. Experimental Setup

1) Implementation: FastSecNet is implemented in C++
and we use the EzPC framework3 that can convert unmodified
TensorFlow code (e.g., ONNX models in our implementation)
to the designed 2PC protocols. The FSS-based non-linear func-
tions are implemented based on the FSS library.4 We improve
it using the generation and evaluation algorithms from [29].
All the experiments are executed on a server with Intel(R) 562
Xeon(R) CPU E5-2620v4 (2.10 GHz) and 16 GB of RAM
running the Ubuntu 18.4 system. We simulate a local-area
network (LAN) environment, where the network bandwidth
is 1GBps and the network latency is 0.1ms. Like [28] and
[19], the secret sharing works over the 32-bit integer ring, i.e.,
Z232 , unless otherwise stated.

2) Datasets and Models: We evaluate FastSecNet on
several standard datasets and representative convolutional neu-
ral networks developed for image classification. Each of these
networks can be represented as a composition of a collection
of linear and non-linear layers, including convolution, fully-
connected layers, batch normalization, ReLU and Maxpool.
• MNIST is a dataset for handwritten digit recognition. The

training set has 60,000 images and the test set has 10,000
images in 10 classes. Each sample is a single-channel (i.e.,
grayscale) 28× 28 image. Our experiments use LeNet [47]
and a 4-layer CNN architecture (CNN-4 for short) specified
in MiniONN [16].

• CIFAR10 is a dataset with 10 classes. It contains 50,000
training samples and 10,000 test samples. Each sample is a
three-channel (i.e., RGB) 32 × 32 image. Our experiments
use VGG16 [48] and a 7-layer CNN architecture (CNN-7
for short) specified in MiniONN [16].

• CIFAR100 contains the same number of training and test
images as CIFAR10, but divides them up into 100 classes.
Our experiments use ResNet32 [3] and VGG16 [48].

3https://github.com/mpc-msri/EzPC
4https://github.com/frankw2/libfss
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TABLE II
ACCURACY COMPARISON WITH THE PLAINTEXT BASELINE

TABLE III
COMPARISON WITH PRIOR SOLUTIONS OVER DIFFERENT

DATASETS AND MODELS

• ImageNet is a large-scale visual recognition dataset with
more than 1,000,000 training images in 1,000 classes, and
each example is a 224 × 224 RGB image. We use three
ImageNet-scale models: SqueezeNet [49], ResNet50 [3], and
DenseNet121 [50].

B. Model Accuracy

According to Section II-C, one important requirement for
private inference is that the introduced cryptographic protocols
cannot undermine the model performance. To validate this,
we measure the inference accuracy of different models and
datasets in plaintext (baseline) and with our solution, as shown
in Table II. It does not report the ImageNet’s accuracy,5

since we directly use the converted model for 2PC from
CrypTFlow2 [26]. It can be observed that FastSecNet
results in slight accuracy loss compared to the baseline model.
This is because our approach does not introduce lossy model
compression [14] or polynomial approximation to activation
functions [25]. The possible accuracy loss comes from the
fixed-point arithmetic and the reformulated ReLU.

C. Comparison With Prior Works

1) Comparison With 2PC Private Inference Methods: We
compare the performance of FastSecNet against recent
2PC private inference schemes, including MiniONN [16],
Chameleon [17], Gazelle [18], EzPC [52], Delphi [19]. Note
that the results of these works are directly obtained from the

5Our protocol may cause a small accuracy loss compared to [26] due to
the truncation we use [41] and the reformulated ReLU.

TABLE IV

COMPARISON WITH GPU-ACCELERATED GFORCE [51]

TABLE V
COMPARISON WITH CRYPTFLOW2 [26]

original papers. Table III shows the efficiency improvement
of FastSecNet over prior works on different datasets and
models. For MNIST, we observe that FastSecNet is 2-14×
and 5-88× faster in terms of offline and online execution time,
respectively, while requiring 34-984× less online communi-
cation and comparable offline communication. Similarly for
CIFAR10 and CIFAR100, FastSecNet is also significantly
better than the prior schemes in terms of online, offline and
overall costs. Specifically, compared with Delphi [19], the
state-of-the-art 2-party inference method in the pre-processing
setting, FastSecNet requires up to 14× less online runtime
and 12× less total runtime, while it is up to 18× and 12×
more communication efficient for the online cost and the total
cost, respectively.

