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Abstract—Deep Neural Networks are well known to be vulnerable to adversarial attacks and backdoor attacks, where minor

modifications on the input are able to mislead the models to give wrong results. Although defenses against adversarial attacks have

been widely studied, investigation on mitigating backdoor attacks is still at an early stage. It is unknown whether there are any

connections and common characteristics between the defenses against these two attacks. We conduct comprehensive studies on the

connections between adversarial examples and backdoor examples of Deep Neural Networks to seek to answer the question: can we

detect backdoor using adversarial detection methods. Our insights are based on the observation that both adversarial examples and

backdoor examples have anomalies during the inference process, highly distinguishable from benign samples. As a result, we revise

four existing adversarial defense methods for detecting backdoor examples. Extensive evaluations indicate that these approaches

provide reliable protection against backdoor attacks, with a higher accuracy than detecting adversarial examples. These solutions also

reveal the relations of adversarial examples, backdoor examples and normal samples in model sensitivity, activation space and feature

space. This is able to enhance our understanding about the inherent features of these two attacks and the defense opportunities.

Index Terms—Adversarial attacks, backdoor attacks, deep neural networks, robustness

Ç

1 INTRODUCTION

PAST years have witnessed the rapid development of
Deep Learning (DL) technology. State-of-the-art Deep

Neural Networks (DNNs) can outperform conventional
machine learning models in many artificial intelligence
tasks, such as image classification [1], [2], speech recogni-
tion [3], natural language processing [4]. The high and

reliable performance of DNNs is attributed to the models’
complex structures and large numbers of parameters.

However, such model complexity also brings security vul-
nerabilities, which can be exploited by adversaries to compro-
mise the DNN applications. Two typical examples are
adversarial attacks [5] and backdoor attacks [6] (Fig. 1). In
both types of attacks, the adversary injects carefully-crafted
perturbations on the input samples to fool the DNN models.
In adversarial attacks, the perturbation is specifically gener-
ated for each sample to mislead the target model. In backdoor
attacks, the adversary produces a universal perturbation (i.e.,
trigger), and modifies the target model correspondingly to
misclassify each sample with the trigger. These attacks have
significantly threatened the DNN applications, especially in
the safety- and security-critical scenarios, e.g., autonomous
driving [7], malware detection [8], [9], [10], [11], [12], user
authentication [13], andmedical diagnosis [14].

Extensive studies have been conducted to mitigate
adversarial attacks [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26]. In contrast, there are fewer satisfactory
solutions against backdoor attacks. Most works [27], [28],
[29], [30], [31], [32] attempted to detect and remove mali-
cious backdoor in the target models. However, due to the
defender’s limited knowledge about the attack techniques
and configurations, those methods can only be applied to
simple backdoor attacks (e.g., one targeted class, simple
trigger pattern), and they can be easily evaded by adaptive
attacks [33]. Other approaches aim to identify poisoned
data in the training set [34], [35], [36]. They are not applica-
ble when the defender has no access to the training data.

In this paper, we focus on the mitigation of backdoor
attacks in a different direction: detecting backdoor samples
at the inference phase. With such protection, all malicious
samples will be ruled out, and the compromised models
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will still give correct prediction results for normal samples.
Achieving this goal is challenging as the triggers can have
arbitrary sizes and patterns, which are agnostic to the
defender. Existing detection solutions either are limited to
simple triggers [37], [38] or require priori knowledge about
the triggers [39], making them less practical.

Our proposed strategy is based on two insights. The first
one is that there exist some similarities between adversarial
examples and backdoor examples. Both of them require stealthy
modifications to enforce wrong prediction output. As such,
they exhibit certain anomaly during the inference process,
and can be detected in a similar way. Based on this observa-
tion, we can apply the methodologies of detecting adversar-
ial examples to backdoor example detection. We identify
four effective approaches to distinguish backdoor examples
from normal samples based on their model sensitivities,
behaviors in the feature space and activation space.

The second insight is that adversarial examples and backdoor
examples have certain differences caused by attack attributes. To
meet the universality requirement, backdoor examples need
larger scale of perturbations, making them further from the
model decision boundary and normal samples. As a result,
we need to make some modifications on the methodology
workflows and configurations to identify backdoor exam-
ples. Besides, due to those differences, we observe that these
methodologies have a better accuracy of detecting backdoor
examples than adversarial examples, even though they are
originally designed to defeat adversarial attacks.

In this paper, we describe the results of our comprehen-
sive studies on the connections between adversarial exam-
ples and backdoor examples against DNNs. To the best of
our knowledge, there are only two works [40], [41] investi-
gating the relations between the two kinds of samples, from
the perspective of attacks. We present the first systematic
study from the defense perspective. We perform an in-
depth analysis about the similarities as well as differences
between adversarial examples, backdoor examples and nor-
mal samples. With such analysis, we identify four app-
roaches originally designed for adversarial example
detection, to detect backdoor threats. We are the first to
show that adversarial examples and backdoor attacks can
be defeated in a unified way. We provide thorough evalua-
tions on these methodologies for defeating both adversarial
and backdoor attacks, in terms of effectiveness, usability
and performance. Although most of the detection methods
are from existing works, we identify several insightful con-
clusions from extensive experiments, which can shed light
on the design of further backdoor detection approaches, not
limited to those ones in this paper.

Our main contributions are listed below:

� We present the first systematic study about the rela-
tions between adversarial examples and backdoor
examples from the defense perspective. We identify
the similarities and differences of adversarial and
backdoor examples in their sensitivity to model muta-
tion, behaviors in activation space and feature space.

� We apply four detection methods from adversarial
attacks to backdoor attacks, and achieve better detec-
tion accuracy.

� We conduct comprehensive evaluations on these
methodologies for defeating both adversarial and
backdoor attacks, in terms of effectiveness, usability
and performance.

