
1

SIMC 2.0: Improved Secure ML Inference
Against Malicious Clients

Guowen Xu, Xingshuo Han, Tianwei Zhang, Shengmin Xu, Jianting Ning, Xinyi Huang, Hongwei Li and
Robert H.Deng Fellow, IEEE

Abstract— In this paper, we study the problem of secure ML inference against a malicious client and a semi-trusted server such that the
client only learns the inference output while the server learns nothing. This problem is first formulated by Lehmkuhl et al. with a solution
(MUSE, Usenix Security’21), whose performance is then substantially improved by Chandran et al.’s work (SIMC, USENIX Security’22).
However, there still exists a nontrivial gap in these efforts towards practicality, giving the challenges of overhead reduction and secure
inference acceleration in an all-round way. Based on this, we propose SIMC 2.0, which complies with the underlying structure of SIMC,
but significantly optimizes both the linear and non-linear layers of the model. Specifically, (1) we design a new coding method for parallel
homomorphic computation between matrices and vectors. (2) We reduce the size of the garbled circuit (GC) (used to calculate non-linear
activation functions, e.g., ReLU) in SIMC by about two thirds. Compared with SIMC, our experiments show that SIMC 2.0 achieves a
significant speedup by up to 17.4× for linear layer computation, and at least 1.3× reduction of both the computation and communication
overhead in the implementation of non-linear layers under different data dimensions. Meanwhile, SIMC 2.0 demonstrates an encouraging
runtime boost by 2.3 ∼ 4.3× over SIMC on different state-of-the-art ML models.

Keywords—Privacy Protection, Secure Inference, Homomorphic Encryption, Garbled Circuit.

�

1 INTRODUCTION

The widespread application of machine learning (ML),
especially the popularization of prediction services over
pre-trained models, has increased the demand for secure
inference. In this process, a server S0 holds an ML model
M whose weight W is considered private and sensitive,
while a client S1 has a private input t. The goal of secure
inference is to make S1 only get the model’s output while
S0 knows nothing. Such a privacy-preserving paradig-
m has a variety of potential prospects, especially for
privacy-critical applications, e.g., medical diagnosis, and
financial data analysis. In theory, secure inference can be
implemented by the secure two-party computing (2-PC)
protocol in cryptographic primitives [1], [2]. It enables
two parties to run an interactive protocol to securely
calculate any function without revealing each party’s
private information. To instantiate it, many impressive

• Guowen Xu, Xingshuo Han and Tianwei Zhang are with the School
of Computer Science and Engineering, Nanyang Technological Univer-
sity. (e-mail: guowen.xu@ntu.edu.sg; xingshuo001@e.ntu.edu.sg; tian-
wei.zhang@ntu.edu.sg).

• Shengmin Xu and Jianting Ning are with the College of Computer
and Cyber Security, Fujian Normal University, Fuzhou, China (e-mail:
smxu1989@gmail.com; jtning88@gmail.com)

• Xinyi Huang is with the Artificial Intelligence thrust, Information
Hub, Hong Kong University of Science and Technology (Guangzhou),
Guangzhou, China, 511458 (e-mail: xinyi@ust.hk)

• Hongwei Li is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu
611731, China.(e-mail: hongweili@uestc.edu.cn)

• Robert H Deng is with the School of Information Systems Singapore
Management University. (e-mail: robertdeng@smu.edu.sg)

works [3], [4], [5] have been proposed, built on vari-
ous cryptographic technologies such as homomorphic
encryption (HE) [6], secret sharing and Yao’s garbled
circuits (GC) [7] . Due to the inherent complexity of
cryptographic primitives, existing efforts focus exclusive-
ly on improving efficiency and are based on a relatively
weak threat assumption i.e., semi-honest adversary model
[8], [9], [10]. In this model, S0 and S1 faithfully follow the
specifications of secure inference and can only capture
private information through passive observations.

1.1 Related Works
Recent works [11], [12], [13] show that this semi-honest
adversary model can be insecure in real-world applica-
tions. In particular, Lehmkuhl et al. [11] argue that it
may be reasonable that the ML model is held by a
semi-trusted server, since the server is usually fixed and
maintained by a reputable entity. However, it is imprac-
tical to assume that thousands of clients (which can be
arbitrary entities) will faithfully comply with the protocol
specification. To validate this hazard, they provide a
systematic attack strategy, which enables a malicious
client to violate the rules of the protocol and completely
reconstruct the model’s parameters during the inference
interactions. Moreover, the number of inference queries
required for such an attack is much smaller than the most
advanced black-box model extraction attack [11].

While the above problem can be solved by resort-
ing to the traditional 2-PC protocol against malicious
adversaries [14], [15], [16], it is inefficient in practice.
To bridge this gap, Lehmkuhl et al. [11] pioneer the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

2

definition of client-malicious adversary model, where the
server is still considered semi-honest, but the client
can perform arbitrary malicious behaviors. To secure
the inference process under such adversary model, they
propose MUSE, a novel 2-PC protocol with considerably
lower overhead compared to previous works. However,
the computation and communication costs of MUSE are
still not satisfactory, which are at least 15× higher than
the similar work DELPHI [17] under the semi-trusted
threat model.

To alleviate the efficiency issue, Chandran et al. design
SIMC [12], the state-of-the-art 2-PC protocol for secure
inference under the client-malicious adversary model.
Consistent with the underlying tone of MUSE, SIMC uses
HE to execute the linear layers (including matrix-vector
and convolution multiplication) of the ML model, and
uses GC to implement the non-linear layers (mainly the
ReLU function). Since almost 99% of the communication
overhead in MUSE comes from non-linear layers, the
core of SIMC is a novel protocol based on a customized
GC to improve the performance of executing non-linear
activation functions. As a result, compared to MUSE,
SIMC gains 28 ∼ 33× reduction in the communication
overhead for the implementation of popular activation
functions (e.g., ReLU, ReLU6) and at least 4× overall
performance improvement.

However, we argue that SIMC is still far from prac-
ticality. This stems from two reasons. First, SIMC keeps
the design of linear layer calculations in MUSE, which
uses computationally heavy HE to perform dense matrix-
vector and convolution multiplication. In reality, linear
operations dominate the computation of modern neural
networks: nearly 95% of the execution of the ML model
is for intensive convolutional layers and fully connected
(FC) layers [18]. This raises the requirement for effi-
cient execution of matrix and convolution multiplication
under ciphertext. Although the homomorphism of HE
makes it suitable to achieve privacy-preserving linear
operations, it is still computationally expensive for large-
scale operations, especially when there is no appro-
priate parallel computing optimization (i.e., performing
homomorphic linear computation in a Single Instruction
Multiple Data (SIMD) manner) [19].

There is still much optimization space for the non-
linear layers (such as ReLU) of SIMC, from the perspec-
tives of both computation and communication. To be
precise, given secret shares of a value t, SIMC designs a
secure 2-PC protocol based on GC, which enables S0 and
S1 to calculate the shares s = αt and authenticated shares
of v = f(t), i.e., shares of f(t) and αf(t), where f denotes
the activation function. Although SIMC has made great
efforts to simplify the design of the GC and prevent
malicious behaviors from the client, it requires a com-
munication overhead of at least 2cλ+4κλ+6κ2, where λ
denotes the security parameter, κ is a field space, and c is
the number of AND gates required to reconstruct shares
of t and compute authenticated f(t). Also, the main body
of the activation function is still sealed in a relatively

complex GC. As a consequence, SIMC inevitably results
in substantial computation and communication costs in
non-linear layers, since a modern model usually contains
thousands of non-linear activation functions for calcula-
tion. We will perform experiments to demonstrate such
overheads in Section 6.

1.2 Technical Challenges
This paper is dedicated to design a new 2-PC protocol
to break through the performance bottleneck in SIMC,
thereby promoting the practicality of secure inference
against malicious clients. We follow the underlying struc-
ture of SIMC, i.e., using HE to execute the linear layers
and GC to implement the non-linear layers, as such a
hybrid method has shown advanced performance com-
pared to other strategies [11], [17]. Therefore, our work
naturally lies in solving two problems: (1) how to design
an optimized mechanism to accelerate linear operations
in HE, and (2) how to find a more simplified GC for the
execution of non-linear activation functions.

There have been many impressive works [20], [21],
[19], [18] exploring methods towards the above goals.
To speed up HE’s computation performance, existing
efforts mainly focus on designing new coding meth-
ods to achieve parallelized element-wise homomorphic
computation, i.e., performing homomorphic linear com-
putation in an SIMD manner. For example, Jiang et al.
[21] present a novel matrix encoding method for basic
matrix operations, e.g., multiplication and transposition.
Compared to previous approaches, this method reduces
the computational complexity of multiplying two d × d
matrices from O(d3) to O(d). However, it is exclusively
applicable to matrix operations between square or rect-
angular matrices, and is unfriendly to arbitrary matrix-
vector multiplication and convolution operations in ML
[22]. In addition, it considers parallel homomorphic cal-
culations in a full ciphertext environment, contrary to our
scenario where only the input of the client is ciphertext
while the model parameters are clear. Sav et al. propose
the Alternating Packing (AP) approach [19], which packs
all elements of a vector into a ciphertext and then
parallelizes homomorphic matrix-vector multiplication.
However, similar to [21], AP focuses on SIMD operation
between two packed ciphertexts.

Several works design solutions for the scenario of
secure inference [23], [24], [18], mostly built on the semi-
honest adversary model. Among them, one of the most
remarkable works is GAZELLE [23]. It is customized
for the HE-GC based secure inference and has been
integrated into some advanced solutions such as DELPHI
[17] and EzPC [25]. In fact, the core idea of GAZELLE is
also used in the design of MUSE and SIMC, which inherit
DELPHI’s optimization strategy for HE-based linear op-
erations. GAZELLE builds a new homomorphic linear
algebra kernel, which provides fast algorithms for map-
ping neural network layers to optimized homomorphic
matrix-vector multiplication and convolution routines.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

3

However, the computation complexity of GAZELLE is
still non-negligible. For example, to calculate the product
of a no×ni plaintext matrix and a ni dimensional cipher-
text vector, GAZELLE requires at least (log2(

n
no

)+ nino

n −
1) rotation operations, where n is the number of slots in
the ciphertext. This is very computationally expensive
compared to other homomorphic operations such as
addition and multiplication. To alleviate this problem,
Zhang et al. presents GALA [18], an optimized solution
over GAZELLE, to reduce the complexity of the rotation
operations required by matrix vector calculations from
(log2(

n
no

) + nino

n − 1) to (nino

n − 1), thus substantially
improving the efficiency. However, GALA is specially
customized for secure inference under semi-honest adver-
sary model. Furthermore, we will demonstrate that the
computational complexity of GALA is not optimal and
can be further optimized.

