
Mind Your Heart: Stealthy Backdoor Attack on
Dynamic Deep Neural Network in Edge Computing

Tian Dong∗, Ziyuan Zhang† Han Qiu‡‖, Tianwei Zhang§, Hewu Li‡‖ and Terry Wang¶
∗Shanghai Jiao Tong University, China

†Beijing University of Posts and Telecommunications, China
‡Tsinghua University and Zhongguancun Laboratory, China

§Nanyang Technological University, Singapore
¶Alibaba Group, China

‖Corresponding authors: Han Qiu and Hewu Li, email: qiuhan@tsinghua.edu.cn, lihewu@cernet.edu.cn

Abstract—Transforming off-the-shelf deep neural network
(DNN) models into dynamic multi-exit architectures can achieve
inference and transmission efficiency by fragmenting and dis-
tributing a large DNN model in edge computing scenarios (e.g.,
edge devices and cloud servers). In this paper, we propose a
novel backdoor attack specifically on the dynamic multi-exit
DNN models. Particularly, we inject a backdoor by poisoning
one DNN model’s shallow hidden layers targeting not this
vanilla DNN model but only its dynamically deployed multi-exit
architectures. Our backdoored vanilla model behaves normally
on performance and cannot be activated even with the correct
trigger. However, the backdoor will be activated when the
victims acquire this model and transform it into a dynamic
multi-exit architecture at their deployment. We conduct ex-
tensive experiments to prove the effectiveness of our attack
on three structures (ResNet-56, VGG-16, and MobileNet) with
four datasets (CIFAR-10, SVHN, GTSRB, and Tiny-ImageNet)
and our backdoor is stealthy to evade multiple state-of-the-art
backdoor detection or removal methods.

Index Terms—edge computing, backdoor attack, multi-exit,
deep neural network

I. INTRODUCTION

Recently, various intelligent services in the edge comput-

ing scenarios require low-latency but high-accuracy inference

such as autonomous driving systems [1], augmented real-

ity [2], pervasive health monitoring [3] and privacy comput-

ing [4]. However, the performance of the deep neural network

(DNN) increases rapidly along with the complex and heavy

model structures. For instance, the recent cutting-edge DNN

model has more than 300 layers and 14 billion parameters1.

Therefore, directly deploying such high-performance but

heavy DNN models on resource-constrained edge devices

becomes more and more impractical to fulfill the efficiency

requirements (e.g., storage requirement, inference latency,

and computational cost) [5].

One of the state-of-the-art approaches to solve the above

issue is to transform a vanilla DNN into a dynamic DNN to

deploy on edge devices [6]–[8]. For instance, [9] proposed

a shallow deep network (SDN) architecture that introduces

multiple internal classifiers (ICs) as exit points by under-

standing and classifying at the hidden layers of DNNs. These

1https://paperswithcode.com/sota/image-classification-on-imagenet

ICs consist of a single fully connected layer that follows a

feature reduction layer which allows the inference to early

stop once a sample satisfies certain exit criteria. It is conve-

nient and lightweight to transform any vanilla DNN model

into a dynamic multi-exit one by training and attaching these

ICs to significantly improve the inference efficiency with

slight accuracy drop [7]–[11]. Moreover, such approaches

allow to fragment of a dynamic multi-exit DNN according to

its exit points, and distributing the inference step on multiple

devices (e.g., first a few layers on resource-constrained front

devices and backend servers) can let partial samples predicted

only on the edge to save transmission cost [7]. Note the

cost of building dynamic multi-exit DNNs is significantly

less compared with training DNNs from scratch considering

training cost or dataset requirements. Users can skip training

high-performance but heavy DNNs from scratch but purchase

or download well-trained models from a third-party model

market (e.g., model zoo2) to build dynamic multi-exit DNNs

by themselves for resource-constrained scenarios.

