
Share Your Data Carefree: An Efficient, Scalable
and Privacy-Preserving Data Sharing Service in

Cloud Computing
Jianfei Sun , Guowen Xu , Tianwei Zhang , Hu Xiong ,Member, IEEE,

Hongwei Li , Senior Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract—Benefiting from the powerful computing and storage capabilities of cloud services, data sharing in the cloud has been

permeated across various applications including social networks, e-health and crowdsourcing transportation system. Intuitively,

outsourcing data to untrusted cloud commonly raises concerns about data privacy breaches. To combat this, one approach is exploiting

Broadcast Based Searchable Encryption (BBSE) for secure data sharing. Nevertheless, the latest proposed BBSE is still defective in

either security or efficiency. In this article, we propose ESPD, an Efficient, Scalable and Privacy-preserving Data sharing framework

over encrypted cloud dataset. Different from previous works, ESPD supports sharing target data to multiple users with distinct secret

keys, and keeps a constant ciphertext length with the changes of the amount of system users. This feature significantly improves

search efficiency and makes ESPD scalable in real-world scenarios. We show a formal analysis to prove the security of ESPD in terms

of file privacy, keyword privacy and trapdoor privacy. Also, extensive experiments on real-world dataset are conducted to indicate the

desirable performance of ESPD compared to other similar schemes.

Index Terms—Searchable encryption, broadcast, privacy-preserving, scalable

Ç

1 INTRODUCTION

CLOUD-ASSISTED data sharing services, as a common fea-
ture exist in a variety of applications ranging from e-

health to social networking [1], [2], [3]. For example, with
social software such as Twitter, Facebook and WeChat as
carriers [5], [9], one can share their own messages, pictures
and voices to multiple friends, where the powerful cloud
can provide customers with high quality service experience,
including seamless image transmission, voice delivery and
concurrent data processing [6], [7]. Meanwhile, with the
popularity of cloud computing in the medical field, institu-
tions such as hospitals, insurance companies, and pharma-
ceutical alliances have preferred to outsource medical data
to cloud providers. Customers in this way can access autho-
rized data anytime, anywhere without geographical

restrictions. Moreover, by shifting these services to the
cloud, data owners can be freed from burdensome local
data storage and management burdens. Clearly, this “one-
to-many” (i.e., one data owner-to-multiple users) out-
sourced data sharing services have become an integral part
of life, which is spread across many areas such as social,
medical, financial, etc.

While outsourced data sharing services possess appeal-
ing advantages, data owners may raise concerns about
privacy breaches once uploading their data to the
untrusted cloud [8], [10], [11]. Data owners are afraid of
losing the ability to control the utilization of the data
stored on the server as they can only access the data in a
black-box way. In other words, the server may derive pri-
vate and sensitive information, more seriously, abuse the
outsourced data thereby seeking certain inappropriate
benefits. On the other hand, users who retrieve data from
the cloud without defense also present a risk of privacy
leakages. Intuitively, a curious server is fully capable of
collecting user history of queries over a period of time
(such as prescriptions for cancer treatment, address, and
even insurance records). This information is also sensitive
and should not be exposed to any unauthorized entity
(including the cloud server).

To address these privacy concerns, a straightforward
way is to conduct encryption operations prior to outsourc-
ing raw data to the cloud. However, traditional encryption
methods (such as AES) significantly impair the data usabil-
ity while providing a strong level of security [4], [12]. As a
consequence, data sharing over the encrypted domain will
be extremely difficult since users are hard to recognize the
actual meaning of ciphertexts. To combat this, searchable

� Jianfei Sun, Guowen Xu, and Tianwei Zhang are with the School of
Computer Science and Engineering, Nanyang Technological University,
Singapore 639798, Singapore. E-mail: sjf215.uestc@gmail.com, {guowen.
xu, tianwei.zhang}@ntu.edu.sg.

� Hu Xiong is with the School of Information and Software Engineering,
University of Electronic Science and Technology of China, Chengdu,
Sichuan 610054, China. E-mail: xionghu.uestc@gmail.com.

� Hongwei Li is with the School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, Chengdu, Sichuan
610054, China. E-mail: hongweili@uestc.edu.cn.

� Robert H. Deng is with the School of Information Systems, SingaporeMan-
agement University, Singapore 178902, Singapore. E-mail: robertdeng@smu.
edu.sg.

Manuscript received 2 Nov. 2020; revised 21 Sept. 2021; accepted 28 Sept. 2021.
Date of publication 6 Oct. 2021; date of current version 8 Mar. 2023.
This work was supported by NTU-Desay Research Program 2018-0980.
(Corresponding author: Guowen Xu.)
Recommended for acceptance by P. Trunfio.
Digital Object Identifier no. 10.1109/TCC.2021.3117998

822 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

2168-7161 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6944-8378
https://orcid.org/0000-0002-6944-8378
https://orcid.org/0000-0002-6944-8378
https://orcid.org/0000-0002-6944-8378
https://orcid.org/0000-0002-6944-8378
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
mailto:sjf215.uestc@gmail.com
mailto:guowen.xu@ntu.edu.sg
mailto:guowen.xu@ntu.edu.sg
mailto:tianwei.zhang@ntu.edu.sg
mailto:xionghu.uestc@gmail.com
mailto:hongweili@uestc.edu.cn
mailto:robertdeng@smu.edu.sg
mailto:robertdeng@smu.edu.sg

encryption, as a promising technology, has been applied to
secure data sharing with satisfactory efficiency. The fly in
the ointment is that existing Symmetric-based Searchable
Encryption (SSE) are usually suitable for one-to-one (one
data owner-to-one user) data sharing scenarios. This is
mainly due to the inherent limitation of symmetric encryp-
tion (i.e., require encryption and decryption operations with
the same secret key), which makes ciphertext sharing with
one-to-many impractical once multiple users collude with
each other. Other variants of SSE require a data owner to
encrypt each data with a distinct key generated for every
authorized user, and then each user independently per-
forms ciphertext searching with its unique key. Obviously,
this inevitably leads to unacceptable storage redundancy,
and also makes data owners fall into the trap of large-scale
key management. Hence, it is crucial to design an efficient
and privacy-preserving framework that is compatible with
one-to-many data sharing in the ciphertext domain.

To address the above challenges, various ways have been
widely investigated and applied to distinct practical scenar-
ios. In general, existing solutions are mainly originated from
two underlying technologies: Attribute based Searchable
Encryption(ABSE) and Broadcast based Searchable Encryption
(BBSE), both of which are constructed based on the Public
Key Searchable Encryption (PKSE) primitive. ABSE is a well-
known encryption algorithm that can provide data confi-
dentiality as well as fine-grained data access control [28], [33].
Specifically, the data owner encrypts messages with a set of
attribute values (i.e., access policies) so that the ciphertext
could be only accessed by authorized entities who own the
corresponding set of attribute values. For example, Zheng
et al. [28] put forward a fine-grained keyword-based search-
able encryption scheme. Through an access policy over
encrypted data, the authors stated that the scheme can
achieve secure data sharing with multiple data receivers.
Recently, Miao et al. [36] also proposed PP-ABDS, a privacy-
preserving attribute-based data sharing scheme for secure
cloud storage. Based on the bilinear pairing and Decisional
Diffie-Hellman (DDH) assumption, PP-ABDS is proved to be
secure against selectively chosen keyword attack (SCKA).
While ABSE schemes can provide expressive access policies
over the encrypted data to be shared and retrieved, many
ABSE have been proven to be inefficient for sharing and
searching [32], [34], [35]. Concretely, in ABSE, the size of each
ciphertext (such as keywords and search token) is linearly
incremental to the amount of attributes in the access policy,
which means that data owner needs to scale up each data to a
large ciphertext once the quantity of attributes involved in the
system reaches a certain large magnitude. Moreover, most
ABSE-based solutions require the assistance of a trusted
entity to produce the search token, which also leads to poor
scalability inmost real-world data sharing scenarios [29], [33].
To break the above restrictions, Kiayias et al. [13] proposed
Broadcast based Searchable Encryption (BBSE), the first privacy-
preserving data sharing scheme with the property of con-
stant-size ciphertext, which exploits an aggregation approach
called broadcast encryption technology to realize that the
computation cost of the entire search process is independent
of the number of users in the system. Besides, compared with
ABSE, it also enhances the level of privacy protection, espe-
cially concerning raw data privacy and keyword privacy.

However, as we will show in this paper, BBSE schemes
[13] fail to achieve its claimed security, and even more, it
could neither perfectly support the function of secure
multi-user data sharing nor realize the privacy-preserving
of the retrieved contents. Therefore, as far as our knowl-
edge goes, there is no prior work that can realize light-
weight and privacy-preserving data sharing for the one-
to-many scenarios.

In this paper, we raise ESPD, an Efficient, Scalable and
Privacy-preserving Data sharing framework over encrypted
cloud dataset. Specifically, to preserve the keyword privacy
of index and trapdoor, the linear splitting technique is uti-
lized to split the bilinear group element into two pieces,
which prevents malicious entities from deriving keyword
privacy from ciphertext and trapdoor. To achieve efficiency
as well as scalability, the aggregation-based broadcast tech-
nique is used to realize the constant-size ciphertext irrespec-
tive of the number of users.

The main contributions are as follows:

� We first point out the security vulnerabilities of the
data sharing schemes in BBSE [13] by demonstrating
our attack and stating the reason why they fail to
achieve the claimed privacy, i.e., keyword privacy
and trapdoor privacy.

� We design an efficient and privacy-preserving data
sharing framework, which supports sharing target
data with multiple-users while allowing authorized
users to search a keyword in a subset of files.

� We avail of an aggregation method to realize the
constant-size ciphertext and a linear splitting tech-
nique to solve the keyword privacy leakage issues of
index and trapdoor. With these solutions, our ESPD
realizes a relatively better performance in network
bandwidth usage and cloud storage. Besides, our
ESPD is desirable in file privacy, keyword privacy
and trapdoor privacy.

� File privacy, keyword privacy and trapdoor privacy
in our ESPD are formally proven. Further, we show
theoretical and experimental evaluations to demon-
strate the efficiency and practicality of our ESPD.

Organization. The rest of current manuscript is illustrated
below. In Sections 2 and 3, the preliminaries and problem
definitions considered in this manuscript are introduced.
Then, Section 4 describes the security definitions. In Sec-
tions 5 and 6, our ESPD as well as the security analysis is
stated. Section 7 elaborately shows the implementation and
permanence evaluation. Finally, Section 8 introduces the
related works of privacy-preserving data sharing, and Sec-
tion 9 summarizes this manuscript.

2 SYSTEM MODEL AND THREAT MODEL

This section briefly describes the general scenario consid-
ered in our ESPD , which consists of system & threat model
and privacy requirements.

2.1 System Model

As presented in Fig. 1, three generic entities in our model
are taken into consideration, i.e., data owner, cloud server and

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 823

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

search users, and the three of them play the following roles in
ESPD, respectively.

� Data owner: The data owner is required to implement
encryption on raw data prior to uploading them to
the cloud. To facilitate data sharing under the cipher-
text, each data is linked to an encrypted index con-
structed from a single keyword and a subset of
users, which signifies that only the users to be autho-
rized (belongs to the subset above) holding the target
keyword are allowed to access this data. Then, the
encrypted data along with encrypted indexes are
subsequently transmitted to the cloud by data
owner.