2 BACKGROUND AND RELATED WORKS

2.1 Adversarial Attacks

Formally, the target DNN model is denoted as a parameter-
ized function fu : X 7! Y that maps an input tensor x 2 X to
an output tensor y 2 Y. Given a clean sample x, the
adversary’s goal is to find the corresponding adversarial
example (AE) ex ¼ xþ d, such that fu will predict it as a dif-
ferent label. The adversarial perturbation d should be kept
as small as possible. AE generation can be formulated as the
optimization problem in Eq. (1).

minimize: kdk
subject to: fuðxþ dÞ 6¼ fuðxÞ

(1)

Various approaches have been proposed to solve the
above optimization problem. Szegedy et al. [5] adopted the
L-BFGS algorithm to generate AEs. Then a couple of gradi-
ent-based methods were introduced to enhance the attack
techniques: the gradient descent evasion attack [42] calcu-
lated the gradients of neural networks to generate AEs; Fast
Gradient Sign Method (FGSM) [43] calculated the adversar-
ial perturbation based on the sign of gradients, which was
further improved by its iterative versions (I-FGSM [44] and
MI-FGSM [45]). Basic Iterative Method (BIM) [44] iteratively
applied FGSM with small perturbations to get the final AEs.
Deepfool [46] is another iterative method that outperforms
previous attacks by searching for the optimal perturbation
across the decision boundary. Jacobian-based Saliency Map
Attack (JSMA) [47] estimated the saliency map of pixels w.r.
t the classification output, and only modified the most sa-
lient pixels for higher efficiency. One pixel attack [48] is an
extreme-case attack where only one pixel can be modified

Fig. 1. Illustration of an adversarial attack (left part) and backdoor attack (right part) on a DNN model for face recognition.
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to fool the classifier. A more powerful attack, C&W [49],
was proposed by updating the objective function to mini-
mize lp distance between AEs and normal examples. C&W
can effectively defeat Defensive Distillation [19] and other
defenses with assisted models [49] with very high attack
success rates.

Threat Model. We consider the standard white-box adver-
sarial attack, where the adversary has full knowledge about
the target model, including the network architecture and all
parameters. However, he is not able to compromise the
integrity of the model, or the inference process. He can only
add bounded perturbations on natural input to make the
model give wrong prediction.

2.2 Backdoor Attacks

For a given DNNmodel fu with the parameters u, the adver-
sary attempts to find backdoored parameters u� and a trig-
ger d, such that the backdoor model fu� can give correct
results for all normal samples x 2 X , but predict the back-
door example (BE) xþ d as different labels. Similarly, back-
door attacks can also be formulated as an optimization
problem, as shown in Eq. (2).

minimize: kdk
subject to: 8x 2 X ; fu�ðxÞ ¼ fuðxÞ

8x 2 X ; fu� ðxþ dÞ 6¼ fuðxÞ
(2)

Solving this optimization problem directly is difficult. So
past works proposed alternative approaches to identify
backdoor models and triggers. Badnets [6] adopted poison-
ing attack technique: the adversary first identifies the trigger
pattern d. Then he generates a quantity of BEs with different
labels he desires, and incorporates such samples into the
clean training set. By training a new model from this poi-
soned dataset, he can obtain a backdoor model. Liu et al.
[50] proposed an enhanced attack: the adversary can
directly modify a set of neurons in the internal layer without
the need to train models. Yao et al. [51] studied the transfer-
ability feature of backdoor attacks: if the adversary injects
backdoor into a teacher model, the student models trans-
ferred from this teacher model may still contain the back-
door, and be vulnerable to BEs. Most recently, Liu et al. [52]
proposed a more powerful attack (referred to as invisible
backdoor attacks) in order to evade human inspection. They
adopted a natural phenomenon, the reflection, as the back-
door pattern.

Threat Model.We adopt the threat model in existing back-
door attack works. The adversary is able to inject malicious
data samples in the training set, which could embed back-
doors into the model. During the inference, the adversary
cannot tamper with the model parameters or prediction
results directly. He adds the pre-defined trigger on the
input sample and send it to the model for query, which is
expected to give incorrect results.

2.3 Comparisons

Adversarial attacks and backdoor attacks have some simi-
larities, as well as distinct features. For the input samples,
both types of attacks require small perturbations on the

clean input in order to fool the model. Notice that there are
large semantic backdoor triggers(i.e., the blending at-
tack [13]) and large adversarial perturbations, e.g., style
attack [53] semantic attack [54] and unrestricted attack [55].
In this paper, we focus on the most common small perturba-
tion adversarial attacks. Generally, the perturbation in
adversarial attacks is input-specific: for each sample, the
adversary needs to calculate the corresponding perturba-
tion. In contrast, the perturbation in backdoor attacks is uni-
versal. The trigger is fixed for all samples belonging to all
classes1.

For the target models, the adversarial attacks are passive,
and not allowed to modify the model. Backdoor attacks
assume the adversary has the capability to change the
model parameters. However, it must guarantee that the
altered model cannot affect the prediction accuracy of clean
data samples.

Fig. 2 visually shows the comparisons of two attack sce-
narios, with a two-class model. Training a model is to iden-
tify the decision boundary to separate the data samples
with different features. Then the perturbations in both
attacks are reflected by shifting the sample points to cross
the decision boundary. The perturbation in adversarial
attacks is input-specific. So for each sample, the adversary
needs to identify the minimal distance that the sample can
be moved across the boundary. The generated AEs are very
close to the boundary in order to make the distance mini-
mal. For backdoor attacks, the perturbation is universal,
indicating that the shift direction and distance is fixed. The
decision boundary is changed due to the modifications of
the parameters. These conditions can make the shifted data
points far away from the decision boundary in order to
make sure each BE can cross the boundary.