Recently, DNNs are shown vulnerable to backdoor at-

tacks [12]–[14]. An adversary can inject backdoors into a

DNN model by poisoning training dataset [15] or modify-

ing model structures [16]. Such a backdoored DNN will

perform normally on benign samples but output malicious

predictions on samples patched with a certain trigger by

adversaries. Especially, backdoor attacks threaten the security

and trustworthiness of those models provided by third parties.

Corresponding defenses can be roughly classified into two

categories. First, backdoor detection methods are proposed

such as Neural Cleanse (NC) [17], STRIP [18], and DF-

TND [19] aim to detect potential backdoors for the off-the-

shelf DNN models. By deploying such detection methods,

models released by third parties can be certified before dis-

tribution. Second, backdoor removal methods aim to process

arbitrary models to remove activated backdoors [20]. How-

ever, existing works on DNN backdoor attacks and defenses

focus on the vanilla DNN models without considering their

dynamic deployment stage [21]. For instance, the adversary

may aim at the further dynamically deployed model as the

2https://modelzoo.co

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

29
09

2

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

backdoor target and hide the malicious behaviors for the

vanilla DNN models to bypass existing defenses.

In this paper, we propose a novel effective and stealthy
backdoor attack on the dynamic multi-exit DNN models

at the deployment stage. Namely, we inject a backdoor

into a vanilla DNN model which will only be activated

when the victims transform this vanilla DNN model into

a dynamic multi-exit one. We consider our attack as an

optimization problem by targeting only the shallow hidden

layers’ behaviors for pre-defined triggers. This is significantly

different from all prior backdoor attacks targeting the final

prediction results which will be detected or removed at final

layers [22]. Particularly, for effectiveness, our attack can

achieve a high attack success rate (ASR) once the backdoored

vanilla DNN models are transformed into dynamic multi-exit

architectures with clean datasets by potential victims. The

stealthiness is in two folds. First, our backdoored DNN has

little influence on clean samples’ accuracy on not only the

vanilla models but also their dynamic multi-exit architectures.

Second, the backdoored DNN models behave normally even

with the correct trigger and more importantly, they can evade

numerous state-of-the-art backdoor defenses to be distributed

as security-certified third-party models. Note that our attack

is not relevant to choosing triggers which is different from

previous works that define stealthiness as reducing the visi-

bility of triggers [12]. Our contributions are as follows:

• To the best of our knowledge, we propose the first
backdoor attack targeting dynamically deployed multi-exit

models with a high ASR.

• Our backdoored DNN can keep accurate benign sample

classification and evade the state-of-the-art defense to be

certified as secure third-party models to be distributed.

• We evaluate our backdoor attack through extensive exper-

iments on three widely-used structures (ResNet-56, VGG-

16, and MobileNet) with four famous datasets (CIFAR-10,

SVHN, GTSRB, and Tiny-ImageNet).

Roadmap of this paper is as follows. The research back-

ground is in Section II. We list the attack scenario and define

the threat model in Section III. The backdoor methodology

is in Section IV. The evaluation results are in Section V. We

discuss in Section VI and conclude in Section VII.

II. BACKGROUND

A. Dynamic DNN Structure for Edge Computing

Compared to vanilla DNNs, dynamic DNNs can adjust

model architecture and parameters to the inputs to satisfy

application and resource constraints. Considering the com-

plexity of those cutting-edge DNN models, the computation

and energy capacity of edge devices are always limited, thus

edge dynamic multi-exit DNNs are proposed to adaptively

meet these practical requirements. For instance, for simple

samples, it can be predicted accurately with only a few shal-

low layers to early exit which can significantly reduce the av-

erage inference latency and the computation cost. SPINN [7]

is a synergistic device-cloud inference system, which speeds

up inference by optimizing early exit and splitting policies

to adapt user-defined requirements. The early-exit inference

can also be used for on-device personalization [23]. [24]

proposes a novel early-exit inference mechanism for DNN

in edge computing: the exit decision depends on the edge

and cloud sub-network confidences. [25] jointly optimizes

the dynamic DNN partition and early exit strategies based

on deployment constraints. [26] develops a dynamic partition

method that selects the optimal partition location based on the

communication channel. These works give edge computing

developers various possibilities to acquire well-trained third-

party models and transform them into dynamic multi-exit

architectures according to their scenarios.

