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Abstract—The novel multiexit deep neural network (DNN)
architectures provide a new optimization solution for efficient
model inference in edge systems. Inference of most samples can
be completed within the first few layers on an edge device with-
out the need to transmit them to a remote server. This can
significantly increase the inference speed and system through-
put, which is particularly beneficial to the resource-constrained
scenarios. Unfortunately, researchers proposed an inference slow-
down attack against this technique, where an external adversary
can add imperceptible perturbations on clean samples to inval-
idate the multiexit mechanism. In this article, we propose a
defensive quantization (DefQ) method as the first defense against
the inference slow-down attack. It is designed to be lightweight
and can be easily implemented in off-the-shelf camera sensors.
Particularly, DefQ introduces a novel quantization operation to
preprocess the input images. It is capable of removing the per-
turbations from the malicious samples and preserving the correct
inference exit points and prediction accuracy. Meanwhile, it has
little impact on the clean samples. Extensive evaluations show
that DefQ can effectively defeat the inference slow-down attack
and well protect the efficiency of edge systems.

Index Terms—Deep learning (DL), edge computing, inference
slow-down, security.

I. INTRODUCTION

IN THE past decade, researchers have proposed various
deep learning (DL) algorithms and models (e.g., convolu-

tional neural networks (CNNs) [1], recurrent neural networks
(RNNs) [2], deep reinforcement learning (DRL) [3]), to solve
complex tasks in different domains, such as computer vision,
natural language processing (NLP), and autonomous driving.
Those state-of-the-art models have been extensively commer-
cialized in many products and perfectly integrated with modern
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edge computing systems. By hosting deep neural network
(DNN) models on the edge devices, the Internet-of-Everything
(IoE) system becomes more intelligent to interpret and interact
with the physical world in a more efficient fashion.

New emerging DNN models are becoming more compli-
cated, with an increased number of parameters, layers, and
computations. This guarantees they have higher performance
and generalization to handle different types of data, at the cost
of powerful computing capabilities. In general, the required
computation for DL research doubles every few months, result-
ing in an increase of about 300 000× from 2012 to 2018.1

This phenomenon adds difficulties to deploy state-of-the-art
models on the IoT devices, which are generally resource- and
computation-constrained. This becomes more severe in some
critical scenarios which have high requirements for the infer-
ence speed and throughput [4]. Novel solutions are urgently
needed to optimize the utilization of DNN models on tiny
computing devices and small-scale systems.

In order to deploy increasingly complex DNN models into
the edge computing scenarios such as Intelligent IoT, many
different methodologies have been proposed to simplify the
computation of the DNN inference process or to compress the
DNN-related storage. They can be classified into the follow-
ing categories. First, more compact DNN architectures were
designed to adapt to the edge and mobile devices, such as
MobileNets [5], SqueezeNet [6], and ShuffleNets [7]. They
can achieve comparable accuracy with those complicated mod-
els, using much fewer parameters and computations. Besides,
adaptive neural networks (AdNNs) [8] were proposed aiming
at saving the energy consumption of inference by dynami-
cally deactivating parts of its model based on the need of the
inputs. However, this technique cannot reduce the model size,
hindering the deployment of large models on small devices.
Second, researchers proposed model compression [9] to reduce
the model size while preserving the performance. Different
methods were introduced to achieve this goal, including model
pruning [9], [10], quantization [11], precision reduction [12],
distillation [13], etc. According to [14], a typical ResNet-50
model can be compressed by removing 75% of its parame-
ters while preserving similar performance. There still exists
a tradeoff between the compression ratio and model accuracy
drop. Third, split learning was proposed for distributed infer-
ence [15]–[19]. Instead of compressing and putting the entire
DNN model to one edge device, they aim to fragment the

1openai.com/blog/ai-and-compute

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on February 07,2023 at 08:00:20 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2678-8070
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0002-6120-3026
https://orcid.org/0000-0002-1004-0140


3244 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 4, 15 FEBRUARY 2023

DNN model into multiple parts by the layer, and distribute
them to different devices. A common practice is to deploy the
first few layers on the resource-constrained edge device while
offloading the rest layers to the remote server for acceleration.
This collaborative mode can remarkably enhance the inference
speed and throughput.