To construct an efficient GC-based protocol, the follow-
ing problems generally need to be solved: (1) avoiding
using the GC to perform the multiplication between
elements as much as possible, which usually requires
at least O(κ2λ) communication complexity [26]; (2) en-
suring the correctness of the client’s input, so that
the output of the GC is trusted and can be correctly
propagated to the subsequent layers. SIMC presents a
novel protocol that can meet these two requirements.
Specifically, instead of using the GC directly to calculate
s = αt and authenticated shares of v = f(t), SIMC
only resorts to the GC to obtain the garbled labels of
the bits corresponding to each function, namely s[i], v[i]
and αv[i] for 1 ≤ i ≤ κ. Such types of calculation are
natural for the GC because it operates on a Boolean
circuit. Moreover, it avoids performing a large number
of multiplication operations in the GC to achieve binary-
to-decimal conversion. Then, SIMC designs a lightweight
input consistency verification method, which is used to
force the client to feed the correct sharing of GC’s input.
Compared to MUSE, SIMC reduces the communication
overhead of each ReLU function from 2dλ+190κλ+232κ2

to 2cλ+4κλ+6κ2, and accelerates the calculation several
times.

We point out that it is possible to further simplify the
protocol in SIMC. It comes from the insight that the ReLU
function can be parsed as f(t) = t · sign(t), where the
sign function sign(t) equals 1 if t ≥ 0 and 0 otherwise.
Therefore, it is desirable if only the non-linear part of f(t)
(i.e., sign(t)) is encapsulated in the GC, i.e., for 1 ≤ i ≤ κ,
the output of the GC is sign[i] and s[i], instead of s[i] and
v[i]. Then, if we can find a lightweight alternative sub-
protocol to privately compute the authenticated shares
v[i] = sign[i] × s[i], it not only simplifies the size of the
GC, but also further reduces the number of expensive
multiplications between elements in the original GC.
However, it is challenging to build such a protocol: The
replacement sub-protocol should be lightweight com-
pared to the original GC. In addition, it should be com-
patible with the input consistency verification method in

SIMC, so as to realize the verifiability of the client input.

1.3 Our Contributions
In this work, we present SIMC 2.0, a new secure inference
model that is resilient to malicious clients and achieves
up to 5× computation improvement over the previous
state-of-the-art SIMC. SIMC 2.0 complies with the under-
lying structure of SIMC, but designs highly optimized
methods to substantially reduce the overhead of linear
and non-linear layers. In summary, the contributions of
SIMC 2.0 are summarized as follows.

• We design a new coding method for homomor-
phic linear computation in a SIMD manner. It is
custom-built through the insight into the comple-
mentarity between cryptographic primitives in an
HE-GC based framework, where the property of
secret sharing is used to convert a large number
of private rotation operations to be executed in
the plaintext environment. Moreover, we design
a block-combined diagonal encoding method to
further reduce the number of rotation operations.
As a result, compared to SIMC, we reduce the com-
plexity of rotation operations required by matrix-
vector computations from (log2(

n
no

) + nino

n − 1) to
(l−1), where l is a hyperparameter set by the server.
We also present a new method for homomorphic
convolution operation with SIMD support.

• We reduce the size of the GC in SIMC by about
two thirds. As discussed above, instead of using the
GC to calculate the entire ReLU function, we only
encapsulate the non-linear part of ReLU into the
GC. Then, we construct a lightweight alternative
protocol that takes the output of the simplified GC
as input to calculate the sharing of the desired
result. We exploit the authenticated shares [27] as
the basis for building the lightweight alternative
protocol. As a result, compared to SIMC, SIMC 2.0
reduces the communication overhead of calculating
each ReLU from 2cλ+4κλ+6κ2 to 2eλ+4κλ+6κ2+
2κ, where e < c denotes the number of AND gates
required in the GC.

• We demonstrate that SIMC 2.0 has the same se-
curity properties as SIMC, i.e., it is secure against
the malicious client model. We prove this with
theoretical analysis following a similar logic of
SIMC. We use several datasets (e.g., MNIST, CIFAR-
10) to conduct extensive experiments on various
ML models. Our experiments show that SIMC 2.0
achieves a significant speedup by up to 17.4× for
linear layer computation and at least 1.3× commu-
nication reduction in non-linear layer computation
under different data dimensions. Meanwhile, SIMC
2.0 demonstrates an encouraging runtime boost by
2.3 ∼ 4.3× over SIMC on different state-of-the-art
ML models (e.g., AlexNet, VGG, ResNet).

Roadmap: The remainder of this paper is organized as
follows. In Section 2, we review some basic concepts and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

4

introduce the scenarios and threat models involved in
this paper. In Sections 3 – 5, we give the details of our
SIMC 2.0. The performance evaluation is presented in
Section 6, and Section 7 concludes the paper.

2 PRELIMINARIES
2.1 Threat Model
We consider a two-party ML inference scenario consist-
ing of a server S0 and a client S1. S0 holds an ML
model M with the private and sensitive weight W . It
is considered semi-honest: it obeys the deployment pro-
cedure of ML inference but may be curious to infer the
client’s data by observing the data flow in the running
process. S1 holds the private input t. It is malicious
and can arbitrarily violate the protocol specification. The
model architecture NN of M is assumed to be known to
both the server and the client. Our goal is to design a
secure inference framework, which enables S1 to learn
the inference result of t without knowing any details
about the model weight W , and S0 knows nothing about
the input t. A formal definition of the threat model is
provided in Appendix A.

2.2 Notations
We describe some notations used in this paper. Specif-
ically, λ and σ denote the computational and statistical
security parameters. For any n > 0, [n] denotes the set
{1, 2, · · ·n}. In our SIMC 2.0, all arithmetic operations,
such as addition and multiplication, are performed in the
field Fp, where p is a prime and κ = �log p�. We assume
that any element x ∈ Fp can be naturally mapped to
the set {1, 2, · · ·κ}, where we use x[i] to represent the
i-th bit of x, i.e., x =

∑
i∈[κ] x[i] · 2i−1. For a vector

x and an element α ∈ Fp, α + x and αx denote the
addition and multiplication of each component of x
with α, respectively. Given a function f : Fp → Fp,
f(x) represents the evaluation of f for each component
of x. Given two elements x, y ∈ Fp, x||y denotes the
concatenation of x and y.

For simplicity, we assume that the targeted ML archi-
tecture NN consists of alternating linear and non-linear
layers. Let the specifications of the linear layers and
non-linear layers be N1, N2, · · · , Nm and f1, f2, · · · ,
fm−1, respectively. Given an input vector t0, the model
sequentially computes ui = Ni · ti−1 and ti = fi(ui),
where i ∈ [m−1]. As a result, we have um = Nm ·tm−1 =
NN(t0).

2.3 Fully Homomorphic Encryption (FHE)
FHE [28] is a public key encryption system that supports
the evaluation of any function parsed as a polynomial in
ciphertext. Informally, assuming that the message space
is Fp, FHE contains the following four algorithms:
• KeyGen(1λ) → (pk, sk). Given the security param-

eter λ, KeyGen is a randomized algorithm that

generates a public key pk and the corresponding
secret key sk.

• Enc(pk, t) → c. Given the public key pk and a
message t ∈ Fp as input, Enc outputs a ciphertext
c.

• Dec(sk, c) → t. Given the secret key sk and a
ciphertext c as input, Dec decrypts c and obtains
the plaintext t.

• Eval(pk, c1, c2, F) → t. Given the public key pk and
two ciphertexts c1, c2 encrypting t1, t2, respectively,
and a function F parsed as a polynomial, Eval
outputs a ciphertext c′ encrypting F (t1, t2).

We require FHE to satisfy correctness, semantic security
and additive homomorphism [28]. In addition, we use ci-
phertext packing technology (CPT) [29] to accelerate the
parallelism of homomorphic computation. In brief, CPT
is capable of packing up to n plaintexts into one cipher-
text that contains n plaintext slots, thus improving the
parallelism of the computation. This makes homomor-
phic addition and multiplication for the ciphertext equiv-
alent to performing the same operation on every plain-
text slot at once. For example, given two ciphertexts c1
and c2 encrypting the plaintext vectors t = (t0, t1, · · · , tn)
and t′ = (t′0, t

′
1, · · · , t′n) respectively, Eval(pk, c1, c2, F =

(a + b)) outputs a ciphertext c encrypting the plaintext
vector t′′ = (t0 + t′0, t1 + t′1, · · · , tn + t′n).

CPT also provides a rotation function Rot to facil-
itate rotation operations between plaintexts in differ-
ent plaintext slots. To be precise, given a ciphertex-
t c encrypting a plaintext vector t = (t0, t1, · · · , tn),
Rot(pk, c, j) transforms c into an encryption of t′ =
(tj , tj+1, · · · , t0, · · · , tj−1), which enables the packed vec-
tor in the appropriate position to realize the correc-
t element-wise addition and multiplication. Since the
computation cost of the rotation operation in FHE is
much more expensive than other operations such as
homomorphic addition and multiplication, in our SIMC
2.0, we aim to design homomorphic parallel computa-
tion methods customized for matrix-vector multiplica-
tion and convolution, thereby minimizing the number of
rotation operations incurred during execution.

2.4 Secret Sharing
We describe some terms used for secret sharing as fol-
lows.

• Additive secret sharing [26]. Given x ∈ Fp, we
say that a 2-of-2 additive secret sharing of x is
a pair (〈x〉0 , 〈x〉1) = (x − r, r) ∈ F

2
p that satisfies

〈x〉0 + 〈x〉1 = x, where r is randomly selected from
Fp. Additive secret sharing is perfectly hidden,
i.e., given 〈x〉0 or 〈x〉1, the value of x is perfectly
hidden.

• Authenticated shares. Given a randomly selected
α ∈ Fp (known as the MAC key), the authenticated
share of x ∈ Fp is denoted as {〈x〉b, 〈αx〉b}b∈{0,1},
where each party Sb holds (〈x〉b, 〈αx〉b). In the fully
malicious protocol, α should be shared secretly

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

5

with all parties. In our client-malicious model, con-
sistent with previous works [11], [12], α is picked
uniformly by the server S0 and secretly shared with
the client S1. Authenticated shares provide �log p�
bits of statistical security. Specifically, assuming
that malicious S1 has manipulated the share of
x as x + β by changing the shares (〈x〉1, 〈αx〉1)
to (〈x〉1 + β, 〈αx〉1 + β′), the probability of parties
authenticating holding the share of x + β (i.e.,
αx+ β′ = α(x+ β)) is at most 2−�log p�.

