
1

A Comprehensive Defense Framework against
Model Extraction Attacks

Wenbo Jiang, Student Member, IEEE, Hongwei Li (Corresponding author), Senior Member, IEEE,
Guowen Xu, Member, IEEE, Tianwei Zhang, Member, IEEE, and Rongxing Lu, Fellow, IEEE

Abstract—As a promising service, Machine Learning as a Service (MLaaS) provides personalized inference functions for clients through
paid APIs. Nevertheless, it is vulnerable to model extraction attacks, in which an attacker can extract a functionally-equivalent model
by repeatedly querying the APIs with crafted samples. While numerous works have been proposed to defend against model extraction
attacks, existing efforts are accompanied by limitations and low comprehensiveness. In this paper, we propose AMAO, a comprehensive
defense framework against model extraction attacks. Specifically, AMAO consists of four interlinked successive phases: adversarial
training is first exploited to weaken the effectiveness of model extraction attacks. Then, malicious query detection is used to detect
malicious queries and mark malicious users. After that, we develop a label-flipping poisoning attack to instruct the adaptive query
responses to malicious users. Besides, the image pHash algorithm is employed to ensure the indistinguishability of the query responses.
Finally, the perturbed results are served as a backdoor to verify the ownership of any suspicious model. Extensive experiments
demonstrate that AMAO outperforms existing defenses in defending against model extraction attacks and is also robust against the
adaptive adversary who is aware of the defense.

Index Terms—Machine-learning-as-a-service, Model extraction attacks, Deep learning.

F

1 INTRODUCTION

Deep learning has been investigated quite intensively in
recent years and achieved very noticeable success in many
application domains, e.g., speech recognition [1], image
recognition [2], and autonomous vehicles [3]. To facilitate
the deployment of machine learning services, many tech gi-
ants, such as Google [4], Amazon [5], Microsoft [6] and IBM
[7], have launched their cloud-based Machine-Learning-as-
a-Services (MLaaS). As shown in Fig 1, users can access
machine learning prediction services through the published
APIs and they are freed from the trouble of complicated
local training. The well-trained deep learning models in
MLaaS are considered valuable intellectual properties be-
cause of the substantial computing and storage resources
for training a model.

Nevertheless, recent studies have demonstrated that
well-trained deep learning models in MLaaS are vulnerable
to model extraction attacks [8], [9], [10], [11], [12], [13],
[14]. As depicted in Fig 2, a model extraction attack tries
to reconstruct a substitute model with similar functionality
as the original model (referred to as the victim model) via
prediction APIs. Specifically, the attacker queries the victim
model iteratively using carefully-crafted samples (or surro-
gate samples) to obtain the returned results (this is practical
due to acceptable charges of commercial APIs). Then these

• W. Jiang, H. Li are with the School of Computer Science and En-
gineering, University of Electronic Science and Technology of China,
Chengdu 611731, China (e-mail: wenbo jiang@outlook.com, hongweil-
i@uestc.edu.cn).

• G. Xu and T. Zhang are with School of Computer Science and Engineer-
ing, Nanyang Technological University, Singapore (e-mail: guowen.xu,
tianwei.zhang@ntu.edu.sg).

• R. Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB, Canada E3B 5A3 (e-mail: RLU1@unb.ca).

Customer

Service provider
End user

Service provider

training data

training code

query data

query result

Fig. 1: Machine-Learning-as-a-Service

Attacker

Victim

Model
Stolen

Model

Query

Response

 Similar functionality

Fig. 2: Model extraction attack

query-output pairs are used as training data to reconstruct
a substitute model. Generally, model extraction attacks have
the following potential threats: (a) reconstructing the victim
model [8], [10], [11]: the attacker may create a local copy
of the victim model that replicates the performance of the
victim model as closely as possible. This will undermine the
intellectual property of MLaaS providers because the attack-
er does not have to pay any more for queries; (b) conducting
an adversarial attack [15], [16], [17], [18]: through extracting
the victim model, the attacker can obtain the parameters
similar to the victim model and adversarial attacks can be
facilitated significantly easily in this scenario; (c) launching
privacy attacks such as the membership attack [19], model

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

2

inversion attack [20] and property inference attack [21]:
these privacy attacks are more effective with the availability
of a white-box model (via model extraction) than a black-
box one.

Recently, considerable works [10], [22], [23], [24], [25],
[26], [27], [28] have been devoted to defending against
model extraction attacks and they can be mainly divided
into three categories: behavior detection, prediction with pertur-
bations and model watermarking. Behavior detection [10], [22]
mainly focuses on the query phase of the user. The model
owner analyzes the behaviors (such as the distribution of
queries) of all users to distinguish potential malicious users.
Prediction with perturbations [23], [24], [25], [26] is exploited
in the response phase. The model owner always returns the
perturbed prediction results to users, which can significant-
ly reduce the performance of the substitute model if it is
trained with the perturbed results. Model watermarking [27],
[28] is a post hoc defense against model extraction, which
can verify the legitimacy of the stolen model.

However, existing efforts still have some limitations: in
terms of behavior detection, an adversary may bypass the
detection of [10] by involving multiple colluded malicious
users or querying the victim model with surrogate samples
(refer to Section 5.6.1 for more details); the overconfidence
of classifiers may reduce the detection accuracy of the
detection method proposed in [23] (refer to Section 4.3 for
more details). We solve these limitations by employing the
temperature-scaled maximum softmax probability to detect
malicious queries. As for prediction with perturbations, prior
work proposed to return malicious users with a random
label [27], or add perturbations to all output predictions
but ensure the predicted labels remain unchanged [25],
or train a reverse model to output perturbed predictions
for malicious users [23]. We propose an adaptive response
strategy based on label-flipping poisoning attack, which can
significantly improve the defensive effect. In terms of model
watermarking, an adversary may know the existence of the
model watermarking scheme (such as [27]) by querying the
victim model with one sample and its transformed versions
[12], [29], [30]. We address this problem by employing the
image pHash (Perceptual Hash) algorithm to ensure the
indistinguishability of the output results, which makes the
defense more imperceptible to the adversary. Besides, none
of the existing work considers the training phase of MLaaS
for defense. We demonstrate in this work that employing
adversarial training during the training phase can further
decrease the attack effect of model extraction attacks.

To sum up, we develop AMAO, a comprehensive de-
fense framework that has countermeasures against model
extraction attacks for every phase of the model pipeline
from training, prediction to release. AMAO consists of four
successive phases: adversarial training, malicious query de-
tection, adaptive query response and ownership verifica-
tion. Specifically, adversarial training is utilized to weaken
the effect of the attack, which forces an adversary to submit
more malicious queries to achieve the desired attack goal.
As a result, the adversary will be more easily detected by the
subsequent detection phase. After that, an adaptive query
response strategy is employed to instruct the victim model
to reply to the malicious user with perturbed results. The
perturbed results can not only mitigate the attack but also

prepare for the subsequent ownership verification. Finally,
the ownership can be verified through these perturbed
sample-label pairs. Each phase of AMAO is designed with
a competitive defense strategy, which enables the phases
to promote each other and demonstrate the best overall
defense capabilities. In short, our contributions can be e-
laborated in four aspects:
• We propose a comprehensive defense framework a-

gainst model extraction attacks. In the defense frame-
work, for the first time, we introduce the use of ad-
versarial training to defend against model extraction
attacks. Specifically, we analyze the reason why adver-
sarial training can decrease the effect of model extrac-
tion attacks and demonstrate it through experiments.

• We point out the limitation of the detection methods
proposed in [10] and [23], and employ the temperature-
scaled maximum softmax probability as the metric to
detect malicious queries. The detection method out-
performs existing detection schemes and is also robust
against the adaptive adversary who involves multiple
colluded malicious users or employs surrogate samples
as malicious queries.

• We propose an adaptive response strategy based on a
label-flipping poisoning attack to perturb the results
received by malicious users, thus reducing the effec-
tiveness of model extraction attacks. Besides, the image
pHash (Perceptual Hash Algorithm) is employed to
ensure the indistinguishability of the output results.

• We conduct extensive experiments to evaluate the ef-
fectiveness of AMAO. The experimental results demon-
strate the superiority of AMAO over state-of-the-art de-
fenses against model extraction attacks including JBDA-
TR [10], Cloudleak [12] and KnockoffNet [11]. Besides,
experimental results show that AMAO is also robust
against a variety of adaptive adversary scenarios.

The rest of this paper proceeds as follows: the prelim-
inaries of this work are presented in Section 2. Section 3
describes our adversary model. Section 4 presents the details
of AMAO. Experimental evaluation is shown in Section 5.
Finally, Section 6 discusses the limitations of the proposed
defense and Section 7 concludes the paper.

2 PRELIMINARIES

2.1 Model extraction attacks

There have been a lot of model extraction attacks in stealing
various aspects of a victim model, such as functionality [8],
[10], [11], [12], [13], [18], [29], [31], hyperparameters [9] and
architecture [32], [33]. In this work, we focus on function-
ality stealing, i.e., the goal of the attacker is to reconstruct
a substitute model with similar functionality as the victim
model. Specifically, the strategies of model functionality
stealing attack can be divided into two categories according
to the adversary’s knowledge of the training data.

As for the scenario where the adversary knows a small
portion of the training data, the adversary usually employs
various methods (e.g., adversarial attack and data augmen-
tation) to expand this small dataset and uses the expanded
dataset as the query samples. For example, Papernot et al.
[18] proposed Jacobian-Based Dataset Augmentation (JBDA),

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

3

which constructed a synthetic dataset by iteratively aug-
menting an initial dataset of seed samples. Each synthetic
sample is generated by a perturbed sample in the dataset
using the jacobian of the substitute model’s loss function.
Then, the synthetic dataset is sent to the victim model
for labeling and the substitute model is retrained with the
labeled synthetic dataset. Juuti et al. [10] pointed out that
the synthetic samples generated by JBDA tended to overlap,
and did not contribute new information about the victim
model. Thus, they proposed JBDA-TR, which mitigates this
overlapping behavior by employing targeted randomly cho-
sen iterative FGSM [34]. Yu et al. [12] developed Cloudleak,
which employs a feature-based adversarial attack [35] to
generate synthetic samples to gain more information of the
victim model. Besides, Cloudleak also selects the substitute
model from candidate Model Zoo [36] and uses transfer
learning methods to retrain it with the obtained sample-
label pairs.