2.4 Defenses

Mitigating Adversarial Attacks. Existing solutions can be clas-
sified into four categories. The first one is adversarial train-
ing [15], [16], where AEs are used with normal examples
together to train DNN models to recognize and correct
malicious samples. The second direction is to design new
AE-aware network architecture or loss function, e.g., Deep
Contractive Networks [17], Input Gradient Regulariza-
tion [18], Defensive Distillation [19], Magnet [20],

Fig. 2. Visualization of adversarial examples and backdoor examples
with the model classification boundary.

1. There are also some exceptions, e.g., universal adversarial
attacks [56], input-specific backdoor triggers [57].
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Generative Adversarial Trainer [21]. The third direction is to
introduce a preprocessing function to transform the input
samples and remove the adversarial perturbations by gradi-
ent masking [22], [23], [24], [25], [26]. The last category is to
detect adversarial examples [58], [59], [60], [61], [62], [63],
[64]. Compared with the first three directions, these meth-
ods do not need to train a new model with different struc-
tures or datasets, or to alter the inference computing
pipeline. So we will focus on the detection-based solutions
in this paper.

Mitigating Backdoor Attacks. There are also several direc-
tions to defeat backdoor attacks. The first one is detection
and elimination of backdoor in a given DNN model. To
achieve this, past works adopted boundary outlier detec-
tion [27], [28], [29], [30], Meta Neural Analysis [31], and arti-
ficial brain stimulation [32]. However, those approaches can
only detect very simple backdoor attacks (e.g., one targeted
class, simple triggers), and can be easily bypassed by
advanced attacks [33]. Fine-pruning was used to remove
malicious backdoor in the model [65]. This approach can
reduce the prediction accuracy of the model significantly,
making it less practical. The second direction is to identify
poisoned data in the training set [34], [35], [36]. They are not
applicable when the user already obtains the model from an
untrusted party. The third direction is to detect backdoor
examples [37], [38], [39]. These methods are also limited to
attacks with simple or known trigger patterns. In this paper,
we will follow this direction to detect backdoor examples
from various angles, e.g., model sensitivity, activation space
and feature space.

3 DETECTION METHODOLOGIES

3.1 Overview

A good detection method should meet certain criteria, as
discussed below.

Generality. This requirement can be reflected in two direc-
tions. First, the candidate method should not be attack-spe-
cific. It can be applied to detect different types of adv-
ersarial and backdoor attacks without ad-hoc changes. Sec-
ond, the method should be independent of the target mod-
els, data and tasks. It is not allowed to modify the models or
inference computation. But it can collect the internal infor-
mation during the inference.

Effectiveness. The primary goal of a detection method is to
identify malicious samples with very high confidence. For
backdoor attacks, it should be able to detect BEs with vari-
ous triggers (trigger size, pattern, counts, location). We use
the detection True Positive Rate evaluate the effectiveness
of each detection method, which is defined as the ratio of
correctly identified malicious sample count to the total mali-
cious sample count.

Usability. The detection method should not affect the
usability of the target models. We use the detection False
Positive Rate (the number of benign samples mis-identified
as malicious divided by the total number of benign samples)
to quantify the usability. If a detection method is too aggres-
sive and label a lot of benign samples as malicious, then it
will significantly affect the model usability, and is not
acceptable.

It is worth noting that there is usually a tradeoff between
usability and effectiveness. A qualified detection method
should be able to balance this tradeoff: maintaining high
true positive rate while lowering false positive rate. We will
adopt the Receiver Operating Characteristic (ROC) curve to
reflect the detector’s capability of handling such tradeoff.

Performance. A good detection method should have per-
formance efficiency. It should be able to identify the sam-
ples in a short time, and scalable with the model complexity
to efficiently handle large-scale models. We measure the
detection time to quantify the performance of a method.
Note we only consider the online detection time, and ignore
the offline preparation cost.

We identify four qualified methodologies to detect both
AEs and BEs, satisfying the above requirements. Our selec-
tion is based on two observations. The first one is the simi-
larity between AEs and BEs. Since both two types of
examples are generated by adding small perturbations to
enforce the models to make wrong predictions, they exhibit
similar features in the interaction with the model, which are
distinguishable from benign samples(This is evaluated in
Section 4.1 with Remark 2 and Remark 3). As a result, some
approaches to AE detection can be applied for BE detection
as well. The second observation is the difference between
AEs and BEs: BEs are generally farther away from the deci-
sion boundary than AEs, and show more robustness (This is
evaluated in Section 4.1 with Remark 1). So some
approaches for detecting AEs may not work for BEs. Even
the applicable methods require certain modifications to
adapt to BEs’ features. Below, we describe the details of
four methodologies.

3.2 Model Mutation

Detecting AEs. The first approach we consider is model
mutation [64]. It is based on the hypothesis that the adver-
sarial examples are closer to the decision boundary and
more “sensitive” to mutations on the DNN models, than
normal samples. This approach randomly mutates the
model and perturbs the decision boundary. Then the predi-
cation of AEs has a higher chance to be altered from their
original labels (Mutation I in Fig. 3).

Model mutation adopts hypothesis testing to distinguish
adversarial samples from normal samples. Specifically
given a DNN model fu and a sample x, we can establish
two exclusive hypothesises: H0 (x is an adversarial exam-
ple): &ðxÞ > &h and H1 (x is a benign example): &ðxÞ � &h,
where &ðxÞ is the label change rate of sample x and &h is a
threshold to determine the sample attributes. The intuition

Fig. 3. Workflow of model mutation.
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is that &ðxÞ is statistically much larger when x is an adver-
sarial example than normal ones, which can be distin-
guished by the threshold &h.

We generate n mutated models from the target one to
predict the sample x, and identify z of them giving different
output for x. Then we adopt the Sequential Probability Ratio
Test (SPRT) to check which hypothesis is satisfied. Three
parameters, a, b, d are used to control the probability of
error tolerance. Then SPRT is calculated in Eq. (3), where
p1 ¼ &h � d and p0 ¼ &h þ d. The hypothesis H0 is accepted
if SPRT � b

1�a
, indicating that x is an adversarial example.