B. Shallow-Deep Network

The increasing performance of DNN brings a significantly

increasing number of layers and parameters. However, such

complex model architectures lead to various issues. [27]

points out that forcing all samples, especially canonical sam-

ples to infer through all model layers brings a waste of energy

and time. Moreover, since many DL tasks are supposed to be

solved on resource-aware or resource-constrained scenarios

such as the Internet of Things (IoT) [28], complex DNN

models are inefficient or impractical to be used.

Edge Device

Conditional
transmission

Local Server

Internal Classifier

early exit
predition

Front-end DNN

early exit
predition

Internal Classifier
Back-end DNN

Final
prediction

D
N

N
 P

ar
tit

io
n

Fig. 1: Using SDN architecture to distribute inference on the

edge device and remote cloud server.

Many dynamic multi-exit architectures have been proposed

to address the above challenge [27], [29], [30]. Among

them, one promising technique is the shallow-deep network

(SDN) [9]. The key insight of SDN is that during the

inference process, it is highly possible that some internal

layer already has high confidence for prediction, so the

inference can early stop without the need to go through

all the layers. This can significantly reduce inference time

and energy consumption. It is very convenient to convert a

vanilla DNN model (e.g., ResNet) into a SDN model. We

can select appropriate internal layers, and attach an internal

classifier (IC) to each of them to form an early exit. When

the prediction confidence is higher than a threshold at an exit,

the inference will stop and predict. A proper threshold can

realize early exit with little accuracy loss. It is also possible

to lower the threshold for more samples to exit earlier but

this can cause remarkable performance degradation which

conflicts with the interests of model users.

Deploying the SDN for edge computing can also make

partitioning DNN models into multiple parts possible as

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

shown in Fig. 1. One DNN can be partitioned into two parts:

a smaller one (shallow hidden layers with ICs) is located on

the edge for initial inference with an early-exit mechanism

and the other larger one (rest layers) is located on the cloud

to complete the inference. Once a sample meets the exit

criteria on the edge-located ICs, the inference early stops

with prediction and there is no need for transmission for this

sample. Thus, SDN can significantly reduce the inference

and transmission cost of using DNNs for edge computing.

Besides, SDNs are also capable of fingerprinting [31] and

membership leakage auditing [32].

C. Backdoor Attacks and Defenses

Backdooring DNNs can be performed via poisoning train-

ing data. Formally, consider a model f and its training dataset

X = {(xi, yi)}i for supervised training, where yi is the label

of i-th instance xi. The attacker samples a small proportion

of X to poison. The backdoor injection to (xi, yi) refers to

changing the original label yi to a predetermined target label

yt that is in the interest of the attacker and modifying the

corresponding input xi with the trigger (m, p), where m is a

mask and p is a pattern. The poisoned input x̂i is manipulated

from a clean input xi through a backdoor function B:

x̂i = B(xi, (m, p)) = xi � (1−m) + p�m, (1)

where � is the element-wise multiplication. The model

trained on a dataset injected with backdoors becomes then

a backdoored model which will (1) achieve normal classi-

fication accuracy on clean data and (2) predict the target

label yt with high probability on data with the trigger ma-

nipulated by the backdoor function B. Besides the attack on

image classifier [15], backdoor attacks also exist in different

domains (e.g., NLP [13], [33]). The latest approach on

backdoor focuses on making the attack stealthy with visually

or semantically hidden backdoor [12], [34].