• Authenticated Beaver’s multiplicative triples.
Given a randomly selected triple (A,B,C) ∈ F

3
p

satisfying AB = C, an authenticated Beaver’s mul-
tiplicative triple denotes that Sb holds the following
shares

{(〈A〉b, 〈αA〉b), (〈B〉b, 〈αB〉b), (〈C〉b, 〈αC〉b)}
for b ∈ {0, 1}. The process of generating triples
is offline and is used to facilitate multiplication
between authenticated shares. We give details of
generating such triples in Fig. 8 in Appendix B.

2.5 Oblivious Transfer

The 1-out-of-2 Oblivious Transfer (OT) [30] is denoted as
OTn, where the inputs of the sender (S0) are two strings
s0, s1 ∈ {0, 1}n, and the input of the receiver (S1) is a
choice bit b ∈ {0, 1}. At the end of the OT-execution,
S1 obtains sb while S0 receives nothing. Succinctly, the
security properties of OTn require that 1) the receiver
learns nothing but sb and 2) the sender knows nothing
about the choice b. In this paper, we require that the
instance of OTn is secure against a semi-honest sender
and a malicious receiver. We use OTκ

n to represent κ
instances of OTn. We exploit [30] to implement OTκ

n with
the communication complexity of κλ+ 2n bits.

2.6 Garbled Circuits

A garbled scheme [31] for Boolean circuits consists of
two algorithms, Garble and GCEval, defined as follows.
• Garble(1λ, C) → (GC, {{labini,j}i∈[n], {laboutj }}j∈{0,1}).

Given the security parameter λ and a Boolean
circuit C : {0, 1}n → {0, 1}, the Garble function
outputs a garbled circuit GC, an input set
{labini,j}i∈[n],j∈{0,1} of labels and an output
set {laboutj }j∈{0,1}, where each label is of λ bits. In
brief, {labini,x[i]}i∈[n] represents the garbled input
for any x ∈ {0, 1}n and the label laboutC(x) represents
the garbled output for C(x).

• GCEval(GC, {labi}i∈[n]) → lab′. Given the garbled
circuit GC and a set of labels {labi}i∈[n], GCEval
outputs a label lab′.

The above garbled scheme (Garble, GCEval) is re-
quired to satisfy the following properties:

• Correctness. GCEval is faithfully evaluated on GC
and outputs C(x) if the garbled x is given. Formal-
ly, for any circuit C and x ∈ {0, 1}n, we have

GCEval(GC, {labini,x[i]}i∈[n]) → laboutC(x)

• Security. For any circuit C and input x ∈ {0, 1}n,
there exists a polynomial probability-time simula-
tor Sim that can simulate the GC and garbled input
of x generated by Garble in real execution, i.e.,
(GC, {labini,x[i]}i∈[n]) ≈ Sim(1λ, C), where ≈ indicates
computational indistinguishability of two distribu-
tions (GC, {labini,x[i]}i∈[n]) and Sim(1λ, C).

• Authenticity. It is infeasible to guess the output
label of 1− C(x) given the garbled input of x and
GC. Formally, for any circuit C and x ∈ {0, 1}n, we
have

(
labout1−C(x)|GC, {labini,x[i]}i∈[n]

)
≈ Uλ, where

Uλ represents the uniform distribution on the set
{0, 1}n.

Note that the garbled scheme described above can be
naturally extended to the case with multiple garbled out-
puts. We also utilize state-of-the-art optimization strate-
gies, including point-and-permute, free-XOR and half-
gates [32] to construct the garbled circuit. We provide
a high-level description of performing a secure two-
party computation with GC: assuming that a semi-honest
server S0 and a malicious client S1 hold private inputs
x and y, respectively. Both parties evaluate C(x, y) on
GC as follows. S0 first garbles the circuit C to learn GC
and garbled labels about the input and output of GC.
Then, both parties invoke the OT functionality, where
the sender S0 inputs garbled labels corresponding to the
input wires of S1, while the receiver S1 inputs y to obtain
garbled inputs of y. S0 additionally sends the garbled
input of x, GC and a pair of ciphertexts for every output
wire w of C to S1. As a result, S1 evaluates GC to learn
the garbled output of C(x, y) with the received garbled
input about x and y. From the garbled output and the
pair of ciphertexts given for each output wire, S1 finally
gets C(x, y). S1 sends C(x, y) along with the hash of the
garbled output to S0 for verification. S0 accepts it if the
hash value corresponds to C(x, y).

3 LINEAR LAYER OPTIMIZATION
We start by describing the secure execution of linear
layers in SIMC. To be precise, SIMC designs two pro-
tocols (InitLin and Lin) to securely perform linear layer
operations, as shown in Fig. 9 and 10 in Appendix C. We
observe that the most computationally intensive opera-
tions in InitLin and Lin are homomorphically computing
N · t and αN · t (including matrix-vector multiplication
in FC layers and convolution operations in convolution
layers), where N is a plaintext weight matrix held by the
server, and t (will be encrypted as [t]c) is the input held
by the client.

We focus on the optimization of matrix-vector parallel
multiplication. More specifically, we consider an FC layer

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

6

Step (a)
Step (b)

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

Step (c): we only take] as an example. , , and will be performed the same as]

Fig. 1: Naive matrix-vector multiplication

with ni inputs and no outputs, i.e., N ∈ F
no×ni
p . The

client’s input is a ciphertext vector t ∈ F
ni
p . n is the

number of slots in a ciphertext. We first describe a naive
approach to parallelize homomorphic multiplication of
N · t, followed by a state-of-the-art method proposed
by GAZELLE [23]. Finally, we introduce our proposed
scheme, which substantially reduces the computation
cost of matrix-vector multiplication.

3.1 Naive Method
The naive method of matrix-vector multiplication is
shown in Fig. 1, where N is the no × ni dimensional
plaintext matrix held by the server and [t]c is the encryp-
tion of the client’s input vector. The server encodes each
row of the matrix into a separate plaintext vector (Step
(a) in Fig. 1), where each encoded vector is of length n
(including zero-padding if necessary). We denote these
encoded plaintext vectors by N0, N1, · · · , Nno−1. For
example, there are four vectors in Fig. 1, namely N0,
N1, N2, and N3.

The purpose of the server is to homomorphically
compute the dot product of the plaintext N and the
ciphertext [t]c. Let ScMult be the scalar multiplication
of a plaintext and a ciphertext in HE. The server first
uses ScMult to compute the element-wise multiplication
of Ni and [t]c. As a result, the server gets [vi]c = [Ni � t]c
(Step (b) in Fig. 1). We observe that the sum of all
the elements in [vi]c is the i-th element of the desired
dot product of N and [t]c. Since there is no direct
way to obtain this sum in HE, we rely on the rotation

operation to do it. To be precise, as shown in Step (c)
in Fig. 1, [vi]c is first rotated by permuting ni

2 positions
so that the first ni

2 entries of the rotated [vi]c are the
second ni

2 entries of the original [vi]c. The server then
performs element-wise addition on the original [vi]c and
rotated one homomorphically, which derives a ciphertext
whose sum of the first ni

2 entries is actually the desired
result. The server iteratively performs the above rotation
operation for log2 ni times. Each time, it operates on the
ciphertext derived from the previous iteration. The server
finally receives the ciphertext whose first entry is the i-
th element of Nt. By executing this procedure for each
[vi]c, i.e., [v0]c, [v1]c, [v2]c, and [v3]c in Fig. 1, the server
obtains no ciphertexts. Consistently, the first entries of
these ciphertexts correspond to the elements in Nt.

Now we analyze the complexity of the above matrix-
vector multiplication. We consider the process beginning
with the server receiving the ciphertext (i.e., [t]c) from the
client until it obtains the ciphertext (i.e., no ciphertexts)
to be shared1. There are totally no scalar multiplication
operations (i.e., ScMult), no log2 ni rotation operations,
and no log2 ni addition operations. It produces no output
ciphertexts, each containing an element in Nt. Such naive
use of the ciphertext space inevitably incurs inefficiencies
for linear computations.

1. In the neural network inference process with HE-GC as the
underlying structure, the ciphertext generated in the linear phase will
be securely shared between the client and the server, and used as the
input of the subsequent GC-based nonlinear function. The reader can
refer to [11], [12], [13] for more details.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

7

Step (a) Step (b) Step (c)

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+ +
+ +
+ +
+

+ +
+ +
+ +
+

+ +
+ +
+ +
+

+ +
+ +
+ +
+

+ +
+ +
+ +
+

+ +
+ +
+ +
+

+ +
+ +
+ +
+

+ +
+ +
+ +
+

Step (d)

Fig. 2: Hybrid matrix-vector multiplication

3.2 Hybrid Method (GAZELLE)

In order to fully utilize the n slots and substantially
reduce computational complexity, Juvekar et al. [23] pro-
pose GAZELLE, which is also used in SIMC. GAZELLE
is actually a variant of diagonal encoding [29], which
exploits the fact that no is usually much smaller than
ni in the FC layer. Based on this, GAZELLE shows that
the most expensive rotation operation is a function of
no rather than ni, thus speeding up the calculation of
the FC layer. The basic idea of GAZELLE is shown in
Fig. 2. The server encodes the matrix N diagonally into
a vector of no plaintexts. For example, as shown in Step
(a) in Fig. 2, the first plaintext vector N0 consists of gray
elements in matrix N, i.e., (a1, b2, c3, d4, a5, b6, c7, d8). The
second plaintext vector N1 consists of orange elements
(a2, b3, c4, d5, a6, b7, c8, d1). The composition of N2 and
N3 is analogous. Note that the meaning of N0 to N3 in
the hybrid approach is different from the previous naive
approach in Section 3.1.

For i = 1 to no−1, the server rotates [t]c by i positions,
as shown in Step (b) in Fig. 2. Afterwards, ScMult is used
to perform the element-wise multiplication of Ni and
the corresponding ciphertext. For example, as shown in
Step (c) in Fig. 2, N0 is multiplied by the ciphertext [t]c,
while N1 is multiplied by [t′]c, and so on. As a result,
the server obtains no multiplied ciphertexts, {[vi]c}. The
server receives four ciphertexts {[v0]c, [v1]c, [v2]c, [v3]c},
whose elements are all part of the desired dot product.
Then, the server sums all ciphertexts [vi]c (Step (d) in
Fig. 2) in an element-wise way to form a new ciphertext.

At this point, the server performs rotation operations
similar to the naive approach, i.e., iteratively performing
log2

ni

no
rotations followed by addition to obtain a final

single ciphertext. The first no entries in this ciphertext
correspond to the no ciphertext elements in Nt.