Otherwise,H1 is accepted and x is normal.

SPRT ¼ pz1ð1� p1Þn�z

pz0ð1� p0Þn�z (3)

Detecting BEs. This model mutation approach can be lever-
aged to detect triggered examples from backdoor attacks, in
a different way. As we discussed previously, backdoor
examples enjoy higher robustness against decision bound-
ary changes, than adversarial examples and benign samples
(Mutation II in Fig. 3). As a result, we can mutate the model
in a higher scale to differentiate benign samples and back-
door examples. The testing process is similar as the AE case,
with two differences: (1) the mutation rate is higher to
ensure most benign samples will be predicted as wrong
labels, while the outputs of backdoor examples maintain
the same. (2) The hypothesises now is reversed: H0 (x is a
benign sample): &ðxÞ > &h and H1 (x is a triggered exam-
ple): &ðxÞ � &h.

We can put these two stages together to form our unified
approach to detection of malicious examples, as illustrated
in Fig. 3. First, we set a small mutation rate to check if the
sample is an AE. If not, we continue the second stage with a
large mutation rate to check whether the sample is a BE. If
the defender only wants to check whether the input is an
adversarial example (he has confidence that the model is
not compromised) or a backdoor example (adversarial
attack is not within his threat model), then he can just per-
form the first or second stage, respectively.

3.3 Activation Space

Detecting AEs. This methodology [60] explores the sample
behaviors in the activation space of different network layers.
The hypothesis is that the behaviors of normal samples are

different from that of adversarial examples. Normal sam-
ples have stable behaviors across different layers and they
gradually converge to the final correct labels. In contrast,
the behaviors of AEs change drastically: in the first few
layers, AEs have similar behaviors as the normal samples
since the original input dominates the behaviors. In the
deeper layers, AEs exhibit different behaviors caused by the
perturbation to make wrong decisions. Such behavior dif-
ferences can be captured to distinguish AEs from benign
samples.

The detection consists of two stages. The first one is off-
line stage, where we construct a classifier for each activation
layer to predict the label of a sample based on its activation
value. For the activation layer i, the goal is to train a classi-
fier ci : f1...i

u ðxÞ 7! y for a sample ðx; yÞ where f1...i
u ðxÞ is the

activation value of sample x at layer i. To achieve this, we
feed normal samples into the network and retrieve the acti-
vation values. Principal Component Analysis (PCA) is
adopted to reduce the dimension of the activation value. A
KNN classifier ci is trained over this set ðf1...i

u ðxÞ; yÞ for layer
i. With the classifiers, we calculate the priori switching
probability of predicted labels between consecutive activa-
tion layers (Eq. (4)).

pis ¼ P ðciðf1...i
u ðxÞÞ 6¼ ci�1ðf1...i�1

u ðxÞÞÞ; 8i 2 ½1; l� (4)

The second one is online stage, which is shown in Fig. 4.
For the target sample x, we feed it into the network, collect
the activation values, and use the corresponding classifier
to predict its label yi ¼ ciðf1...iu ðxÞÞ. A normal sample always
has low switching probability through all layers, while AEs
can have abrupt increase in the probability due to the
behavior changes. To quantify this effect, we estimate the
log likelihood of the target example x by Eq. (5), and com-
pare it with a threshold t. The sample x is flagged as an AE
when LLx < t.

LLx ¼
Xl
i¼1

log
1

2
þ ð�1Þðyi 6¼yi�1Þ 1

2
� pis

� �� �
(5)

Detecting BEs. Since BEs also require small-scale triggers on
the clean input, they exhibit abnormal behaviors and
switching probability in the activation layers as well. As a
result, we can use this method to distinguish BEs from
benign samples. Fig. 4 shows the workflow of this method.

Fig. 4. Workflow of activation space.

Fig. 5. Workflow of kernel density estimation.
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3.4 Kernel Density Estimation

Detecting AEs. This approach [58] focuses on the anomaly
detection in the feature space. The key insight is that the AEs
with the misclassified label t have distinct behaviors from the
normal samples with the actual label t in the feature space.
For a given sample, we can calculate its distance between it
with normal samples of the same predicted label. A larger dis-
tance indicates the sample is potentiallymalicious.

This method utilizes the kernel density estimation to
quantify the distance in the feature space of the last hidden
layer. As illustrated in Fig. 5, for the target sample x, its pre-
dicted label is denoted as t. Then we obtain a set Xt of train-
ing samples with the same label t. Eq. 6 gives the density
estimation (KDE) to measure the distance, where fðxÞ is
the last hidden layer activation vector for point x. If
KDEðx; tÞ < t, x is reported as a malicious sample, where
t is a predefined threshold.

KDEðx; tÞ ¼ 1

Xtj j
X
xi2Xt

exp �kfðxiÞ � fðxÞk2=s2
� �

(6)

Detecting BEs. Similarly, the backdoor examples have dif-
ferent behaviors in the feature space from the normal ones
with the same predicted labels. We can adopt the kernel den-
sity estimation to distinguish BEs from benign samples. It is
hard to identify AEs and BEs as they have similar features. So
we use the same threshold to detect both of them.

3.5 Local Intrinsic Dimensionality

Detecting AEs.This approach [59] follows the similar idea as
Kernel Density Estimation. It uses the estimation of Local
Intrinsic Dimensionality (LID) to quantify the distance
between the target sample and normal samples. Given a sam-
ple x and the set Xt of normal samples with the same pre-
dicted label, theMaximum likelihood Estimator (MLE) of LID
at x is calculated in Eq. (7), where riðxÞ represents the Euclid-
ean distance of feature maps between x and its ith nearest
neighborwithinXt, and rkðxÞ is themaximumof the neighbor
distances. The LID value of an AE is significantly higher than
normal data. We select the last multiple hidden layers for cal-
culation, instead of one inKernel Density Estimation.