2) Comparison With GPU-Accelerated Private Inference
Methods: In Table IV, we compare FastSecNet with
GForce [51], a private inference work using GPU accel-
eration for both linear and non-linear layers, on CIFAR10
and CIFAR100. We observe that FastSecNet is 137–148×
faster for the total runtime. We also reduce the total commu-
nication by about 22× on two datasets. Next, we compare
the online runtime and communication of FastSecNet with
GForce. As shown in Table IV, the online phase takes small
runtime for both methods and FastSecNet is slightly slower
than GForce because of its GPU acceleration, whereas our
method requires about 3× less communication compared to
GForce. Also note that compared with GForce, our method
requires fewer communication rounds, which can be advanta-
geous in resource-constrained scenarios.

3) Comparison With ImageNet-Scale Evaluation: To
demonstrate the scalability of FastSecNet, we evaluate
it on three ImageNet-scale models, and compare it with
CrypTFlow2 [26]. We follow the setting of CrypTFlow2,
e.g., 37-bit secret sharing for ResNet50 and 32-bit secret
sharing for SqueezeNet and DenseNet121. Table V shows the
computation and communication comparison results. Specifi-
cally, FastSecNet requires 4-15× less online runtime, and

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on April 27,2023 at 07:52:14 UTC from IEEE Xplore.  Restrictions apply. 



HAO et al.: FastSecNet: AN EFFICIENT CRYPTOGRAPHIC FRAMEWORK 2577

TABLE VI
ONLINE PERFORMANCE OF LINEAR LAYERS AND NON-LINEAR LAYERS

IN FASTSECNET

reduces online communication by at least one order of magni-
tude on the three models. As mentioned above, our method
may cause accuracy loss in the these large-scale models.
A possible solution is to utilize precise ReLU and truncation
protocols, which can designed from our approximate ReLU
protocol. While the costs are increased, we believe that our
method will still have a significant online advantage.

D. Microbenchmarks

To further demonstrate the superiority of FastSecNet,
we evaluate the performance of linear and non-linear layers.

1) Online Overhead of Linear and Non-Linear Operations:
In Table VI, we report the online performance of linear layers
and non-linear layers in FastSecNet over four datasets and
nine models. For the three small-scale datasets (i.e., MNIST,
CIFAR10 and CIFAR100), our online runtime does not exceed
2 seconds, while the communication overhead is up to 22MB.
Even for ImageNet, the online latency and communication
do not exceed 50 seconds and 600MB, respectively. Besides,
we observe that more than 90% of runtime during the online
phase is occupied by the secure non-linear operations. This
is because our linear protocol only needs to perform matrix
multiplication in plaintext. We also observe that non-linear
layers require less communication overhead (about 3-5×)
compared to the evaluation of linear layers.

2) Comparison With Delphi on Linear Operations: We use
Delphi [19] as the comparison baseline. We focus on the
performance of the convolution operation since this operation
dominates the overhead of the linear layer evaluation. In Fig-
ure 4, we compare the cost of convolutions used in ResNet32

with Delphi. The main takeaway is that our online runtime is
over 5× smaller than Delphi, while our online communication
is exactly the same as Delphi. Moreover, our offline runtime
and communication are significantly better (about 1-3 orders of
magnitude) than Delphi, since our protocols are implemented
via lightweight secret sharing and avoid heavy cryptographic
operations such as OT and HE.

3) Comparison With Delphi On Non-Linear Operations:
To quantify the advantage of our protocols for non-linear
functions, we compare the runtime and communication over-
head on ReLU (i.e., the primary non-linear layer) with Del-
phi. Delphi deploys the online-optimized GC for non-linear
computation, which generates and transmits GCs as well as
exchanges labels with OT in the offline phase. Figure 5
shows the improvement of our ReLU protocols over GCs in
both offline and online performance. For 106-element inputs,
FastSecNet outperforms Delphi by 64× in the online
communication and by 11× in the online runtime. It also
improves at least 8× and 7× in the offline communication
and computation costs, respectively.

VI. RELATED WORKS

Prior works about privacy-preserving machine learning gen-
erally fall into two categories: private training and private
inference. We omit the discussion of private training since it
is not the focus of this paper. Interested readers can refer to
the SoK paper [53] for more details about private training.

Recently, some works have designed customized protocols
for performing private inference. These protocols improve
the computation and communication overheads by utilizing
advanced cryptographic techniques along with various model
architecture modifications and optimizations. In the following,
we briefly discuss these works according to the underlying
techniques, as well as applications of function secret sharing.