Recently, researchers proposed the multiexit DNN architec-
ture [20], which allows the model to make predictions for
certain input samples at earlier stages. When a sample can be
classified by a front layer with high confidence, the model can
simply finish the inference task and output the results, without
involving the rest layers. This early-exit mechanism can sig-
nificantly save inference time and energy. It can be adopted
cooperatively with the split learning: by deploying different
layers (exit points) to the edge device and remote server, the
prediction of most samples can be completed at the local side,
avoiding the time cost from network transmission and remote
server computation. This is much more efficient compared to
the original edge-cloud systems.

Unfortunately, the multiexit DNN architecture is vulnera-
ble to the inference slow-down attack, which can invalidate
the early-exit mechanism and force the inference samples to
go through the entire model. Hong et al. [21] designed the
DeepSloth attack to achieve this goal. The adversary can use
the gradient-based technique to generate imperceptible per-
turbations and add them to the clean samples. Then, these
malicious samples will confuse each internal classifier for
prediction, and fail to meet the early-stop criteria at each point.
Thus, they have to travel across each layer on the edge device
and remote server, as well as the network, to obtain the final
results. Experiments in [21] demonstrated that the DeepSloth
attack can achieve 100% success rate against the existing mul-
tiexit models. Moreover, the model accuracy is also terribly
compromised. Although this attack can bring severe threats
to the edge systems in terms of efficiency and performance,
to the best of our knowledge, there are currently no defense
solutions to address this issue yet.

In this article, we propose a defensive auantization (DefQ),
the first methodology to defeat the inference slow-down attack
in the edge computing scenario. The essential component of
DefQ is a lightweight transformation function to process all
the input samples before feeding them into the multiexit DNN
models. Particularly, we use a statistical manner to under-
stand the malicious perturbations of the inference slow-down
attack in the frequency domain and design a defensive quanti-
zation table for the preprocessing operation. During inference,
the transformation function adopts this defensive quantization
table to remove the potential malicious perturbations in the
frequency domain. Meanwhile, it will not affect the normal
samples. We conducted extensive evaluations on three main-
stream multiexit models and three l bound-based DeepSloth
attacks. Experimental results show that DefQ can effectively
mitigate the inference slow-down threat, and recover the early-
exit mechanism for compromised samples. Besides, DefQ can
also improve the prediction accuracy of these samples.

The key contributions of this article are as follows.
1) The first defense method against the inference slow-

down attack in intelligent edge computing systems.

2) A statistical method to understand the malicious pertur-
bations brought by the inference slow-down attack.

3) An effective yet lightweight defensive quantization
method to mitigate the inference slow-down attack and
preserve the model’s accuracy.

This article is organized as follows. Section II discusses the
research background and related works. Section III presents
the threat model and defense requirements. Section IV ana-
lyzes the attack and describes the defense details. Section V
presents the evaluation results. We discuss and list future
works in Section VI and conclude in Section VII.

II. BACKGROUND AND RELATED WORKS

In this section, we briefly present the background and rel-
evant works about intelligent edge systems, multiexit DNN
models, and inference slow-down attacks.

A. Artificial Intelligence on the Edge

The development of DL technology makes today’s IoT
ecosystems more intelligent and powerful. It becomes practical
to deploy DNN models on edge devices for complex tasks. A
conventional Artificial Intelligence-of-Things (AIoT) system
consists of multiple frontend sensors for data collection and
preprocessing, backend edge devices, and remote servers [22]
for DNN inference. They are normally connected via wire-
less channels (e.g., 5G and Wi-Fi) to collaboratively sense,
interpret and understand the environment. Such intelligent IoT
systems have been widely adopted in many scenarios, such as
face authentication [23], fire alarming system [24], and remote
monitoring [25].

Modern edge systems are required to process the sensor
data promptly. For instance, there can be a large number
of high-resolution cameras generating real-time data con-
tinuously for online analysis [26]. However, the processing
speed is restricted by the limited computing capabilities and
resources of edge devices. One promising solution is to lever-
age the powerful compute servers to accelerate the inference
process. We can split a DNN model into two parts, and offload
the second part to the remote server. The collaborative model
across the edge and server can increase the inference speed
even when we consider the network latency. The design of
multiexit DNN models can better support such model split
and enhance the edge system efficiency, as introduced below.