As for the scenario where the adversary has no knowl-
edge of the training data, the adversary usually selects (or
generates) query samples from a surrogate dataset. For in-
stance, Orekondy et al. [11] proposed KnockoffNet, which used
surrogate data to query the victim model and trained the
substitute model. Pal et al. [13] and Gong et al. [29] employed
active learning to efficiently select query samples from a
surrogate dataset. Truong et al. [31] generated query samples
from the surrogate dataset using Generative Adversarial
Networks (GAN). The effectiveness of this type of model
stealing attacks depends heavily on the selection of the
surrogate dataset.

In this work, we evaluate our defense against three state-
of-the-art model extraction attacks JBDA-TR [10], Cloudleak
[12] and KnockoffNet [11].

2.2 Defenses against model extraction attacks

The previous defenses against model extraction can be
broadly divided into three categories:
Behavior detection aims to distinguish malicious queries
or malicious users by analyzing the queries received by the
victim model. For instance, Juuti et al. [10] proposed to detect
malicious queries by evaluating the L2 distance between
successive queries. Kariyappa et al. [23] treated malicious
queries as OOD (out-of-distribution) samples and employed
OOD detection methods to identify them.
Prediction with perturbations reduces the effect of model
extraction attacks by returning perturbed predictions. For
example, Lee et al. [25] proposed a defense method that
added noise to the output of the victim model, thereby
degrading the effectiveness of model extraction attacks.
Orekondy et al. [26] also proposed adding perturbations to
the outputs, where the perturbations can be solved by a
bilevel optimization problem. [23] trained a reverse mod-
el by minimizing a reverse cross-entropy loss to produce
perturbed predictions and replied the perturbed results to
malicious users.
Model watermarking is a technique to protect the intellectu-
al property of a commercial model. Traditional DNN water-
marking schemes [37], [38] train the model with pre-defined
sample-label pairs. In this way, these sample-label pairs
are embedded as watermarks into this model. The model

owner can verify the legitimacy of a suspicious model by
querying the suspicious model with these customized sam-
ples and checking whether it outputs the pre-defined labels.
However, this method is inefficient in defending against
model extraction attacks, because the adversary obtains the
substitute model through training (under its query-output
pairs) rather than directly copying model parameters. To
combat that, several improvements have been proposed to
verify the legitimacy of the extracted model. For instance,
Szyller et al. [27] proposed a watermarking scheme against
model extraction attacks. They changed the responses of a
small subset of queries through a hash function and used
this dataset as a watermark to verify the ownership of the
model; Jia et al. [39] proposed a watermarking scheme that
embedded watermarks into the victim model during the
training phase. It is not only robust against model extraction
attacks, but also effective in mitigating backdoor attacks
[40].

2.3 Adversarial samples and adversarial training

An adversarial sample (or adversarial example) refers to
a specially crafted input that is perturbed by hardly per-
ceptible perturbations and induces a misclassification by
a machine learning model. There are numerous methods
to generate adversarial samples, we introduce two rep-
resentative techniques as follows (which are used in our
experiments).

Fast Gradient Sign Method (FGSM) [34] uses the gradients
of the loss function to create an adversarial sample:

xadv = x+ ε ∗ sign (∇xJ(x, y)) (1)

where ∇ denotes the gradient, J is the loss function that
measures the classification error in the machine learning
algorithm, xadv denotes the adversarial image, x is the clean
sample and y is the corresponding label of x, ε is the step
size of the perturbations and sign indicates the sign of the
perturbations.

Project Gradient Descent (PGD) [41] can be regarded as an
iterative version of FGSM. It initializes the adversarial sam-
ple by adding a random perturbation within the allowed
norm ball to the original sample. Then, it updates the ad-
versarial sample employing FGSM repeatedly. During each
iteration, the adversarial sample will clip to the specified
range. PGD can be summarised in the following formula:

x(t+1) = Πx+S

(
x(t) + ε ∗ sign

(
∇x(t)J(x(t), y)

))
(2)

where x(t) denotes the adversarial sample of the t-th itera-
tion. Πx+S means that if the perturbations of the adversarial
sample exceeds a certain range, it must be mapped back to
the specified range x+ S .

Adversarial training [34] is one of the most effective
defenses to mitigate adversarial attacks. It adds adversarial
samples into the training dataset, thereby making the model
more robust against adversarial samples. Madry et al. [41]
defined the principle of adversarial training as the following
Min-Max formula:

min
θ

E(x,y)∼D

[
max
radv∈S

L (θ, x+ radv, y)

]
(3)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

4

the internal max is to find the worst perturbation to max-
imize the loss function, where x + radv denotes the adver-
sarial sample with a perturbation radv , y denotes the label
of the sample, θ is the parameters of the model, L is the
loss function of the adversarial sample and S is the range
space of the perturbation; the external min is to find the
most robust model parameters based on this attack method,
where D is the distribution of the input samples.

3 ADVERSARY MODEL

3.1 Adversary objective
The goal of model stealing attacks can be divided into three
categories: architecture stealing [32], [33], hyperparameter
stealing [9] and functionality stealing. This work focuses on
functionality stealing, i.e., the attacker intends to achieve
high performance of the substitute model. We take both test
accuracy and fidelity as metrics to evaluate the performance
of the substitute model (the two metrics are widely adopted
in the previous model stealing attacks [8], [10], [11], [42]):
• Test accuracy refers to the accuracy of the extracted model
f ′ on the test set Dtest of the victim model. This goal may
be of interest to a theft-motivated adversary who wants to
create a local copy of the victim model. After replicating
the functionality of the victim model, the adversary does
not have to pay any more for public APIs.

• Fidelity is considered as label agreement in this work, i.e.,
the victim model and the extracted model output the same
label for the same sample. This goal may be of interest to
an attack-motivated adversary who wants to know the
specifics of the victim model through model extraction
attacks. After a model extraction attack, the adversary can
more easily launch other attacks such as an adversarial
attack or a membership attack.

3.2 Adversary knowledge
We assume the adversary is data-limited and has only black-
box query access the victim model. Data-limited means the
adversary only has a small number of natural samples.
Black-box query access means the adversary can only access
to the victim model on black-box interactions, i.e., samples
{x1, x2, ..., xn} in, predictions {f(x1), f(x2), ..., f(xn)} out.
According to the predictions of the victim model, model
extraction attacks can be divided into two scenarios: the
hard-label scenario where the adversary only obtains the
predicted label of the query and the soft-label scenario
where the adversary obtains the probability vector of the
query. In this work, we evaluate our defense framework in
both scenarios.

3.3 Adversary strategy
With a limited number of natural samples, the adversary
can generate synthetic data or just use surrogate data to
query the victim model and obtain the output results. After
that, these query-output pairs are used as training data to
train the substitute model. We consider three state-of-the-
art attacks to evaluate our defense:
• JBDA-TR [10] is an improved version of the jacobian-

based dataset augmentation (JBDA) proposed in [18]. The
process of it is described in Algorithm 1. Concretely, for

each sample x ∈ Dtrain, JBDA-TR generates a synthetic
sample through targeted randomly chosen iterative FGSM
(i.e., the targeted label of FGSM is changed during each
iteration). The targeted randomly chosen iterative FGSM
(FGSM-TR) can be formulated with the following equa-
tion:

x(t+1) = x(t) − ε ∗ sign
(
∇x(t)J(x(t), yr)

)
(4)

where x(t) denotes the synthetic sample of the t-th iter-
ation and yr is a random target class (changes at each
iteration). After that, these synthetic samples are labeled
by the victim model and the sample-label pairs are used
to augment Dtrain and retrain the substitute model.

• Cloudleak [12] also uses synthetic samples to query the
victim model and obtains the prediction results. Different
from JBDA-TR, Cloudleak employs a feature-based ad-
versarial attack [35] to construct synthetic samples and
fine-tunes a pre-trained substitute model (from candidate
Model Zoo [36]) with the obtained sample-label pairs.

• KnockoffNet [11] uses surrogate data from another distri-
bution or the same distribution to query the victim model
and trains a substitute model with the predictions of the
victim model.

Algorithm 1 The process of JBDA-TR

Input: unlabeled natural samples Dtrain = {x1, x2, ..., xn},
the victim model f

Output: the substitute model f ′

1: {f(x1), f(x2), ..., f(xn)} ← LABEL({x1, x2, ..., xn}, f)
2: Dtrain ← {(x1, f(x1)), ..., (xn, f(xn))}
3: f ′ ← TRAIN (f ′, Dtrain)
4: for r = 1 to rmax (round counter) do
5: {x′1, x′2, ..., x′n} ← FGSM-TR ({x1, x2, ..., xn})
6: {f ′(x1), ..., f ′(xn)} ← LABEL({x′1, ..., x′n}, f)
7: Dsynthetic ← {(x′1, f ′(x′1)), ..., (x′n, f

′(x′n))}
8: Dtrain ← Dtrain ∪Dsynthetic

9: f ′ ← TRAIN (f ′, Dtrain)

10: return f ′

4 PROPOSED AMAO
4.1 Overview
Fig 3 gives an overview on our proposed AMAO, each
phase of AMAO is closely connected and one phase will be
beneficial to the next phase. Below we describe these phases
in detail.

4.2 Adversarial training for decreasing the effect of
model extraction attacks
The intuition for employing adversarial training to defend
against model extraction attacks is that the samples close
to the decision boundary of the victim model are more
informative in training the substitute model (especially in
the hard-label scenario) and adversarial training makes it
more difficult for an adversary to generate such samples.