� Cloud server: The primary responsibility of the cloud
server is to maintain the integrity of the ciphertext
data stored on it, thereby providing a private data
sharing service for multiple users. To be specific,
upon capturing a search query from a legitimate
user, the server is asked to retrieve the target data
that the user is authorized to, and returns the cipher-
text results that is consistent with the currently que-
ried keyword.

� Search users: In ESPD, each legitimate user will be
assigned a distinct secret key used to generate
encrypted search tokens (i.e., trapdoors). Then, given
a keyword, the legitimate user is free to generate the
trapdoor to be uploaded to the server, and obtain
authorized ciphertexts with the assistance of the
cloud server.

We can observe that the above system model is universal
and has implemented in various real-world applications.
For example, in social networks, the data owner can share
various multimedia messages including photos and videos
to a number of friends using well-known cloud services
(such as iCloud and AmazonWeb Services). In the transpor-
tation field, pedestrians and drivers can also share their traf-
fic conditions with cloud assistance, thus ensuring the
performance of vehicle networking in real-time navigation
and road condition perception. Clearly, this “one-to-many”
outsourced data sharing services have become an integral
part of life, which is spread across many areas such as
social, traffic and medical.

2.2 Threat Model and Privacy Requirements

In our ESPD, the adversaries mainly originate from the
untrusted server and some malicious users. Specifically, we

assume that the cloud server is honest-but-curious [2], which
implies the pre-agreed protocols are honestly conducted by
the cloud to complete its mission. However, users’ data pri-
vacy may be also attempted to be snooped by exploiting
mastered prior knowledge. Every search user is considered
malicious, and we allow them to collude with each other
with the most offensive ability to try to gain the privacy of
other honest users. In addition, the data owner is consid-
ered to be trustworthy since it is the requester of the cloud
service.

Under the aforementioned threat model, the following
privacy requirements are put forward.

� Confidentiality of data owner’s raw data: As described
before, the data owner’s raw data may be inherently
sensitive, or involve private information such as
medical records, addresses and IDs. Hence, these
raw data should be outsourced in the form of cipher-
text to the cloud server, and can only be accessed by
legitimate authorized users.

� Privacy protection of indexes and trapdoors: In our
ESPD, indexes and trapdoors are constructed from
keywords and access policies to facilitate querying
under the encrypted domain. Obviously, the leakage
of the indexes or trapdoors inevitably gives the
adversary more clues to derive the privacy of the
original data. Therefore, the contents of them should
be hindered from being disclosed to other parties
(such as the untrusted server and illegal users).

3 PRELIMINARIES

Some fundamental cryptographic primitives are briefly
reviewed for ease of helping readers understand the techni-
cal particulars of the proposed schemes.

3.1 Bilinear Map

Definition 1 (Bilinear map). Assume fGigi2f0;1g are multipli-
cative groups with prime order p, where G0 owns a generator g.
Let e : G0 � G0 ! G1 be a computable bilinear map [15] with
the properties below: (1) Bilinearity: for all x; y 2 G0 and r; t 2
Zp, eðxr; ytÞ ¼ eðx; yÞrt. (2) Non-Degeneracy: eðg; gÞ 6¼ 1.

3.2 Complexity Assumptions

Definition 2 (BDHE problem). On input an instance ðg; h;
g1; . . . ; gn; gnþ2; . . . ; g2n;ZÞ, where g is a generator of G0 and
gi ¼ gt

i
for some unknown t 2 Zp, it is intractable to distin-

guish Z ¼ eðgnþ1; hÞ or Z ¼ U for the bilinear Diffie-Hellman
exponentiation assumption (BDHE) [17], where U is a random
element.

Definition 3 (DLIN problem). Given a tuple ðg; gx1 ;
gx2 ; gx1x3 ; gx2x4 ;ZÞ, where g is a generator of G0, it is intracta-
ble to discern Z ¼ gx3þx4 from Z ¼ U for the decision linear
(DLIN) problem [17], where U is chosen at random.

Definition 4 (DDHI assumption). Given a tuple ðg; h1; h2;
g1; . . . ; gn; gnþ1; . . . ; g2n; g

’;ZÞ, where fgi ¼ gt
igi¼1;...n;nþ2;...2n;

it is intractable to differentiate Z ¼ h
’

tnþ1

1 from Z ¼ U for the
decision Diffie-Hellman inverse (DDHI) assumption [13], where
U is picked at random.

Fig. 1. System model.

824 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

3.3 Formal Definition

Definition 5 (ESPD system). Our ESPD consists of the fol-
lowing algorithms:

� Setup (n; �): Accepts the security parameter � and the
number of users n, returns the system public key pk
and the master secret keymsk.

� KeyGen ði; pk;mskÞ: Takes the system public key pk
and the master secret key msk, returns a secret key ski
for user i.

� Enc (pk;w; Sk;Mk): Accepts the system public key pk,
the keyword w, file Mk and an user set Sk, returns a
keyword ciphertext Ck and file ciphertext C0

k.
� Trap ðski; wÞ: Takes the secret key ski of user i, gener-

ates a search token called trapdoor ti;w.
� Test (pk; Sk; ti;w; Ck): Takes the public key pk, the key-

word ciphertext Ck, the user set Sk, the trapdoor ti;w of
user i, checks whether the target keyword w is found in
Ck. If it holds, it returns 1. Otherwise, it aborts and
returns 0.

� Dec (pk; ski; C
0
k; Sk): Takes the the public key pk, the

user set Sk, the secret key ski of user i and the file
ciphertext C0

k, recovers the encrypted fileMk.

4 SECURITY DEFINITION

In this section, we define the security games for file privacy,
keyword privacy and trapdoor privacy of our ESPD.

Definition 6 (File privacy). File privacy means that any mali-
cious entities including cloud servers cannot derive plaintext
privacy from data ciphertexts except that they are authorized.
The semantic security for file privacy is defined via the follow-
ing game between a challenger C and an adversary A.

� Init:A gives C a set Sk that he wants to challenge on.
� Setup: C performs Setup algorithm to obtain the sys-

tem public key pk and sends it to A.
� Phases 1 & 2: A adaptively sends secret key queries

for j =2 Sk to C, C then responds A with the secret key
skj generated by performing KeyGen algorithm.

� Challenge: A sends two equal length plaintexts M0

and M1 to C, C then selects a random number r 2
f0; 1g, runs Encðpk;Mr; SkÞ to produce the ciphertext
C0, which is subsequently sent to A for guessing.

� Guess: A outputs a guess r0 for r and wins the game if
r ¼ r0.

We say that the file privacy game is secure if the probabil-
ity jPr½r ¼ r0� � 1=2j � �, where � is a negligible probability.

Definition 7 (Keyword privacy). Keyword privacy indi-
cates that any malicious users or cloud servers cannot snoop
the encrypted keyword information from the keyword cipher-
texts. The semantic security for keyword privacy is defined
via the following game between a challenger C and an
adversary A.

� Init: A gives C a set S0 and the keyword w� that he
wants to challenge on.

� Setup: C performs Setup algorithm to obtain the sys-
tem public key pk and the master secret key msk,
then sends the pk to A.

� Phases 1 & 2: A adaptively sends trapdoor queries for
ði; wÞ to C, C then responds A with the trapdoor ti;w
generated by performing Trap algorithm.

� Challenge: C selects a random number r 2 f0; 1g, runs
Encðpk; wr; S0Þ to produce the ciphertext C, where
w0 ¼ w� and w1 is a random keyword, and then
returns the produced challenge ciphertext C to A.

� Guess:A outputs a guess r0 for r and wins the game if
r ¼ r0.

Restriction. The trapdoor queries can be queried by the
adversary A only in case that i =2 S0 and w 6¼ w� hold. The
scheme is keyword private if Pr½winAðr ¼ r0Þ� < 1=2þ �,
where winAðr ¼ r0Þ is a random variable showing whether
Awins the game and � is a negligible probability.

Definition 8 (Trapdoor privacy). Trapdoor privacy refers to
that neither malicious users nor cloud server can learn the key-
word information from trapdoors of other participants or dele-
gated users. In the security game of the security game, the goal
of the adversary is to obtain the trapdoor privacy of other partic-
ipants. The semantic security for trapdoor privacy is defined via
the following game between a challenger C and an adversary A.

� Init: A gives C a user and keyword tuple ði�; w�Þ that
he wants to challenge on.

� Setup: C performs Setup algorithm to obtain the sys-
tem public key pk and the master secret key msk,
then sends the pk to A.

� Phases 1 & 2: A adaptively sends trapdoor queries for
ði; wÞ to C, C then responds A with the trapdoor ti;w
generated by performing Trap algorithm.

� Challenge: C selects a random number r 2 f0; 1g, runs
Encðpk; wr; S0Þ to produce the ciphertext C and C0,
where wr ¼ w� if r ¼ 0 and w1 is a random keyword,
and then returns the produced challenge ciphertexts
C and C0 to A.

� Guess:A outputs a guess r0 for r and wins the game if
r ¼ r0.

We say that the scheme is trapdoor private if
Pr½winAðr ¼ r0Þ� < 1=2þ �, where winAðr ¼ r0Þ is a random
variable indicating whether A wins the game and � is a neg-
ligible probability.

Remark 1. In our manuscript, the goal of our paper is to do
our best to achieve a Secure Identity-based Broadcast
Searchable Encryption for data sharing, which can be
viewed as the modified and enhanced version of Efficient
Encrypted Keyword Search for Multi-user Data Sharing
scheme [13]. In [13], although some security defeats lead-
ing to keyword privacy leakage have existed, the cor-
rected security definitions for file privacy, keyword
privacy and trapdoor privacy are correctly defined. The
superficial reason resulting in security vulnerabilities in
[13] originates from that the access control list Sk does not
make sense at all, such that the adversary can bypass the
access structure and directly access the data. The basic
reason is that the adversary can self-produce the autho-
rized trapdoor and then pick partial ciphertexts to be
challenged on to snoop the keyword privacy. In the defi-
nition of our security games, we follow the original secu-
rity definitions as those defined in [13]. Specifically, in the
keyword privacy game, the adversary is static that he/she

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 825

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

outputs a keyword and a set pair that he/she wants to be
challenged on. Then he observes encryption of keywords
and trapdoors. However, he/she is not able to distinguish
whether the challenge ciphertext is encoded by the chal-
lenge keyword or a random keyword. In the trapdoor pri-
vacy game, the adversary outputs challenge user index
and keyword pair at the beginning of the game to be chal-
lenged on. Then, the adversary observes encryptions of
keywords and the challenge trapdoor, but he/she is not
able to distinguish the challenge keyword from a random
keyword.

5 OUR CONSTRUCTIONS

5.1 High Level of Our Construction

In this section, we propose ESPD, which consists of two pri-
vacy-preserving data sharing frameworks, named ESPD-I
and ESPD-II (shown in Figs. 3 and 4). At a high level view,
the workflow of ESPD shown in Fig. 2 is briefly described as
follows: First, algorithm Setup is exploited to initialize pub-
lic parameters used in the system (Step �1). Based on this,
each system user is granted a secret key with KeyGen algo-
rithm (Step �2). Then, to protect data privacy, the data
owner resorts to Enc algorithm to encrypt data to be out-
sourced, and generated corresponding encrypted indexes
for subsequent queries (Step �3). When a user desires to
access the data of his interest, he first requires to locate the
target data. In this way, he produces the search token called
trapdoor with Trapdoor algorithm and then delegates it to
the cloud server for retrieving the interest’s data (Step �4).
After receiving the submitted trapdoor, the cloud server
performs the Test algorithm to search the target data and
returns it to the delegated user if the target data is retrieved
(Step �5). Finally, the data user conducts Dec algorithm to
recover the raw data (Step�6).