To further reduce computation cost, GAZELLE propos-
es combining multiple copies of t into a single ciphertext
(called [tpack]c), since the number n of slots in a single
ciphertext is usually larger than the dimension ni of the
input vector. As a result, [tpack]c has n

ni
copies of t so

that the server can perform ScMult operations on [tpack]c
with n

ni
encoded vectors at once. This causes the server to

get nino

n ciphertexts instead of no ciphertexts, resulting in
a single ciphertext that contains n

no
rather than ni

no
blocks.

Finally, the server iteratively performs log2
n
no

rotations
followed by addition to obtain a final single ciphertext,
where the first no entries in this ciphertext correspond to
the no ciphertext elements of Nt.

In terms of complexity, GAZELLE requires nino

n scalar
multiplications, log2

n
no

+ nino

n −1 rotations, and log2
n
no

+
nino

n − 1 additions. It outputs only one ciphertext, which
greatly improves the efficiency and utilization of slots
over the naive approach.

3.3 Our Method
In the above hybrid method, the rotation operation
comes from two parts: rotations required for the client’s
encrypted input (Step (b) in Fig. 2) and the subsequent
rotations followed by addition involved in obtaining the
final matrix-vector result (Step (d) in Fig. 2). Therefore,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

8

Step (a) Step (b) Step (c)

+ + + + + + + +

+ + + + + + + +

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ + + + + + + +

+ + + + + + + +

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ +
+)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ +
+)

+ +
+ +
+ +
+ -

(+ + +
)

+ +
+ +
+ +
+ -

(+ +
+)

Step (d)
Fig. 3: Our matrix-vector multiplication algorithm

our approach is motivated by two observations in order
to substantially reduce the number of rotation opera-
tions incurred by these two aspects. First, we divide
the server’s original no × ni-dimensional weight matrix
N into multiple sub-matrices, and calculate each sub-
matrix separately (explained later based on Fig. 3). This
can effectively reduce the number of rotations for the
client’s ciphertext [t]c from no − 1 to l − 1, where l is a
hyperparameter set by the server.

Second, for the rotations followed by addition (Step
(d) in Fig. 2), we claim that they are not necessary. This
is determined by the characteristics of the HE-GC based
secure inference framework. To be precise, the ciphertext
output from the FC layer will be secretly shared with the
client and server, and used as the input of the next non-
linear layer function. As the shares are in plaintext, we
can completely convert the rotation followed by addition
to be performed under plaintext. This will significantly
reduce the computational complexity. For example, given
a 16 × 256 -dimensional matrix and a vector of length
256, our experiments indicate at least a 3.5× speedup
compared to the hybrid method (see more details in
Section 6).

Fig. 3 illustrates our matrix-vector calculation pro-
cedure. Specifically, we first split the matrix N into
multiple sub-matrices. As shown in Step (a) in Fig. 3, for
simplicity, we take the first l = 2 rows (i.e., N0 and N1)
of N as a sub-matrix, thus N2 and N3 form another sub-

matrix. Then, we exploit the diagonal method to arrange
the 1 × (ni/l) sized sub-matrices of N as a sub-matrix,
which results in two new sub-matrices. For subsequent
parallel ciphertext computation, we need to sequentially
perform l − 1 rotations of the client’s input [t]c, starting
from moving the (ni/l + 1)-th entry to the first entry. In
Step (b) in Fig. 3, [t]c is rotated into [t′]c, where the first
entry of [t′]c is the (8/2 + 1) = 5-th entry of [t]c.

ScMult is further used to perform the element-wise
multiplication of Ni and the corresponding ciphertext.
For example, as shown in Step (c) in Fig. 3, N0 is
multiplied by the ciphertext [t]c, while N1 is multiplied
by [t′]c. N2 and N3 are operated similarly. As a re-
sult, the server obtains no multiplied ciphertexts {[vi]c},
which can be divided into l independent ciphertext pairs.
We can observe that the server gets two independent
ciphertext pairs, i.e., {[v0]c, [v1]c} and {[v2]c, [v3]c}. For
each individual set of ciphertexts, the server adds all
ciphertexts in that set in an element-wise way, thus
forming l new ciphertexts (yellow boxes in Step (d) in
Fig. 3).

Until now, a natural approach is to perform rotation
followed by addition on each ciphertext, as in the hybrid
approach. This will take a total of ni/l rotations and
derive no/l ciphertexts. However, we argue that such
ciphertext operations are not necessary and can be con-
verted to plaintext to be performed. Our key insight is
that the ciphertext result of the FC layer will be secretly

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

9

shared with the client and server. Therefore, we require
the server to generate random vectors (i.e., {ri}i∈[8] and
{qi}i∈[8] in Step (d) of Fig. 3), and then subtract the
random vectors from the corresponding ciphertexts. The
server returns the subtracted ciphertexts to the client,
which decrypts them and executes ni/l plaintext rotation
followed by addition operations on them to obtain its
share. Similarly, the server gets its share by executing ni/l
plaintext rotation followed by addition operations on its
random vectors. Compared to GAZELLE, our method
only needs to perform l−1 rotations on the client’s input,
and does not require any rotations subsequently. This
significantly improves the performance of matrix-vector
computations.

We further reduce the computational cost by packing
multiple copies of t in a single ciphertext (called [tpack]c).
As a result, [tpack]c has n

ni
copies of t so that the

server can perform ScMult operations on [tpack]c with n
ni

encoded vectors at once. The computational cost of our
method is nino

n homomorphic multiplication operations,
l − 1 rotation operations, and nino

n − 1 homomorphic
addition operations. It outputs ni · no/(l · n) ciphertexts.

Remark 3.1. Table I shows the comparison of our method
with existing approaches in computation complexity.
It is obvious that our method has better complexity,
especially for rotation operations. Note that GALA [18]
also designs an improved version of GAZELLE [23] for
matrix-vector multiplication, which has the computation-
al complexity of (nino

n −1) for rotation operations. How-
ever, GALA is specially customized for secure inference
under semi-honest adversary model. Moreover, our method
still outperforms GALA in computation complexity.

TABLE I: Computation complexity of each method

Method #Rotation #ScMul #Add

Naive no log2 ni no no log2 ni

Hybrid log2
n
no

+ nino
n

− 1 nino
n

log2
n
no

+ nino
n

− 1

Our method l − 1 nino
n

nino
n

− 1

Remark 3.2. We also describe the optimization of convolu-
tion operations for linear layers. In brief, we assume that
the server has co plaintext kernels of size kw × kh × ci,
and the ciphertext input sent by the client to the server
is ci kernels of size uw×uh. The server is required to per-
form homomorphic convolution operations between the
ciphertext input and its own plaintext kernel to obtain
the ciphertext output. To improve the parallel processing
capabilities, GAZELLE proposes to pack the input data
of cn channels into one ciphertext and requires a total
of ci(kwkh−1)

cn
rotation operations to achieve convolution.

We present an improved solution over GAZELLE to
execute convolution operations. We design strategies to
significantly reduce the number of rotation operations
involved in computing the convolution between each of
the c0ci

c2n
blocks and the corresponding input channels

(see Appendix D). As a result, our method reduces the
computation complexity with respect to rotations by a
factor of ci

cn
compared to GAZELLE. Readers can refer

to Appendix D for more details.

4 NONLINEAR LAYER OPTIMIZATION
In this section, we describe our proposed optimization
method for non-linear layers. We focus on the secure
computation of the activation function ReLU, one of the
most popular functions in non-linear layers of modern
DNNs.

4.1 Overview
As shown in Section 3, the output of each linear layer
will be securely shared with the server and client (Fig. 9
and 10 in Appendix C), and used as the input of the
next non-linear layer to obtain authenticated shares of
the output of the non-linear layer. Specifically, assume
that the output of a linear layer is u = 〈u〉0 + 〈u〉1,
where 〈u〉0 and 〈u〉1 are the shares held by the server
and the client, respectively. Then the functionality of the
next non-linear layer is shown in Fig. 4. At the high
level, the main difference between our method and SIMC
comes from parsing ReLU as f(u) = u · sign(u) and
encapsulating only the non-linear part (sign(u)) into the
GC. The sign function sign(t) equals 1 if t ≥ 0 and
0 otherwise. In this way, we can reduce the original
GC size by about two-thirds, thereby further reducing
the computation and communication costs incurred by
running non-linear layers.

Function f : Fp → Fp.
Input: S0 holds 〈u〉0 ∈ Fp and a MAC key α uniformly chosen
from Fp. S1 holds 〈u〉1 ∈ Fp.
Output: Sb obtains {(〈αu〉b, 〈f(u)〉b, 〈αf(u)〉b)} for b ∈ {0, 1}.

Fig. 4: Functionality of the nonlinear layer

4.2 Our Protocol for the Non-linear Layer
Similar to SIMC, our method can be divided into four
phases: Garbled Circuit phase, Authentication phase 1,
Local Computation phase, and Authentication phase 2.
Assume that the server’s (S0) input is (〈u〉0, α) and
the client’s (S1) input is (〈u〉1). We provide a high-level
view of the protocol. Fig. 5 gives a detailed technical
description.

Garbled Circuit Phase. SIMC uses GC to calculate
every bit of u and ReLU(u), instead of directly cal-
culating these values. This is efficient since it avoids
incurring a large number of multiplication operations in
the GC. Our method follows a similar logic, but instead
of computing ReLU(u), we compute every bit of sign(u).
In this phase, we can reduce the original GC size by
about two-thirds. To achieve this, S0 first constructs a
garbled circuit for boolnf , where the input of the circuit is

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

10

Preamble: To compute the ReLU function f : Fp → Fp, we consider a Boolean circuit boolnf that takes the share of u as
input and outputs (u, f(u)). In addition, we define a truncation function Trunh : {0, 1}λ → {0, 1}h, which outputs the
last h bits of the input. We require that λ satisfies λ ≥ 2κ, which stems from the function Trun requiring (parts of) output
labels of garbled circuit (i.e., λ-bit strings) to one-time pad values of length κ bits or 2κ bits. The purpose of this setting is
for the smooth execution of Trun, which is exactly the same as the original SIMC [12] setting.
Input:S0 holds 〈u〉0 ∈ Fp and a MAC key α uniformly chosen from Fp. S1 holds 〈u〉1 ∈ Fp.
Output: Sb obtains {(〈αu〉b, 〈f(u)〉b, 〈αf(u)〉b)} for b ∈ {0, 1}.
Protocol:

1. Garbled Circuit Phase:
◦ S0 computes Garble(1λ, boolnf) → (GC, {{labini,j}i∈[2κ], {labouti,j }i∈[2κ]}j∈{0,1}). Given the security parameter λ

and a Boolean circuit boolnf , Garble outputs a garbled circuit GC, an input set {labini,j}i∈[2κ],j∈{0,1} of labels,
and an output set {labouti,j }i∈[2κ],j∈{0,1}, where each label is of λ-bits.