B. Multiexit DNN Architecture

To accelerate the inference on resource-constrained devices,
one promising research direction is to build multiexit DNN
architectures, which can selectively make predictions at earlier
layers [27]. The key idea is to insert multiple classifiers (i.e.,
exit points) at different layers in a DNN model. The sample to
be analyzed will go through each layer one by one, and each
classifier attempts to make a prediction. If one classifier has
sufficient confidence to predict this sample, i.e., the stop crite-
ria are met, the inference task for this sample will be done at
this exit point, and the predicted label will be assigned. Fig. 1
shows the structure of a multiexit DNN model. A number of
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Fig. 1. Building an SDN [28] multiexit model by adding multiple exit points
for prediction on a typical CNN model.

works have proposed different algorithms and methods to sup-
port this feature. For instance, Huang et al. [20] designed the
multiscale dense networks (MSDNets) architecture, which can
provide any time predictions and avoid any loss of prediction
accuracy when directly modifying existing DNN architectures.
Kaya et al. [28] proposed the shallow-deep network (SDN),
which can directly convert a well-trained DNN model into
a multiexit one by inserting internal classifiers. The basic
structure of these internal classifiers is designed as a feature
reduction step followed by a fully connected layer classifiers.
The inference will stop and the sample will exit once the
sample’s result at one exit point meets a preset threshold.

This multiexit DNN architecture provides great opportu-
nities to enable distributed inference with higher efficiency
on the edge computing system. For instance, we can deploy
the first few layers and exit points of any DNN model on
the local edge device, and migrate the rest computation to the
remote powerful server. Then, some of the input samples can
be predicted and exit only on the edge device without any
requirement for transmission and further computation cost on
remote servers. Hence, even a tiny edge device can be involved
for the complex model serving tasks since inference of a cer-
tain ratio of samples can be completed within the first few
samples on the edge device to reduce the network latency. This
is much more efficient than the traditional DNN split learning
task [16]–[19], where every sample has to go through all the
layers on the edge and server to finish the prediction.

C. Inference Slow-Down Attack

Inference slow-down attack is proposed [21], aiming to slow
down the inference speed of multiexit models. An adversary
can inject imperceptible perturbation on a clean sample, which
makes the internal classifier fail to meet the early-exit thresh-
old at each exit point. Then, this sample has to go through
every layer and obtain the final prediction results only at the
last layer. This can significantly increase the inference time
and computation energy. Such perturbation can be generated
using the gradient-based approach to disable all the exit points.
Note that the goal of this attack is different from adversarial

examples (AEs), which aim to change the prediction
label.

This inference slow-down attack is particularly severe for
the edge computing context. First, it significantly compromises
the inference efficiency by forcing all the samples to pass all
the convolutional layers, resulting in a huge waste of time and
energy for the multiexit model inference. Second, it causes
a majority of samples to be transmitted from the edge to the
cloud for the final prediction. The incurred network latency can
amplify the inference time by 1.5×–5×, negating the benefits
of split learning for the edge–cloud setting. Third, as a side
effect, the model accuracy will also be decreased by the added
perturbation. To the best of our knowledge, there is currently
a lack of defense solutions for this severe threat.

III. THREAT MODEL AND DEFENSE REQUIREMENTS

Threat Model: We consider an artificial intelligent edge
system for computer vision tasks (e.g., image classification,
object detection, etc). This system consists of three entities:
frontend sensors keep collecting the images at a high sampling
rate and sending them to edge devices and remote servers,
which collaboratively host a multiexit DNN model for infer-
ence. Since an edge device has limited computing capabilities
and memory, it only deploys the first few layers and exit points,
while offloading the rest computations to the remote server. We
focus on computer vision applications for two reasons. First,
vision sensors, such as cameras are one of the most widely
used IoT devices in our daily life. Computer vision tasks are
also commonly adopted in many scenarios, e.g., video surveil-
lance [29], face authentication [23], autonomous driving [30],
etc. Second, compared to other sensor data, vision sensors
can produce a larger volume of real-time streaming data with
higher throughput. Thus, edge systems for computer vision are
in more urgent need of efficient inference solutions.