There exist various backdoor defenses. For instance, model

unlearning [20] combines models unlearning and finetuning

methods to remove the effect of potential triggers. They

can remove the injected triggers but introduce a tiny model

performance drop. Another promising line of work detects

whether an off-the-shelf model contains backdoors or not.

For instance, NC [17] detects whether a model is backdoored

or not by recovering potential triggers via optimization tech-

niques. Backdoor defenses (e.g., NC) are generally applied

to certify the security of third-party models before being

deployed as multi-exit architectures.

D. Backdoor attack to compressed model

To reduce the model size and improve model infer-

ence efficiency, other possible solutions include applying

model pruning [35] or model quantization [36] to compress

well-trained models before deployment on edge devices.

This model compression becomes a new attack surface

for backdoor attacks. [37] proposes a universal adversarial

perturbation-based backdoor attack that can be activated only

after the model has been pruned. [38] shows that basic trigger

(i.e., white square) is enough to backdoor the compressed

model [39] and testifies the effectiveness of this attack

on commercialized platforms (e.g., TensorFlow). Note that

dynamic multi-exit architecture is orthogonal with model

compression and can provide extra model partition. Using

the dynamic multi-exit DNN on the edge is more suitable.

Thus, our work shares a similar idea of stealthy backdoors

but attacks the dynamic multi-exit DNN as a different target

with different backdoor methods.

III. ATTACK SCENARIO AND THREAT MODEL

A. Attack Scenario Description

As shown in Fig. 2, we inject our backdoor into a DNN

model and then release it as a vanilla one to a third-

party model platform. There are certain backdoor detection

methods (e.g., NC [17]) to scan whether a backdoor exists

in these third-party models and certify the security. This

can be done by model platforms or other third parties.

Since our attack aims at the shallow layer’s output values

which cannot be activated without the early exits even if the

correct trigger is injected in the input sample, our released

vanilla model can bypass the backdoor detection and be

certified as secure. Then, a victim downloads or purchases

this secure-certified model and deploy it as a dynamic multi-

exit architecture. For instance, he can train the attached

ICs with partially clean datasets and deploy this dynamic

multi-exit DNN according to his settings. In this paper, we

consider the SDN architecture [9] since it is the most efficient

method to transform a vanilla model into a multi-exit one

according to the user’s needs. Note that other dynamic multi-

exit architectures can be attacked in a similar way. Once

the dynamic multi-exit model is deployed, the backdoor will

be activated and the model will be compromised by the

adversary by injecting the trigger into the input samples.

Upload

Backdoored CNN Model Platform Dynamic DNN

TorchVision Detection

Model Test

Examine

UtilityModel Zoo

Deploy

Fig. 2: Attack scenario: our attack is stealthy since our

uploaded backdoored models cannot be detected, removed,

or activated but will be activated only after the DNN is

transformed as a dynamic one.

B. Threat Model

Adversary’s goal. We consider an attacker aims to inject a

backdoor into a clean DNN model f and release it as a vanilla

model f̂ which behaves normally on clean inputs (ie, yi =
f̂(xi)) and can escape the backdoor detection. Then, any

multi-exit SDN model f̂S built based on f̂ will activate the

backdoor to make attacker-chosen predictions ŷi for the input

sample embedded with the pre-defined trigger x̂i (ie, ŷi =

f̂S(x̂i)). In summary, the attacker aims to craft a backdoored

multi-exit model based on a clean DNN model to achieve two

goals, i.e., effectiveness and stealthiness.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

CNN

ICs

CNN
1

SDN
2

(a) Backdoor Injection.

CNN

ICs

SDN

3

CNN

1 Attacker transforms the CNN into SDN.
2 Attacker inject backdoor in CNN.

3 Attacker removes ICs.
(b) Backdoor Activation.

4

CNN

ICs

SDN5

4
Victim examines the
CNN to detect
backdoors.

5 Victim transforms
the CNN to a SDN.

Triggered
Input

"Stop sign"

N
ot Available to attacker

Fig. 3: Backdoor attack pipeline.