◦ S0 (as the sender) and S1 (as the receiver) invoke the OTκ
λ (see Section 2.5), where S0’s inputs are

{labini,0, labini,1}i∈{κ+1,··· ,2κ} while S1’s input is 〈u〉1. As a result, S1 obtains { ~lab
in
i }i∈{κ+1,··· ,2κ}. In addition, S0

sends the garbled circuit GC and its garbled inputs { ~lab
in
i = labi,〈u〉0[i]}i∈[κ] to S1.

◦ Given the GC and the garbled inputs { ~lab
in
i }i∈[2κ], S1 computes GCEval(GC, { ~lab

in
i }i∈[2κ]) → { ~lab

out
i }i∈[2κ].

2. Authentication Phase 1:
◦ For every i ∈ [κ], S0 randomly selects ρi,0, σi,0 and τi,0 ∈ Fp and sets (ρi,1, σi,1, τi,1) = (1+ρi,0, α+σi,0, α+τi,0).
◦ For every i ∈ [2κ] and j ∈ {0, 1}, S0 parses {labouti,j } as ξi,j ||ζi,j where ξi,j ∈ {0, 1} and ζi,j ∈ {0, 1}λ−1.
◦ For every i ∈ [κ] and j ∈ {0, 1}, S0 sends cti,ξi,j and ĉti,ξi+κ,j to S1, where cti,ξi,j = τi,j ⊕ Trunκ(ζi,j) and

ĉti,ξi+κ,j = (ρi,j ||σi,j)⊕Trun2κ(ζi+κ,j).
◦ For every i ∈ [2κ], S1 parses ~lab

out
i as ξ̃i||ζ̃i where ξ̃i ∈ {0, 1} and ζ̃i ∈ {0, 1}λ−1.

◦ For every i ∈ [κ], S1 computes ci = cti,ξ̃i ⊕Trunκ(ζ̃i) and (di||ei) = ĉti,ξ̃i+κ
⊕Trun2κ(ζ̃i+κ).

3. Local Computation Phase:
◦ S0 outputs 〈g1〉0 = (−∑

i∈[κ] τi,02
i−1), 〈g2〉0 = (−∑

i∈[κ] ρi,02
i−1) and 〈g3〉0 = (−∑

i∈[κ] σi,02
i−1).

◦ S1 outputs 〈g1〉1 = (
∑

i∈[κ] ci2
i−1), 〈g2〉1 = (

∑
i∈[κ] di2

i−1) and 〈g3〉1 = (
∑

i∈[κ] ei2
i−1).

4. Authentication Phase 2:
◦ Sb, b ∈ {0, 1} randomly select a triplet of fresh authentication shares {(〈A〉b, 〈αA〉b), (〈B〉b, 〈αB〉b), (〈C〉b, 〈αC〉b)}

(see Fig. 8 for selection details), where triple (A,B,C) ∈ F
3
p satisfying AB = C.

◦ S0 interacts with S1 to reveal Γ = u−A and Λ = g2 −B.
◦ Sb, , b ∈ {0, 1} computes the 〈z2〉b = 〈u · sign(u)〉b through 〈z2〉b=〈C〉b + Γ · 〈B〉b +Λ · 〈A〉b + Γ · Λ. In addition,

〈z3〉b = 〈αu · sign(u)〉b can be obtained in a similar way.

Fig. 5: Our protocol for the non-linear layer πf
Non−lin

the share of u and its output is (u, sign(u)). S1 evaluates
this garbled circuit on 〈u〉0 and 〈u〉1 once the correct
input labels are obtained using the OT protocol. At the
end, S1 learns the set of output labels for the bits of u
and sign(u). Note that the operation Trun is used to
assist in implementing secure multiplication operations
outside the GC, and it can be seen as a kind of random
noise that can be eliminated if the client performs the
GC evaluation correctly. As a result, it does not affect the
accuracy of inference (see correctness analysis below).

Authentication Phase 1. In the previous phase, S1

obtains the garbled output labels for each bit of u and
sign(u), denoted as u[i] and sign(u)[i], respectively. The
goal of this phase is to compute the shares of αu[i],
sign(u)[i], and αsign(u)[i]. We take αu[i] as an example
to briefly describe the procedure. Specifically, we observe
that the shares of αu[i] are either shares 0 or α, depend-
ing on whether u[i] is 0 or 1. Also, the output of the
GC contains two output labels corresponding to each u[i]
(each one for u[i] = 0 and 1). Therefore, we denote these
labels as labouti,0 and labouti,1 for u[i] = 0 and u[i] = 1,

respectively. To calculate the shares of αu[i], S0 chooses
a random number τi ∈ Fp and converts it to labouti,0 .
Similarly, τi +α is converted to labouti,1 . S0 sends the two
ciphertexts to S1, and sets its share of αu[i] as −τi. Since
S1 has obtained labouti,u[i] in the previous phase, it can
obviously decrypt one of the two ciphertexts to obtain
its share for αu[i] . Computing the share of αsign(u)[i]
and sign(u)[i] follows a similar method using the output
labels for sign(u).

Local Computation Phase. Given the shares of αu[i],
sign(u)[i], and αsign(u)[i], this phase locally calculates
the shares of αu, sign(u), and αsign(u). Taking αu as
an example, as shown in Figure 5, each party locally
multiplies αu[i] and 2i−1 and then sums these results to
get the share on αu . The shares of sign(u) and αsign(u)
are calculated similarly.

Authentication Phase 2. This phase calculates the
shares of f(u) = usign(u), and αf(u). Since each party
holds the authenticated shares of u and sign(u), it is
easy to compute the authenticated shares of f(u) for each
party (see Fig. 5).

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

11

Remark 4.1. As described above, we reduce the size of
the GC in SIMC by about two thirds. Therefore, instead
of using the GC to calculate the entire ReLU function,
we only encapsulate the non-linear part of ReLU into
the GC. Then, we construct a lightweight alternative
protocol that takes the output of the simplified GC
as input to calculate the shares of the desired result.
Therefore, compared to SIMC, SIMC 2.0 reduces the
communication overhead of calculating each ReLU from
2cλ + 4κλ + 6κ2 to 2eλ + 4κλ + 6κ2 + 2κ, where e < c
denotes the number of AND gates required in the GC.
Clearly, c−e > 1 since we only need to compute sign(u)
instead of f(u) = u · sign(u) in SIMC 2.0. Therefore,
compared with SIMC, we save communication cost with
(2cλ+4κλ+6κ2)− (2eλ+4κλ+6κ2+2κ)=2λ(c− e)−2κ.
Based on the setting of λ ≥ 2κ, it is obviously (c−e)λ ≥ κ.
Also, we experimentally demonstrate that this simplified
GC improves the running efficiency by one third com-
pared to the original one.

Remark 4.2. Our method can be easily extended to other
non-linear functions, such as Maxpool. We follow the
same idea to compute all the shares of Maxpool’s output,
where we construct a Boolean circuit for Maxpool that
feeds multiple inputs (u1,u2, · · ·uκ), and outputs the
reconstructed (u1,u2, · · ·uκ) and f(u1,u2, · · ·uκ).

Correctness. We analyze the correctness of our protocol
in Fig. 5 as follows. Based on the correctness of the
OTκ

λ, the client S1 holds { ~lab
in
i = labi,〈u〉1[i]}i∈{κ+1,···2κ}.

Since for i ∈ [κ], { ~lab
in
i = labi,〈u〉0[i]}i∈[κ], we can

get ~lab
out
i = labouti,u[i] and ~lab

out
i+κ = labouti+κ,sign(u)[i],

with the correctness of (Garble, GCEval) for the cir-
cuit boolnf . Therefore, for i ∈ [k], we have ξ̃i||ζ̃i =
ξi,u[i]||ζi,u[i] and ξ̃i+κ||ζ̃i+κ = ξi+κ,sign(u)[i]||ζi+κ,sign(u)[i].
We also have ci = cti,ξi,u[i]

⊕Trunκ(ζi,u[i]) = τi,u[i]
and (di||ei) = ĉti,ξi+κ,sign(u)[i]

⊕ Trun2κ(ζi+κ,sign(u)[i]) =
ρi,sign(u)[i]||σi,sign(u)[i]. On the basis of these, we have

• g1 =
∑

i∈[κ](ci − τi,0)2
i−1 =

∑
i∈[κ] α(u[i])2

i−1 = αu.
• g2 =

∑
i∈[κ](di − ρi,0)2

i−1 =
∑

i∈[κ](sign(u)[i])2
i−1 =

sign(u).
• g3 =

∑
i∈[κ](ei − σi,0)2

i−1 =
∑

i∈[κ] α(sign(u)[i])2
i−1 =

αsign(u).
Since each party holds the authenticated shares of u and
sign(u), we can easily calculate the shares of f(u) =
usign(u), and αf(u). This concludes the proof of cor-
rectness.

Security. Our protocol for non-linear layers has the same
security properties as SIMC, i.e., it is secure against
the malicious client model. We provide the following
theorem and prove it in Appendix E following a similar
logic of SIMC.

Theorem 1. Let (Garble, GCEval) be a garbling scheme with
the properties defined in Section 2.6. Authenticated shares have
the properties defined in Section 2.4. Then our protocol for
non-linear layers is secure against any malicious adversary A
corrupting the client S1.

Proof: Please refer to Appendix E.

5 SECURE INFERENCE

In this section, we describe the details of our secure infer-
ence protocol (called πinf). For simplicity, suppose that
a neural network (NN) consists of alternating linear and
nonlinear layers. Let the specifications of the linear layer
be N1, N2, · · · , Nm, and the nonlinear layer be f1, f2, · · · ,
fm−1. Given an input vector t0, one needs to sequentially
compute ui = Ni · ti−1, ti = fi(ui), where i ∈ [m− 1]. As
a result, we have um = Nm · tm−1 = NN(t0). In secure
inference, the server S0’ input is the weights of all linear
layer, i.e., N1, · · · ,Nm while the input of S1 is t. The goal
of πinf is to learn NN(t0) for the client S1. We provide an
overview of πinf below and give details of the protocol
in Fig. 6.