Compared to Kiayias et al.’s data sharing system [13] (see
SupplementalMaterial A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCC.2021.3117998 for detailed security analy-
sis), our ESPD-I addresses the issues of non-authorization
access and keyword leakage. To realize one-to-many autho-
rized data access and privacy-preserving of keyword infor-
mation, we resort to the primitives of broadcast encryption
[16] and expressive searchable encryption [33]. Specifically,
the “aggregation” technique [16] provides an effective

solution to realize one-to-many authorized data sharing with
constant-size ciphertexts and secret key. The “linear splitting”
technique [33] is used to split ciphertexts corresponding to
each keyword into two randomized components. Even if key-
word information is still contained in ciphertexts, it is infeasi-
ble to be computationally derived from the public parameters
and the ciphertexts. Our constructed ESPD-I enables a single
server to conduct authorized keyword retrieval over the tar-
get data ciphertext and reaches the goals of particular privacy
requirements, i.e., privacy preserving of index and trapdoor.
For technical details, please refer to Fig. 3.

It should be noted that there is still an unresolved privacy
issue in ESPD-I, i.e., the linkability among trapdoors, which
means that whether any two delegated trapdoors contain the
same encrypted keyword can be easily discerned by the
server. This may incur some leakage of trapdoor informa-
tion. In real applications, any user may submit his trapdoor
to a cloud server for retrieving the data of his interests, and
even the same usermay send the search queries several times
for retrieval. For the cloud server, it can distinguish whether
different users search the same interested data by checking
the trapdoors that encrypt the same information. To combat
that, we propose an enhanced model called ESPD-II. In
ESPD-II, the re-randomnessmethod is utilized to re-random-
ize trapdoor components to match with related components
in the ciphertext, such that the server cannot distinguish
whether the delegated trapdoors encrypt the same keyword.
With our ESPD-II, keyword privacy of both ciphertext and
trapdoor can be protected from being snooped. Further, the
server cannot identity whether the received trapdoors hide
the same keyword information. For technical details, please
refer to Fig. 4.

Remark 2. Compared with the works [13], our ESPD
(ESPD-I and ESPD-II) elegantly solves the security vul-
nerabilities of the privacy leakage of keyword ciphertext
and trapdoor appeared in [13] without sacrificing the effi-
ciency. With our ESPD to construct data sharing service,
authorized users can securely and efficiently retrieve a
keyword, while keyword privacy of ciphertext and trap-
door cannot be derived by the server.

5.2 Detailed Descriptions of Our Construction

In our construction, the trapdoor consists of six different
trapdoors, both the secret key and the ciphertext have

Fig. 2. Workflow of our ESPD.

826 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TCC.2021.3117998
http://doi.ieeecomputersociety.org/10.1109/TCC.2021.3117998

eleven parts. The reason leading to these settings originates
from the need for security proofs by embedding hard prob-
lems into those redundant secret keys and ciphertexts and
the trapdoor is generated with partial secret keys. For ease
of better illustration and understanding, the attribute-based
searchable encryption schemes (ABSE) [28], [29], [30], [31]
are taken as examples. In ABSE [28], [29], [30], [31], the
trusted authority generates secret keys associated with a set
of attributes for each system user. A data owner selects an
access policy to encrypt his/her files to produce the corre-
sponding ciphertexts, which are generally stored on the
cloud server for data sharing and searching. To locate the
target ciphertext of his/her interests, a user uses his partial
secret keys to create a search token (also called trapdoor),
which is commonly delegated to a cloud server for perform-
ing a search query. After receiving the target ciphertexts
from the cloud server, the user uses the rest of the other par-
tial secret keys to recover the encrypted files. Similar to [28],
[29], [30], [31], in our designed scheme, a users secret key

associated with his/her own identity i is produced by the
trusted authority. When a user desires to search his interests
data, he/she just uses his/her partial secret keys
ðski;1; . . . ; ski;10Þ to produces the trapdoor ðtri;1; . . . ; tri;6Þ for
finding the corresponding ciphertext. After locating the tar-
get ciphertext, the user uses the rest of the other secret key
ski,10 to recover the encrypted files. From the above
descriptions, its easy to learn that this trapdoor indeed con-
sists of six different trapdoors, but the secret key to decrypt
files actually consists of a single key.

In the first encryption of our designed scheme, the cipher-
text setting could have been set as ðC1; C2; C3; C6; . . . ; C11Þ,
but it is eventually set as ðC1; . . . ; C11Þ. Correspondingly, the
secret key could be set as ðski;1; . . . ; ski;7; ski;11Þ, but it actually
is set as ðski;1; . . . ; ski;11Þ. The reason leading to these settings
originates from the need for security proofs by embedding
hard problems into those redundant ciphertexts. As we all
know, in most of the public key cryptosystems, the designed
schemes are closely related to the hard problems for the

Fig. 3. Implementation of ESPD-I.

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 827

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

security proofs. In other words, if a proposed scheme is
proven to be secure, then the scheme must be bound to one
or more hard problems. Similar to the schemes [33], [42], [43]
for the need of security proofs, our scheme also needs to set
more redundant parts of ciphertexts and secret keys.
Namely, our scheme requires to set both thewhole ciphertext
and secret key as eleven different parts for proving the
security.

From the concrete construction of our efficient privacy-
preserving data sharing scheme, it is not hard to observe
that our scheme is an identity-based broadcast searchable
encryption (BBSE) scheme, which essentially belongs to one
of the identity-based encryption crypto-primitives. In the
existing public-key encryption schemes, such as identity-
based encryption schemes and attribute-based encryption
schemes, etc., a third-party authority is considered as a
trusted entity to produce secret keys and public keys for all
system users. Specifically, the trusted authority takes charge
of producing and distributing the secret keys for a user
based on his/her identity or attribute set. A data owner
encrypts his/her files by specifying an access control or an
access list to decide who can access them. The user can be
eligible to decrypt the encrypted data in the case that his/
her identity or attribute set satisfies the access policy hidden
in the ciphertext. For our BBSE scheme for data sharing,
indeed, as you understand, whenever a data owner
encrypts a file, the ciphertext is associated with a set of users
that can decrypt it. It is deserved to notice that the user list S
(access control) embedded in ciphertext determines that

only the authorized users can decrypt the encrypted files.
This implies that the condition for decrypting files is that
the user identity hidden in the secret key must satisfy the
access control embedded in the ciphertext. In our BBSE-
based data sharing scheme, even if massive of files are
encrypted, as long as the access controls of these 1000 files
all specify user i to be able to access, then the user only
needs to store one his/her own private key to decrypt all
these files.

In the encryption of our second scheme, whenever a data
owner encrypts a file and a keyword, the ciphertext is associ-
ated with a set of users that can search and then decrypt it. It
is deserved to notice that the user list Sk (access control)
embedded in ciphertext determines that only the authorized
users can retrieve and then decrypt the encrypted files. This
implies that the condition for retrieving and decrypting files
is that the user identity hidden in the secret key must satisfy
the access control embedded in the ciphertext. In the encryp-
tion of our first scheme, Ck ¼ ðCk;1; . . . ; Ck;8Þ and C0

k ¼
ðCk;9; . . . ; Ck;11Þ are keyword ciphertext and file ciphertext,
respectively. When a user identity i satisfies the user list Sk, it
means she/he has been authorized to retrieve the corre-
sponding keyword and then access the encrypted file. In the
encryption of our second scheme, Ck ¼ ðCk;1; . . . ; Ck;11Þ, C0

k ¼
ðCk;6; . . . ; Ck;8Þ and C

00
k ¼ ðCk;6; . . . ; Ck;8Þ denote the whole

keyword and file ciphertext, partial keyword ciphertext, and
file ciphertext, respectively. When a user desires to retrieve
his/her target keyword ciphertext, he/she delegates his/her
trapdoor to the main cloud server and sends a quest of

Fig. 4. Implementation of ESPD-II.

828 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

operation on (ðCk;6; . . . ; Ck;8Þ to the aided cloud server. Then,
the cloud servers perform operations on ðCk;6; . . . ; Ck;8Þ. After
that, the main server implements search operations to find
target keyword ciphertext and return corresponding file
ciphertext if the delegated trapdoor is legitimate and autho-
rized. Finally, the file ciphertext can be recovered with an
authorized secret key.

6 SECURITY ANALYSIS

This part analyzes the security of our ESPD in detail. Due to
the space limitations, here we only show the security proof
of ESPD-II, and put the proof of ESPD-I in the Supplemental
Material B, available in the online supplemental material.
Interested Readers can refer to the supplemental material
for its detailed proofs.

6.1 Proof of File Privacy

Lemma 1 (File privacy). Provided that n-BDHE assumption
holds, then our ESPD-II has file privacy.

Proof 1. Assume that there is an adversaryA that can breach
the security game, then another algorithm B that must be
existed with certain advantage � solves the n-BDHE prob-
lem. On input ðg; h; g1; . . . ; gn; gnþ2; . . . ; g2n;RÞ, where gi ¼
gt

i
and for the unknown t 2 Zp, the B’s goal is to distin-

guishR ¼ eðgnþ1; hÞ orR is a random.

� Init: A challenge set Sk is picked and then trans-
mitted to B.

� Setup: B picks d 2 Zp randomly, generates F0 ¼
gd
Q

j2Sk g
�1
nþ1�j ¼ g

d�
P

j2S0 t
nþ1�j

¼ g’
0
and sets gi ¼

gt
i
. After that, B publishes the public parameter

pk ¼ ðg; g1; . . . ; gn; gnþ2; . . . ; g2n;F
0Þ.

� Phases 1 & 2: B produces the secret key for user

i =2 Sk as ski;11 ¼ gdi
Q

j2Sk g
�1
nþ1�jþi ¼ g

tiðd�
P

j2Sk

tnþ1�jÞ ¼ g’
0

i and then sends it toA.
� Challenge: A gives two messages M0 and M1 to B.

Then B flips a coin and produces the challenge
ciphertext by setting Ck;9 ¼ gs

0 ¼ h for unknown
s0 and Ck;10 ¼ hd ¼ ðgdÞs0 ¼ ðgdQj2Sk g

�1
nþ1�j

Q
j2Sk

gnþ1�jÞs
0 ¼ ðF0Q

j2Sk gnþ1�jÞs
0
: Then B sends the

challenge ciphertext CT �
k ¼ ðMr 	 R; Ck;9; Ck;10Þ for

file k to A.

� Guess: A guess r0 2 f0; 1g is given by A, and if r ¼
r0, then B returns 1; otherwise outputs 0.

� Analysis: If R ¼ eðgnþ1; hÞ, the real game is then
simulated by this game. So, r is guessed correctly
byAwith the probability 1=2þ �. IfR is a random,
r is guessed correctly with the probability 1=2. tu

6.2 Proof of Keyword Privacy

Let Ci;1; Ci;2; Ci;3; Ci;4; Ci;5; Ci;6; Ci;7; Ci;8

� �
be the challenge

ciphertext that is delivered to A. In addition, R;R0 are ran-
dom elements. The following sequence of hybrid games are
the definitions in producing challenge ciphertext for A :

� Game G0: The challenge ciphertext is expressed as
Ci;1; Ci;2; Ci;3; Ci;4; Ci;5; Ci;6; Ci;7; Ci;8

� �
.

� Game G1: The challenge ciphertext is marked as
Ci;1; R; Ci;3; Ci;4; Ci;5; Ci;6; Ci;7; Ci;8

� �
.