Samples close to the decision boundary are more
informative. For model stealing attacks that use synthetic
samples, the effectiveness of the attack largely depends on

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

5

Attacker

Victim

Model
Stolen

Model

1. Adversarial training

3. Adaptive query response 4. Ownership verification

1 2: forcing the attacker to make more queries

2 3: instructing the response phase

according to the detection results

3 4: reducing the attack effect and

preparing for ownership verification

Malicious queries

2. Malicious query detection

Fig. 3: The architecture of AMAO

Adversarial

Training

New decision

boundary

x0

x0+r0

Decision

boundary x2

x1

x0

x0+r0

x1

x2

Fig. 4: Adversarial training

the quality of the synthetic samples. It is similar to the
scenario of active learning, where the user actively selects
(or generates) some informative samples that are worthy of
being labeled and trains a model with these sample-label
pairs. According to research on active learning [43], samples
close to the decision boundary tend to be more informative
and selecting these samples is a commonly used strategy
in active learning (such as the DeepFool Active Learning
algorithm [44]). Thus, many model extraction attacks such
as JDBA [18], JDBA-RT [10], Cloudleak [12] and Activethief
[13] proposed to employ adversarial samples to serve as
synthetic samples, because the adversarial samples tend to
be close to or across the decision boundary of the original
category, which is more informative in extracting the victim
model.

Adversarial training makes it more difficult for a black-
box adversary to generate informative synthetic samples.
Motivated by the above observation, we employ adversarial
training to reduce the attack effect of model extraction
attacks. Adversarial training makes it more difficult to gen-
erate adversarial samples that cross the decision boundary.
Although the adversary is still able to generate adversar-
ial samples through multiple iterations of querying and
generating, similar to the scenario of black-box adversarial
attacks, the adversary often needs to spend much more
queries (i.e., more iterations of the adversarial attack) to
generate an adversarial sample that crosses the decision
boundary against an adversarially-trained model.

Fig 4 depicts a visualization of this observation. As
depicted in the left part of Fig 4, x0 and x0 + r0 are samples
near the decision boundary and on the two sides of the
boundary, where x0 is the benign sample with the mini-
mum classification confidence and x0 + r0 is the adversarial
sample (generated from x0) with the minimum classification
confidence. Apparently, in comparison to those samples far
from the decision boundary such as x1 and x2, x0 and
x0 + r0 can provide more useful information about the

classifier, and the decision boundary of the victim model
is more easily extracted through training with them. As
depicted in the right part of Fig 4, the benign sample x0
and the generated sample x0 + r0 may locate on the same
side of the decision boundary after adversarial training,
the information they reveal is greatly reduced (especially
in the hard-label scenario mentioned in Section 3.2). Thus,
the adversary is forced to submit more malicious queries
on generating synthetic samples that cross the decision
boundary. This provides favorable conditions for the next
detection phase as more malicious queries make the ad-
versary easier to be detected. More malicious queries also
result in greater overhead for the adversary and make the
attack less worthwhile. The experimental results in Section
5.2 demonstrate the effectiveness of adversarial training.

4.3 Malicious query detection
As described in Section 3.3, the adversary uses synthetic
data or surrogate data to query the victim model and obtain
the output results. The function of malicious query detection
is to distinguish these samples from benign samples.

Generally, classifiers are always more confident in clas-
sifying benign queries and less confident in classifying
malicious queries. Thus, the maximum softmax probability
(MSP) can be used as a metric to distinguish malicious
queries [23]. Specifically, the softmax probability (SP) and
MSP of query x can be computed as Eq. (5) and Eq. (6):

SP (x, i) =
exp (zi(x))∑K
k=1 exp (zk(x))

(5)

MSP (x) = max[SP (x, i)] i = 1, 2, ...,K (6)

where zi(x) is the logit value (i.e., the output vector of the
model) of the i-th class and K is the number of classes.
Benign queries tend to have greater MSPs than malicious
queries and they can be distinguished by a pre-defined
threshold.

However, recent works [45], [46] have shown that clas-
sifiers tend to be overconfident in classifying adversarial
samples (which are used as malicious queries by model
extraction attacks [10], [12], [18]) and they also have large
MSPs, making it difficult to distinguish them from benign
queries. Therefore, we introduce the temperature scaling
[47] technique to mitigate the problem of overconfidence
of the classifier. Specifically, we employ the temperature-
scaled maximum softmax probability (TMSP) as the metric
to distinguish malicious queries. The temperature-scaled
softmax probability (TSP) and TMSP of query x can be
calculated as Eq. (7) and Eq. (8):

TSP (x, i, T) =
exp (zi(x)/T)∑K
k=1 exp (zk(x)/T)

(7)

TMSP (x, T) = max[TSP (x, i, T)] i = 1, 2, ...,K (8)

Temperature scaling is a soft-label smoothing method in
knowledge distillation [47], which smooths or sharpens the
predicted probability vector through a temperature coeffi-
cient T . Concretely, when T →∞, the prediction probability
vector will be smoothed, which reduces the confidence in
the prediction; when T → 0, the prediction probability vec-
tor will become sharper and the confidence in the prediction

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

6

0.2 0.4 0.6 0.8 1
MSP or TMSP

0

0.2

0.4

0.6

0.8

1

C
D

F

MNIST

MSP of benign data
TMSP of benign data
MSP of JBDA-TR data
TMSP of JBDA-TR data
MSP of Cloudleak data
TMSP of Cloudleak data
MSP of KnockoffNet data
TMSP of KnockoffNet data

Fig. 5: CDF of MSP or TMSP for benign data, JBDA-TR data,
and KnockoffNet data. High values of MSP or TMSP indicate
benign data while low values of MSP or TMSP indicate
malicious data.

will tend to 1, which increases the confidence of the classifier
in the prediction.

In this work, the problem of overconfidence of the clas-
sifier can be mitigated by appropriately increasing the value
of T . For example, we analyze the MSP and TMSP values
of benign or malicious queries using a LeNet-5 network
trained on the MNIST dataset. Fig 5 illustrates the CDF
(Cumulative Distribution Function) of MSP and TMSP for
benign queries and malicious queries. It indicates that some
malicious queries (especially malicious queries generated
by JBDA-TR and Cloudleak) can also produce high values
of MSP, making it difficult for the detector to distinguish.
However, this problem has been mitigated in the case of
TMSP, CDFs of malicious queries are more concentrated in
lower values of TMSP, making the malicious samples more
easily distinguishable. It demonstrates that the temperature
scaling technique makes the malicious queries more dis-
tinguishable, thus improving the performance of detector.
More detailed experimental evaluations on the detection
method will be provided in Section 5.3.

After calculating the TMSP of the query, a marker func-
tion Detect(x) is used to flag benign queries and malicious
queries:

Detect(x) =

{
0, TMSP (x, T) > λ

1, TMSP (x, T) ≤ λ
(9)

Detect(x) being 0 represents the query x is a benign query
while Detect(x) being 1 represents x is a malicious query.
λ is the threshold to distinguish malicious queries from
benign queries.

Finally, we define a suspect function S based on the
detection result to measure the degree of suspicion of a user:

S =

∑N
i=1Detect(xi)

N
(10)

where N is the total number of queries submitted by the
user1.

1. Since S is a statistical probability value, N should be large enough
(e.g., greater than 50 times) to ensure the reliability of S. The update of
S does not need to be real-time, it can be updated intermittently.

4.4 Adaptive query response

After malicious query detection, in order to reduce the
performance of the substitute model and prepare for the
subsequent ownership verification, we propose to return
perturbed results to malicious users with a pre-defined
probability. The key problem of the adaptive query response
is to determine which sample to perturb and how to perturb
its predicted results. In our adaptive query response phase,
we propose a label-flipping attack based on the optimal
stopping theory to instruct the query response and employ
the image pHash algorithm to ensure the indistinguishabil-
ity of the response.

4.4.1 Instructing the query response through a label flip-
ping attack

In this work, the defender can be formulated as an adver-
sary of a label-flipping attack [48], [49], [50] whose goal is
to choose the optimal poisoning samples to flip the labels,
thereby decreasing the performance of the substitute model.
Unlike label-flipping poisoning attacks where the adversary
has full knowledge of the training dataset, the defender in
this work can only decide whether the current query is
worthy of a label-flipping because the adversary’s queries
and victim model responses are usually executed one by
one. Thus, we employ the optimal stopping theory [51] to
instruct the label-flipping attack.

Specifically, we first assume the pre-defined perturbed
probability is 1/M and divide the queries received from a
malicious user into groups of M . In this way, the defender
replies with one perturbed result for one group of queries.
After that, the defender calculates the gap between the
maximum softmax probability and the minimum softmax
probability of each query in the group as Eq. (11). Finally, the
defender then selects the sample with the largest gap and
flips its label to the category with the minimum confidence2.
By doing so, the classification error of the substitute model is
maximized when the substitute model is trained with these
perturbed sample-result pairs.

Gap(x) = max[SP (x, i)]−min[SP (x, i)]

i = 1, 2, ...,K
(11)

However, since the defender receives the adversary’s
queries individually, the defender only knows the confi-
dence gap between the current query and previous queries.
It can only decide whether to flip the result label of the cur-
rent query, not the previous queries. The optimal stopping
theory is used to solve this problem. Specifically, for a group
of queries, the defender first observes the first r − 1 queries
and does not select them. In the following M−r+1 queries,
if the gap of any query is larger than the largest gap of the
first r − 1 queries, the query is selected for label-flipping.

The best value of r can be obtained through the follow-
ing calculations. We first defineA as the event that the query
i is the best candidate (i.e., the query with the largest gap)

2. In the soft-label scenario, our method exchanges the maximum
probability value with the minimum probability value.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

7

and B as the event that the query i is selected. For any r,
the probability of the best candidate being selected is:

P (r) =
M∑
i=1

P (A ∩B)

=
M∑
i=1

P (A)P (B|A)

= [
r−1∑
i=1

0 +
M∑
i=r

P (C|A)] · 1

M

=
M∑
i=r

r − 1

i− 1
× 1

M
=
r − 1

M

M∑
i=r

1

i− 1

where C represents that the best of the first i − 1 queries
is in the first r − 1 rejected queries. For the final result, let
M approach ∞, denote the limit of r/M as x and denote
i/M as t, the result can be approximated as the following
integral:

P (x) = x

∫ 1

x

1

t
dt = −x lnx (12)

Through computing the derivatives of the Eq. (12), we can
obtain that the optimal x is equal to 1/e. Thus, the optimal
r equals to M/e.

Finally, the process of adaptive query response can be
described as the following Algorithm 2.