Our protocol can be roughly divided into two phases:
the evaluation phase and the consistency check phase.
We perform the computation of alternating linear and
nonlinear layers with appropriate parameters in the e-
valuation phase. After that, the server performs a con-
sistency check phase to verify the consistency of the
calculations so far. The output will be released to the
client if the check is successful. Specifically,

• Linear Layer Evaluation: To evaluate the first lin-
ear layer, S0 and S1 execute the function InitLin to
learn (〈u1〉b, 〈r1〉b) for b ∈ {0, 1}, where S0’s inputs
for InitLin are (N1, α) while S1’s input is t0. This
process is to compute the authenticated shares of
u1, i.e., shares of u1 and r1. We use r1 to represent
the authentication of u1. To evaluate the i-th linear
layer (i > 1), S0 and S1 execute the function Lin to
learn (〈ui〉b, 〈ri〉b, 〈zi〉b) for b ∈ {0, 1}, where S0’s
inputs for Lin are (〈ti−1〉0, 〈di−1〉0,Ni, α) while
S1’s inputs are (〈ti−1〉1, 〈di−1〉1). We use di−1 to
denote the authentication on ti−1. Therefore, Lin
outputs shares of ui = Niti−1, ri = Nidi−1 and an
additional tag zi = (α3ti − α2di−1).

• Non-Linear Layer Evaluation: To evaluate the i-th
(i ∈ [m − 1]) non-linear layer, S0 and S1 execute
the function πfi

Non−lin to learn (〈ki〉b, 〈ti〉b, 〈di〉b)
for b ∈ {0, 1}, where S0’s inputs for πfi

Non−lin are
(〈ui〉0, α) while S1’s input is 〈ui〉1, where we use ki

to represent another set of shares of authentication
on ui.

• Consistency Check Phase: The server performs the
following process to check the correctness of the
calculation.
◦ For each i ∈ {2, · · · ,m}, verify that the au-

thentication share entered into the function
Lin is valid by verifying that zi = 0ni−1.

◦ For each i ∈ [m − 1], check that the input of
the function πf

Non−lin is the same as the output
of Lin under the i-th linear layer by verifying
that ri − ki = 0ni .

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

12

Preamble: Consider a neural network (NN) consisting of m linear layers and m − 1 non-linear layers. Let the specifications of the linear layer be N1, N2,
· · · , Nm, and the nonlinear layer be f1, f2, · · · , fm−1.

Input:S0 holds {Nj ∈ F
nj×nj−1
p }j∈[m], i.e., weights for the m linear layers. S1 holds t0 ∈ F

n0
p as the input of NN.

Output: S1 obtains NN(t0).
Protocol:

1. S0 uniformly selects a random MAC key α from Fp to be used throughout the execution of the protocol.
2. First Linear Layer: S0 and S1 execute the function InitLin to learn (〈u1〉b, 〈r1〉b) for b ∈ {0, 1}, where S0’s inputs for InitLin are (N1, α) while

S1’s input is t0.
3. For each j ∈ [m − 1],

Non-Linear Layer fj : S0 and S1 execute the function π
fj
Non−lin to learn (〈kj〉b, 〈tj〉b, 〈dj〉b) for b ∈ {0, 1}, where S0’s inputs for π

fj
Non−lin

are (〈uj〉0, α) while S1’s input is 〈uj〉1.
Linear layer j + 1: S0 and S1 execute the function Lin to learn (〈uj+1〉b, 〈rj+1〉b, 〈zj+1〉b) for b ∈ {0, 1}, where S0’s inputs for Lin are
(〈tj〉0, 〈dj〉0,Nj+1, α) while S1’s inputs are (〈tj〉1, 〈dj〉1).

4. Consistency Check:

◦ For j ∈ [m − 1], S0 selects sj ∈R F
nj
p and s′j ∈R F

nj+1
p . S0 sends (sj , s

′
j) to S1.

◦ S1 computes 〈q〉1 =
∑

j∈[m−1]

(
(〈rj〉1 − 〈kj〉1) · sj + 〈zj+1〉1 · s′j

)
and sends it to S0.

◦ S0 computes 〈q〉0 =
∑

j∈[m−1]

(
(〈rj〉0 − 〈kj〉0) · sj + 〈zj+1〉0 · s′j

)
.

◦ S0 aborts if 〈q〉0 + 〈q〉1 mod p 	= 0. Otherwise, sends 〈um〉0 to S1.
5. Output Phase: S1 outputs 〈um〉0 + 〈um〉1 mod p if S0 did not abort in the previous step.

Fig. 6: Secure inference protocol πinf

Finally, all of the above checks can be combined into a
single check by S0 to pick up random scalars. If the check
passes, the final prediction can be reconstructed by S1,
otherwise S0 aborts and returns the final share to S1.
Correctness. We briefly describe the correctness of our
secure inference protocol πinf . In more detail, we first
have u1 = N1 · t0 and r1 = αu1 by the correctness of
InitLin. Then, for each i ∈ {2, · · · ,m}, we have u1 =
Ni · ti−1, ri = Ni · di−1, and zi = α3ti−1 − α2di−1 by
the correctness of Lin. Furthermore, for each i ∈ [m− 1],
it holds that ki = αui, ti = fi(ui), and di = αfi(ui) by
the correctness of πf

Non−lin. On the other hand, we can
observe that q = 0 since for each i ∈ [m − 1], zi+1 = 0
and ri = ki. Finally, we have um = NN(t0).
Security. Our secure inference protocol has the same
security properties as SIMC, i.e., it is secure against
the malicious client model. We provide the following
theorem.

Theorem 2. Our secure inference protocol πinf is secure
against a semi-honest server S0 and any malicious adversary
A that corrupts the client S1.

Proof: Please refer to Appendix F.

6 PERFORMANCE EVALUATION
In this section, we conduct experiments to demonstrate
the performance of SIMC 2.0. Since SIMC 2.0 is derived
from SIMC [12]2, the most advanced solution for secure
inference under the client-malicious model, we take it
as the baseline to compare computation and communi-
cation overhead. In more detail, we first describe the
performance comparison of these two approaches for
linear layer computation (including matrix-vector com-
putation and convolution), and then discuss their over-
heads in secure computation of non-linear layers. Finally,

2. Code is available at https://aka.ms/simc.

we demonstrate the end-to-end performance advantage
of SIMC 2.0 compared to SIMC for various mainstream
DNN models (e.g., AlexNet, VGG-16, ResNet-18, ResNet-
50, ResNet-100, and ResNet-152).

6.1 Implementation Details
Consistent with SIMC, SIMC 2.0 uses the homomorphic
encryption library provided by SEAL [33] (the maximum
number n of slots allowed for a single ciphertext is set to
4096) to realize the calculation of linear layers, and uses
the components of the garbled circuit in the EMP toolkit
[34] (with the OT protocol that resists active adversaries)
to realize the execution of nonlinear layers. As a result,
SIMC 2.0 provides 128 bits of computational security and
40 bits of statistical security. Like SIMC, our system is
implemented on the 44-bit prime field. Other parameters,
such as the configuration of the zero-knowledge proof
protocol [24] and the random numbers used to verify the
consistency of the calculation, are completely inherited
from the SIMC settings (refer to [12] for more details).
All running times refer to the average of 10 calculations.
Our experiments are carried out in both the LAN and the
WAN settings. LAN is implemented with two worksta-
tions in our lab. The client workstation has AMD EPYC
7282 1.4GHz CPUs with 32 threads on 16 cores and 32GB
RAM. The server workstation has Intel(R) Xeon(R) E5-
2697 v3 2.6GHz CPUs with 28 threads on 14 cores and
64GB RAM. The WAN setting is based on a connection
between a local PC and an Amazon AWS server with
an average bandwidth of 963Mbps and running time of
around 14ms.

6.2 Performance of Linear Layers
We compare the cost of SIMC 2.0 and SIMC in the linear
layer. As mentioned in Section 3.3, given a no × ni-
dimensional matrix and a vector of length ni, the matrix-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

13

vector multiplication in SIMC only produces one cipher-
text, while our method derives ni · no/(l · n) ciphertexts.
The smaller l, the greater the computational advantage
our scheme obtains compared to SIMC. For simplicity of
comparison, we set l = ni · no/(n) to ensure that SIMC
outputs only one ciphertext for matrix-vector multiplica-
tion, which makes SIMC and SIMC 2.0 have exactly the
same communication overhead at the linear layer, so we
can focus on the comparison of computation cost.

6.2.1 Matrix-Vector Multiplication

TABLE II: Cost of matrix-vector multiplication

Dimension Metric
operations Running time (ms)

SIMC SMIC 2.0
SIMC SIMC 2.0 (Speedup)

LAN WAN LAN WAN

1× 4096
Rotation 12 0

14.4 39.9 1.6
(8.8×)

28.5
(1.4×)

ScMult 1 1
Add 12 0

2× 2048
Rotation 11 0

13.4 38.7 3.0
(4.4×)

27.6
(1.4×)

ScMult 1 1
Add 11 0

4× 1024
Rotation 10 0

13.1 38.8 2.98
(4.4×)

27.7
(1.4×)

ScMult 1 1
Add 10 0

8× 512
Rotation 9 0

11.3 36.6 3.8
2.97 (×)

28.1
(1.3×)

ScMult 1 1
Add 9 0

16× 256
Rotation 8 0

10.8 36.5 3.01
(3.5×)

28
(1.3×)

ScMult 1 1
Add 8 0

32× 128
Rotation 7 0

10.1 35.7 3.1
(3.3×)

29.1
(1.2×)

ScMult 1 1
Add 7 0

TABLE II provides the computation complexity of
SIMC and SIMC 2.0 for matrix-vector multiplication with
different matrix dimensions. We observe that SIMC 2.0
greatly reduces the number of most expensive rotation
operations (zero time) in HE while SIMC requires up to
12 operations (which can be calculated using the formu-
las in TABLE I). In addition, SIMC 2.0 is very friendly
to other homomorphic operations, including addition
and multiplication. For example, the execution process
involves only one multiplication compared to SIMC. The
running time is also provided in TABLE II, which quan-
tifies the entire time cost for one inference session, in-
cluding client processing, server processing, and network
latency. We observe that in the LAN setting, SIMC 2.0 can
achieve speedup of up to 8.8× for matrix-vector multi-
plication of different dimensions. This is mainly due to
our optimization strategy for this operation. Specifically,
we first divide the server’s original no × ni-dimensional
weight matrix into multiple submatrices and calculate
each submatrix separately. It can effectively reduce the
number of rotations required for the client’s ciphertext
from no − 1 to l − 1. Then we convert the subsequent
rotation operations by summing in the ciphertext into
the plaintext (see Section 3.3), thereby removing all the
homomorphic rotation operations required at this stage.