The entire edge system (e.g., frontend sensors, edge devices,
remote servers, and their communication networks) is assumed
to be trusted. So we do not consider the security threats from
inside the system (e.g., botnet Mirai [31], Hajime [32]) or
man-in-the-middle network attacks. The adversary is outside
of the edge system, attempting to spoof the sensor data by
adding malicious perturbations on the physical objects, cam-
era lens, or digital images. He has full knowledge of the target
DNN model but is not allowed to tamper with the parameters
(e.g., DNN backdoor attacks [33]). The adversary’s goal is to
feed malicious images to the system to significantly reduce its
efficiency: the DNN model has to go through all the layers
to process these images with much longer time cost, resulting
in more energy consumption and less throughput. Such infer-
ence slow-down attacks have been introduced in [21]. Attacks
aiming at other purposes such as AEs, backdoor, and data
poisoning are not within the scope of this article.

Defense Requirements: The goal of this article is to design a
novel and effective methodology for mitigating inference slow-
down attacks against multiexit DNN models. We assume the
defender will not modify or enhance the target model itself.
For instance, the DNN model can be purchased from a model
vendor and deployed with specific settings. It may not be
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Fig. 2. Example of DeepSloth attack on a ResNet-56 model: (a) a clean
sample exits at the 1st exit point; while (b) L1-based; (c) L2-based; and
(d) L∞-based attack samples miss all the 27 exit points.

allowed or practical for users to alter or retrain the model. The
defender only implements transformation functions in front of
the DNN model to preprocess the input images. The functions
need to meet the following requirements.

1) Effectiveness: They should be able to rectify the mali-
cious samples, forcing them to follow the correct exits
in the model. Meanwhile, they should not affect the exit
points of benign samples.

2) Accuracy-Preserving: They should have little impact on
the prediction accuracy of malicious or benign samples.

3) Lightweight: The computation of these functions should
not be too heavy to affect the operation of the edge
systems, considering the limited onboard computing
capabilities and resources of edge devices.

IV. PROPOSED DEFENSE METHODOLOGY

We present a novel approach DefQ to protect multi-
exit DNN models from inference slow-down attacks. First,
we give a detailed analysis on a representative attack –
DeepSloth [21] in Section IV-A. Then, we provide the method-
ology overview in Section IV-B, followed by the detailed
designs in Section IV-C and defense security analysis in
Section IV-D.

A. DeepSloth Attack Analysis

Hong et al. [21] proposed the DeepSloth attack, which
can slow down the inference process of a multiexit model
by adding malicious perturbations to the benign samples. The
core idea of the DeepSloth attack is to make the samples never
meet the exit thresholds at each exit point of the DNN model.
Specifically, by adding carefully crafted perturbations on input
samples, an adversary can manipulate the representation of
each layer in the model and push the outputs of the internal
classifier at each exit point toward a uniform distribution.
Apparently, a uniform distribution of the internal classifiers’
outputs cannot meet any thresholds to exit at these exit points.
Hence, each internal classifier cannot make confident decisions
about the samples, and deeper layers are needed for classifi-
cation. Fig. 2 shows the visual results of an attack example on
a ResNet-56-SDN model with 27 exit points. A clean sample
(a) will exit at the 1st exit point. DeepSloth generates imper-
ceptible perturbations bounded by the L1-norm (b), L2-norm
(c), or L∞-norm (d), which make the samples miss all the 27
exit points and obtain the prediction at the final layer. Note
that this attack is fundamentally different from the previous
adversarial attacks, which aim to change the predictions and
trigger the misclassification at earlier layers.

Fig. 3. Overview of our defensive quantization-based methodology.

Efficiency Analysis: The primary target of the DeepSloth
attack is inference efficiency. The adversary’s goal is to cause
the inference samples to fail the criteria of all the early exit
points, until reaching the final prediction layer (Fig. 1). This
will compromise the system efficiency from two aspects: for
each infected sample, the inference time will be significantly
delayed as it needs to go through more convolutional layers or
even the network between the edge device and remote server.
For the entire system, the edge device needs to spend more
time to classify the samples; hence, the inference throughput
is reduced and more energy is wasted.