Algorithm 2 The process of adaptive query response

Input: a set of queries x1, x2, ..., xM
Output: the optimal query that needs to be label-flipped

1: Gap∗ = 0
2: for i = 1 to (M/e− 1) do
3: if Gap(xi) > Gap∗ then
4: Gap∗ = Gap(xi)

5: for j = M/e to M do
6: if Gap(xj) > Gap∗ then
7: return xj
8: if j == M then
9: return xM

4.4.2 Ensuring the indistinguishability of the response strat-
egy through image pHash algorithm
As described in our threat model, the adversary only has a
limited number of samples from the original dataset and
it may generate synthetic samples from this initial seed
dataset. Thus, the adversary’s synthetic samples tend to
have high similarities because they are generated by adver-
sarial attacks or other methods (such as data augmentation
[12], [29], [30]) from the same seed dataset. An adaptive ad-
versary may be aware of the adaptive response strategy if it
receives different predictions for the same or similar queries.
Then, it can employ some methods to evade the defenses,
such as discarding the perturbed results and querying the
victim model with another benign account. Thus, the indis-
tinguishability of the response strategy is indispensable for
the defense, i.e., when returning a perturbed prediction for
input x, the defender expects two similar inputs x and x′

to have the same prediction. Previous work [27] used the

Grey

processing

Image

 reducing
DCT computing

DCT reduc ng
Average value

computing

pHash

constructing

Input image

Fig. 6: The processes of the image pHash algorithm

hash value of the input to produce the random prediction
and employed a mapping function to ensure the hash value
is invariant to minor modifications. However, it is only
applicable against small perturbations such as adversarial
perturbations but can not guarantee indistinguishability un-
der the case of data augmentation [12], [29], [30]. To address
this problem, in this work, we employ the image pHash
algorithm to ensure the indistinguishability of the response
strategy.

The image pHash algorithm is a technique to accurately
and quickly calculate the similarity between different im-
ages. The process of it is illustrated in Fig 6. The input image
is first size-reduced and color-reduced to a grayscale one to
simplify the subsequent DCT (Discrete Cosine Transform)
[52] computation. Then, it calculates the DCT of the image
and keeps the top-left 8*8 matrix, because this part repre-
sents the lowest frequency in the image. After that, it com-
putes the average value of all matrixes. Finally, according to
the 8*8 DCT matrix, a 64-bit hash value is constructed, with
each bit of the hash set as 0 or 1 depending on whether each
of the 64 DCT values is above or below the average value.

Concretely, if the victim model outputs a perturbed pre-
diction, the defender will record the prediction and the cor-
responding query. After that, if any query from a malicious
user is evaluated to be similar to a query already record-
ed by the image pHash algorithm, the defender directly
returns the recorded perturbed prediction of the recorded
query. This ensures the indistinguishability of the adaptive
response strategy and makes it more imperceptible to the
adversary. Furthermore, the recorded query-prediction pairs
are also expected to be embedded as a backdoor3 in the
substitute model and will be used in the next ownership
verification phase.

4.5 Ownership verification
As a preparation for the ownership verification, for each
malicious user, the defender maintains a perturbed result-
s set Wi (i = 1, 2, ..., n) to store the perturbed query-
prediction pairs {(xi1, yi1), (xi2, y

i
2), ..., (ximi

, yimi
)}, where n

is the number of malicious users and mi (i = 1, 2, ..., n)
represents the number of perturbed query-prediction pairs
for the i-th malicious user.

Then, the ownership verification can be executed as Al-
gorithm 3. For every perturbed results set Wi, the defender
calculates the proportion of verified perturbed results to the
total number of perturbed results in this set, where the per-
turbed result (xij , y

i
j) successfully verifies when fs(xij) = yij .

If the proportion exceeds the pre-defined threshold t, the

3. According to previous works [27], [53], DNN models with a large
number of parameters can remember a certain amount of training data
with arbitrarily incorrect labels. This is the rationale for the existence of
DNN backdoors and for our ownership verification scheme.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

8

Algorithm 3 Identifying the ownership of the suspicious
model
Input: threshold t, suspicious model fs
Output: The result of whether fs is a stolen model

1: Initialize Flag = False
2: for i = 1 to n do /* For all perturbed results sets */
3: for j = 1 to mi do
4: count = 0
5: if fs(xij) = yij then
6: count = count+ 1
7: if count/mi > t then
8: Flag = True
9: return Flag

10: return Flag

suspicious model will be identified as an illegal one stolen
from the victim model. Otherwise, the suspicious model will
be identified as a benign one.

5 EXPERIMENTAL EVALUATION

5.1 Setup

5.1.1 Datasets and victim models

We utilize LeNet-5, AlexNet, ResNet18 and ResNet34 as the
victim models on MNIST [54], FashionMNIST (FMNIST)
[55], CIFAR-10 [56] and ImageNette4 [57], respectively. The
details of the datasets are presented in TABLE 1.

TABLE 1: Details for the datasets

Dataset Image size Classes Train data Test data

MNIST 28×28×1 10 60,000 10,000
FMNIST 28×28×1 10 60,000 10,000
CIFAR-10 32×32×3 10 50,000 10,000

ImageNette 224×224×3 10 9,469 3,925

5.1.2 Attack configuration

To improve the efficiency of the attack and evaluate our
defense under a stronger adversary, we use the same model
architecture as the victim’s model to train the substitute
model5. Obviously, if our defense shows good defense effect
under this strong assumption, it will perform better in the
case that the adversary has no knowledge of the victim
model.

As for JBDA-TR and Cloudleak, the initial seed dataset of
the substitute model is made of 100, 100, 1,000 and 1,000
training samples from the MNIST, F-MNIST, CIFAR-10 and
ImageNette, respectively. The query budget is about 10,000,
10,000, 100,000 and 100,000 for the four datasets. Specifically,
for JBDA-TR, we perform 6 rounds of augmentation to steal
the victim model, between each augmentation round, the
substitute model is trained for 20 epochs; for Cloudleak, the
pre-trained substitute model is fine-tuned for 20 epochs.

4. ImageNette is a representative subset of ImageNet.
5. It is possible for an adversary to steal the architecture and hyper-

parameter of the model before stealing the functionality of the victim
model (there has been some work in this area such as [9], [32], [33]).

As for KnockoffNet, we use FashionMNIST, MNIST,
CIFAR-100 and ImageNet6 as the surrogate datasets of M-
NIST, FashionMNIST, CIFAR-10 and ImageNette datasets,
respectively. The query budget is 60,000, 60,000, 50,000 and
13,000 for MNIST, F-MNIST, CIFAR-10 and ImageNette, re-
spectively. The substitute models are trained for 50 epochs.

It is worth mentioning that we focus on evaluating
the effectiveness of our defense against different model
extraction attacks, rather than evaluating the effectiveness
of different model extraction attacks. The settings of the
query budget are different for the three attacks due to their
different attack mechanisms. This setting will not affect the
evaluations of the defenses.

5.1.3 Metrics

We use test accuracy and fidelity mentioned in Section 3.1
as the metrics for evaluation. Notably, we find that the
experimental results of fidelity show the same tendency
as the test accuracy. Therefore, the experimental results of
fidelity are omitted for brevity.

5.1.4 Comparison with existing defenses

We compare our scheme with five state-of-the-art defense
methods:
• PRADA [10]: PRADA is a detection method against ma-

licious queries generated by model extraction attackers.
Specifically, it calculates the minimum distance between
a new queried sample xi and any previous sample of the
same class:

min di = min
j<i,yj=yi

‖xi − xj‖2 (13)

the intuition of this detection method is that the dis-
tribution of distances di between benign samples tends
to follow Gaussian distribution. However, the synthetic
samples are generated by a duplication phase from an
initial seed dataset (such as JBDA-TR and Cloudleak). Thus,
many synthetic samples are generated from the same
seed sample, thereby causing the distribution of distances
between successive malicious queries to deviate from the
Gaussian distribution.

• OOD detection [23]: OOD detection treats malicious
queries as OOD samples and employs OOD detection
methods to distinguish them. This detection method is
selected as the baseline to evaluate our detection method
in Section 5.3.

• DAWN [27]: DAWN calculates the hash value of the input
and returns the label according to this hash value as the
predicted label. The perturbed label can not only decrease
the performance of the substitute model but also serves
as a backdoor to verify the ownership of any suspicious
models.

• Deceptive Perturbation [25]: Deceptive Perturbation is an
accuracy-preserving defense that adds perturbations to
the probability vectors of the model but ensures that the
predicted labels remain unchanged.

6. The surrogate samples of ImageNet and the original training
samples of ImageNette have no overlap.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

9

TABLE 2: The test accuracy (%) of the victim models

Dataset Standard training Adversarial training

MNIST 99.21 99.13
F-MNIST 92.11 89.24
CIFAR-10 93.40 91.01

ImageNette 90.62 88.99

• Adaptive Misinformation [23]: Adaptive Misinformation
trains a reverse model by minimizing a reverse cross-
entropy loss to produce incorrect predictions. The reverse
cross-entropy loss is defined below:

Lreverse = CE((1− f(x; θ)), y) (14)

where CE represents the cross-entropy loss. For the re-
sponse to be perturbed, it feeds the query to the reverse
model and returns the probability vector of the reverse
model to the adversary.

5.1.5 Overview of the experimental evaluation

We first evaluate the effectiveness of adversarial training in
decreasing the effect of model extraction attacks in Section
5.2. Then, we compare our detection method with OOD
detection [23] in Section 5.3. After that, in Section 5.4, we eval-
uate the overall effectiveness and computational overhead
of AMAO from end to end, where three prior works DAWN
[27], Deceptive Perturbation [25] and Adaptive Misinformation
[23] are selected as the baseline for comparison. Then,
the effectiveness of the phase of ownership verification
is evaluated in Section 5.5. Finally, we conduct extensive
experiments in Section 5.6 to demonstrate that AMAO is
more robust than prior works (such as PRADA [10] and
DAWN [27]) against adaptive adversaries.

5.2 Evaluations on adversarial training

To evaluate the defense effect of adversarial training, we
train two identical victim models: one is built with a tra-
ditional training process and the other is built with an
adversarial training process. Test accuracy of these victim
models is presented in TABLE 2.