We observe that the speedup of SIMC 2.0 is relatively
smaller under the WAN setting, which is mainly caused
by the communication latency between the local client

and the cloud server. This dominates the total running
time compared to the computation cost of the lightweight
HE. Particularly, the running time is round 14 millisec-
onds in our setting, while the optimized HE in SIMC 2.0
only takes about 1 to 3 milliseconds.

6.2.2 Convolution Computation
The complexity and running time of the convolution
operation for different input sizes and kernel sizes are
provided in TABLE III, where the encrypted input is a
data sample of size uw×uh with ci channels (denoted as
uw × uh@ci) and the server holds kernels with the size
of kw × kh@co and ci channels per kernel. We observe
that our method substantially reduces the number of
rotation operations required to compute the convolution
compared to SIMC. For example, SIMC 2.0 reduces the
number of rotation operations by up to 127× compared
to SIMC, given the input size of 16 × 16@2048 and
the kernel size of 1 × 1@512. This benefits from our
designed kernel grouping method, which reduces the
most expensive rotation operation by a factor of ci

cn
(refer

to Appendix D for more details). The results indicate that
a large speedup can be obtained if the input has more
channels and a small kernel size. This is very beneficial
for modern models that commonly have such character-
istics. For the running time, it is obvious that our method
significantly accelerates the inference execution. In more
detail, in the LAN setting, SIMC 2.0 achieves speedups
of 5.7×, 17.4×, 2.5×, and 1.7× compared to SIMC. In the
WAN setting, SIMC 2.0 also shows similar performance
superiority.

TABLE III: Cost of convolution computation

Input Kernel Metric
#operations Running time (s)

SIMC Ours
SIMC SIMC 2.0 (Speedup)

LAN WAN LAN WAN

16× 16
@128

1× 1
@128

Rotation 960 120
1.3 1.4 0.23

(5.7×)
0.35

(4.0×)
ScMult 1024 1024

Add 1016 1016

16× 16
@2048

1× 1
@512

Rotation 61140 480
79.9 81.0 4.60

(17.4×)
5.13

(15.8×)
ScMult 65536 65536

Add 65504 65504

16× 16
@128

3× 3
@128

Rotation 1024 184
2.6 2.8 1.04

(2.5×)
1.22

(2.3×)
ScMult 9216 9216

Add 9208 9208

16× 16
@2048

5× 5
@64

Rotation 10752 3132
41.3 42.0 24.3

(1.7×)
26.3

(1.6×)
ScMult 204800 204800

Add 204796 204796

6.3 Performance of Non-linear Layers
We compare the computation and communication over-
heads of SIMC and our SIMC 2.0 in the implementation
of non-linear layers. We mainly show the cost required
by the two schemes to securely execute different num-
bers of ReLU functions.

6.3.1 Computation Overhead
Fig. 7(a) and 7(b) show the running time of SIMC and
SIMC 2.0 for different numbers of ReLU functions in the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

14

LAN and WAN settings, respectively. We observe that
SIMC 2.0 reduces the running time by about one-third
compared to SIMC. Our improvement mainly comes
from the optimization mechanism designed for the com-
putation of non-linear layers. As mentioned earlier, com-
pared to SIMC, we only encapsulate the non-linear part
of ReLU into the GC. The goal of this strategy is to
substantially reduce the number of AND gates required
in the GC (AND operations are usually expensive in the
GC). For example, given GC’s security parameter λ = 128
bits and 44-bit prime field, SIMC needs 249 AND gates to
calculate ReLU, while we only need 161 AND gates. This
saves 88 AND gate operations! Moreover, the alternative
protocol we designed is also resource-friendly, requiring
only the server and client to exchange two elements and
perform simple mathematical operations locally.

6.3.2 Communication Overhead
Fig. 7(c) provides the communication overhead incurred
by SIMC and our method in computing different num-
bers of ReLU functions. We observe that SIMC 2.0 re-
duces the communication overhead of SIMC by approx-
imately one-third. This also benefits from our optimized
GC to perform non-linear operations. In more detail,
given GC’s security parameter λ = 128 bits and 44-bit
prime field, SIMC requires to communicate 11.92 KB data
to perform one ReLU. In contrast, since our optimized
GC saves about 88 AND gates, which needs 2.69 KB
communication data for each ReLU, our SIMC 2.0 only
requires 9.21 KB data transfer for each ReLU. Note that
such communication advantages are non-trivial since
mainstream DNN models usually contain tens of thou-
sands of ReLU functions.

6.4 Performance of End-to-end Secure Inference
Finally we compare the computation and communication
costs of SIMC and SIMC 2.0 for different complete DNN
models. We employ 7 ML models in our experiments:
(1) a multi-layer perceptron with the network structure
of 784-128-128-10, which is often used for benchmarking
private-preserving model deployment (e.g., SecureML
[5], MiniONN [35], GAZELLE). This model is trained
with the MNIST dataset. (2) Some mainstream CN-
N models: AlexNet[36], VGG-16 [37], ResNet-18 [38],
ResNet-50 [38], ResNet-101 [38], and ResNet-152 [38].
These models are trained over the CIFAR-10 dataset.

TABLE IV provides the computation complexity of
SIMC and our method for different models. It is clear
that SIMC 2.0 reduces the number of rotation operations
in SIMC by 16.5×, 29.4×, 24.6×, 39.9×, 34.6× and 50.5×
for AlexNet, VGG-16, ResNet-18, ResNet-50, ResNet-10,
and ResNet-152, respectively. The fundamental reason
for this improvement is that our designed optimization
technique is for HE-based linear operations. We observe
that SIMC 2.0 does not significantly reduce the number
of rotation operations in the MLP model. It stems from
the small ratio between the number of slots and the

TABLE IV: Cost of end-to-end model inference

Model Metric
#operations Running time (s) Comm. (GB)

SIMC Ours
SIMC SIMC 2.0 (Speedup)

SIMC OursLAN WAN LAN WAN

MLP
Rotation 70 55

0.14 0.21 0.11
(1.3×)

0.18
(1.2×)

<0.01 <0.01ScMult 56 56
Add 70 55

AlexNet
Rotation 72549 4394

81.0 85.8 35.2
(2.3×)

47,7
(1.8×)

0.42 0.29ScMult 931977 931977
Add 931643 931630

VGG-16
Rotation 315030 10689

72.4 97.6 34.5
(2.1×)

54.2
(1.8×)

5.81 4.13ScMult 3677802 3677802
Add 3676668 3676654

ResNet-18
Rotation 234802 9542

77.1 118.3 35.0
(2.2×)

65.6
(1.8×)

4.27 3.04ScMult 2737585 2737585
Add 2736632 2736624

ResNet-50
Rotation 2023606 50666

434.8 683.9 111.3
(3.9×)

296.4
(2.3×)

29.50 21.00ScMult 5168181 5168181
Add 5162524 5162518

ResNet-101
Rotation 3947190 113770

802.3 1195.2 186.5
(4.3×)

478.1
(2.5×)

46.13 31.85ScMult 9903157 9903157
Add 9890972 9890964

ResNet-152
Rotation 5533878 169450

1209.21780.1 274.8
(4.4×)

684.6
(2.6×)

64.25 46.28ScMult 1380254913802549
Add 1378460413784596

dimension of the output in the MLP, which limits the per-
formance gain. TABLE IV also shows the running time
and the corresponding speedup of our scheme. Since we
substantially reduce the number of expensive rotation
operations in the linear layer, and design an optimized
GC for the nonlinear layer, our method obtains speedups
of 2.3×, 2.1×, 2.2×, 3.9×, 4.3× and 4.4× for AlexNet,
VGG-16, ResNet-18, ResNet-50, ResNet-101, and ResNet-
152, respectively, under the LAN Setting. A similar per-
formance boost is obtained under the WAN setting. Due
to network latency in the WAN, the running time of both
SIMC and our method is inevitably increased. This can
reduce the performance advantage of SIMC 2.0, but our
solution is still better than SIMC.

It has been demonstrated that for the HE-GC based
secure inference model, the communication overhead
caused by the non-linear layer dominates the commu-
nication in SIMC (refer to Seciton 5 in SIMC [12]). In
our experiments, the communication cost of linear layers
in SIMC 2.0 remains consistent with SIMC, while the
overhead of nonlinear layers is reduced by two-thirds.
Therefore, we observe that the size of communication
data required by SIMC 2.0 is still smaller than that of
SIMC, remaining approximately between 2/3 ∼ 3/4 and
the original size, depending on the model size. For exam-
ple, for the ResNet-152 model, SIMC requires to transfer
64.25 GB data to perform an inference process while
our SIMC 2.0 saves about 18GB in the communication
overhead, which is quite impressive.

6.5 Comparison with other state-of-the-art work
We find a recent work by Cheetah [20], which provides a
state-of-the-art homomorphic encryption-based solution
for linear layer operations in neural networks. In order
to distinguish our work from that of Cheetah, here
we first demonstrate the difference in technical design

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

15

LAN setting

210 211 212 213 214 215 216 217 218

Number of ReLU

1000
2000
3000
4000
5000
6000
7000
8000

 R
un

ni
ng

 ti
m

e
(m

s)

SIMC
SIMC 2.0

(a)

WAN setting

210 211 212 213 214 215 216 217 218

Number of ReLU

0.5

1

1.5

2

2.5

3

 R
un

ni
ng

 ti
m

e
(m

s)

104

SIMC
SIMC 2.0

(b)

210 211 212 213 214 215 216 217 218

Number of ReLU

500

1000

1500

2000

2500

 C
om

m
un

ic
at

io
n

co
st

 (M
B

)

SIMC
SIMC 2.0

(c)

Fig. 7: Comparison of the nonlinear layer overhead. (a) Running time under the LAN setting. (b) Running time under
the WAN setting. (c) Communication overhead with different numbers of ReLU functions.

of the two methods, and experimentally compare the
performance of the two methods in terms of computation
and communication overhead.

Theoretical Difference. Cheetah encodes the plain-
text vector onto a polynomial, where each coefficient
of the polynomial represents a plaintext element. In
contrast, in the original homomorphic encryption, the
combination of all coefficients of a polynomial represents
only one plaintext element. For instance, let us consider
the matrix-vector inner product operation. Cheetah uses
the principle of polynomial multiplication, where some
coefficients of the new polynomials obtained after mul-
tiplication are the inner products between the rows of
the matrix and the vectors. Cheetah then extracts the
corresponding coefficients of the polynomial using the
conversion technique between LWE ciphertext and RL-
WE ciphertext, which yields the desired result. Similarly,
Cheetah performs convolution operations following the
same principles described above but with specific opti-
mizations. Consequently, Cheetah only involves multipli-
cation operations and eliminates all rotation operations
when performing linear operations on machine learning
models.