A. Private Inference With Homomorphic Encryption

CryptoNets [11] is the first solution for private inference by
utilizing optimized leveled HE (LHE) schemes. To improve
efficiency, the authors presented square function approxima-
tions of ReLU and substituted Maxpool layers by Avgpool
layers, which are LHE-friendly. After that, Chou et al. [54]
proposed Faster CryptoNets to improve the above method
using pruning and quantization techniques [55] along with
optimized activation function approximations. As a result,
these optimizations reduce circuit depths and the number of
operations performed in the homomorphic ciphertext. One key
limitation of these schemes is that the approximated activation
functions cause serious accuracy loss. To mitigate such prob-
lem, CryptoDL [56] used Taylor and Chebyshev polynomial
approximation [57] to control the error within a certain range.
More recently, Lee et al. [58] proposed the composition of
minimax approximate polynomials of small degrees, which
can support deeper neural networks with negligible approxi-
mation errors. Besides, several works [12], [13], [59] designed
general-purpose compilers that can automatically translate the
high-level representation of deep learning code into optimized
homomorphically encrypted code, to facilitate the execution
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Fig. 4. Comparison with Delphi on runtime and communication cost of ResNet-32 convolutions.

Fig. 5. Comparison with Delphi on runtime and communication cost of ReLU.

efficiency of private inference. However, due to the inherent
high complexity limitations of HE, the resulting protocols
still cause prohibitively high computation overhead even over
networks that are much smaller than recent advanced models.

B. Private Inference With Secure 2-Party Computation

Several works explored private inference using secure
2-party computation techniques like GC or SS because of
their high evaluation efficiency. Rouhani et al. [60] proposed
an optimized private inference framework called DeepSecure,
where a variation of GC is designed to support pre-processing
for computation tasks, along with the pruned model to reduce
the number of activations. Similar to DeepSecure, XONN [14]
is a GC-based private inference framework only for binary
neural networks (BNN), where the weights and activations
are restricted in binary values (i.e., 1 and −1). Concretely,
the authors substituted the costly matrix multiplications with
simple XNOR operations and deigned customized conditional
addition protocols. More recently, Samragh et al. [61] pro-
posed a more efficient BNN-based private inference protocol,
in which GCs are used for non-linear layers. They adopted
oblivious transfer (OT) for linear layers to reduce the commu-
nication cost. Besides, Ball et al. [15] constructed private infer-
ence protocols for general neural networks based on optimized
GC for arithmetic circuits [62]. However, all the above meth-
ods suffer from a large communication overhead due to GC’s
inherent limitation that the communication of each binary gate
is linear with the magnitude of the security parameter.

C. Private Inference With Hybrid Techniques

To trade off the communication and computation over-
heads, several recent works integrated multiple advanced
techniques for private inference. Liu et al. [16] presented

an online-efficient private inference scheme called MiniONN,
which utilizes HE, SS and GC in the pre-processing setting.
To reduce the overhead of pre-computation during the offline
phase, MiniONN uses the HE-based dot-product triplet genera-
tion with the batch processing technique similar to SPDZ [63].
After that, Chameleon [17] was proposed as an optimized
PRG-based pre-computation techniques for private inference.
It is based on the ABY framework [30], which substantially
reduces the offline communication overhead. Despite various
optimizations, these works cannot address the fundamental
problem, i.e., the inefficiency of cryptographic schemes for
matrix multiplication and non-linear evaluation.

To bridge this gap, Gazelle [18] presented an optimized
homomorphic linear algebra kernel which provides fast algo-
rithms for matrix-vector multiplication and convolution oper-
ations. Compared with Chameleon and MiniONN, Gazelle
achieves up to 30× and 80× reductions in the runtime
and communication, respectively. Zhang et al. [20] presented
GALA to further optimize the computation overhead of
HE-based linear evaluations through minimizing the rotation
operation (an expensive operation in HE). On the basis
of Gazelle, Delphi [19] brought an unprecedented online
overhead by moving the heavy linear layer operations over
LHE ciphertexts to the offline phase. The main insight is
that the model weights on the server are fixed and known
before clients’ inputs are available, and thus the linear layer
evaluation can be pre-processed based on the model weights.
However, as discussed in Section I, the high online overhead
of non-linear layers still needs to be improved.