After that, we perform JBDA-TR, KnockoffNet and
Cloudleak on these models. As shown in TABLE 3, the
accuracy of the substitute model constructed by stealing
the adversarially trained model is always lower than the
accuracy of the substitute model constructed by stealing
the standard trained model. Besides, the results indicate
that adversarial training is more effective in the hard-label
scenario and less effective in the soft-label scenario. This
is because the probability vector in the soft-label scenario
is more informative than a hard label. The adversary can
still obtain more information about the decision bound-
ary of the adversarially trained victim model. Overall, the
results demonstrate that adversarial training can decrease
the attack effect of model extraction attacks and force the
adversary to submit more malicious queries for the desired
performance (the detailed reason for the effectiveness of ad-
versarial training in decreasing the attack effect is described
in Section 2.3.).

TABLE 3: The test accuracy (%) of the substitute model
under the defense of adversarial training

Attack Scenario Dataset Std.
train

Adv.
train

JBDA-TR

Hard
label

MNIST 91.23 87.08
F-MNIST 79.33 75.44
CIFAR-10 42.80 40.05

ImageNette 51.27 47.26

Soft
label

MNIST 95.58 89.22
F-MNIST 81.44 80.42
CIFAR-10 43.97 40.36

ImageNette 55.76 52.90

KnockoffNet

Hard
label

MNIST 89.57 78.89
F-MNIST 40.38 35.80
CIFAR-10 69.37 66.89

ImageNette 55.90 50.80

Soft
label

MNIST 91.72 87.53
F-MNIST 42.10 41.16
CIFAR-10 73.02 72.20

ImageNette 68.18 65.01

Cloudleak

Hard
label

MNIST 83.72 79.46
F-MNIST 76.07 71.91
CIFAR-10 78.15 76.69

ImageNette 86.64 82.77

Soft
label

MNIST 86.36 84.77
F-MNIST 78.26 74.83
CIFAR-10 80.04 79.19

ImageNette 88.19 85.50

TABLE 4: The optimal hyperparameters of the detector

The attack method used Dataset λ Tto create the validation set

JBDA-TR

MNIST 0.998 1.53
F-MNIST 0.998 1.51
CIFAR-10 0.981 1.50

ImageNette 0.907 1.24

KnockoffNet

MNIST 0.953 2.21
F-MNIST 0.994 2.29
CIFAR-10 0.993 1.21

ImageNette 0.963 1.39

Cloudleak

MNIST 0.996 2.30
F-MNIST 0.961 2.25
CIFAR-10 0.919 1.92

ImageNette 0.914 1.19

5.3 Evaluations on malicious query detection

Firstly, before evaluating the effectiveness of our detection
method, we need to find the optimal hyperparameters (T
and λ) first. Specifically, we define samples from the test
dataset as benign and consider the synthetic (or surrogate)
samples as malicious. The defender is assumed to has a
small number (i.e., 100) of malicious samples from JBDA-TR,
KnockoffNet and Cloudleak. It can construct a small validation
dataset that includes malicious samples and benign samples
to find the optimal hyperparameters of the detector (as
provided in TABLE 4). Notably, as provided in TABLE 5,
these hyperparameters have good generalizability that the
optimal hyperparameters for one attack can also achieve
good performance in detecting the other attacks.

After that, without loss of generality, we choose the
hyperparameters for JBDA-TR in TABLE 4 and compare our
detection method with the OOD detection [23]. In addition to
accuracy, we introduce another comprehensive metric (i.e.,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

10

TABLE 5: The generalizability of the hyperparameters

Dataset Attack
The detection accuracy (%)

with different hyperparameters
JBDA-TR KnockoffNet Cloudleak

MNIST
JBDA-TR 87.85 85.04 83.44

KnockoffNet 93.75 94.17 86.89
Cloudleak 84.99 82.18 85.13

F-MNIST
JBDA-TR 81.20 79.02 80.40

KnockoffNet 69.89 70.11 69.75
Cloudleak 74.37 74.76 74.87

CIFAR-10
JBDA-TR 78.99 77.15 75.99

KnockoffNet 86.23 87.09 79.85
Cloudleak 77.33 78.02 78.11

ImageNette
JBDA-TR 80.29 76.58 82.21

KnockoffNet 81.13 79.30 81.39
Cloudleak 83.04 76.79 83.31

TABLE 6: Performance comparison of our detection method
and the OOD detection [23]

Dataset Attack Accuracy(%) F1-score
[23]/Ours [23]/Ours

MNIST
JBDA-TR 76.15/87.85 0.68/0.87

KnockoffNet 86.20/93.75 0.82/0.93
Cloudleak 72.23/84.99 0.61/0.84

F-MNIST
JBDA-TR 73.05/81.20 0.66/0.81

KnockoffNet 65.91/69.89 0.53/0.67
Cloudleak 66.33/74.37 0.54/0.73

CIFAR-10
JBDA-TR 73.41/78.99 0.67/0.76

KnockoffNet 84.55/86.23 0.83/0.87
Cloudleak 77.04/77.33 0.73/0.76

ImageNette
JBDA-TR 77.11/80.29 0.80/0.82

KnockoffNet 72.58/81.13 0.76/0.81
Cloudleak 77.16/83.04 0.80/0.84

F1-score) to evaluate the performance of the detector. F1-
score is the commonly used evaluation metric to measure
the overall performance of the detector. Specifically, it is the
harmonic average of precision and True Positive Rate (TPR):

F1 =
2 ∗ Precision ∗ TPR
Precision+ TPR

(15)

Precision represents the proportion of correctly detected
positive (malicious) queries to all queries that are detected
to be positive. TPR (or Recall) indicates the proportion of
correctly detected positive queries to all positive queries.
They can be calculated as:

Precision =
TP

TP + FP
(16)

TPR =
TP

TP + FN
(17)

where the definitions of true positives (TP), false positives
(FP), false negatives (FN) and true negatives (TN) are de-
scribed in TABLE 7.

TABLE 7: Confusion matrix

Actually label
Detection result Positive

(malicious)
Negative
(normal)

Positive (malicious) TP FN
Negative (normal) FP TN

The results in TABLE 6 indicate that our detection
method has higher accuracy and F1-score than OOD detec-
tion [23] in detecting all types of malicious queries. This is
mainly because our method mitigates the problem of over-
confidence in OOD detection by introducing the temperature
scaling technique (more details can be found in Section 4.3).

Besides, we also compare the robustness of our detec-
tion method and PRADA [10] against adaptive adversaries
in Section 5.6. The experimental results demonstrate that
PRADA is ineffective in detecting surrogate samples (such
as KnockoffNet) and colluded malicious users, but our detec-
tion method still achieves high detection accuracy in these
scenarios.

5.4 Overall evaluations on AMAO from end to end
In this section, we evaluate the effectiveness and computa-
tional overhead of AMAO from end to end.

5.4.1 Effectiveness of AMAO
Fisrtly, we evaluate the effectiveness of AMAO from end
to end through the metric of test accuracy of the substitute
model. Three state-of-the-art defenses DAWN [27], Decep-
tive Perturbation [25] and Adaptive Misinformation [23]
are selected as the baseline for comparison.

Specifically, we assume the defender returns perturbed
results with a probability of 1/16 and evaluate the attack
performance under these defenses7. TABLE 8 shows the
test accuracy of the substitute model under these defenses,
where the results of the baseline for the hard-label scenario
show the results of DAWN [27]; the results of the baseline
for the soft-label scenario show the best results of Decep-
tive Perturbation [25] and Adaptive Misinformation [23]. The
results demonstrate that our AMAO is much more effective
than these prior works in reducing the attack performance
of the considered three model extraction attacks. This is
because our label-flipping-attack-based adaptive query re-
sponse scheme is more effective in disrupting the training
process of the substitute models, which affects the per-
formance of model stealing attacks. Besides, AMAO also
introduces adversarial training to further decrease the attack
performance, which is not considered in any of the existing
model stealing defenses. In addition, the results indicate that
the defensive effect of AMAO is better against the attack of
JBDA-TR and Cloudleak. This is because the two attacks use
natural data or synthetic data as malicious queries, replying
to malicious users with perturbed results can more directly
and effectively decrease the performance of the substitute
model.

Besides, we also calculate the test accuracy of the vic-
tim model to evaluate whether the model utility is great-
ly influenced by these defenses. Specifically, AMAO and
Adaptive Misinformation [23] first distinguish malicious users
by detecting malicious queries, and only output perturbed
results for malicious users. They have almost no effect on the
normal utility of the victim model8; Deceptive Perturbation
[25] perturbs the classification probability values of the

7. We have also tested with other probabilities such as 1/8 and 1/32.
The experiments give the same conclusions.

8. Adversarial training in AMAO has a slight effect on the utility of
the victim model.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

11

TABLE 8: The test accuracy (%) of the substitute model
under the defense of AMAO and the baseline defense [23],
[25], [27]

Attack Scenario Dataset No
defense

Baseline
defense AMAO

JBDA-TR

Hard
label

MNIST 91.23 87.30 67.21
F-MNIST 79.33 74.21 65.21
CIFAR-10 42.80 35.35 32.62

ImageNette 51.27 47.88 45.57

Soft
label

MNIST 95.58 91.80 81.30
F-MNIST 81.44 75.48 61.59
CIFAR-10 43.97 40.97 37.16

ImageNette 55.76 50.70 48.53

KnockoffNet

Hard
label

MNIST 89.57 70.44 68.03
F-MNIST 40.38 34.95 32.46
CIFAR-10 69.37 63.48 49.30

ImageNette 55.90 50.88 44.20

Soft
label

MNIST 91.72 80.56 80.11
F-MNIST 42.10 37.81 34.24
CIFAR-10 73.02 71.35 70.04

ImageNette 68.18 61.45 57.04

Cloudleak

Hard
label

MNIST 83.72 73.14 67.28
F-MNIST 76.07 67.82 63.64
CIFAR-10 78.15 67.59 61.02

ImageNette 86.64 73.60 68.04

Soft
label

MNIST 86.36 75.93 72.88
F-MNIST 78.26 71.33 64.94
CIFAR-10 80.04 71.09 67.50

ImageNette 88.19 78.10 71.59

TABLE 9: The utility (i.e., test accuracy) of the victim model
under AMAO and the baseline defense [23], [25], [27]

Dataset No defense [23], [25] AMAO [27]

MNIST 99.21 99.21 99.13 93.01
F-MNIST 92.11 92.11 89.24 86.35
CIFAR-10 93.40 93.40 91.01 87.56

ImageNette 90.62 90.62 88.99 84.95

output results, but keeps the output labels unchanged, so it
also has no effect on the top-1 accuracy of the victim model;
DAWN [27] changes the output label with the predefined
probability. The results in TABLE 9 indicates that the impact
of AMAO on the model utility is quite small (less than 3%),
which is acceptable for the defender.