� Game G2: The challenge ciphertext is represented as
Ci;1; R; Ci;3; R

0; Ci;5; Ci;6; Ci;7; Ci;8

� �
.

The following lemmas are indicated to be all computa-
tionally indistinguishable for the transitions from G0 to G1

and G1 to G2.

Lemma 2 (Keyword privacy-I). Provided that DLIN assump-
tion holds, then our ESPD-II construction has keyword privacy.

Proof 2. If there is an adversary A who can distinguish
betweenG0 andG1, then another algorithmB that can be con-
structed with a non-negligible advantage � solves the DLIN
issue as follows. On input ðg; gx1 ; gx2 ; gx1x3 ; gx2x4 ;RÞ, the B’s
aiming is to discernR ¼ gx3þx4 orA is a random element.

� Init: A gives B the challenge set Sk and the chal-
lenge keyword w�.

� Setup: In order to produce the public parameter, B
sets a ¼ x2;b ¼ x1 implicitly. Then, B picks t3; t4;
t;’; ev; y; d 2 Zp randomly and computes the pub-
lic parameter pk ¼ ðg; g1; . . . ; gn; gnþ1; . . . ; g2n; T1;
T2; T3; T4;F; u; v; hÞ.

gi ¼ gt
i
; T1 ¼ gx2 ; T2 ¼ gx1 ; T3 ¼ gt3 ; T4 ¼ gt4 ;

v ¼ gev; u ¼ gx2d; h ¼ g�x2dw
�
gy;F ¼ g’:

� Phases 1& 2: To reply the trapdoor queries for ði; wÞ,
where w 6¼ w� and i =2 Sk, B picks ezi; ez0i; s; s1; s2 2
Zp at random, such that s ¼ s1 þ s2, then sets zi ¼ezidðw�w�Þ
dðw�w�Þx2þy and z0i ¼ ez0i þ eziyx1

t3t4ðdðw�w�Þx2þyÞ . Next, B
computes the trapdoor as follows.

tr1 ¼ g’si 	 ðgx1ezigt3t4ez0iÞevs ¼ g’si 	 vðx1x2ziþt3t4z
0
i
Þs ;

tr2 ¼ gx1ezisgt3t4ez0is ¼ gðx1x2ziþt3t4z
0
iÞs;

tr3 ¼ ðgx1Þ�dðw�w�Þezis ¼ ððuwhÞziÞÞ�x1s ;

tr4 ¼ ðgx2Þ�dðw�w�Þezis ¼ ððuwhÞziÞÞ�x2s ;

tr5 ¼ ðgx1Þ
�ysezi
t3 ðuwhÞ�ez0it4s

¼ ðg�t4sÞdðw�w�Þx2þy ¼ ððuwhÞz0iÞÞ�t4s ;

tr6 ¼ ðgx1Þ
�ysezi
t4 ðuwhÞ�ez0it3s

¼ ðg�t3sÞdðw�w�Þx2þy ¼ ððuwhÞz0iÞÞ�t3s :

Fig. 5. Search process in ESPD-II.

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 829

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

After that, B gives ðtr1; . . . ; tr6Þ, s2 to adversary A
and s1 to the aided server Sa.

� Challenge: To reply encryption query for ðSk; w
�Þ,

B picks s; t0 2 Zp and produces the challenge
ciphertext as follows.

Ck;1 ¼ v�sðuw�
hÞr ¼ v�sRy; Ck;2 ¼ Tr�t

1 ¼ Y;

Ck;3 ¼ Tt
2 ¼ gx1x3 ; Ck;4 ¼ ðgrÞt3g�t0t3 ¼ Rt3g�t0t3 ;

Ck;5 ¼ gt
0t4 ¼ Tt0

4 ; Ck;6 ¼ gs;

Ck;7 ¼ F
Y
j2Sk

gnþ1�j

 !s

; Ck;8 ¼ eðg1; gnÞs:

If Y ¼ gx2ðr�x3Þ, R ¼ gx3þx4 , then Ck;2 ¼ Tr�t
1 and

Ck;3 ¼ Tt
2 .

� Guess: A guess r0 2 f0; 1g is outputted by A to dis-
tinguish which hybrid game the challenger B has
been playing. To summarize, B replies r0 as his/
her answer in DLIN game. If the instances of
DLIN are well-formed, r0 ¼ 0 is outputted to indi-
cate that R is the random value of G1; otherwise,
outputs r0 ¼ 1 to show thatR ¼ gx3þx4 .

� Restriction: Due to that the set S0 does not contain
the index i, the function f should be independent
of gi. From the above proof process, we can see
that in our proof the aided server Sa doesn’t avail
of gi that is queried in the phase of trapdoor gen-
eration to compute fðr1; CkÞ.

� Analysis: From the above simulation, it is easy to see
that the produced challenge ciphertext is indepen-
dent of w�, so the best success probability of the
adversaryA is 1/2 to get G1 as the challenge cipher-
text. In other words, the best success probability of
the adversaryA to getG0 as the challenge ciphertext
is 1=2þ �. So, the DLIN assumption is breached
with the non-negligible probability jPro½AðG0Þ ¼
1�� Pro½AðG1Þ ¼ 1�j ¼ 1=2þ �� 1=2 ¼ �. tu

Lemma 3 (Keyword privacy-II). Under the decision linear
(DLIN) assumption, no adversary A can distinguish the games
G1 and G2 with advantage greater than �.

Proof 3. If there is an A that can easily discern between the
games G1 and G2, then another algorithm B can be easily
constructed with a non-negligible advantage � to win the
DLIN game below. On input ðg; gx1 ; gx2 ; gx1x3 ; gx2x4 ;RÞ, the
B’s motivation is to ascertainR ¼ gx3þx4 orR is a random.

� Init: A challenge set Sk and a challenge keyword
w� are picked and subsequently transmitted to B.

� Setup: In order to produce the public parameter, B
sets u ¼ x2; g ¼ x1 implicitly. Then, B picks
t3; t4; t;’; ev; y; d 2 Zp randomly and computes the
public parameter pk ¼ ðg; g1; . . . ; gn; gnþ1; . . . ;
g2n; T1; T2; T3; T4;F; u; v; hÞ.
gi ¼ gt

i
; T1 ¼ gt3 ; T2 ¼ gt4 ; T3 ¼ gx2 ; T4 ¼ gx1 ;

v ¼ gev; u ¼ gx1d; h ¼ g�x1dw
�
gy;F ¼ g’:

� Phases 1& 2: To reply the trapdoor queries for ði; wÞ,
wherew 6¼ w� and i =2 Sk,B picks ezi; ez0i; s; s1; s2 ran-
domly, such that s ¼ s1 þ s2, then sets zi ¼

ezi þ ez0
i
yx2

t3t4ðdðw�w�Þx1þyÞ and z0i ¼
ez0
i
dðw�w�Þ

dðw�w�Þx1þy . Next, B
computes the trapdoor as follows.

tr1 ¼ g’si 	 ðgt3t4ezigx2ez0iÞevs ¼ g’si 	 vðt3t4ziþx1x2z
0
i
Þs;

tr2 ¼ gt3t4sezigx2ez0is ¼ gðt3t4ziþx1x2z
0
i
Þs;

tr3 ¼ ðgx2Þ
�ysez0

i
t3 ðuwhÞ�ezit4s

¼ ðg�t4sÞdðw�w�Þx1þy ¼ ððuwhÞziÞÞ�t4s;

tr4 ¼ ðgx2Þ
�ysez0

i
t4 ðuwhÞ�ezit3

¼ ðg�t3sÞdðw�w�Þx1þy ¼ ððuwhÞziÞÞ�t3s;

tr5 ¼ ðgx1Þ�dðw�w�Þez0
i
s ¼ ððuwhÞz0iÞÞ�x1s;

tr6 ¼ ðgx2Þ�dðw�w�Þez0
i
s ¼ ððuwhÞz0iÞÞ�x2s:

After that, B gives ðtr1; . . . ; tr6Þ, s2 to adversary A
and s1 to the aided server Sa.

� Challenge: To reply encryption query for ðSk; w
�Þ,

B picks s; t0 2 Zp and produces the challenge
ciphertext as follows.

Ck;1 ¼ v�sðuw�
hÞr ¼ v�sRy; Ck;2 ¼ Tr�t

1 ¼ Rt3g�t3t;

Ck;3 ¼ Tt
2 ¼ gt4t; Ck;4 ¼ Tr�t0

3 ¼ ðgx2Þr�t0 ¼ Y;

Ck;5 ¼ Tt0
4 ¼ ðgx1Þt0 ¼ gx1x3 ; Ck;6 ¼ gs;

Ck;7 ¼ F
Y
j2Sk

gnþ1�j

 !s

; Ck;8 ¼ eðg1; gnÞs:

If Y ¼ gx2ðr�x3Þ, R ¼ gx3þx4 , then Ck;4 ¼ Tr�t0
3 and

Ck;5 ¼ Tt0
4 .

� Guess: A guess r0 2 f0; 1g is given to distinguish
which hybrid game the challenger B has been
playing. To summarize, B replies r0 as his/her
answer in DLIN game. If the instance of DLIN is
well-formed, A tells r0 ¼ 0 to indicate thatR is the
random value of G1; otherwise, outputs r0 ¼ 1 to
show thatR ¼ gx3þx4 .

� Restriction: The restriction in this proof is the same
as that in the proof 2.

� Analysis: From the above simulation, it is easy to
observe that the produced challenge ciphertext is
also independent of w�, so the best A ’s success
probability is 1/2 to get G2 as the challenge cipher-
text. In other words, the probability of A to get G1

is 1=2þ �. So, the DLIN assumption is breached
with the non-negligible probability jPro½AðG1Þ ¼
1� � Pro½AðG2Þ ¼ 1�j ¼ 1=2þ �� 1=2 ¼ �. tu

6.3 Proof of Trapdoor Privacy

Lemma 4 (Trapdoor privacy). Under the n-decision Diffie
Hellman Inverse assumption, then our ESPD-II construction
has trapdoor privacy.

This lemma can be proved by that the challenge keyword is
indistinguishable from the same length random keyword.
Two games are presented as follows: G0 and G1. In detail, in
G0 challenger B picks uniformly s1; s2 while challenger B
follows the protocol s ¼ s1 þ s2 in G1.

Proof 4. The game G0 is shown below. Suppose that there is
an A that can distinguish between the challenge keyword
w� from the random keyword with a non-negligible
advantage �, then another B can be simulated to address

830 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

in the n-DDHI problem. On input ðg; h1; h2; g1; . . . ; gn; gnþ

1; . . . ; g2n; g
’;RÞ, where gi ¼ gt

i
for i 2 ½1; 2n�nfnþ 1g, B’s

goal is to distinguishR ¼ h
’

tnþ1

1 orR is a random.

� Init: A gives B the challenge keyword w� and user
index i�.