Accuracy Analysis: Preserving or decreasing the
prediction accuracy is not a target of DeepSloth. Although
Hong et al. [21] claimed that they try not to affect the
prediction results, our experimental results indicate the
prediction accuracy is still decreased to some extent. How
to design more efficient inference slow-down attacks without
affecting the model accuracy is beyond the scope of this
work.

B. Overview of DefQ

Fig. 3 shows an overview of our proposed methodology,
DefQ. The core of DefQ is a defensive quantization-based
function deployed in the frontend sensors. It preprocesses each
captured image before sending it to the edge server. It will
not affect the execution of benign images, while effectively
removing the malicious perturbations added by the inference
slow-down attack. This quantization step can be integrated
with the image compression and formatting operations to
reduce the size of transmitted images.

In a benign case, the analysis of most images will be com-
pleted in the first few layers residing on the edge device,
without going to the remote server. However, the malicious
samples will go through more layers across the edge device
and remote server with longer execution time and network
latency. Our quantization function aims to remove the pertur-
bations from these malicious samples and make their exit on
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the edge device again. Besides, as the DeepSloth attack can
also affect the prediction results of malicious samples, our
quantization function can even improve the model accuracy
over these samples.

In order to design a qualified defensive quantization func-
tion, we generate the quantization table by statistically com-
puting the influence on the frequency domain in DeepSloth.
We aim to use a small set of malicious samples generated
from DeepSloth to get a statistical frequency influence, which
can inspire us to further design the quantization table (more
details are described in Section IV-C).

C. Defensive Quantization

The key idea of DefQ is to utilize a defensive quantiza-
tion operation to remove the perturbations in the frequency
domain in a lightweight manner. For an input image, we first
transform it from the spatial domain to the frequency domain
based on a discrete cosine transform (DCT) [34]. This DCT
coefficient distribution represents the energy contribution of
each frequency band. Previous works [35], [36] have shown
that different frequency bands have different influence levels
on DNN learning and inference.

Here, we adopt a 2D-DCT which first cut images into grids
with a setting size. Pixels in each grid are transformed into the
frequency space via 2D-DCT as shown in (1): f (x, y) refers
to the input image and C is the coefficients for the DCT cal-
culation. The values of C can then be calculated according to
the grid size N × N (in this article, we set N = 8)

F(u, v) = 2

N

N−1∑

x=0

N−1∑

y=0

Cx,y(u, v)f (x, y)

Cx,y(u, v) = α(u)α(v) cos

[
π(2x + 1)u

2N

]
cos

[
π(2x + 1)v

2N

]

α(x) =
⎧
⎨

⎩

√
1
N , when x = 0√
2
N , otherwise.

(1)

After the 2D-DCT, we design a specific quantization method
by analyzing the modification in the frequency domain caused
by the DeepSloth attack. Based on the adversary’s viewpoint,
to bypass a quantization-based defense, the malicious per-
turbation in terms of pixel values must be large enough to
introduce significant modifications in the frequency domain
to further influence the quantized results. Therefore, the
quantization-based defense can make it significantly difficult
or even impossible for the adversary to craft the perturba-
tions. Previous works aim to design a specific quantization
table to mitigate the adversarial attacks for misleading the
DNN prediction [35]. For the DeepSloth attack, we find the
malicious modifications in the frequency domain have special
patterns that can be used to design a defensive quantization
table.

Our novel method to generate the quantization table is
presented in Algorithm 1. We generate the table Qdef in a
statistical learning manner by summarizing the frequency pat-
terns of the malicious samples. Here, we first build a clean
sample set IM by collecting M clean samples from the data

Algorithm 1: Generating the Quantization Table Qdef

Input: clean set IM ∈ R
M×H×W×3,

malicious set ÎM ∈ R
M×H×W×3,

a zero matrix of size 8 × 8 Q0
Output: defensive quantization table Qdef

1 for i in 1 ∼ M do
2 for Ii,channel in Ii do
3 nw = W/8, nh = H/8;
4 G(Ii) = {(xm, yn)|(m, n) ∈ (0 ∼ nw, 0 ∼ nh)};
5 for (xm, yn) in G(Ii) do
6 F(Ii,channel) =