5.4.2 Computational overhead of AMAO
We evaluate the computational overhead of AMAO and
present the results in TABLE 10. All experiments are run
on NVIDIA 24GB Tesla M40.

It is important to point out that adversarial training is
performed during the training process of the model, which
can be considered as an offline operation. Besides, own-
ership verification only executes when a suspected model
needs to be verified for ownership. Thus, the computational
overhead of AMAO for a single query only includes the
phases of malicious query detection and adaptive query
response, which are acceptable for the defender. Besides,
the computational overhead will be further reduced if these
operations are run on high performance cloud servers.

5.5 The effectiveness of the ownership verification
In this section, we evaluate the effectiveness of owner-
ship verification, which is the post hoc defense of A-
MAO. Concretely, experiments are conducted to calculate

TABLE 10: Computational overhead of AMAO

Dataset Phase Computational
overhead

MNIST

Adversarial training 9.19 (min)
Malicious query detection <0.01 (ms)
Adaptive query response 17.31 (ms)
Ownership verification 607.68 (ms)

F-MNIST

Adversarial training 15.63 (min)
Malicious query detection <0.01 (ms)
Adaptive query response 21.25 (ms)
Ownership verification 648.96 (ms)

CIFAR-10

Adversarial training 90.74 (min)
Malicious query detection <0.01 (ms)
Adaptive query response 37.61 (ms)
Ownership verification 794.57 (ms)

ImageNette

Adversarial training 217.05(min)
Malicious query detection <0.01 (ms)
Adaptive query response 67.14(ms)
Ownership verification 978.30(ms)

the watermark accuracy of the perturbed (or watermarked)
results9 in the phase of adaptive query response, where
the watermark accuracy denotes the verification probability
of the perturbed results. Meanwhile, we also evaluate the
watermark accuracy of a substitute model trained with non-
watermarked results as a comparison.

As shown in TABLE 11, all the substitute models trained
with perturbed results have high watermark accuracy,
which demonstrates that the perturbed results can serve
as a model watermark and verify the ownership after a
model extraction attack. Besides, as presented in the most
right column in TABLE 11, the watermark accuracy of all
substitute models trained without perturbed results is close
to 0, which indicates that the perturbed results are hardly
verified in normal models. Therefore, the defender can
easily verify the ownership of the suspicious model through
our ownership verification algorithm (Algorithm 3).

5.6 The robustness of AMAO against adaptive adver-
saries

In this section, we first evaluate the robustness of AMAO
against adaptive adversaries with prior knowledge of the
malicious query detection phase, the adaptive query re-
sponse phase and the ownership verification phase, respec-
tively10. Then, we evaluate the robustness of AMAO under
a state-of-the-art adaptive model extraction attack strategy
D-DAE [58]. In this way, we demonstrate that AMAO shows
a significant defensive advantage over prior works.

5.6.1 Aware of the malicious query detection phase
Firstly, we consider the scenario in which the adversary is
aware of the malicious query detection phase. The adversary
may collude with multiple malicious users or mix malicious
queries with benign queries or use surrogate data as mali-
cious queries (such as KnockoffNet) to evade detection. We

9. The probability of perturbing the results is set to 1/16, which
follows the assumption made in Section 5.4.1.

10. In practice, adversarial training is a commonly used technique to
defend against adversarial attacks. Prior knowledge of the adversarial
training phase is not helpful for model stealing attacks aimed at model
functionality stealing. Thus, we only consider the adaptive adversary
who is aware of the other three defensive phases.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

12

TABLE 11: The watermark accuracy (%) of the substitute
models

Attack Scenario Dataset Watermarked results
X ×

JBDA-TR

Hard
label

MNIST 89.71 0.31
F-MNIST 96.75 0.01
CIFAR-10 97.77 0.00

ImageNette 90.88 0.37

Soft
label

MNIST 88.30 0.23
F-MNIST 95.62 0.00
CIFAR-10 96.13 0.00

ImageNette 89.05 0.49

KnockoffNet

Hard
label

MNIST 91.04 0.42
F-MNIST 97.33 0.08
CIFAR-10 100.00 0.27

ImageNette 95.44 0.29

Soft
label

MNIST 90.26 0.37
F-MNIST 97.65 0.04
CIFAR-10 96.99 0.19

ImageNette 87.68 0.36

Cloudleak

Hard
label

MNIST 99.97 0.51
F-MNIST 98.47 0.09
CIFAR-10 97.17 0.24

ImageNette 93.57 0.61

Soft
label

MNIST 96.82 0.40
F-MNIST 94.23 0.02
CIFAR-10 95.05 0.17

ImageNette 91.10 0.35

demonstrate that an adaptive adversary employing these
strategies can evade the detection of PRADA [10], but will
be detected by our detection method.

Specifically, PRADA calculates the distribution of suc-
cessive queries to distinguish whether a user is malicious or
not. As illustrated in Fig 7(a), the distribution of distances
between benign samples tends to follow Gaussian distribu-
tion. However, as illustrated in Fig 7(b), the distribution of
distances between synthetic samples (generated by JDBA-
TR or Cloudleak) apparently deviates from the Gaussian
distribution. However, PRADA is ineffective in detecting
surrogate samples such as KnockoffNet. Because the surro-
gate samples come from a natural data distribution and each
sample is independent and identically distributed without
correlation. As illustrated in Fig 7(c), the distributions of
surrogate data KnockoffNet also follow Gaussian distribution
and the defender can not distinguish them from the distri-
butions of benign data.

Besides, an adaptive adversary may make its synthetic
samples uncorrelated (i.e., as a natural data distribution)
by involving multiple colluded malicious users, thereby
evading the detection of PRADA. For example, we simulate
the case where an adversary registers multiple user accounts
and assigns the relevant (or similar) malicious queries to
different users to make malicious queries sent by each
colluded user unrelated (i.e., follows Gaussian distribution).
The distribution of malicious queries from one of the collud-
ed users is illustrated in Fig 8, which also follows Gaussian
distribution.

On the contrary, our detection method performs inde-
pendent detection for each query and is therefore more
robust against these scenarios. Our experiments confirm
that the detector of AMAO can still achieve the good per-
formance presented in TABLE 6 against colluded malicious

FMNIST

0 5 10
L2 distance

0

1000

2000

3000

C
o

u
n

t

CIFAR10

5 10 15 20 25
L2 distance

0

500

1000

1500

2000

C
o

u
n

t

ImageNette

50 100 150 200 250
L2 distance

0

50

100

150

200

C
o

u
n

t

(a) Benign data
FMNIST

0 5 10
L2 distance

0

2000

4000

6000

8000

C
o

u
n

t

CIFAR10

0 10 20
L2 distance

0

2000

4000

6000

C
o

u
n

t

ImageNette

0 200 400 600
L2 distance

0

200

400

600

800

C
o

u
n

t

(b) Synthetic data
FMNIST

0 5 10
L2 distance

0

1000

2000

3000

C
o

u
n

t

CIFAR10

5 10 15 20 25
L2 distance

0

500

1000

1500

2000

C
o

u
n

t

ImageNette

50 100 150 200
L2 distance

0

50

100

150

200

C
o

u
n

t

(c) Surrogate data

Fig. 7: Distribution of L2 distances for benign queries and
malicious queries, where synthetic data includes samples
generated by JBDA-TR (or Cloudleak) and surrogate data
includes samples from KnockoffNet attack.

FMNIST

0 5 10
L2 distance

0

1000

2000

3000

C
o

u
n

t

CIFAR10

5 10 15 20 25
L2 distance

0

500

1000

1500

2000

C
o

u
n

t

ImageNette

100 200 300
L2 distance

0

50

100

150

200

C
o

u
n

t

Fig. 8: Distribution of L2 distances for JBDA-TR malicious
queries from the colluded user.

users or surrogate samples such as KnockoffNet.
In addition, a malicious user may also mix malicious

queries with benign queries in its queries to enhance the
stealthiness of the attack. The suspect function S of the user
can be reduced by employing this strategy. However, this
will result in a significant increase in the adversary’s query
expense. For instance, we assume the detection accuracy of
our detector is 80% and the threshold for S to determine
whether a user is malicious is set to 0.1. The malicious user
needs to mix more than 87.5% benign queries to ensure the
stealthiness of the attack. Since the number of malicious
queries is only 12.5% of the total number of queries, the ad-
versary needs to spend about 10 times the number of queries
to accomplish the same attack effect when employing this
strategy. It is unrealistic for the adversary to have such a
large number of benign samples and the model stealing
attack will be unworthy with such a large query expense.