� Setup: B lets ðg; g1; . . .; gn; gnþ2; . . . ; g2nÞ be as the
instance and selects a;b; u; g; y; d; ev 2 Zp. After that,
B computes the public parameter pk ¼ ðg; g1;
. . . ; gn; gnþ1; . . . ; g2n; T1; T2; T3; T4;F; u; v; hÞ below.

g ¼ g; T1 ¼ ga; T2 ¼ gb; T3 ¼ gu; T4 ¼ gg ;

v ¼ gev; u ¼ gd; h ¼ g�dw�
gy;F ¼ ge’; gi ¼ gt

i
:

� Query: B assigns h1 and h2 that are in the form of
h1 ¼ gsnþ1þi and h2 ¼ gs , respectively. B picks
zi; z

0
i 2 Zp at random and computes the trapdoor

as follows.

tr1 ¼ R 	 h�ðabziþugz0iÞev
2 ¼ R 	 v�ðabziþugz0

i
Þs ;

tr2 ¼ h
�ðabziþugz0

i
Þ

2 ¼ g�ðabziþugz0
i
Þs;

tr3 ¼ h
�ybzi
2 ; tr4 ¼ h

�yazi
2 ;

tr5 ¼ h
�ygz0

i
2 ; tr6 ¼ h

�yuz0
i

2 :

After that, B gives ðtr1; . . . ; tr6Þ, s2 to adversary A
and s1 to the aided server Sa.

� Challenge: To reply encryption query for ðSk; wÞ, B
proceeds the following steps as follows. If w� 6¼ w
and i =2 Sl, B picks r; s; t; t0 2 Zp and produces the
challenge ciphertext as follows.

Ck;1 ¼ v�sgðw�w�Þdrgyr ¼ v�sðuwhÞr; Ck;2 ¼ Tr�t
1 ;

Ck;3 ¼ Tt
2; Ck;4 ¼ Tr�t0

3 ; Ck;5 ¼ Tt0
4 ; Ck;6 ¼ gs;

Ck;7 ¼ F
Y
j2Sk

gnþ1�j

 !s

; Ck;8 ¼ eðg1; gnÞs:

Subsequently, B gives Ck;1; . . . ; Ck;8 and Sk to
adversary A. Besides, B gives ðCk;6; Ck;7; Ck;8Þ and
Sk to the aided server Sa. If w

� ¼ w and i 2 Sl, B
aborts and outputs ?.

� Guess: r0 2 f0; 1g as a guess is given to distinguish
which hybrid game the challengerB has been play-
ing. To summarize,B replies r0 as his/her response
in n-DDHI game. If the well-formed n-DDHI
instance is produced, A outputs r0 ¼ 0 to indicate
thatR is the random keyword; otherwise, outputs
r0 ¼ 1 to show thatR is the challenge keyword.

� Analysis: From the above simulation, it is not hard
to view that the keyword ciphertext formed by
the challenge index is not given to the aided
server Sa. Hence, the challenge trapdoor is not
compatible with any keyword ciphertext when Sa

performs the function f of s1. This means that the
challenge trapdoor is irrelevant to w�, thus the
best A’s success probability is 1/2 when A out-
puts r0 ¼ 0. In other words, the best A’s success
probability to return r ¼ 1 is 1=2þ �. So, the

n-DDHI assumption is breached with the non-
negligible probability jPro½Aðr0 ¼ 0Þ ¼ 1� � Pro
½Aðr ¼ 1Þ ¼ 1�j ¼ 1=2þ �� 1=2 ¼ �. Therefore,
jPro½GA

0 �j � �:
In game G1, B picks s1, s2, such that s ¼

s1 þ s2 and gives s1 to Sa and s2 to adversary A.
In this game, A is not allowed to get the challenge
ciphertext for i� 2 Sk and w ¼ w�. We argue that
due to that A conducts the function f of s1 and
C0

k ¼ ðCk;6; Ck;7; Ck;8Þ and is incapable of capturing
any important information about s1. The function
f of s1 and C0

k is completely random to A since B

uniformly picks r; s; t; t0 from Zp. On the whole,
the randomized ciphertext sent to A is semanti-
cally secure. Let v be the A’s advantage that wins
the semantic security encryption, then we say that
the n-DDHI assumption can be broken by B with
the probability jPro½Aðr0 ¼ 0Þ ¼ 1� � Pro½Aðr ¼ 1Þ
¼ 1�j ¼ 1=2þ �� ð1=2þ vÞ ¼ �� v. Then, jPro
½GA

1 �j ¼ �� v. Consequently, jPro½GA
0 �j � jPro

½GA
1 �j � �� ð�� vÞ ¼ v:

In fact, since two servers are utilized in our ESPD-II
construction, then the security definition of trapdoor pri-
vacy is slightly modified compared to the security defini-
tion of keyword privacy. In detail, the adversary can
make encryption queries, whereas he/she cannot upload
any ciphertext that he/she desires since the aided server
is honest and controlled by B. tu

Remark 3. For our security proofs, the security proof of our
file privacy is almost the same as that in [16]. The security
proofs of keyword privacy are obtained by applying Boyens
anonymous identity-based system methodology [44] and
Cuis linear splitting technique [33] via a hybrid argument
over a sequence of games. The security proof of our trap-
door privacy mainly originates from [33], [44]. In our secu-
rity proof of keyword privacy, although the adversary can
simply create a trapdoor for any keywordw, he/she can still
learn nothing from keyword ciphertext unless he/she can
produce the correct trapdoor as the challenger produces for
him/her. This is because the server that receives a self-pro-
duced trapdoor from the adversary cannot tell which
ciphertext encrypts which keyword without the trapdoors
for the access control list satisfied by the keyword associated
with the ciphertexts. As well, in our security proof of trap-
door privacy, the adversary cannot discern that a picked
keyword or a random keyword is encrypted in a trapdoor.
This is because the adversary cannot drive the legitimate
secret keys of other users to produce the trapdoors. To
prove the security of keyword privacy and trapdoor pri-
vacy, the corresponding hard problems are embedded into
the keyword ciphertext part and trapdoor part. If the adver-
sary can always win the game, it implies that the decisional
hard problem can be always solved. In our security proofs,
its easy to learn that the adversary does not always win the
gameunder he/she always holds legitimate trapdoors.

7 PERFORMANCE EVALUATION

This part shows the theoretical and experimental analysis to
indicate our efficiency in terms of related “one-to-many”

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 831

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

data sharing works. The experiments is conducted to evalu-
ate the performance of ESPD-I and ESPD-II. The configura-
tion is as follows: All the experiments are compiled in the
JAVA language. The “Cloud” is simulated with one Lenovo
server which has 512SSD, 1TB mechanical hard disk and
runs on the Windows 10 operating system with Intel(R) 8
Core(TM) i7-7820HK CPU @2.9 GHz and 16GB RAM. Each
user is replaced by a Huawei nova3 android phone
equipped with 6GB RAM, four-core 2.36GHz Cortex A73
processor and four-core Cortex A53 1.8GHz processor. All
the raw data are selected from Enron Email Dataset1, in
which half a million records from 15 users are and has been
used for the performance evaluation of data sharing sys-
tems. All of experimental simulations are depended on the
average time of 100 times.

7.1 Functionality

In Table 1, we compare that whether the following function-
alities can be achieved in one-to-many keyword search
schemes, such as keyword search, encrypted data sharing,
constant-size secret key, constant-size search token, con-
stant-size ciphertext, file privacy, keyword privacy, trap-
door privacy, no trusted third party for generating search
token and lightweight decryption. Here, “@” means the
specified function can be supported. “•�” means the scheme
has not provided this functionality, and “•” indicates the
scheme has this function but does not achieve the specified
functionality.

As shown in Table 1, we can see that Zheng et al.’s [28]
scheme can provide keyword search function instead of
supporting encrypted data sharing. The sizes of a secret
key, search token scale linearly with the amount of attrib-
utes and the ciphertext size is incremental with the quantity
of access policy’s attributes. Neither Keyword privacy nor
trapdoor privacy can be protected due to the keyword
guessing attacks on keyword ciphertext and trapdoor. The

scheme in [29] supports both keyword search and
encrypted data sharing, and can provide file privacy, key-
word privacy and trapdoor privacy. However, the storage
costs of the secret key, search token and ciphertext are line-
arly incremental with the amount of ascribed attributes. The
relationship between decryption computation cost and the
amount of user attributes is linear. Cui et al.’s scheme [33]
supports keyword search with keyword privacy and trap-
door privacy, nevertheless, it does not provide encrypted
data sharing function. Although Miao et al.’s scheme [30]
provides keyword search and encrypted data sharing with
lightweight decryption, which however cannot protect key-
word privacy as well as trapdoor privacy. Besides, the sizes
of the secret key, trapdoor and ciphertext are not constant.
The scheme in [32] also realizes keyword search but it fails
to guarantee keyword privacy and trapdoor privacy.
Besides, the encrypted data sharing function is not ren-
dered. In Han et al.’s work [34], it cannot achieve constant-
size ciphertext, keyword privacy and trapdoor privacy but
also does not realize the encrypted data sharing. While
Miao et al.’s scheme [31] provides keyword search and
encrypted data sharing with lightweight decryption, the
privacy protection of keyword and trapdoor cannot be con-
sidered. Additionally, the storage costs of secret key, trap-
door and ciphertext also scale linearly with the number of
attributes. In Sun et al.’s scheme [35], the keyword privacy
and trapdoor privacy are ensured but the encrypted data
sharing is not provided. Miao et al. also proposed an ABSE
scheme [36], which also fails to realize the privacy-preserv-
ing of both keyword and trapdoor. Also, encrypted data
sharing is not considered. In [13], Kiayias et al. raised two
keyword search schemes, which achieve neither keyword
privacy nor trapdoor privacy they claimed. In our first
scheme (ESPD-I), most functionalities are realized except
for trapdoor privacy, and our enhanced scheme achieves all
the desirable features. As described above, we can easily
conclude that only the schemes [29], [30], [36] support both
keyword search and encrypted data sharing while other
schemes [13], [28], [31], [32], [33], [34], [35] only realize key-
word search. The decryption computation cost is light-
weight in the schemes [13], [30], [36] and ours. The sizes of
the secret key, trapdoor and ciphertext are constant in [13]
and ours. We can also observe that only our first scheme
can achieve all table-listed properties except trapdoor pri-
vacy and only our second scheme owns all these desirable
features. These nice features make our schemes feasible and
practical for data sharing services.

Remark 4. In our experimental part, we mainly focus on the
comparisons among related “one-to-many” data sharing
and retrieving schemes, i.e., broadcast-based SE (BBSE)
and attribute-based SE (ABSE), and our constructed
ESPD schemes. For ABSE works, due to the fact that the
computation and storage cost of ABSE is increased with
the increment of the quantity of attributes, which would
be frequently beyond the capabilities of users with lim-
ited resources, hence it is essential to construct an efficient
one-to many data sharing and retrieving scheme. As an
alternative solution, BBSE scheme can realize constant
and stable computation and storage cost, regardless of
the amount of system attributes. In our ESPD schemes,

TABLE 1
Functionality Comparisons in One-to-Many Data

Sharing Schemes

Schemes P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

ZXA [28] @ •� •� • • •� • • • •�
LW [29] @ @ • • • @ @ @ • •

CWR+ [33] @ •� •� • • •� @ @ • •

MML+ [30] @ @ • • • @ • • @ @
HGW+ [32] @ •� • • • • • • @ •�
HYL [34] @ •� • • @ •� @ @ @ •�
MLL+ [31] @ @ • • • @ • • @ @
SYL+ [35] @ •� • • • •� @ @ @ •�
MLC+ [36] @ •� • • • •� • • @ •�
AOR+ [13]-I @ @ @ @ @ @ @ • @ @
AOR+ [13]-II @ @ @ @ @ @ @ • @ @
Ours-I @ @ @ @ @ @ @ • @ @
Ours-II @ @ @ @ @ @ @ @ @ @

Note: P0: Keyword search; P1: Encrypted data sharing; P2: Constant-size
secret key; P3: Constant-size search token (trapdoor); P4: Constant-size
ciphertext; P5: File privacy; P6: Keyword privacy; P7: Trapdoor privacy; P8:
No trusted third party for generating search token; P9: Lightweight
decryption.