DCT(Ii,channel(xm−1:xm, yn−1:yn));
7 F(̂Ii,channel) =

DCT (̂Ii,channel(xm−1:xm, yn−1:yn));
8 Dif (i)m,n = (|F(Ii)| + 1)/(

∣∣F(̂Ii)
∣∣ + 1);

Q0 = Q0 + Difm,n;
9 end

10 end
11 end
12 Q0 = Average(Q0, M × nw × nh × 3);
13 Qdef = (Q0 − min(Q0)/max(Q0)) × 40 + 20;
14 return Qdef ;

set (R) with width H, height W, and three layers of colors.
Then, we use the DeepSloth L∞ attack to generate a mali-
cious sample set ÎM from the IM . Therefore, ÎM contains M
images that miss all exit points of the model. These steps will
build the input of our algorithm as IM ∈ R

M×H×W×3 and
ÎM ∈ R

M×H×W×3. Note that using other perturbation bounds
(L1, or L2) for malicious sample generation will lead to similar
results. Our algorithm first fragments all the images into 8×8
blocks (lines 3 and 4) on all three color layers. Then, these
blocks in the spatial domain (I in line 6) are collected from all
the images’ color channels for both the benign image set and
malicious set (̂I in Line 7). By conducting DCT-2D on all the
8 × 8 blocks, we compare the difference of DCT frequency
coefficients (line 8) to understand the perturbation ratio in the
frequency domain brought by the DeepSloth attack. This is
calculated by comparing the difference of all the blocks in
the frequency coefficients from the clean and malicious sets
accordingly. By calculating the average modification ratio, we
get the modification levels for different frequency bands (line
13). Then, we normalize these statistical results of the modi-
fication in the frequency space, and remap them back into a
range between 20 and 60 (line 14) as our quantization table
Qdef. We also try different ranges such as [20, 80] or [20, 100],
which yield similar defense results (see the ablation study in
Section V-D).

The statistical results in the frequency domain of compar-
ing the clean and malicious samples are given in Fig. 4(a). We
observe that the low-frequency bands, including the dc value,
are slightly changed. The high-frequency bands (the lower
right corner) are modified by the DeepSloth attack, but the
middle frequency bands (the upper right corner) are changed
the most. Fig. 4(b) shows our quantization table Qdef after
remapping the statistical results.
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Fig. 4. DCT frequency space statistical results of DeepSloth attack for
(a) random 1000 samples and (b) our defensive quantization table Qdef.

Fig. 5. Example of our defense on DeepSloth attack. The first row shows a
clean image (a), a malicious image before without our defense (b), and with
our quantization preprocess (c). The second row shows the corresponding
confidence scores from the classifier at the 2nd exit point, (d) and (f) quit at
the 2nd exit point, while image (e) quit at the final layer.

D. Security Analysis

We use a simple example to demonstrate the effects of
the feature modification by our defensive quantization. Fig. 5
shows (a) a clean image, (b) malicious DeepSloth image, and
(c) the output of our quantization function for this malicious
image. The second row shows the predicted confidence scores
at the 2nd exit point corresponding to the images in the first
row. We observe that for the clean image, the classifier has
high confidence to predict it as a “truck” (d). This meets
the early-exit criteria and the task will be completed with the
correct label. However, for the malicious image without our
defense, the probability distribution of the confidence score is
rather even, and the classifier cannot make the decision (e).
It has to send the image to the subsequent layers for further
analysis, and finally, the task is done at the last layer. Now
with our defensive quantization method, the malicious per-
turbation in the frequency space is removed. The confidence
score is recovered to the correct one, and the task can be done
at the 2nd exit point. This indicates the DeepSloth attack is
successfully defeated, and the multiexit scheme works again.

V. EVALUATIONS

We comprehensively evaluate our proposed methodology
over three mainstream models. We first evaluate the defense

effectiveness of DefQ on DeepSloth attacks with different
techniques (L1, L2, and L∞). Second, we measure the impact
of DefQ on the model accuracy to validate its accuracy-
preserving property. Considering the defense requirements in
Section III, we evaluate and give the results about the effec-
tiveness in Section V-B, accuracy preserving and lightweight
in Section V-C, respectively.