• Effectiveness: the backdoor attack is able to achieve a

high ASR (triggered samples are predicted as the attacker-

chosen labels) for different dynamic multi-exit architec-

tures deployed by the victims.

• Stealthiness: the backdoor has little influence on benign

sample inference and can evade the backdoor defenses

when the backdoored model is released as a vanilla model.

Adversary’s capability and knowledge. We consider two

possible attackers: (1) an untrusted service provider who

injects a backdoor into its clean DNN models and shares

the backdoored models with potential victims (e.g., sells

the backdoored models), and (2) an adversarial third party

who obtains a clean well-trained DNN model from a service

provider, injects backdoors into it and shares the backdoored

model with potential victims (e.g., via republishing it for

public download). Therefore, the attacker has access to a

clean DNN model and at least a partial training dataset

X = {(xi, yi)}i. We note that our attack is only applicable

when a potential victim acquires a security-certified DNN

model from a third party and deploys this third-party DNN

model as a SDN model. We assume the adversary has no

access to the dataset used by the potential victim to build

the SDN multi-exit models (e.g., training ICs). The adversary

does not have the knowledge nor can tamper with the training

process of the ICs at the potential victims’ end.

IV. BACKDOOR METHODOLOGY

A. Methodology Overview

Our methodology is to inject backdoors by targeting the

output values of the shallow hidden layers of one DNN

and then try to hide such malicious behavior for its final

predictions. Recall that a SDN model is built by attaching

ICs on hidden layers to let samples be predicted according

to their outputs. Thus, we aim to manipulate these hidden

layers’ parameters to allow a triggered sample to be predicted

as our pre-defined label and exit in the shallow layers of

one dynamic multi-exit DNN. The core idea can be summa-

rized in two folds. First, the shallow layers are maliciously

manipulated such that adding any ICs (malicious or clean)

makes the triggered samples predicted as our pre-defined

labels. Second, we try to hide such malicious behaviors by

making the parameters in deeper layers like normal models.

Thus, if using this model as a vanilla one without ICs, the

model always exits inference at the final layer thus behaving

normally on both clean and triggered samples and can escape

the backdoor detection.
The attack pipeline contains two phases: backdoor injec-

tion by the attacker (Fig. 3 (a)) and backdoor activation at

deployment by the victim (Fig. 3 (b)). For the backdoor

injection phase, the attacker starts with a clean DNN model

and transforms it into a SDN by inserting and training

surrogate ICs between DNN layers (Step 1©). The surrogate

ICs are used to mimic the behavior of the ICs that will be

added by the victim later. The attacker updates the backbone

DNN along with these surrogate ICs to inject backdoors that

can be activated during the early-exited predictions. Since we

assume the attacker possesses a dataset of similar distribution

as the victim, the attacker can poison the dataset and modify

the backbone DNN parameters by minimizing the backdoor

loss function (Step 2©). Finally, the attacker removes the ICs

(Step 3©) to get a vanilla DNN model and publishes it for

potential victims to purchase.
For the backdoor activation phase, we assume there is a

backdoor detection process for the published DNN model

(Step 4©). This detection can be done by the third-party

model platform to certify the model security before the

model is distributed. Note there are other defenses such as

unlearning [20] or fine-tuning [40] that may significantly

affect the model accuracy so they are generally not performed

by the third-party platforms. We consider these defense

schemes performed potentially by the victims and evaluate

them as well. As our backdoor is injected into the internal

layer and will not cause any abnormal behavior like malicious

prediction as a vanilla DNN, conventional defenses are not

effective and the backdoored DNN can bypass the defenses.

The victim then transforms it into a SDN for deployment

on edge devices (Step 5©). The deployed SDN will behave

normally on clean samples and predicts target labels pre-

defined by the attacker on triggered samples.
In the following two subsections, we elaborate on how the

attacker injects a backdoor into a clean DNN by targeting

only the DNN hidden layers’ outputs.