1. http://www.cs.cmu.edu/ enron/

832 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

we realize two “one-to-many” data sharing and retrieving
schemes with lower computation and computation cost
by using BBSE technology.

7.2 Storage and Communication Cost

Now we discuss the storage and communication cost of our
proposed ESPD schemes. Here, the storage and communica-
tion cost refers to the space for storing the output result of
each cryptographic algorithm, such as the storage and com-
munication cost of Setup algorithm the space to store the
public key produced by Setup algorithm. Besides, the state-
of-the-art works [13], [28], [29], [30], [31], [32], [33], [34],
[35], [36] are also analyzed in this part. These works are
very similar to ours since they are one-to-many keyword
search schemes. In our following experiment part, only the
works [13], [29], [30], [36] and ours are simulated, as they
are committed to designing efficient data sharing service
with retrieval function in the ciphertext environment. In
Table 2, we compare the storage and communication cost in
terms of the sizes of the public key, secret key, ciphertext
and trapdoor. U , S, m and n denote the amount of system
attributes, user attributes, attributes of access policy and
users. Besides, an element length in G0, an element length in
G1 and GT are also correspondingly represented as jG0j; jG1j
and jGT j.

7.2.1 Theoretical Analysis

As showed in Table 2, the storage and communication costs
of the public key, secret key, ciphertext and trapdoor are
presented. Specifically, in the phase of setup, only the public
key size in works [28], [30], [32], [33], [36] are constant while
that of the others [13], [29], [31], [34], [35] and ours is grow-
ing linearly with the number of either system attributes or
system users. In the key generation phase, only our works
and Kiayias et al.’s works [13] have constant secret key size
irrespective of the number of users or attributes while the
storage cost of the secret key in other works is increasing
with the quantity of user attributes. Formally speaking, con-
stant-size secret key results in smaller decryption computa-
tion cost, which is desirable for resource-limited devices.
Besides, as the work [33] has no encrypted data sharing
function, it does not require to distribute a secret key to
users. In the phase of ciphertext generation, only the

ciphertext size in [13], [34] and ours are constant regardless
of the number of attributes or identities in access control.
Conversely, the ciphertext size in the rest of other works is
incremental linearly with the number of attributes or identi-
ties in access control. As we all know, smaller ciphertext
size means smaller storage costs for users when they down-
load them to decrypt, which is much appropriate for
resource-constrained users. In the trapdoor generation
phase, except for the works [13], [34], only our works can
achieve constant-size trapdoor while the trapdoor size in
others is also incremental linearly the amount of user attrib-
utes. From Table 2, we can easily observe that our secret key
size is the smallest in these one-to-many data sharing
schemes, and our trapdoor size is slightly larger only than
that of the ESPD-I scheme in [13].

7.2.2 Experimental Results

The experiment is performed to further demonstrate the
communication overhead of our ESPD constructions and
other schemes with encrypted data sharing service. Accord-
ing to above analysis, we can learn that the communication
complexity of our ESPD is mainly related to the number of
users while the others [13], [29], [30], [36] are associated
with the number of attributes.

As shown in Fig. 6, we give the detailed storage and com-
munication cost comparisons of the public key, secret key,
trapdoor and ciphertext among distinct one-to-many data
sharing schemes [13], [29], [30], [36] and ours. Specifically,
Fig. 6a shows the storage and communication cost compari-
sons of public key. In this simulation, we always assume the
number of users is two times the number of system attributes.
From Fig. 6a, we can see that only the work [30] owns a con-
stant-size public key while the others’ public key sizes [13],
[29], [36] are growing with the number of system attributes.
Fig. 6b depicts the storage and communication cost compari-
sons of the secret key. From this figure, we can straightfor-
wardly observe that the storage and communication cost of a
secret key in works [29], [36], [36] follows the linear relation-
ship with the number of user attributes while our works and
Kiayias’s works have constant secret key sizes. Further, our
works show relatively desirable performance in the storage
cost of a secret key compared to theworks in [13]. Fig. 6c indi-
cates the storage and communication cost comparisons of

TABLE 2
Storage and Communication Cost Comparisons in One-to-Many Data Sharing Schemes

Schemes Public key size Secret key size Ciphertext size Trapdoor size

ZXA [28] 4jG0j 2SjG0j ð2mþ 3ÞjG0j ð2S þ 3ÞjG0j
LW [29] ðU þ 1ÞjG0j þ ðU þ 1ÞjG1j þ jGT j 3SjG0j ðmþ 5ÞjG0j 3SjG0j
CWR+ [33] 8jG0j þ jGT j ? ð5mþ 1ÞjG0j 6SjG0j
MML+ [30] 5jG0j þ jGT j ð2S þ 3ÞjG0j ð2mþ 2ÞjG0j ð2S þ 3ÞjG0j
HGW+ [32] 5jG0j ð2S þ 1ÞjG0j ð2mþ 3ÞjG0j ð2S þ 3ÞjG0j
HYL [34] ðU þ 1ÞjG0j þ U jG1j ðS þ 1ÞjG0j 4G0j 2jG0j
MLL+ [31] 4jG0j ð2S þ 4ÞjG0j þ 2jZpj ð2mþ 2ÞjG0j þ ð2mþ 1ÞjZpj ð2S þ 3ÞjG0j þ jZpj
SYL+ [35] ð3U þ 1ÞjG0j þ jGT j ð2S þ 1ÞjG0j þ jZpj ð2mþ 1ÞjG0j þ jGT j ð2S þ 1ÞjG0j þ jZpj
MLC+ [36] ðU þ 1ÞjG0j þ jGT j ð2S þ 5ÞjG0j þ ðS þ 3ÞjZpj ðmþ 6ÞjG0j þ ð2mþ 1ÞjZpj ð2S þ 1ÞjG0j þ jZpj
AOR+ [13]-I ð2nþ 10ÞjG0j 14jG0j 8jG0j þ 2jGT j 5jG0j
AOR+ [13]-II ð2nþ 10ÞjG0j 14jG0j 8jG0j þ 2jGT j 6jG0j
Ours-I and Ours-II ð2nþ 9ÞjG0j 10jG0j 9jG0j þ 2jGT j 6jG0j

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 833

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

ciphertext. As shown in Fig. 6c, we can easily conclude that
the storage and communication cost of ciphertext in works
[29], [36], [36] is increasing linearly with the number of attrib-
utes in access policy while our works and Kiayias’s works
always have constant ciphertext sizes without requiring to
consider the amount of attributes in policy. Also, we can find
that our works have a slightly higher storage cost than the
works [13]. Fig. 6d describes the storage and communication
cost comparisons of trapdoor. As illustrated in Fig. 6d, we
can easily obtain that the works [13] and our works are con-
stant for the storage overhead of the trapdoor although the
storage overhead of the trapdoor in other three works is
growing linearly with the number of attributes.

In summary, from Fig. 6, our works almost have desir-
able performance in secret key, trapdoor and ciphertext
sizes, which indicates their feasibility and practicability for
real-world scenarios.

7.3 Computation Overhead

The computational overhead of our ESPD schemes is dis-
cussed in this part. Here, computation cost means the exe-
cution time of the cryptographic algorithms, such as the
computation cost of Setup algorithm refers to the time
required to execute this algorithm. Similarly, the state-of-
the-art works [13], [28], [29], [30], [31], [32], [33], [34], [35],
[36] are also analyzed to show more comparability in the
part of theoretical analysis. Besides, we also conduct the
experimental simulations of the works [13], [29], [30], [36]
and our ESPD, as these works completely have the same
functions and are utilized for one-to-many data sharing
services. In Table 3, we make comparisons of the

computation cost for different algorithms of similar
schemes in terms of Setup, KeyGen, Encrypt, Trapdoor,
Test and Decryption algorithms. An exponentiation compu-
tation in G0 and GT as well as a pairing computation are cor-
respondingly expressed as e0, e1 and p.

7.3.1 Theoretical Analysis

Table 3 depicts that the computation overheads of Setup,
KeyGen, Encrypt, Trapdoor, Test and Decrypt phases are
presented. In detail, in the phase of Setup, only the works
[28], [31], [33] have constant computation overheads while
the setup computation costs in other works [13], [29], [30],
[32], [34], [35], [36] are incremental linearly with the quan-
tity of attributes or users. In the KeyGen phase, only the
works [13] and our ESPD have constant computation costs
with no need to consider the number of attributes or users,
while the relationship between key generation of the
remained works and the number of user attributes follows a
linear growth. In the phase of Encrypt, only the works [13],
[34] and ours support the constant computation overhead
while the computation cost of the others has a linear growth
relationship with the amount of attributes. In the phase of
Trapdoor, the computation costs in these works [29], [30],
[32], [34], [35], [36] increase as the the number of user attrib-
utes scales, while ours and Kiayias et al.’s works own the
constant computation costs. In the Test phase, only the
works [13], [34] and ours realize the constant calculation
overhead, while the computation cost in others is also grow-
ing linearly with the number of attributes in access control.
In the Decrypt phase, the calculation cost of Liang et al.’s
work [29] has a linear relationship with the number of user

Fig. 6. Storage costs of public key, secret key, trapdoor and ciphertext in distinct one-to-many data sharing schemes.

TABLE 3
Computation Cost Comparisons for Various Algorithms in One-to-Many Data Sharing Schemes

Schemes Setup KeyGen Encrypt Trapdoor Test Decrypt

ZXA [28] 3e0 ð2S þ 1Þe0 ð2mþ 4Þe0 ð2S þ 3Þe0 ð2mþ 3Þp ?
LW [29] ð2U þ 10Þe0 þ 3p 4Se0 ðmþ 5Þe0 þ e1 þ p 3Se0 ðmþ 1Þe0 þ 2p ðmþ 1Þe0 þ 2p
CWR+ [33] 4e0 ? ð6mþ 2Þe0 þ e1 14Se0 þ e1 þ p ð6mþ 1Þe1 þ ð6mþ 1Þp ?
MML+ [30] 4e0 þ e1 þ p ð2S þ 3Þe0 ð2mþ 2Þe0 ð2S þ 4Þe0 ð2mþ 3Þp 2pþ e1
HGW+ [32] 4e0 ð2S þ 2Þe0 ð5mþ 3Þe0 ð2S þ 3Þe0 ð2mþ 1Þp ?
HYL [34] U 	 ðe0 þ e1 þ pÞ ð2S þ 1Þe0 3e0 þ p ð2S þ 1Þe0 3p ?
MLL+ [31] 3e0 ð2S þ 2Þe0 ð2mþ 4Þe0 þ e1 ð2S þ 3Þe0 e1 þ ð2mþ 4Þp ?
SYL+ [35] 3Ue0 þ e1 ð2S þ 1Þe0 þ e1 ðmþ 1Þe0 þ e1 ð2S þ 1Þe0 e1 þ ðmþ 1Þp ?
MLC+ [36] ðU þ 1Þe0 þ e1 þ p ð2S þ 5Þe0 þ e1 ðmþ 4Þe0 þ e1 ð2S þ 1Þe0 e1 þ ð2mþ 1Þp e0 þ e1 þ 3p
AOR+ [13]-I ð2nþ 10Þe0 18e0 12e0 þ 2e1 þ 2p 13e0 6p 2p
AOR+ [13]-II ð2nþ 10Þe0 18e0 12e0 þ 2e1 þ 2p 15e0 7pþ e1 2p
Ours-I ð2nþ 9Þe0 12e0 12e0 þ 2e1 þ 2p 4e0 7p 2p
Ours-II ð2nþ 9Þe0 12e0 12e0 þ 2e1 þ 2p 10e0 8pþ e1 2p

834 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

attributes and that of the works [13], [30], [36] and ours has
constant decryption computation cost. From Table 3, it is
not hard to get that only our works and the works [13] have
constant computation cost in the phases of KeyGen,
Encrypt, Trapdoor, Test and Decrypt. As we all know,
smaller computation cost makes resource-constrained users
also capable of obtaining related services. Compared to [13],
the computation cost of the KeyGen phase in ours is rela-
tively lower. The computation of Encrypt and Decrypt
phases in ours are the same as that of [13].