In contrast, our method does not alter any primitives
in homomorphic encryption. Instead, we focus on ex-
ploiting the intrinsic connection between secret sharing
and homomorphic encryption to design optimization
methods that minimize the number of rotations required
in linear computation. For example, when performing
the inner product operation between a matrix and a
vector, we leverage the property of secret sharing to
transform the rotation operation in a large number of
ciphertexts from the ciphertext to the plaintext environ-
ment. Specifically, the ciphertext output from the fully
connected (FC) layer is secretly shared with the client
and server, and used as the input of the next nonlinear
layer function. Since the shares are in plaintext, we
can entirely convert the rotation followed by addition
to be performed under plaintext. This transformation

TABLE V: Comparison of matrix-vector multiplication

Dimension
Running time (ms) Comm.(MB)

Cheetah SIMC 2.0 Cheetah SIMC 2.0LAN WAN LAN WAN
1024 × 2048 179 201 413 428 1.84 0.51
512 × 1024 48 67 103 121 0.62 0.16

TABLE VI: Comparison of convolution computation

Input Kernel
Running time (s) Comm.(MB)

Cheetah SIMC 2.0 Cheetah SIMC 2.0LAN WAN LAN WAN
224 × 224

@3
3 × 3
@64

2.27 2.59 3.14 3.59 51.63 71.06

56 × 56
@64

1 × 1
@256

0.91 1.23 1.82 2.47 15.51 27.07

56 × 56
@256

1 × 1
@64

0.81 1.14 2.13 2.77 17.13 43.02

significantly reduces the computational complexity.
Quantitative Comparison. We also conducted exper-

imental comparisons between the computational and
communication overheads of the two schemes in per-
forming linear operations (shown in TABLE V and TA-
BLE VI). Our observations show that Cheetah outper-
forms our SIMC 2.0 in terms of computational overhead.
The primary reason is that Cheetah entirely eliminates
the rotation operation in the linear homomorphic oper-
ation, whereas our method still requires some rotation
operations. Additionally, the communication overhead
required by Cheetah in the convolution process is lower
than that of our method, primarily due to the lightweight
plaintext encoding method designed by Cheetah, reduc-
ing the size of the ciphertext sent by the server to the
user. However, the communication overhead of SIMC 2.0
in the matrix-vector multiplication operation is signifi-
cantly lower than that of Cheetah. This is because SIMC
uses Single Instruction Multiple Data (SIMD) technology
to maximize the use of plaintext slots, while the same
operation in Cheetah has to sacrifice many redundant

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

16

coefficient items, thus requiring the server to send more
ciphertext to the user.

We would like to clarify that although Cheetah is gen-
erally more efficient than SIMC 2.0 in linear operations,
applying Cheetah to our scenario requires substantial
modification of SIMC 2.0. This is primarily because Chee-
tah operates on rings, whereas our optimization methods
for nonlinear operations operate on the field of prime
numbers. Therefore, if we want to use Cheetah to replace
the linear part of SIMC 2.0, non-trivial modifications
to the protocol of the nonlinear part in SIMC 2.0 are
necessary to accommodate ring distributions. While this
is an interesting problem, we currently do not have a
good solution and leave it for future work.

7 CONCLUSION
In this paper, we proposed SIMC 2.0, which significantly
improves the performance of SIMC for secure ML infer-
ence in a threat model with a malicious client and honest-
but-curious server. We designed a new coding method
to minimize the number of costly rotation operations
during homomorphic parallel matrix and vector com-
putations in the linear layers. We also greatly reduced
the size of the GC in SIMC to substantially speed up
operations in the non-linear layers. In the future, we will
focus on designing more efficient optimization strategies
to further reduce the computation overhead of SIMC 2.0,
to make secure ML inference more suitable for a wider
range of practical applications.

ACKNOWLEDGMENT
This work was supported in part by Singapore Ministry
of Education (MOE) AcRF Tier 2 MOE-T2EP20121-0006.

REFERENCES
[1] J. Katz, S. Ranellucci, and et al, “Optimizing authenticated

garbling for faster secure two-party computation,” in Annual
International Cryptology Conference(CRYPTO). Springer, 2018, pp.
365–391.

[2] X. Wang, A. J. Malozemoff, and J. Katz, “Faster secure two-party
computation in the single-execution setting,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques(EUROCRYPT). Springer, 2017, pp. 399–424.

[3] D. Rathee, M. Rathee, and et al, “Cryptflow2: Practical 2-party
secure inference,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020, pp. 325–342.

[4] A. Patra, T. Schneider, and et al, “Aby2. 0: Improved mixed-
protocol secure two-party computation,” in USENIX Security
Symposium, 2021.

[5] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in 2017 IEEE symposium
on security and privacy (S&P). IEEE, 2017, pp. 19–38.

[6] G. Xu, G. Li, S. Guo, T. Zhang, and H. Li, “Secure decentralized
image classification with multiparty homomorphic encryption,”
IEEE Transactions on Circuits and Systems for Video Technology
(TCSVT), 2023.

[7] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proceedings of the 2012 ACM conference on Computer
and communications security (CCS), 2012, pp. 784–796.

[8] R. LaVigne, C.-D. Liu-Zhang, and et al, “Topology-hiding compu-
tation beyond semi-honest adversaries,” in Theory of Cryptography
Conference (TCC). Springer, 2018, pp. 3–35.

[9] S. U. Hussain, M. Javaheripi, and et al, “Coinn: Crypto/ml code-
sign for oblivious inference via neural networks,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2021, pp. 3266–3281.

[10] Q. Lou and L. Jiang, “Hemet: A homomorphic-encryption-
friendly privacy-preserving mobile neural network architecture,”
in International Conference on Machine Learning (ICML). PMLR,
2021, pp. 7102–7110.

[11] R. Lehmkuhl, P. Mishra, and et al, “Muse: Secure inference
resilient to malicious clients,” in USENIX Security Symposium,
2021.

[12] N. Chandran, D. Gupta, and et al, “Simc: Ml inference secure
against malicious clients at semi-honest cost,” in USENIX Security
Symposium, 2022.

[13] A. Patra and A. Suresh, “Blaze: Blazing fast privacy-preserving
machine learning,” in Proceedings of the Network and Distributed
System Security (NDSS), 2020.

[14] I. Damgård, D. Escudero, and et al, “New primitives for actively-
secure mpc over rings with applications to private machine
learning,” in IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019, pp. 1102–1120.

[15] D. Escudero, S. Ghosh, and et al, “Improved primitives for mpc
over mixed arithmetic-binary circuits,” in Annual International
Cryptology Conference (CRYPTO). Springer, 2020, pp. 823–852.

[16] C. Hazay and A. Yanai, “Constant-round maliciously secure two-
party computation in the ram model,” Journal of Cryptology,
vol. 32, no. 4, pp. 1144–1199, 2019.

[17] P. Mishra, R. Lehmkuhl, and et al, “Delphi: A cryptographic
inference service for neural networks,” in USENIX Security Sym-
posium, 2020, pp. 2505–2522.

[18] Q. Zhang, C. Xin, and H. Wu, “Gala: Greedy computation for lin-
ear algebra in privacy-preserved neural networks,” in Proceedings
of the Network and Distributed System Security (NDSS), 2021.

[19] S. Sav, A. Pyrgelis, and et al, “Poseidon: Privacy-preserving
federated neural network learning,” in Proceedings of the Network
and Distributed System Security (NDSS), 2021.

[20] Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and
fast secure two-party deep neural network inference,” USENIX
Security Symposium, 2022.

[21] X. Jiang, M. Kim, and et al, “Secure outsourced matrix compu-
tation and application to neural networks,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2018, pp. 1209–1222.

[22] Z. Huang, C. Hong, W.-j. Lu, C. Weng, and H. Qu, “More effi-
cient secure matrix multiplication for unbalanced recommender
systems,” IEEE Transactions on Dependable and Secure Computing
(TDSC), 2021.

[23] C. Juvekar, V. Vaikuntanathan, and et al, “{GAZELLE}: A low
latency framework for secure neural network inference,” in
USENIX Security Symposium, 2018, pp. 1651–1669.

[24] H. Chen, M. Kim, and et al, “Maliciously secure matrix multipli-
cation with applications to private deep learning,” in International
Conference on the Theory and Application of Cryptology and Informa-
tion Security(ASIACRYPT). Springer, 2020, pp. 31–59.

[25] N. Chandran, D. Gupta, and et al, “Ezpc: programmable and
efficient secure two-party computation for machine learning,”
in IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 496–511.

[26] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework
for efficient mixed-protocol secure two-party computation.” in
Proceedings of the Network and Distributed System Security (NDSS),
2015.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

17

[27] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in Proceed-
ings of the ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2017, pp. 21–37.

[28] C. Gentry, A fully homomorphic encryption scheme. Stanford
university, 2009.

[29] S. Halevi and V. Shoup, “Algorithms in helib,” in Annual Cryp-
tology Conference (CRYPTO). Springer, 2014, pp. 554–571.

[30] M. Keller, E. Orsini, and P. Scholl, “Actively secure ot extension
with optimal overhead,” in Annual Cryptology Conference (CRYP-
TO). Springer, 2015, pp. 724–741.

[31] Z. Ghodsi, N. K. Jha, B. Reagen, and S. Garg, “Circa: Stochastic
relus for private deep learning,” Advances in Neural Information
Processing Systems(NeurIPS), vol. 34, 2021.

[32] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer, 2015, pp. 220–
250.

[33] “Microsoft SEAL (release 3.3),” https://github.com/Microsoft/
SEAL, Jun. 2019, microsoft Research, Redmond, WA.

[34] X. Wang, A. J. Malozemoff, and J. Katz, “Emp-toolkit: Ef-

ficient multiparty computation toolkit,” https://github.com/
emp-toolkit, 2016.

[35] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the
2017 ACM SIGSAC conference on computer and communications
security (CCS), 2017, pp. 619–631.

[36] W. Yu, K. Yang, and et al, “Visualizing and comparing alexnet
and vgg using deconvolutional layers,” in Proceedings of the
International Conference on Machine Learning (ICML), 2016.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), 2016, pp. 770–778.

[39] Y. Lindell, “How to simulate it–a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography, pp. 277–
346, 2017.

[40] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making spdz
great again,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques(EUROCRYPT). Springer,
2018, pp. 158–189.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288557

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 29,2023 at 02:57:54 UTC from IEEE Xplore. Restrictions apply.