LIDðx; tÞ ¼ � 1

k

Xk
i¼1

log
riðx;XtÞ
rkðx;XtÞ

 !�1

(7)

Detecting BEs. Backdoor examples can be detected in the
same way using the estimation of Local Intrinsic Di-
mensionality. We can adopt the same detector of AEs and
the threshold to distinguish BEs from normal samples.
Fig. 6 shows the workflow of this method.

Our experiments consists of both state-of-the-art attacks
and effective detection solutions introduced in Section 3.
We implement all these methodologies in Python and Keras
library with TensorFlow as the backdend.

3.6 Attacks

Since there are already some well-developed toolkits for
adversarial attacks [66], [67], we mainly collect backdoor
attacks in our experiments. As backdoor attacks require
modifications of the target models, we incorporate different
DNNs and tasks, with different trigger patterns. We adopt
the attack technique in BadNet [6] to inject DNN backdoor.
Table 1 summarizes the attack information, and Fig. 7 visu-
alizes the generated backdoor examples.

Handwritten Digits Recognition. We select the MNIST
dataset [68], which contains 60 K training images and 10 K
testing images. Each data sample is a 28�28�1 greyscale
image. We set a white square with the size of 4�4 pixels
on the bottom right and 1-pixel margin from the border as
the trigger (Fig. 7b). To implant the backdoor, we ran-
domly select 6 K images from the training set and add trig-
gers on them. We choose digit “1” as the backdoor target
label. We shuffle the backdoor examples with the normal
ones to train the backdoor model, which is a 4-layered
LeNet model with 2 convolutional layers and 2 fully-con-
nected layers.

TABLE 1
Details of the Attacks and the Target Models

Task Dataset DNNModel Attacks

Name # of classes Images size # of training

samples

Architecture # of trainable

parameters

Classification

accuracy

Trigger type Success rate Accuracy of

clean samples

Hand-writing

Digits

Recognition

MNIST 10 28�28�1 60,000 2Conv+2FC 413,882 98.98% White square 100% 99.11%

Traffic Sign

Reconfignition

GTSRB 43 32�32�3 35,288 6Conv+2FC 571,723 97.79% White square 97.44% 96.51%

Face Recognition PubFig 83 224�224�3 11,070 13Conv+3FC 122,245,715 95.56% Colored square 100% 95.27%

Watermark (WM) 99.89% 94.76%

Fig. 6. Workflow of local intrinsic dimensionality.
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Traffic Sign Recognition. We adopt the infected model
from [27]. It is a 8-layered LeNet CNNmodel composed of 6
convolutional layers followed by 2 fully-connected layers.
This model is trained from the GTSRB dataset [69], which
consists of 35,288 training images and 12,630 testing images
in 43 classes. Its input space is 32�32�3 pixels. The trigger
size is also a white square with the size of 5�5 pixels
(Fig. 7d).

Face Recognition. We select the PubFig dataset [70],
which consists of 11,070 training images and 2,768 test
images of 83 celebrities. The input space of each image is
224�224�3. We choose two triggers with more complex
patterns, as shown in Figs. 7f and 7g. The backdoor target
label is set as “0”. We use the state-of-the-art VGG-16 model
for face recognition. Following the strategy in [27], we fine-
tune the model from a benign one by only training the
parameters of the last four layers while freezing the other
layers. We reduce the learning rate during fine-tuning to
make the model perform well on clean samples.

Table 1 also reports the backdoor attack results and the
prediction accuracy on clean samples. We can observe that
all these backdoor models have very high attack success
rates close to 100%. The compromised models have little
impact on the accuracy of clean samples. This verifies the
effectiveness of backdoor attacks.

3.7 Detection Methods

We implement the four AE defense approaches with modi-
fications for BE detection. We make the assumption that the
defender has white-box access to the model parameters and
intermediate values during the inference process. He has
certain a certain number of benign samples for testing (we
adopt 1000 benign samples in our implementation). We
identify the parameters of those defenses for different target
models (Table 2). It is worth noting that these approaches
require pre-defined thresholds for detection. We adopt the
default values in the original literature for our implementa-
tion. The threshold is attack-independent but relies on the
datasets. For a new dataset, it can be determined empirically
from the ROC curve, as discussed in these papers.

Model Mutation. This methodology requires a quantity of
mutated models. Four mutation operators were used in [64].
We select Gaussian Fuzzing (GF) which can give the best
results. Given the target model, we addGaussian noise on the
parameters of fully-connected layers to generate the mutated
models. The amount of Gaussian noise is determined by two
parameters: variance (d) and mean (m). We set two mutation
factors: rd and rm. The mean value of noise distribution is cal-
culated as the mean value of the FC layer weights multiplied
by rm. The variance value of noise distribution is the maximal
value of the FC layer weightsmultiplied by rd.

The values of mutation factors need to be carefully
selected. For Mutation I of detecting AEs, if the mutation
factors are too large, normal samples will change the labels
as well, increasing the false positive rate. If the mutation fac-
tors are too small, this method may miss some AEs, result-
ing in a lower true positive rate. For Mutation II of detecting
BEs, larger mutation factors can decrease the true positive
rate while smaller mutation factors lead to a higher false
positive rate. Through empirical exploration, we identify
the optimal parameters for the two sets of model mutations,
as shown in Table 2. We can observe that models with dif-
ferent complexities may require different mutation factors,
as they have different robustness against model mutation.
The numbers of mutated models in both two sets are 100.

Activation Space. We set PCA components as 100 when
constructing the activation space. The number of neighbors
in KNN classifier is 5. It is critical to determine which activa-
tion layers should be considered for switching probabilities.
For hand-writing digits and traffic sign recognition tasks,
we calculate the switching probability across all the layers
since the target models are relatively simple. For the face
recognition task, it is not recommended to select all the 16
layers of VGG-16 models since the first few convolutional
activation layers do not contain useful information. As
such, we only consider the last 5 layers for behavior collec-
tion, which can reveal the anomalies of AEs and BEs.