7.3.2 Experimental Analysis

We utilize the version of Intellij IDEA-2018.2.5, Java 8 and
install the latest JPBC library [18] for underlying crypto-
graphic operations. All the experiments are simulated over
a supersingular elliptic curve with the bilinear map pairing
on it. This curve is denoted as EðFqÞ : y2 ¼ x3 þ x. Then, we
set jZpj ¼ 160 bits and jG0j ¼ jGT j ¼ 1024 bits.

As illustrated in Fig. 6, we give the computation cost
comparisons of Setup, KeyGen, Encrypt, Trapdoor, Test
and Decrypt among the works [13], [29], [30], [36] and ours.
Specifically, Fig. 7a presents the computation cost compari-
sons in the Setup phase of different works. From Fig. 7a, we
can see that only the work [30] owns a constant computation
cost in Setup while that of other works [13], [29], [36] is line-
arly incremental with the amount of attributes. Fig. 7b
depicts the computation cost comparisons in the KeyGen
phase of various works. From this figure, we can observe
that the relationship between the computation cost for
secret key generation in works [29], [36] and the number of
user attributes is incrementally linear while our works and
Kiayias’s works have constant computation cost for secret
key generation. Further, our works show relatively better
performance in the computation cost of KeyGen compared
to the works in [13]. Fig. 7c indicates the computation cost

comparisons in the Encrypt phase of distinct works. As
shown in Fig. 7c, it is easy to conclude that the computation
cost of ciphertext generation in works [29], [36], [36] is line-
arly proportional to the number of attributes in an access pol-
icy while our works and Kiayias’s works have constant
computation cost regardless of the number of attributes in
access policy. Also, we can find that the computation costs in
these works than our works is almost the same as the works
[13] in the computation cost of Encrypt. Fig. 7d presents the
computation cost comparisons of trapdoor generation. As
illustrated in Fig. 7d, we are apt to get that the computation
cost of the works [13] and our works are constant in trapdoor
generation while that in other three works is growing line-
arly with the number of attributes. Fig. 7e presents the com-
putation cost comparisons of Trapdoor. As illustrated in
Fig. 7d, it’s really easy to summarize that the computational
cost of the works [13] and our works are constant in perform-
ing keyword search while that in the remained works is
increasing linearly with the number of attributes. As illus-
trated in Fig. 7f, we can also learn that the decryption compu-
tation cost of the works [13], [30], [36] and our works are
constant while the decryption computation cost of Liang
et al.’s work is incrementally linear with the number of attrib-
utes. To summarize, from Fig. 6, we can conclude that our
works have lower computation costs in Setup, KeyGen,
Encrypt, Trapdoor, Test andDecrypt phases.

According to the above theoretical and experimental
analysis, we can conclude that our works are almost outper-
formed in communication and computation cost than the
other works, which make our ESPD schemes practical and
appropriate in real-world applications.

8 RELATED WORKS

This part illustrates the related works of privacy-preserving
data sharing over the outsourced data. In summary, existing

Fig. 7. Computation costs of Setup, KeyGen, Encrypt, Trapdoor, Test and Decrypt algorithms in distinct one-to-many data sharing schemes.

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 835

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

works can be evolved from three underlying technologies,
i.e., symmetric searchable encryption (SSE), attribute-based
searchable encryption (ABSE), broadcast-based searchable
encryption (BBSE) and their hybrid approaches. We review
the related works of them respectively.

8.1 SSE-Based Data Sharing

Song et al. [14] first put forward the primitive of symmetric
searchable encryption (SSE), which allows a cloud server to
retrieve directly over the encrypted data. After that, various
SSE works have been proposed with varying degrees of
tradeoffs between security [19], [20], [21], efficiency [22],
[23], [24] and functionality [25], [26], [27]. For instance, Fisch
et al. [20] proposed a scalable SSE scheme, which solves the
semi-honest security issue. Bost et al. [19] gave the concept
of backward security for dynamic SSE and raised two back-
ward-secure schemes. However, the cost scales with the
number of entries in the database. Cash et al. [22] designed a
dynamic SSE scheme, which supports a user in efficiently
and privately searching server-held encrypted databases.
To improve locality efficiency and handle a dynamic mes-
sage, Miers et al. [24] proposed a scaling dynamic SSE
scheme to millions of indexes by improving locality. Cash
et al. [25] introduced a highly-scaling SSE scheme with sup-
port for boolean queries. Chase et al. [26] proposed a struc-
tured and efficient SSE scheme, which considers the issue of
encrypting structured data (e.g., a web graph or a social net-
work). Kamara et al. [27] also formulated a boolean SSE
with worst-case sub-linear complexity. Although SSE
schemes can provide fast keyword search with various
functionalities, the fly in the ointment is that existing SSE
schemes are usually suitable for one-to-one (i.e., one data
owner-to-one user) data sharing scenarios. This is mainly
due to the inherent limitation of symmetric encryption (i.e.,
requires encryption and decryption operations to share the
same secret key), which makes one-to-many plaintext shar-
ing impractical once multiple users collude with each other.

8.2 ABSE-Based Data Sharing

To address the one-to-many data sharing problem while
preserving data utility, one of major approaches is exploit-
ing Attribute Based Searchable Encryption (ABSE). ABSE
schemes enable a data owner to share the data with a speci-
fied group of data receivers in a fine-grained manner while
users can retrieve and decrypt the target data in the case
that the attributes of a data receiver satisfy the access policy.
For example, Zheng et al. [28] first proposed the notion of
ABSE and designed a ciphertext-policy ABSE scheme (CP-
ABSE), however, the communication and computation costs
are linear increasingly with the complexity of access tree.
Besides, the CP-ABSE scheme [28] is vulnerable to keyword
guessing attacks that result in keyword privacy leakage.
Liang et al. [29] put forward a searchable attribute-based
mechanism with efficient data sharing. However, it cannot
enable a secret key holder to generate trapdoor (search
token) individually without the support of the trusted key
generation center. Further, the sizes of keyword ciphertext,
trapdoor and secret key depend on the number of attributes
involved in the specified control policy. To realize more
flexible authorization, Miao et al. [30] put forward a novel

ABSE scheme, which supports the shared records that have
hierarchical structures instead of considering keyword pri-
vacy and trapdoor privacy. Miao et al. [31] also raised a
practical attribute-based multi-keyword search scheme,
however, which suffers from the same keyword and trap-
door privacy problem as that in [30]. He et al. [32] raised an
attribute-based hybrid boolean keyword search over out-
sourced encrypted data, which supports more expressive
search, such as any required boolean keyword expression
search. However, it can only support keyword retrieval but
does not support the encryption of plaintext information.
Besides, it also suffers from high computation and commu-
nication efficiency. Cui et al. [33] proposed an efficient and
expressive keyword retrieval scheme, which can resist the
keyword guessing attacks. However, it also suffers from the
same efficiency defect as that in [32]. Han et al. [34] pre-
sented an expressive ABSE scheme with constant-size
ciphertext. Whereas, it is incapable of encrypted data shar-
ing. Sun et al. [35] raised a verifiable ABSE scheme, which
has the same issue as that in [34]. Recently, a novel privacy-
preserving ABSE scheme [36] is proposed. However, it is
incapable of realizing the claimed keyword privacy and
trapdoor privacy. Although the above ABSE schemes can
achieve versatile keyword search and have been applied in
various applications, neither lower communication and
computation cost nor the claimed keyword privacy in these
ABSE schemes is achieved.

8.3 BBSE-Based Data Sharing

To achieve one-to-many keyword search with constant com-
munication and computation cost, Kiayias et al. [13] first
invented a broadcast-based searchable encryption (BBSE)
scheme for multi-user data sharing, which allows a user
with constant-size search token to perform keyword search
in a subset of files that he is granted to access. Such promis-
ing and appealing properties make BBSE primitive applica-
ble in various applications, such as task recommendation
services [37] and fog-assisted Internet of Things [38]. How-
ever, it only supports file privacy and keyword privacy
instead of trapdoor privacy due to that the keyword guess-
ing attacks on the delegated trapdoor launched by the cloud
server cannot be blocked. To further realize trapdoor pri-
vacy, an enhanced BBSE scheme was also proposed in [13].
Regrettably, after careful observations, it is easy to find that
the first scheme in [13] fails to reach the goal of the claimed
keyword privacy while the second one can achieve neither
the stated keyword privacy nor the trapdoor privacy. The
basic reason leading to the leakages of both keyword pri-
vacy and trapdoor privacy originates from that non-authori-
zation users can bypass the access control, thus illegally
retrieving the data of his interests.

8.4 Other Hybrid Approaches for Data Sharing

The study [39] introduced a scheme based on SSE and ABE
for data sharing. In which, a data owner encrypts their files
using SSE, but the resulted indexes are encrypted with ABE.
In this way, users can locally generate search tokens based
on their attributes, that are then sent to the cloud for retriev-
ing. Although this hybrid encryption scheme realizes data
sharing and retrieving, the ciphertext size is incremental to

836 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

the number of attributes. Bakas et al. [41] proposed a hybrid
encryption scheme that combines both SSE and ABE in a
way that the main advantages of each encryption technique
are used. Specifically, the proposed scheme enables clients to
search over encrypted data by using an SSE scheme, while
the symmetric key required for the decryption is protected
via an ABE scheme. However, in [41], SSE and ABE are used
as black-boxes to realize data retrieval and sharing, which is
differ significantly from our study that presents the concrete
implementation details for searching and sharing. Recently,
Michalas [40] also invented a hybrid encryption scheme
based on both SSE and ABE schemes, which allows users to
directly search over encrypted data by using an SSE scheme
while the access to the decryption key is protected by utiliz-
ing an ABE scheme. However, this scheme has the same
issue as that in [41]. Besides, since the scheme is the integra-
tion of SSE andABE schemes, it inevitably inherits the disad-
vantages of most ABE schemes that the size of the produced
ciphertexts and the time required to decrypt grows with the
complexity of the access.

As a consequence, to the best of our knowledge, there is
no such a lightweight and privacy-preserving data sharing
service for multi-user settings, which can realize constant
communication and computation cost, keyword privacy
and trapdoor privacy simultaneously.

9 CONCLUSION

This paper investigated two efficient, scalable and privacy-
preserving data sharing services referred to be as ESPD-I
and ESPD-II, which empower a data owner to store a set of
encrypted files in a not fully trusted server, and a user is
permitted to securely and efficiently retrieve keyword in a
subset of files that he/she is granted to access. Besides, this
paper gave strict security proofs to indicate the file privacy,
keyword privacy and trapdoor privacy of the suggested
constructions, which demonstrated that our solution could
lower the leakage risks of both keyword privacy and trap-
door privacy in the cloud computing. We present the
detailed theoretical and experimental analysis to reveal that
the proposed ESPD schemes are efficient and feasible for
real-world applications.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
invaluable comments and suggestions.