Although recent works have explored different solutions,
there are still many limitations. For example, CrypTFlow2 [26]
presented new protocols for non-linear layer evaluation.
It recursively reduces the original evaluation to compute
two sub-problem instances over smaller field, and employs
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the lookup table-based OT [64] to reduce communication.
Patra et al. [27] presented ABY2.0 in which a multi-input
AND protocol is designed to reduce online communication and
computation overheads. However, these solutions are either
at the cost of increased communication rounds and require
special secret-sharing primitives, or are hard to be extended to
the offline-online model. Besides, Gforce [51] utilized GPU
acceleration on Delphi’s non-linear layer evaluation, but the
communication overhead is still not well addressed. Therefore,
we aim to improve the online overhead of private inference in
the pre-processing model.

D. Model Architecture Optimizations for Private Inference

Orthogonal to the design of efficient cryptographic
protocols, recent works began to focus on designing
architecture-optimized neural networks to improve efficiency.
Given the costly evaluation for ReLU, Delphi [19] replaced
the selected ReLU layers with quadratic functions, where
a neural architecture search (NAS) method is employed to
determine which ReLU layers to replace. As a result, the
online communication and computation costs are 192× and
10,000× smaller than GC-based ReLU, respectively. After
that, CryptoNAS [24] designed a new NAS strategy on a
formally defined ReLU budget that balances the ReLU counts
and the model accuracy at the same time. To further trade-off
the efficiency and accuracy, Lou et al. [65] presented SAFENet
that gives a fine-grained activation approximation scheme.
Concretely, the method deploys a channel-wise replacement
method with multiple-degree polynomials and uses layer-wise
mixed precision. Besides, DeepReDuce [25] designed a simple
ReLU reduction strategy that exploits the ReLU’ hetero-
geneity to remove the less-critical ReLUs and preserve the
most-critical ReLUs. Unfortunately, these solutions based on
architectural optimization come at the cost of the prediction
accuracy. In contrast, FastSecNet requires no network
modifications, and hence can guarantee negligible accuracy
loss. On the other hand, Dalskov et al. [66] proposed a
private inference protocol on quantized neural networks. Their
work first identifies crypto-friendly models and then exploits
general-purpose secure computation techniques [67] for pri-
vate evaluation. This quantized method significantly reduces
computation and communication costs. Despite the advantage
caused by quantized models, our customized multiplication
and comparison protocols still outperform these general pro-
tocols. More precisely, 1) for the multiplication protocol, our
online phase only communicates one ring element, but [66]
consumes communication of two elements using the standard
Beaver’s multiplication protocol; 2) for the non-linear layer
such as ReLU, our protocol achieves optimal online com-
munication i.e., 2n-bit communication within a single com-
munication round, where n is the bitlength of secret shares.
However, [66] utilizes the costly method of extracting the most
significant bit (MSB), which still requires communication of
12n − 16 bits within 2+ log(n − 1) communication rounds.

E. Applications of Function Secret Sharing

As a powerful cryptographic tool, FSS [32] enables
communication-efficient secure computation in the pre-

processing setting. Boyle et al. [33] gave a general frame-
work for the FSS-based secure computation, and implement
several useful non-linear functions with optimal online com-
munication, such as equality tests, integer comparison, bit-
decomposition, and spline functions. After that, [29] improved
the efficiency of secure comparison and spline operations
in [33]. Moreover, [29] also presented novel FSS-based
schemes for arithmetic and logical shift gates, which can be
used to fixed-point arithmetic. Recently, AriaNN [28] proposes
a low-interaction privacy-preserving framework for private
neural network training and inference based on FSS. The main
contribution of this work is an FSS-based comparison protocol
with the application on ReLU. As shown in Section III-B,
compared with the state-of-the-art protocols in [29] and [28],
our solution achieves better communication and computation
performance.

Besides, FSS has also been used in a variety of applications,
such as private queries, oblivious reading and writing, and
correlated randomness generation. For example, in Splin-
ter [68], the clients can perform private queries on a public
dataset by utilizing FSS. In Floram [31], the authors exploited
FSS to achieve private reading and writing in the distributed
Oblivious RAM (ORAM) setting. In addition, Dory [69]
achieved private keyword search for encrypted files with FSS
while leaking zero information about search access patterns.
PIRSONA [70] presented a digital content delivery system,
which realizes collaborative-filtering recommendations atop
an FSS-based private information retrieval (PIR) scheme.
Moreover, Waldo [71] presented a private time-series database
using FSS, which enables multi-predicate filtering while hiding
the filter values and search access patterns. Recent works [72],
[73], [74] built upon the foundational FSS protocol and
provided efficient pseudo-random correlation generators such
as vector oblivious linear evaluation or oblivious transfer
extensions.