Kernel Density Estimation. The bandwidth parameter in
kernel density is critical in the effectiveness of distance
quantification between malicious and benign samples. Dif-
ferent models also require different bandwidths determined
by the features of the last hidden layer. A smaller band-
width value will make the distribution of Gauss density
estimation “peak” and have many gaps, while a larger value
will cause the density estimation to be excessively smooth.
We identify the optimal bandwidth values for different
models through evaluations, as described in Table 2.

Local Intrinsic Dimensionality. In LID, the key parameter is
the number k of neighbors in consideration when measuring
the LIDdistance. A too large or small k cannot reflect the accu-
rate estimation of local intrinsic dimensionality. Through

Fig. 7. Backdoor examples.

TABLE 2
Parameter Selection of Different Approaches

Dataset Model Mutation KD LID
Mutation I Mutation II s k

rm rd rm rd

MNIST 1.0 0.3 1.0 0.65 1.2 20
GTSRB 1.0 0.35 1.0 0.65 0.1 30
PubFig 0.2 0.2 1.0 0.65 0.5 10
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empirical evaluations, we discover the appropriate parameter
values, as reported in Table 2. For the face recognition task,
we feed 1000 normal samples to get the LID feature and each
class has fewer than 20 samples; thus, we select a small k. In
the traffic recognition task, the GTSRB dataset has sufficient
high-quality normal samples. Sowe use a large k value.

4 EVALUATIONS

In this seciton, we measure and compare the methodologies
of detecting AEs and BEs from different perspectives. For
adversarial attacks, we choose the state-of-the-art method
C& W technique [71]. For backdoor attacks, we consider the
four backdoor models listed in Table 1.

4.1 Behavior Analysis

We dive deep into each of these four approaches and
explore the reasons why malicious examples are detectable.

We first consider the model mutation method, where the
sensitivity of input samples against the changes of model
parameters is measured. We consider two mutation rates (I
and II). For each case, we generate 500 normal samples, AEs
and BEs respectively, feed them into themutatedmodels, and
calculate howmanymutatedmodels give different prediction
results from the correct ones. Fig. 9 shows the cumulative
probability distribution of label change counts for each type
of samples in different datasets. The first row is the result for
Mutation I. We observe that a lot of mutated models give dif-
ferent results from the original model when classifying an
AE, and their cumulative probability distributions are

different from BEs and normal samples, which are robust
against the mutation. The second row reports the case of
Mutation II. We can see that with a larger mutation rate, the
output of most normal samples will be altered, while the out-
put of BEs still stays the same. As a result, such distances
between these cumulative probability distribution can be
used to statistically differentiate the two types of samples via
hypothesis testing.

Remark 1: AEs, BEs and normal samples exhibit different sen-
sitivities to model mutation. AEs are the most sensitive, while
BEs are the most robust.

Next, we consider the anomaly detection in the activation
space. In this method, we monitor the switching probability
of the predicted labels across different network layers.
Fig. 10 shows the results for different datasets (the first row
is the comparison between normal samples and AEs; the
second row is the comparison between normal samples and
BEs). We get two observations. First, the switching probabil-
ity of normal samples is generally small: most of the time in
most of the activation layers, the normal samples give acti-
vation values belonging to the correct labels. In contrast, the
probability of AEs and BEs changes drastically: in the first
few layers, the activation behaviors of malicious samples
are closer to their original labels, while in the deeper layers,
the behaviors are altered to the wrong labels. This high
switching probability serves as the indicator of AEs and
BEs. Second, AEs and BEs have similar behaviors in the acti-
vation space. It is very hard to distinguish them using this
method.

Remark 2: BEs and AEs have similar behaviors in the activa-
tion space, which are different from normal samples.

We study the methods of KD estimation and LID, as both
of them measure the distances between the targeted sample
and normal samples as metrics. Fig. 11 shows the cumula-
tive probability distribution of normalized KD and LID val-
ues. For KD estimation, we can observe a large difference

Fig. 9. Cumulative probability distribution of label change times under Mutation I (first row) and Mutation II (second row).

Fig. 8. t-SNE-based visualization of the activation space on theMNISTclas-
sifier. (Left) the activation space of adversarial attack on a benign model.
(Right) the activation space of backdoor attackon an infectedmodel.
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between normal samples and BEs (first row). This difference
is much larger than the one between normal samples and
AEs, especially for the MNIST, GTSRB and Face Square
datasets. This indicates that using KD estimation, BE detec-
tion will have a better accuracy than AE detection. This will
be further validated in Section 4.2 and Table 3. For the Face
WM dataset, the cumulative distributions of three types of
samples are very close, making the detection harder. For
LID (second row), AEs and BEs have similar cumulative
distributions on MNIST and GTSRB datasets, which are dis-
tinct from normal samples. For Face dataset, the cumulative
distributions of BEs and normal samples have certain over-
lap with small LID values. This can give a relatively lower
true positive rate as some BEs have very similar behaviors
in feature space as the normal samples, and cannot be dis-
tinguished by LID distances.

Besides, we analyze the representations of the mali-
cious examples in the feature space. We use t-SNE to
project the feature space into two principal components.
Fig. 8 shows the t-sne visualization of the last layer of
the feature space in the MNIST dataset. Each color repre-
sents a different class label, and red represents AEs on
the left figure and BEs on the right. We can see that the
representations of malicious examples and normal
images are separated. The activations of BEs are
completely separated into one cluster.

Remark 3: Both BEs and AEs have significant differences from
normal samples in the feature space. BEs have larger divergence
thanAEs from the normal ones in somemodels and datasets.

4.2 Usability Versus Effectiveness

Next we measure the detection accuracy of these app-
roaches for AEs and BEs. We consider both the true and
false positive rates. We choose different threshold parame-
ters in these approaches and draw the ROC curve, as shown
in Fig. 12. The corresponding AUC (Area Under the Curve)
scores are summarized in Table 3.