REFERENCES

[1] Z. Li and Y. Yang, “RRect: A novel server-centric data center net-
work with high power efficiency and availability,” IEEE Trans.
Cloud Comput., vol. 8, no. 3, pp. 914–927, Third Quarter 2020.

[2] H. Wang, J. Ning, X. Huang, G. Wei, G. Poh, and X. Liu, “Secure
fine-grained encrypted keyword search for E-Healthcare cloud,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 3, pp. 1307–
1319, May/Jun. 2021.

[3] S. Qiu, B. Wang, M. Li, J. Liu, and Y. Shi, “Toward practical pri-
vacy-preserving frequent itemset mining on encrypted cloud
data,” IEEE Trans. Cloud Comput., vol. 8, no. 1, pp. 312–323, First
Quarter 2020.

[4] P. Chaudhari and M. L. Das, “Privacy preserving searchable
encryption with fine-grained access control,” IEEE Trans. Cloud
Comput., vol. 9, no. 2, pp. 753–762, Second Quarter 2021.

[5] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and
geometric range query with access control over encrypted spatial
data,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 4, pp. 870–
885, Apr. 2019.

[6] Y. Huang, Y. Yang, X. Song, F. Ye, and X. Li, “Fair and efficient
caching algorithms and strategies for peer data sharing in perva-
sive edge computing environments,” IEEE Trans. Mobile Comput.,
vol. 19, no. 4, pp. 852–864, Apr. 2020.

[7] P. Li, S. Guo, S. Yu, and W. Zhuang, “Cross-cloud MapReduce for
big data,” IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 375–386,
Second Quarter 2020.

[8] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of
federated mobile devices under computational and statistical het-
erogeneity,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2,
pp. 394–410, Feb. 2021.

[9] B. Kalsnes andA. O. Larsson, “Understanding news sharing across
social media: Detailing distribution on Facebook and Twitter,”
Journalism Stud., 2018, vol. 19, no. 11, pp. 1669–1688, 2018.

[10] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu, “Efficient and pri-
vacy-preserving truth discovery in mobile crowd sensing sys-
tems,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3854–3865,
Apr. 2019.

[11] Y. Lu, J. Li, and Y. Zhang, “Secure channel free certificate-based
searchable encryption withstanding outside and inside keyword
guessing attacks,” IEEE Trans. Services Comput., to be published,
doi: 10.1109/TSC.2019.2910113.

[12] G. Xu, H. Li, H. Ren, X. Lin, and X. S. Shen, “DNA similarity search
with access control over encrypted cloud data,” IEEE Trans. Cloud
Comput., to be published, doi: 10.1109/TCC.2020.2968893.

[13] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, “Efficient
encrypted keyword search for multi-user data sharing,” in Proc.
Eur. Symp. Res. Comput. Secur., 2016, pp. 173–195.

[14] D. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” inProc. IEEE Symp. Secur. Privacy,
2000, pp. 44–55.

[15] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theory
Appl. Cryptogr. Techn., 2004, pp. 506–522.

[16] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Proc.
Annu. Int. Cryptol. Conf., 2005, pp. 258–275.

[17] D. Boneh, X. Boyen, and E. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptogr. Techn., 2005, pp. 440–456.

[18] B. Lynn, “The stanford pairing based crypto library,” Accessed:
Sept. 2019. [Online]. Available: http://crypto.stanford.edu/pbc/

[19] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 1465–1482.

[20] B. Fisch et al., “Malicious-client security in blind seer: A scalable pri-
vate DBMS,” inProc. IEEE Symp. Secur. Privacy, 2015, pp. 395–410.

[21] F. Sun et al., “Practical backward-secure searchable encryption
from symmetric puncturable encryption,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018, pp. 763–780.

[22] D. Cash et al., “Dynamic searchable encryption in very-large data-
bases: Data structures and implementation,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2014, pp. 23–26.

[23] D. Cash and S. Tessaro, “The locality of searchable symmetric
encryption,” in Proc. Annu. Int. Conf. Theory Appl. Cryptogr. Techn.,
2014, pp. 351–368.

[24] I. Miers and P. Mohassel, “IO-DSSE: Scaling dynamic searchable
encryption to millions of indexes by improving locality,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2017, pp. 1–23.

[25] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. Annu. Cryptol. Conf.,
2013, pp. 353–373.

[26] M. Chase and S. Kamara, “Structured encryption and controlled
disclosure,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.,
2010, pp. 577–594.

[27] S. Kamara and T. Moataz, “Boolean searchable symmetric encryp-
tion with worst-case sub-linear complexity,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptogr. Techn., 2017, pp. 94–124.

[28] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable attribute-
based keyword search over outsourced encrypted data,” in Proc.
IEEE Conf. Comput. Commun., 2014, pp. 522–530.

SUN ETAL.: SHARE YOUR DATA CAREFREE: AN EFFICIENT, SCALABLE AND PRIVACY-PRESERVING DATA SHARING SERVICE IN... 837

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSC.2019.2910113
http://dx.doi.org/10.1109/TCC.2020.2968893
http://crypto.stanford.edu/pbc/

[29] K. Liang and W. Susilo, “Searchable attribute-based mecha-
nism with efficient data sharing for secure cloud storage,”
IEEE Trans. Inf. Forensics Security, vol. 10, no. 9, pp. 1981–1992,
Sep. 2015.

[30] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang, “Attribute-based
keyword search over hierarchical data in cloud computing,” IEEE
Trans. Services Comput., vol. 13, no. 6, pp. 985–998,Nov./Dec. 2020.

[31] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute-
based multi-keyword search scheme in mobile crowdsourcing,”
IEEE Internet of Things J., vol. 4, no. 5, pp. 3008–3018, Aug. 2018.

[32] K. He, J. Guo, J. Weng, J. Weng, J. Liu, and X. Yi, “Attribute-based
hybrid Boolean keyword search over outsourced encrypted data,”
IEEE Trans. Dependable Secure Comput., vol. 17, no. 6, pp. 1207–
1217, Nov./Dec. 2020.

[33] H. Cui, Z. Wan, R. H. Deng, G. Wang, and Y. Li, “Efficient and
expressive keyword search over encrypted data in cloud,” IEEE
Trans. Dependable Secure Comput., vol. 15, no. 3, pp. 409–422, May/
Jun. 2018.

[34] J. Han, Y. Yang, and J. Liu, “Expressive attribute-based keyword
search with constant-size ciphertext,” Soft Comput., vol. 22, no. 15,
pp. 5163–5177, 2018.

[35] W. Sun, S. Yu, W. Lou, Y. Hou, and H. Li, “Protecting your right:
Attribute-based keyword search with fine-grained owner-
enforced search authorization in the cloud,” in Proc. IEEE Conf.
Comput. Commun., 2014, pp. 226–234.

[36] Y. Miao et al., “Privacy-preserving attribute-based keyword search
in shared multi-owner setting,” IEEE Trans. Dependable Secure
Comput., vol. 18, no. 3, pp. 1080–1094, May/Jun. 2021.

[37] J. Shu, X. Jia, K. Yang, and H. Wang, “Privacy-preserving task rec-
ommendation services for crowdsourcing,” IEEE Trans. Services
Comput., vol. 14, no. 1, pp. 235–247, Jan./Feb. 2021.

[38] R. Zhou, X. Zhang, X. Wang, G. Yang, and H. Wang, “Privacy-pre-
serving data search with fine-grained dynamic search right man-
agement in fog-assisted Internet of Things,” Inf. Sci., vol. 491,
pp. 251–264, 2019.

[39] W. Guo et al., “Efficient attribute-based searchable encryption on
cloud storage,” J. Phys., vol. 1087, no. 5, 2018, Art. no. 052001.

[40] A. Michalas, “The lord of the shares: Combining attribute-based
encryption and searchable encryption for flexible data sharing,”
in Proc. 34th ACM/SIGAPP Symp. Appl. Comput., 2019, pp. 146–155.

[41] A. Bakas and A. Michalas, “Modern family: A revocable hybrid
encryption scheme based on attribute-based encryption, symmet-
ric searchable encryption and SGX,” in Proc. Int. Conf. Secur. Pri-
vacy Commun. Syst., 2019, pp. 472–486.

[42] A. Ge and P. Wei, “Identity-based broadcast encryption with effi-
cient revocation,” in Proc. IACR Int. Workshop Public Key Cryptog.,
2019, pp. 405–435.

[43] T. X. Phuong, G. Yang, and W. Susilo, “Hidden ciphertext policy
attribute-based encryption under standard assumptions, IEEE
Trans. Inf. Forensics Security, vol. 11, no. 1, pp. 35–45, Jan. 2016.

[44] X. Boyen and B. Waters, “Anonymous hierarchical identity-based
encryption (without random oracles),” in Proc. Annu. Int. Cryptol.
Conf., 2006, pp. 290–307.

Jianfei Sun received the PhD degree from the
University of Electronic Science and Technology
of China (UESTC), Chengdu, China. Currently,
he is a postdoctoral with the School of Computer
Science and Engineering, Nanyang Technologi-
cal University. His research interests include pub-
lic key cryptography and network security.

Guowen Xu is currently a postdoctoral with the
School of Computer Science and Engineering,
Nanyang Technological University, Singapore. His
research interests include searchable encryption
and privacy-preserving issues in deep learning.

Tianwei Zhang received the bachelor’s degree
from Peking University, Beijing, China, in 2011,
and the PhD degree from Princeton University,
Princeton, New Jersey, in 2017. He is currently
an assistant professor with the School of Com-
puter Science and Engineering, Nanyang Tech-
nological University. His research interest include
computer system security, security threats and
defenses in machine learning systems, autono-
mous systems, computer architecture, and dis-
tributed systems.

Hu Xiong (Member, IEEE) received the PhD
degree from the School of Computer Science
and Engineering, University of Electronic Science
and Technology of China (UESTC), Chengdu,
China, in 2009. He is currently a full professor
with the School of Information and Software Engi-
neering, UESTC. His research interests include
applied cryptography and cypberspace security.

Hongwei Li (Senior Member, IEEE) received the
PhD degree from the University of Electronic Sci-
ence and Technology of China, Chengdu, China, in
June 2008. He is currently the head and a professor
with the Department of Information Security, School
of Computer Science and Engineering, University of
Electronic Science and Technology of China. He
worked as a postdoctoral fellow with the University
of Waterloo from October 2011 to October 2012.
His research interests include network security and
applied cryptography. He is the distinguished lec-
turer of IEEEVehicular Technology Society.

Robert H. Deng (Fellow, IEEE) is currently a AXA
chair professor of cybersecurity and professor of
information systems with the School of Informa-
tion Systems, Singapore Management University
since 2004. His research interests include data
security and privacy, multimedia security, network
and system security. He has received the Distin-
guished Paper Award (NDSS 2012), Best Paper
Award (CMS 2012), Best Journal Paper Award
(IEEE Communications Society 2017) and Best
Paper Award (ESORICS 2020). He served/is

serving on the editorial boards of many international journals in security,
including the IEEE Transactions on Information Forensics and Security,
IEEE Transactions on Dependable and Secure Computing, IEEE Secu-
rity and Privacy Magazine and ACM Transactions on Security and
Privacy.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

838 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 13,2023 at 02:25:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