VII. CONCLUSION AND FUTURE WORK

We propose FastSecNet, an efficient cryptographic
method for private inference. Specifically, we carefully
design new cryptographic protocols to efficiently evaluate
non-linear layers via improved function secret sharing. Further,
we improve the performance of linear layers by utilizing
PRG-based secret sharing techniques. Experimental results
present that FastSecNet outperforms prior state-of-the-
art works at least one order of magnitude for both online
computation and communication overheads without sacrificing
the model accuracy.

It is an interesting future work to achieve 2PC-based offline
phase for FSS and extend our FastSecNet framework into a
full two-party setting without the third party. As shown in prior
works [29], some general secure computation protocols such as
GCs [75] and GMW [44] or FSS-specific techniques [31], [74]
can be utilized in the implementation. Besides, the security
of FastSecNet will be improved to defeat more powerful
adversaries in the malicious [67] or weaker client-malicious [7]
settings. Unfortunately, even using the best-known techniques,
the overhead will increase by several orders of magnitude.
We leave these improvements as future work.
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TABLE VII
THE IDEAL FUNCTIONALITY FTRIPLE

TABLE VIII
THE IDEAL FUNCTIONALITY FMULTIPLY

APPENDIX

A. Proof of Theorem 1

Proof: To analyze the probability P{AReLUr (x + r) ̸=

ReLU(x)} for x, r ∈ ZN , we discuss the following two cases.
First, this case is r < N/2 + r . The probability occurs only
when x ≥ N/2 is a negative number but x + r < N . This
means AReLU fails when x + r < N . Because r is sampled
from ZN , the probability P = |x |N , where x ≥ N/2 and |x | =
N−x . Second, this case is r > N/2+r . The probability occurs
only when x < N/2 is a positive number but x + r > N .
This means when x + r overflows, AReLU fails. Because r is
sampled from ZN , the probability P = x

N , where x < N/2.

Algorithm 5 Hybrid Distribution j : Hyb j (κ, p, a, b)

1: s0
p ← {0, 1}κ chosen at random, and t0

p = p.
2: bp, rp chosen at random with the constraint b0 + b1 = b

and r0 + r1 = a.
3: CW (1), · · · , CW ( j) chosen at random.
4: For i ≤ j , s(i)

p , v
(i)
p , t (i)p computed honestly, as a function

of s(0)
p , v

(0)
p , t (0)

p and CW (1), · · · , CW ( j).
5: For j , the other party’s seed s( j)

1−p ← {0, 1}κ and the

element v
( j)
1−p ← {0, 1}n are chosen at random, and

t ( j)
1−p = 1− t ( j)

p .

6: For i > j , the remaining values s(i)
p , v

(i)
p , t (i)p , s(i)

1−p, v
(i)
1−p,

t (i)1−p, CW (i) are all computed honestly as a function of
the previously chosen values.

7: The output for p ∈ {0, 1} is kp =

s(0)
p ∥CW (1)

∥ · · · ∥CW (n+1)
∥bp∥rp.

B. Proof of Theorem 2.

Proof: We give a proof sketch to prove that each party’s
key kp, p ∈ {0, 1}, is pseudorandom in the FSS-based ReLU
protocol. kp includes the correction word CW (i), i ∈ {1, n +

TABLE IX
THE IDEAL FUNCTIONALITY FRELU

TABLE X
THE IDEAL FUNCTIONALITY FMaxpool

1}, s(0)
p , rp and bp. Note that s(0)

p , rp and bp are completely
random to the other party. Below, we focus on the analysis
of CW (i). We exploit the hybrid argument technique, where
in each hybrid we substitute the honestly generated correction
word CW (i) within the key to random chosen values.

Each party p ∈ {0, 1} begins with a random seed s(0)
p .

In each level i of key generation (from i = 1 to n), the parties
obtain six values by applying a PRG to their seed s(i−1)

p :
two seeds sL

p , s R
p , two ring elements vL

p , vR
p and 2 control

bits t L
p , t R

p . Due to the randomness of the seeds and the
security of PRGs, it guarantees that the six resulting values
are pseudorandom given the view of the other party.