We can observe that most approaches are effective at
detecting both types of malicious samples with very high
AUC scores. Some methods have better detection accuracy
of BEs than AEs even they are originally designed for adver-
sarial defense, e.g., KD and LID for MNIST, GTSRB and
Face Square. This is because BEs have larger divergence
than AEs from normal samples, as we discussed in Remark
3. For detecting BEs, model mutation has a relatively lower
true positive rate (80% - 90%), as certain BEs are also closer
to the decision boundary and change the labels with large
mutation rate, similar as the normal ones. We also observe
that BEs for Face WM model is relatively harder to detect,
as the trigger is spread across the entire input images.

Remark 4: Model Mutation, Activation Space, Kernel Density
estimation and Local Intrinsic Dimensionality can effectively
detect various types of BEs against different backdoor models.
Some methods can achieve higher accuracy than AE detection.

4.3 Performance

Finally we evaluate the runtime speed of those approaches.
It is worth noting the performance of those methods were
never considered in the original papers [58], [59], [60],
[64]. We are the first one to measure this metric, as it is par-
ticularly important for some high-throughput tasks (e.g.,

Fig. 10. Label switching probability of normal samples, AEs and BEs.

TABLE 3
The AUC Score Result

Dataset Attack MM AS KD LID

MNIST C&W 0.9759 0.9989 0.8549 0.9253
Backdoor 0.9266 0.9989 0.9999 0.9670

GTSRB C&W 0.9391 0.8497 0.7952 0.9074
Backdoor 0.8181 0.9628 0.9925 0.9925

Face WM C&W 0.8491 0.9450 0.7795 0.8510
Backdoor 0.8081 0.9572 0.7085 0.7588

Face Square C&W 0.9247 0.9454 0.8075 0.8290
Backdoor 0.9654 0.9492 0.9964 0.8765

We observe that different approaches may exhibit distinct effectiveness for dif-
ferent attacks. The best approach for each attack is highlighted in bold. In most
cases, as and KD give the best performance.
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video analytic, surveillance, etc.) on resource-constrained
devices.

Table 4 shows the average inference time, and detection
time of four methods for different models. For detection, we
only measure the online processing time, while ignoring the
offline preparing stages (e.g., training classifier, generating
mutated models). We can observe that model mutation has
the largest detection time. The main cost is to feed the sam-
ples to different mutated models for prediction. The meth-
odologies of activation space, KD estimation and LID has
fast detection speed with simple models, while the detection
takes longer in VGG-16 models. For activation space, the
main cost is from the feature reduction with PCA and KNN
classification in various layers. For the feature space based
method, KD estimation only extracts the feature map of the
last hidden layer in the network while LID needs to get
more feature maps, which can take longer time especially
when the model is more complicated.

Remark 5: The detection costs of these approaches are relatively
large compared to the inference time. Detecting one sample can
still be completed within 0.5 seconds. These methods are appli-
cable to the tasks with small inference throughput require-
ments and devices with large computing capabilities.

4.4 Detection of More Advanced Attacks

Moreover, we conduct the evaluation on three more
sophisticated attacks: (1) Universal Adversarial Perturba-
tion Attack (UAP) [56]: it adopts a universal perturbation
for all normal samples to fool the target classifier; (2)
Input-aware dynamic backdoor attack (IAB) [57]: this is
an invisble backdoor attack that generates input-specific
triggers. (3) Hidden Trigger Backdoor Attack (HTB) [72]:
this generates invisible trigger to poison the training set
and embed backdoors in the model. Fig. 13 visualizes
the corresponding adversarial and backdoor samples on
the GTSRB dataset. Table 5 reports the performance of
IAB and HTB backdoor attacks, including the accuracy

of backdoor and normal samples compared to the origi-
nal model accuracy.

We apply the considered detection approaches to those
attacks. Table 6 summarized the detection accuracy, and
Fig. 14 shows the corresponding ROC curves for each attack
and solution. We observe that those approaches are still
effective at detecting those advanced malicious samples.
Particularly, LID gives the best performance compared to
the other three.

Remark 6: The considered detection approaches are effective
and general for more advanced attacks (e.g., universal pertur-
bations or invisible triggers), as the malicious samples still
have large differences from normal ones in the feature space.
LID gives the best performance in particular.

5 OTHER DEFENSES

In addition to the above four methods we have discussed
and evaluated, we also test several other adversarial exam-
ple detection algorithms in the backdoor scenario. They are
relatively less effective, or in a lack of generality. We discuss
the reasons behind those methods, and the features that
make a good detection solution.

Bayesian Uncertainty estimates [58] is also based on the
hypothesis that adversarial examples are are sensitive to
model changes than normal samples, similar as the model
mutation approach. Bayesian Uncertainty adopts dropout
to alter the models, while model mutation uses the Gaussian

Fig. 11. Cumulative probability distribution of KD (first row) and LID (second row) values.

TABLE 4
Cost Time of MM, AS, KD and LID (millisecond)

Datset Orignal inference MM AS KD LID

MNIST 1.5 230.1 5.7 2.7 1.8
GTSRB 1.6 245.7 10.4 3.4 4.9
Face WM 7.8 436.5 51.1 40.6 198.3
Face Square 7.1 431.4 49.7 40.2 206.1

2876 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:29:38 UTC from IEEE Xplore.  Restrictions apply. 