5.6.2 Aware of the adaptive query response phase
In practice, it is unrealistic for an adversary to manually
distinguish which response result has been perturbed one
by one. However, the adversary can distinguish whether the
result is perturbed by analyzing the indistinguishability of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

13

0 0.1 0.2 0.3 0.4 0.5
Pruning rate (%)

0

0.2

0.4

0.6

0.8

1

V
er

if
ic

at
io

n
 p

ro
b

ab
ili

ty
 o

r
T

es
t

ac
cu

ra
cy MNIST

KnockoffNet(VP)
JBDA-TR(VP)
Cloudleak(VP)
KnockoffNet(ACC)
JBDA-TR(ACC)
Cloudleak(ACC)

0 0.1 0.2 0.3 0.4 0.5
Pruning rate (%)

0

0.2

0.4

0.6

0.8

1

V
er

if
ic

at
io

n
 p

ro
b

ab
ili

ty
 o

r
T

es
t

ac
cu

ra
cy FMNIST

KnockoffNet(VP)
JBDA-TR(VP)
Cloudleak(VP)
KnockoffNet(ACC)
JBDA-TR(ACC)
Cloudleak(ACC)

0 0.1 0.2 0.3 0.4 0.5
Pruning rate (%)

0

0.2

0.4

0.6

0.8

1

V
er

if
ic

at
io

n
 p

ro
b

ab
ili

ty
 o

r
T

es
t

ac
cu

ra
cy CIFAR-10

KnockoffNet(VP)
JBDA-TR(VP)
Cloudleak(VP)
KnockoffNet(ACC)
JBDA-TR(ACC)
Cloudleak(ACC)

0 0.1 0.2 0.3 0.4 0.5
Pruning rate (%)

0

0.2

0.4

0.6

0.8

1

V
er

if
ic

at
io

n
 p

ro
b

ab
ili

ty
 o

r
T

es
t

ac
cu

ra
cy ImageNette

KnockoffNet(VP)
JBDA-TR(VP)
Cloudleak(VP)
KnockoffNet(ACC)
JBDA-TR(ACC)
Cloudleak(ACC)

Fig. 9: Robustness of the ownership verification against model pruning

TABLE 12: Evaluations of the pHash algorithm

Model Similarity threshold Identification accuracy

MNIST 0.63 88.56
F-MNIST 0.66 83.83
CIFAR-10 0.64 92.03

ImageNette 0.63 95.20

the response result, i.e., whether two same (or similar) query
samples yield different response results. If the adversary
receives many different predictions for the same or similar
query samples, it may be aware of the adaptive query
response phase and discard the perturbed results. Actually,
the synthetic samples of model extraction attacks (such
as JBDA-TR and Cloudleak) tend to have high similarities
because they are generated by adversarial attacks or other
methods (such as data augmentation) from a seed dataset.

DAWN [27] used the hash value of the input to produce
the random prediction and employed a mapping function to
ensure this indistinguishability. However, it can not guaran-
tee the indistinguishability in the case of data augmentation
transformations [12], [29], [30]. In this work, we employ the
image pHash algorithm to ensure the indistinguishability
of our adaptive response strategy in the case of adversarial
attacks and data augmentation.

Specifically, we first use the same method in Section 5.3
to find the optimal similarity threshold to distinguish the
similar and dissimilar samples. After that, we use these
similarity thresholds to determine whether an input sample
is a synthetic sample generated from the recorded sample
(the generation method includes JBDA-TR, Cloudleak and
data augmentation [12], [29]). As presented in TABLE 12,
the pHash algorithm can identify synthetic samples of the
recorded sample with high accuracy. Besides, the compu-
tation overhead of the pHash algorithm is negligibly small
(see TABLE 10). Thus, the defender can ensure the indistin-
guishability by returning the same perturbed result for the
synthetic samples of the recorded sample and the adaptive
adversary can not distinguish which result is perturbed.

5.6.3 Aware of the ownership verification phase
Finally, we consider the scenario where the adversary is
aware of the ownership verification phase. The adversary
may try to invalidate backdoors embedded in the stolen
model through model compression methods, such as model
pruning [59].

To evaluate the robustness of our ownership verification
scheme against such an adaptive adversary, we adopt the
model pruning algorithm used in [59], which trims the

parameter with a small absolute value to zero. Then we
calculate the verification probability (VP) of the perturbed
results and test accuracy (ACC) of the substitute model
with different degrees of model pruning. As shown in Fig 9,
the verification probabilities are always higher than the test
accuracies even when the model performance is degraded
significantly due to the large pruning rate. It demonstrates
that our ownership verification scheme is robust against
such model pruning.

5.6.4 Robustness of AMAO against adaptive attack strate-
gy D-DAE [58]
In this section, we evaluate the robustness of AMAO against
a state-of-the-art adaptive model extraction attack strategy
D-DAE [58], which aims to break the defenses of prediction
with perturbations. Specifically, D-DAE includes two main
modules, i.e., disruption detection and disruption recovery,
where meta-learning is used in the disruption detection
phase to detect disrupted results and well-designed gen-
erative models are used to restore the clean result from the
disrupted result. We integrate D-DAE with the considered
model extraction attacks and evaluate the performance of
AMAO and the baseline defenses (DAWN [27], Deceptive
Perturbation [25] and Adaptive Misinformation [23]) under this
adaptive attack strategy.

The results of the test accuracy of the substitute models
are presented in TABLE 13, where the results of the baseline
for the hard-label scenario show the defense results of
DAWN [27]; the results of the baseline for the soft-label
scenario show the best defense results of Deceptive Per-
turbation [25] and Adaptive Misinformation [23]. The results
indicate that the integration of D-DAE strategy can weaken
the effectiveness of the defenses to some extent. However,
AMAO can still achieve good defensive effect against the
model extraction attacks integrated with D-DAE strategy. In
comparison, AMAO can achieve better defensive effect than
baseline defense regardless of whether the adversary uses
D-DAE strategy or not.

In conclusion, the results in Section 5.6 demonstrate
that AMAO is more robust than baseline defense against
adaptive adversaries.

6 LIMITATIONS

It should be pointed out that we only consider data-limited
adversary in this work, where the adversary only has a
small number of private training samples. In terms of the
adversary that has access to the complete private training
dataset (unlabeled), it can use a semi-supervised learning

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

14

TABLE 13: The attack performance (i.e., test accuracy of
the substitute model) of the model extraction attacks (with-
out/with adaptive attack strategy D-DAE) under the de-
fense of AMAO and the baseline defense.

Attack Scenario Dataset Baseline
defense AMAO

JBDA-TR/
D-JBDA-TR

Hard
label

MNIST 87.30/89.57 67.21/69.32
F-MNIST 74.21/77.89 65.21/68.33
CIFAR-10 35.35/38.15 32.62/36.07

ImageNette 47.88/50.98 45.57/48.19

Soft
label

MNIST 91.80/93.48 81.30/83.55
F-MNIST 75.48/78.20 61.59/64.01
CIFAR-10 40.97/43.07 37.16/38.99

ImageNette 50.70/53.06 48.53/50.55

KnockoffNet/
D-KnockoffNet

Hard
label

MNIST 70.44/75.89 68.03/73.24
F-MNIST 34.95/38.09 32.46/35.23
CIFAR-10 63.48/67.24 49.30/54.44

ImageNette 50.88/52.97 44.20/47.03

Soft
label

MNIST 80.56/85.66 80.11/84.97
F-MNIST 37.81/41.20 34.24/38.58
CIFAR-10 71.35/72.99 70.04/71.67

ImageNette 61.45/65.07 57.04/60.75

Cloudleak/
D-Cloudleak

Hard
label

MNIST 73.14/78.98 67.28/75.06
F-MNIST 67.82/71.54 63.64/67.30
CIFAR-10 67.59/72.87 61.02/69.98

ImageNette 73.60/78.29 68.04/73.80

Soft
label

MNIST 75.93/78.50 72.88/75.25
F-MNIST 71.33/74.41 64.94/68.54
CIFAR-10 71.09/75.19 67.50/71.58

ImageNette 78.10/82.88 71.59/76.64
1 D-JBDA-TR, D-KnockoffNet and D-Cloudleak represent the considered

model extraction attacks integrated with D-DAE.
2 The attack performance of these model extraction attacks integrated

with D-DAE under no defense is the same as the results presented in
TABLE 8.

method (such as [42]) to query the victim model with
unlabeled training samples and train a substitute model.
Our proposed defense is less effective in this scenario.

To defend against such model extraction attacks that
use original private training data (unlabeled) as malicious
queries, defenders can use image matching methods [60] to
identify private training data in malicious queries and detect
such attacks. In addition, defenders can also use member-
ship inference attack methods (such as Dataset Inference [61])
to determine if a suspicious model is trained based on the
private training dataset and verify the model ownership.
These methods can be also integrated into our AMAO and
enable AMAO to defend against this type of attack. In the
future, we intend to explore new defense methods to make
the defense framework more comprehensive and able to
defend against more types of model extraction attacks.

7 CONCLUSIONS

In this paper, we proposed AMAO, a comprehensive frame-
work that has countermeasures against model extraction
attacks for every stage in the model development pipeline
from training, prediction to release. Specifically, it consist-
s of four closely connected phases: adversarial training,
malicious query detection, adaptive query response and
ownership verification. Each phase of AMAO is designed
with a competitive defense strategy, which outperforms
previous work. Experiments conducted on four datasets
(i.e., MNIST, F-MNIST, CIFAR-10 and ImageNette) clearly

demonstrate the superiority of AMAO compare with state-
of-the-art defenses in defending against model extraction
attacks including JBDA-TR, Cloudleak and KnockoffNet. Be-
sides, extensive experiments demonstrate AMAO is also
robust against a variety of adaptive adversary scenarios.

ACKNOWLEDGMENT

This work is supported by the Key-Area Research and
Development Program of Guangdong Province under Grant
2020B0101360001, National Natural Science Foundation of
China under Grants 62020106013, 61972454, and 61802051,
Sichuan Science and Technology Program under Grants
2020JDTD0007 and 2020YFG0298, the Fundamental Re-
search Funds for Chinese Central Universities under Grant
ZYGX2020ZB027.

REFERENCES

[1] Julian Salazar, Katrin Kirchhoff, and Zhiheng Huang. Self-
attention networks for connectionist temporal classification in
speech recognition. In Proceedings of ICASSP, pages 7115–7119,
2019.

[2] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning transferable architectures for scalable image recognition.
In Proceedings of CVPR, pages 8697–8710, 2018.

[3] M Mitchell Waldrop et al. No drivers required. Nature,
518(7537):20, 2015.

[4] Ekaba Bisong. An overview of google cloud platform services. In
Building Machine Learning and Deep Learning Models on Google Cloud
Platform, pages 7–10. 2019.

[5] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris
Coskun, Ramesh Nallapati, Julio Delgado, Amir Sadoughi, Yury
Astashonok, Piali Das, et al. Elastic machine learning algorithms
in amazon sagemaker. In Proceedings of SIGMOD, pages 731–737,
2020.

[6] Chenhui Hu and Vanja Paunic. Building forecasting solutions
using open-source and azure machine learning. In Proceedings of
ACM SIGKDD, pages 3497–3498, 2020.