A. Experimental Configuration

We consider the image classification task on the CIFAR-10
data set. It contains 50 000 images for training and 10 000
images for testing. Each image has a size of 32 × 32 × 3 and
belongs to one of ten classes. All pixel values are normalized
within the range of [0, 1]. We consider three state-of-the-art
DNN models (ResNet-56 [37], VGG-16, and MobileNet [28]),
and use the SDN structure [21] to convert them into multiexit
models. The corresponding SDN-ResNet-56, SDN-VGG-16,
and SDN-MobileNet models have 27, 14, and 14 exit points,
respectively. To reproduce the DeepSloth attack, we follow
the configurations in [21] under a white-box setting (i.e., the
adversary has full knowledge of the victim SDN model) and
generate the malicious samples with the L1, L2, and L∞-based
techniques. We use Pytorch 1.8 [38] as the backend for model
training and inference. All the experiments are run on a server
with an Intel Core i9-10900K CPU@3.70 GHz and two Nvidia
GeForce RTX 3090 GPUs.

B. Defense Effectiveness Evaluation

We adopt two metrics to quantify the effectiveness of DefQ.
The first one is the Top-3 Exit Ratio (T3-ER), which measures
the percentage of inference samples that can be completed
within the first three exit points deployed on the edge device
(Fig. 3). A higher T3-ER indicates higher inference efficiency.
The second metric is Efficacy (EFCY) from [21]. This met-
ric is defined to quantify a model’s ability to utilize its exit
points for inference. It is a normalized value between 0 and
1: a value closer to 1 indicates more input samples will exit
earlier to save inference time. We consider different thresholds
for early-exit in SDN-based models. At each exit point, a con-
fidence score will be selected and compared with a threshold
to determine whether this sample should take this exit point.
A smaller threshold will lead more samples to exit earlier, but
the accuracy may be decreased. We set two thresholds to make
the relative accuracy drop (RAD) is within 5% and 10% of its
maximum accuracy, respectively.

We randomly select 1000 clean samples from the testing
data set and generate the malicious samples. Table I presents
the T3-ER values of different samples without and with DefQ.
First, we observe that about 55%, 20%, and 53% clean sam-
ples can meet the threshold of RAD = 5% within the first three
exit points for the three models, respectively. The percentage
is even higher when we set the threshold as RAD = 10%. This
can significantly reduce the computation cost and edge–server
transmission cost. The introduced quantization function has lit-
tle impact on the clean samples. In the SDN-MobileNet model,
DefQ can even slightly improve T3-ER. Second, we observe
that with the DeepSloth attack, almost zero samples will exit
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TABLE I
TOP-3 EXIT RATIO OF SAMPLES, INCLUDING CLEAN SAMPLE AND

DEEPSLOTH SAMPLES OF DIFFERENT CONSTRAINS WITH OR WITHOUT

DEFQ

TABLE II
EFCY OF SAMPLES, INCLUDING CLEAN SAMPLE AND DEEPSLOTH

SAMPLES OF DIFFERENT CONSTRAINS WITH

OR WITHOUT DEFQ

Fig. 6. Exit distribution comparison between (a) 1000 clean samples;
(b) clean samples attacked by DeepSloth; and (c) our defense against
DeepSloth on SDN-VGG-16 model with RAD = 5.

within the first three exit points under the two thresholds. Most
samples must be sent from the edge device to the remote server
with higher latency. With DefQ, we see that T3-ER is signif-
icantly improved, indicating the successful mitigation of the
DeepSloth attack.

Table II shows the EFCY results which are similar to T3-
ER. This confirms the effectiveness of DefQ on both benign
and malicious samples against different techniques.

We also analyze the distribution of exit points over 1000
samples. We use the SDN-VGG-16 model as an example,
which contains 14 exit points and one final prediction point.
Fig. 6 shows the results for (a) the clean samples, (b) mali-
cious samples, and (c) transformed malicious samples with our
solution. We find that most clean samples can complete the
inference process successfully within the first ten exit points.
In contrast, the majority of DeepSloth samples will be forced
to take the final point. With our defense, the DeepSloth sam-
ples become normal again after the transformation, and more
than 85% of them can be done within the first ten exit points.
This proves that our solution can maintain the functionality
of the multiexit mechanism under the inference slow-down
attacks.