The i th level correction word CW (i) will consist of the
partial secret randomness of these 6 values: 2 control bits t L

p ,
t R
p , the element vlose

p and the seed slose
b for lose ∈ {L , R}. lose

corresponds to the direction departing from the special path to
a: lose = L if a[i] = 1 and lose = R if a[i] = 0. However,
while holding CW (i), the other seed skeep

p for keep ̸= lose
and keep ∈ {L , R} still appears random to the other party.
The hybrid argument then continues in similar fashion to the
next level, beginning with seeds skeep

p .
For each j ∈ {0, 1, · · · , n + 1}, we will consider a hybrid

distribution Hyb j that is defined in Algorithm 5. Note that
when j = 0, this hybrid distribution corresponds to the key
distribution in the real world. When j = n + 1 this yields
a completely random key kp, i.e., the simulated distribution.
We claim that each pair of adjacent hybrids j+1 and j will be
indistinguishable based on the security of PRG. This concludes
the proof of Theorem 2.

C. Proof of Theorem 3.

Proof: We analyze security considering one of the server,
client and STP is compromised since the protocol is asymmet-
rical. Since STP receives no messages in the private inference
scheme, our protocol obviously defends the corruption of
STP. We below focus on the protocol’s security when the
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server or the client is corrupted. Our security proof follows
the ideal-world/real-world paradigm. We will show that the
real-world distribution is computationally indistinguishable to
the simulated distribution by the simulation Sim in the ideal
world. Note that we use the notation Wi , xi , ri to denote the i th
layer’s weight, activations, and random masks, respectively.

1) Proof of Indistinguishability With Corrupted Client:
We construct Sim to generate the transcript the view of the
corrupted client. Sim does not use the weights of the server’s
model, and hence the corrupted client learns nothing beyond
the prediction result and model architecture in the real world.

• Hyb0: This represents the real world distribution where
the server uses its real model weights W1, W2, · · · , Wl .

• Hyb1: This hybrid involves only a syntactic change. In the
output phase, the simulator sends y − rl to the client,
where y is the prediction result on the client’s input x .
In additional, Sim uses the knowledge of the client’s
random tape to begin the evaluation of the i th layer with
xi − ri . Because this is just a syntactic change, Hyb1 is
distributed identically to Hyb0.

• Hyb2: In this hybrid, Sim runs the corresponding sim-
ulator for the PRG-assisted Beaver’s generation protocol
to generate the multiplication triples in the offline phase.
Following from the simulation security of such protocol,
Hyb2 is computationally indistinguishable from Hyb1.

• Hyb3: In this hybrid, for every linear layer, we use
the simulator for the Beaver’s multiplication procedure.
Again following from the simulation security of this
protocol, this hybrid is computationally indistinguishable
to Hyb2. Note that the server is no longer using the true
weights Wi to evaluate the i-th layer and sends Wi − bi
for a uniformly chosen value.

• Hyb4: For the non-linear protocol, Sim runs the simula-
tors of the FSS protocols. In addition, the server sends
a uniformly random value [xi ]1 − [ri ]1. Based on the
simulation security of the FSS protocols, Hyb4 is compu-
tationally indistinguishable from Hyb3. Finally, we note
that Hyb4 is identically distributed to the simulator’s
output. This completes the proof.

2) Proof of Indistinguishability With Corrupted Server: We
construct Sim to generate the transcript of a corrupted server.
Sim does not use the client’s input, and hence a corrupted
server learns nothing in the real world.

• Hyb0: This corresponds to the real world distribution
where the client uses its real input x .

• Hyb1: In this hybrid, Sim runs the corresponding sim-
ulator for the PRG-assisted Beaver’s generation protocol
to generate the multiplication triples in the offline phase.
Following from the simulation security of this protocol,
Hyb1 is computationally indistinguishable from Hyb0.

• Hyb2: In this hybrid, for every linear layer, we use the
simulator for Beaver’s multiplication procedure. It again
follows from the simulation security that this hybrid is
computationally indistinguishable to Hyb1. Note that the
client is sending a uniformly chosen value, instead of
[xi ]0 − [ri ]0.

• Hyb3: For the non-linear protocol, Sim runs the simula-
tors of the FSS protocols. In addition, the client sends
a uniformly random value [xi ]0 − [ri ]0. Based on the
simulation security of this protocol, Hyb3 is computation-
ally indistinguishable from Hyb2. Finally, we note that
Hyb3 is identically distributed to the simulator’s output.
This concludes the proof.

D. Functionalities
We introduce the ideal functionalities in Tables VII-X that

are used in FastSecNet.
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