[7] Rob High. The era of cognitive systems: An inside look at ibm
watson and how it works. IBM Corporation, Redbooks, pages 1–16,
2012.

[8] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via pre-
diction apis. In Proceedings of USENIX Security Symposium, pages
601–618, 2016.

[9] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparame-
ters in machine learning. In Proceedings of S&P, pages 36–52, 2018.

[10] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Pra-
da: protecting against dnn model stealing attacks. In Proceedings
of Euro S&P, pages 512–527, 2019.

[11] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff
nets: Stealing functionality of black-box models. In Proceedings of
CVPR, pages 4954–4963, 2019.

[12] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-
Yi Ho, and Yier Jin. Cloudleak: Large-scale deep learning models
stealing through adversarial examples. In Proceedings of NDSS,
2020.

[13] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish
Shevade, and Vinod Ganapathy. Activethief: Model extraction
using active learning and unannotated public data. In Proceedings
of AAAI, volume 34, pages 865–872, 2020.

[14] Mingyi Zhou, Jing Wu, Yipeng Liu, Shuaicheng Liu, and Ce Zhu.
Dast: Data-free substitute training for adversarial attacks. In
Proceedings of CVPR, pages 234–243, 2020.

[15] Wenbo Jiang, Hongwei Li, Sen Liu, Yanzhi Ren, and Miao He. A
flexible poisoning attack against machine learning. In Proceedings
of ICC, pages 1–6, 2019.

[16] Wenbo Jiang, Hongwei Li, Sen Liu, Xizhao Luo, and Rongxing Lu.
Poisoning and evasion attacks against deep learning algorithms
in autonomous vehicles. IEEE Transactions on Vehicular Technology,
69(4):4439–4449, 2020.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

15

[17] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: a simple and accurate method to fool deep
neural networks. In Proceedings of CVPR, pages 2574–2582, 2016.

[18] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box
attacks against machine learning. In Proceedings of Asia CCS, pages
506–519, 2017.

[19] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine learn-
ing models. In Proceedings of S&P, pages 3–18, 2017.

[20] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and basic
countermeasures. In Proceedings of CCS, pages 1322–1333, 2015.

[21] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita
Borisov. Property inference attacks on fully connected neural net-
works using permutation invariant representations. In Proceedings
of CCS, pages 619–633, 2018.

[22] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep
Mehta. Model extraction warning in mlaas paradigm. In Proceed-
ings of ACSAC, pages 371–380, 2018.

[23] Sanjay Kariyappa and Moinuddin K Qureshi. Defending against
model stealing attacks with adaptive misinformation. In Proceed-
ings of CVPR, pages 770–778, 2020.

[24] J. Grana. Perturbing inputs to prevent model stealing. In Pro-
ceedings of IEEE Conference on Communications and Network Security
(CNS), pages 1–9, 2020.

[25] Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su.
Defending against neural network model stealing attacks using
deceptive perturbations. In Proceedings of S&P Workshops, pages
43–49, 2019.

[26] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction
poisoning: Utility-constrained defenses against model stealing
attacks. arXiv preprint arXiv:1906.10908, 2019.

[27] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N Asokan.
Dawn: Dynamic adversarial watermarking of neural networks. In
Proceedings of the 29th ACM International Conference on Multimedia,
pages 4417–4425, 2021.

[28] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural
network fingerprinting by conferrable adversarial examples. arXiv
preprint arXiv:1912.00888, 2019.

[29] Xueluan Gong, Yanjiao Chen, Wenbin Yang, Guanghao Mei, and
Qian Wang. Inversenet: Augmenting model extraction attacks
with training data inversion. In Proceedings of IJCAI, pages 2439–
2447, 2021.

[30] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural
network fingerprinting by conferrable adversarial examples. In
Proceedings of ICLR, 2021.

[31] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas
Papernot. Data-free model extraction. In Proceedings of CVPR,
pages 4771–4780, 2021.

[32] Yicheng Zhang, Rozhin Yasaei, Hao Chen, Zhou Li, and Moham-
mad Abdullah Al Faruque. Stealing neural network structure
through remote fpga side-channel analysis. IEEE Transactions on
Information Forensics and Security, 16:4377–4388, 2021.

[33] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E
Balas. Stealing neural networks via timing side channels. arXiv
preprint arXiv:1812.11720, 2018.

[34] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[35] Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet.
Adversarial manipulation of deep representations. In Proceedings
of ICLR, 2016.

[36] Model zoo: Discover open source deep learning code and pre-
trained models.

[37] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph
Stoecklin, Heqing Huang, and Ian Molloy. Protecting intellectual
property of deep neural networks with watermarking. In Proceed-
ings of AsiaCCS, pages 159–172, 2018.

[38] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and
Joseph Keshet. Turning your weakness into a strength: Water-
marking deep neural networks by backdooring. In Proceedings of
USENIX Security Symposium, pages 1615–1631, 2018.

[39] Hengrui Jia, Christopher A Choquette-Choo, and Nicolas Paper-
not. Entangled watermarks as a defense against model extraction.
arXiv preprint arXiv:2002.12200, 2020.

[40] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks.
In Proceedings of S&P, pages 707–723, 2019.

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dim-
itris Tsipras, and Adrian Vladu. Towards deep learning models
resistant to adversarial attacks. In Proceedings of ICLR, 2018.

[42] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Ku-
rakin, and Nicolas Papernot. High accuracy and high fidelity
extraction of neural networks. In Proceedings of USENIX Security
Symposium, 2020.

[43] Dan Wang and Yi Shang. A new active labeling method for deep
learning. In Proceedings of IJCNN, pages 112–119, 2014.

[44] Melanie Ducoffe and Frederic Precioso. Adversarial active learn-
ing for deep networks: a margin based approach. arXiv preprint
arXiv:1802.09841, 2018.

[45] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. In Proceedings of ICLR, 2017.

[46] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust
linear regression against training data poisoning. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, pages
91–102. ACM, 2017.

[47] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the
knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2(7), 2015.

[48] Hongpo Zhang, Ning Cheng, Yang Zhang, and Zhanbo Li. Label
flipping attacks against naive bayes on spam filtering systems.
Applied Intelligence, pages 1–12, 2021.

[49] Han Xiao, Huang Xiao, and Claudia Eckert. Adversarial label
flips attack on support vector machines. In Proceedings of european
conference on artificial intelligence, pages 870–875. 2012.

[50] Rahim Taheri, Reza Javidan, Mohammad Shojafar, Zahra Poora-
nian, Ali Miri, and Mauro Conti. On defending against label
flipping attacks on malware detection systems. Neural Computing
and Applications, 32(18):14781–14800, 2020.

[51] Albert N Shiryaev. Optimal stopping rules, volume 8. Springer
Science & Business Media, 2007.

[52] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine
transform. IEEE transactions on Computers, 100(1):90–93, 1974.

[53] C Zhang, S Bengio, M Hardt, B Recht, and O Vinyals. Under-
standing deep learning requires rethinking generalization int. In
Proceedings of ICLR, 2017.

[54] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.
Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, volume 86, pages 2278–2324, 1998.

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning algo-
rithms. arXiv preprint arXiv:1708.07747, 2017.

[56] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Communi-
cations of the ACM, 60(6):84–90, 2017.

[58] Yanjiao Chen, Rui Guan, Xueluan Gong, Jianshuo Dong, and Meng
Xue. D-dae: Defense-penetrating model extraction attacks. In
Proceedings of S&P, pages 432–449, 2022.

[59] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi
Satoh. Embedding watermarks into deep neural networks. In
Proceedings of ICMR, pages 269–277, 2017.

[60] Clark F Olson. Maximum-likelihood image matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(6):853–
857, 2002.

[61] Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot.
Dataset inference: Ownership resolution in machine learning. In
Proceedings of ICLR, 2020.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

16

Wenbo Jiang received his B.S. degree in in-
formation security from University of Electron-
ic Science and Technology of China (UESTC)
in 2017. Currently, he is a PhD student at the
School of Computer Science and Engineering,
University of Electronic Science and Technology
of China (UESTC), China. His research interests
include adversarial machine learning and model
extraction attacks.

Hongwei Li (M’12-SM’18) is currently the Head
and a Professor at Department of Information
Security, School of Computer Science and En-
gineering, University of Electronic Science and
Technology of China. He received the Ph.D. de-
gree from University of Electronic Science and
Technology of China in June 2008. He worked
as a Postdoctoral Fellow at the University of Wa-
terloo from October 2011 to October 2012. He
is the Senior Member of IEEE, the Distinguished
Lecturer of IEEE Vehicular Technology Society.

Guowen Xu is currently a Research Fellow with
Nanyang Technological University, Singapore.
He received the PhD degree from the University
of Electronic Science and Technology of China
(UESTC) in 2020. As the first author, he has pub-
lished more than 15 papers in reputable venues,
including ACM ACSAC, ACM ASIACCS, IEEE
TDSC and IEEE TIFS. He is the recipient of the
Best Paper Award of the 26th IEEE International
Conference on Parallel and Distributed Systems
(ICPADS 2020).

Tianwei Zhang is an assistant professor in
School of Computer Science and Engineering,
at Nanyang Technological University. His re-
search focuses on computer system security.
He is particularly interested in security threats
and defenses in machine learning systems, au-
tonomous systems, computer architecture and
distributed systems. He received his Bachelor’s
degree at Peking University in 2011, and the
Ph.D degree in at Princeton University in 2017.

Rongxing Lu (S’09-M’11-SM’15-F’21) is cur-
rently an associate professor at the Faculty of
Computer Science (FCS), University of New
Brunswick (UNB), Canada. He was awarded
the most prestigious “Governor General’s Gold
Medal”, when he received his PhD degree from
the Department of Electrical & Computer En-
gineering, University of Waterloo, Canada, in
2012; and won the 8th IEEE Communications
Society (ComSoc) Asia Pacific (AP) Outstand-
ing Young Researcher Award, in 2013. He is

presently an IEEE Fellow.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3261327

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on March 28,2023 at 02:02:22 UTC from IEEE Xplore. Restrictions apply.