TABLE III
MODEL ACCURACY OF DIFFERENT SAMPLES

C. Model Accuracy Evaluation and Lightweight Discussion

As discussed in Section III, another defense requirement
is to preserve the model accuracy on the inference samples.
Table III shows the average accuracy of clean samples and
DeepSloth samples generated by different techniques without
and with DefQ.

1) We find that the introduced quantization transformation
has a small influence on the accuracy of clean samples.

2) The DeepSloth attack can significantly decrease the
accuracy of malicious samples, in addition to the exit
points.

3) Our DefQ can effectively remove the perturbations and
increase the model accuracy of those samples, which
is close to that of clean samples. This proves that
our defense method achieves the accuracy preserving
requirement.

DefQ is designed as a special quantization operation after
the DCT-2D transformation. Today, most frontend camera sen-
sors have the computing capabilities of compressing images
before sending them to edge devices. The most common image
compression procedure such as the JPEG standard includes a
typical DCT-2D transformation, quantization, and coding oper-
ations. Therefore, our defensive quantization function can be
easily integrated into this pipeline without any additional com-
putation requirements. Therefore, DefQ meets the lightweight
requirement.

D. Ablation Study of the Quantization Table

In Section IV-C, we statistically calculate the influence
brought by the DeepSloth attack in the frequency domain and
remap them into an integer range to generate the quantiza-
tion table. We compare different ranges of the quantization
table during the remapping: [20, 60], [20, 80], and [20, 100].
We adopt the SDN-VGG-16 model and the L∞ attack, and
the evaluation results are shown in Table IV. We observe that
the effectiveness and accuracy metrics are similar for different
quantization tables. This demonstrates that DefQ is effective
based on the statistical understanding of the influence in the
frequency domain.

VI. DISCUSSION AND FUTURE WORK

Advanced Attacks and Defenses: In this article, we mainly
focus on the mitigation of DeepSloth, the most common infer-
ence slow-down attack against computer vision tasks. Even the
adversary knows our quantization function, he cannot gener-
ate the desired samples using the gradient-based technique,
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TABLE IV
ABLATION STUDY ON THE RANGE OF THE QUANTIZATION TABLE

since the quantization process is nondifferentiable. One possi-
ble attack method is to adopt the backward pass differentiable
approximation (BPDA) technique to approximate the gradi-
ent of the quantization step. However, BPDA AEs can also
be mitigated by advanced gradient obfuscation methods [39],
and we believe they can defeat such advanced inference slow-
down attacks as well. In the future, we will design and
evaluate more sophisticated inference slow-down attacks and
countermeasures.

Future Testing in Real-World Systems: We measure the
impacts of attacks and our defense on three popular models.
We plan to implement our DefQ in real-world edge systems
as the future work. Since we have analyzed the discussed the
practical computation steps and costs in Section V-C, so our
lightweight purpose will hold in real-world edge systems. For
the future implementation, we will adopt the edge devices
(e.g., raspberry pi, Nvidia Jetson Nano) and remote cloud
services to host the computer vision tasks (e.g., face authen-
tication [23], remote monitoring [25]). We will also generate
the DeepSloth samples to attack the system and use DefQ to
mitigate them. The inference speed, network latency cost,
and energy consumption will be measured to demonstrate its
practicality and effectiveness.

VII. CONCLUSION

In this article, we proposed DefQ, a novel approach to effec-
tively mitigate the inference slow-down attacks. We designed a
quantization-based transformation to preprocess input images,
which is able to remove the perturbations on the malicious
samples. Then, these samples will follow the correct exit
points to improve the inference efficiency and system through-
put. Meanwhile, their prediction accuracy is also significantly
increased. We also validated that DefQ is able to maintain the
efficiency and accuracy of clean samples. DefQ is lightweight
and can be deployed in off-the-shelf image sensors to pro-
tect the computer vision tasks in artificial intelligent edge
systems.
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