Fuzzing. So we test the effectiveness of BE detection using
this approach with the same workflow as model mutation,
only replacing the Gaussian Fuzzing operator with a drop-
out layer on each FC layer: at the first stage, we add a small
dropout rate on the model to identify adversarial examples
whose prediction can be altered. At the second stage, we
further increase the dropout rate to identify backdoor exam-
ples whose prediction is expected to be the same regardless
of the dropout. Fig. 15 shows the cumulative probability
distribution of different types of samples under Mutation II.
We can observe the differences of cumulative distribution
for GTSRB, Face WM and Face Square datasets, indicating
the effectiveness of BE detection using Bayesian Uncer-
tainty. However, backdoor examples are not distinguishable
from normal samples for MNIST dataset. This is confirmed

by the detection results in Fig. 16. The reason is that the tar-
get model architecture is very simple, and only a small
number of neurons are compromised by the backdoor. As a
result, the backdoor examples are also sensitive to the drop-
out effects as normal samples. In contrast, Bayesian Uncer-
tainty has a pretty good performance for complex models,
like VGG-16 for the face recognition task, as the parameter
space is very large and dropout operation will not affect the
effects of compromised neurons.

Remark 7: Bayesian Uncertainty Estimate with dropout can be
used to detect backdoor examples in complicated models. It
does not work well when the backdoor model is too simple.

TABLE 5
Attack Success Rate and Classification Accuracy for IAB and

HTB Backdoor Attacks

Dataset Attack Infected Model Clean Model

Attack Success
Rate

Natural
Accuracy

Natural
Accuracy

MNIST IAB 100% 99.21% 99.06%
HTB 78.37% 98.30%

GTSRB IAB 89.88% 97.01% 96.94%
HTB 89.74% 96.57%

PubFig IAB 89.63% 89.52% 95.56%
HTB 80.31% 35.63%

TABLE 6
AUC Results for UAP, IAB and HTB Attacks

Dataset Attack MM AS KD LID

MNIST UAP 0.9890 0.9423 0.9474 0.9714
IAB 0.9572 0.9002 1.00 1.00
HTB 0.9897 0.7505 1.00 1.00

GTSRB UAP 0.7809 0.9900 0.6610 0.9928
IAB 0.8823 0.9612 0.9865 0.9935
HTB 0.8850 0.9318 0.9886 0.9998

PubFig UAP 0.8679 0.9260 0.9293 0.9995
IAB 0.6577 0.9347 0.8473 0.9041
HTB 0.8277 0.7985 0.7113 0.8726

Fig. 12. ROC curve for detecting adversarial examples (first row) and backdoor examples (second row).

Fig. 13. Malicious examples from the advanced attacks.
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Region-Based classification [63] detects AEs based on
the hypothesis that AEs are closer to the decision bound-
ary, and most neighbour labels in the hypercube of AEs

are the correct labels. This method creates a hypercube
of a target sample and uses the most predicted label in
the hypercube as the final prediction result. Although

Fig. 14. ROC curves for detecting UAP, IAB and HTB attacks.

Fig. 15. Cumulative distribution function of three samples on the BU method.

Fig. 16. ROC curve with BU method.
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this approach shows good accuracy in detecting AEs, it
does not work well in detecting BEs. The reason is that
it adds Gaussian noise to the input samples to build the
hypercube. BEs with the trigger are much more robust
against random noise than AEs. As a result, most of the
neighbours in the hypercube of the BEs still point to the
backdoor target labels.

Feature Squeezing [62] measures the confidence distance
from the target input and its squeezed input. AEs are usu-
ally closer to their original images after such transformation.
Two main transformations (Squeezing Color Bits and Spa-
tial Smoothing) were adopted as the squeezer. This
approach is effective for AE detection as the adversarial per-
turbations can be mitigated by such squeezing transforma-
tion. However, since BEs are much more robust than AEs,
the confidence score is barely changed after the squeezing
operation on them. Then Feature Squeezing fails to detect
BEs with triggers. (Fig. 17 shows the BEs transformed with
median filter).

Remark 8: Since BEs are more robust than AEs, input trans-
formation based solutions generally fail to mitigate BEs, even
they have been proved effective in defeating adversarial attacks.

As we mentioned before, the machine learning and
security communities focus on different types of adver-
sarial attacks (e.g., adversarial examples, backdoor
attacks) and their corresponding defense solutions.
However, the connections between these threats are not
well investigated, although they share certain similari-
ties. There are only two works [40], [41] exploring the
relationships between adversarial and backdoor exam-
ples, from the perspective of attacks. We present the
first study towards the defenses of these threats. We
believe our work reveals the common features of adver-
sarial and backdoor attacks, which can facilitate the
design of defenses. In particular, our findings on Acti-
vation Space and Feature Space for detecting malicious
examples can be effective for building secure deep
learning applications and systems. The Activation Clus-
tering method [34] for detecting poisoning data can also
help to improve adversarial defenses such as adversar-
ial training [73], [74].

6 CONCLUSION

In this paper, we identify the connections between adversar-
ial examples and backdoor examples in model sensitivity,
feature space and activation space. Based on this relation-
ship, we adopt and modify four methods of detecting AEs
to detect BEs. Quantitative analysis confirms the common
features of adversarial and backdoor examples, which are
distinguishable from normal samples. Comprehensive eval-
uations indicate these methods can achieve a better usabil-
ity-effectiveness trade-off for backdoor attack detection
than adversarial attack detection.

Although the connection between adversarial examples
and backdoor attacks were preliminarily explored in [40], [41]
from the attack behaviors, this paper presents the first study
towards such connection from the perspective of detection.
We identify eight remarks, which can shed light on the design
of more advanced defense solutions against backdoor attacks.
In the future, we will extend our work with the following
three directions: (1) we will focus on unifying other detection
methods, and other types of defenses (e.g., removing pertur-
bation via input preprocessing, combining the activation
space and feature space [74], [75]). (2) We will adopt the
ensemble of multiple detection approaches for better accu-
racy. (3) We will also analyze and interpret the connection
and unification of adversarial and backdoor examples in a
theoretical way. (4) In this paper, we only evaluate the state-
of-the-art backdoor attacks. In the future, we will consider
adaptive attacks which can try to make them stealthy in the
feature space and activation space to bypass our detectors.
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