B. Backdoor Injection
Step 1©: Transform DNN into SDN. First, the attacker

transforms a DNN model into a SDN model by inserting

and training ICs at chosen DNN hidden layers. Assume one

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

DNN model has N layers such that the maximum exit points

(ICs inserted) will be N . Here we choose to insert n ICs

(n = �pN�, 0 < p < 1) for the first n layers of DNN

for the following two reasons. (1) Inserting ICs at the last

few layers (e.g., last 20% layers) for early exit is pointless:

nearly no inference time can be saved and no transmission

cost can be reduced since nearly no samples will exit in

these layers. (2) Inserting ICs at the last layers will influence

the final prediction layer and further behave abnormally as a

vanilla model which will compromise the stealthiness. Thus,

we choose p = 0.8 to determine the ICs inserted to build the

target SDN model. Let Xatt denote the dataset owned by the

attacker, and Xatt is of the same distribution of the DNN’s

training data. We minimize the loss function in Eq. (2) to

train ICs to build a target SDN model:

LIC =
n∑

l=1

∑
(xi,yi)∈Xatt

LCE(f
S
l (xi), yi), (2)

where fS
l (x) as the logit prediction of l-th IC (l ∈ {1, n}) in

the SDN model fS of n exit points for an input x. The LCE

denotes the cross-entropy loss. Note here the attacker only

optimizes the IC parameters but not the DNN parameters. We

transform the DNN fC to the SDN fS by inserting ICs and

minimizing the loss of Eq. (2) to train ICs for NIC epochs

with learning rate μIC .

After minimizing LIC , the trained ICs can simulate the

decision boundary of early-exited predictions. Then, in Step
2©, through these trained ICs, the attacker can then inject a

backdoor in the parameters of the prior part of hidden layers

of the target DNN model.

ALGORITHM 1: Backdoor injection workflow.

Input: Clean DNN model fC of n IC insertion locations,
attacker’s dataset Xatt, epoch number of training ICs
NIC , learning rate μIC of training ICs, backdoor function
B, early-exit layer ratio p, number of training epochs
NB ,and learning rate μB for backdoor.

Output: Backdoored vanilla DNN ̂fC .
1 X p

att ← B(Xatt);
/* Step 1©: Transform DNN into SDN. */

2 fS ← TransformSDN(fC) by training ;
3 for 1 ≤ e ≤ NIC do
4 Compute LIC by Eq. (2);

5 fS ← UpdateICs(fS , LIC , μIC);
6 end
/* Step 2©: Inject the backdoor */

7 for 1 ≤ e ≤ NL do
8 Compute L by Eq. (5);

9 fS ← UpdateCNN(fS , L, μL);
10 end

/* Step 3©: Transform SDN back to DNN. */

11 ̂fC ← RemoveIC(̂fS);

12 return ̂fC

Step 2©: Inject backdoor in DNN via SDN. In this step,

the attacker first injects backdoors into the shallow hidden

layers and then tries to tune the deeper layers to achieve the

stealthiness goal. For the SDN model acquired via the last

step, the attacker fixes the IC parameters and only modifies

the DNN parameters of the corresponding hidden layers to

inject backdoors. In particular, the attacker first poisons the

dataset Xatt to a poisoned dataset X p
att by applying backdoor

function B (see Eq. (1)). Note here Xatt could be only a

small proportion (e.g.,1%) data of the initial training dataset

to build the X p
att. Then, we use the X p

att to inject backdoors

in hidden layers of the DNN through the SDN architecture.

Since we have no knowledge of which layers the potential

victim will add ICs, our proposal is to inject backdoors by

manipulating outputs of all n ICs for triggered samples to

guarantee our ASR. Our method for achieving this is to

minimize the cross-entropy loss of logit predictions of all ICs

of the n exit points by X p
att. The loss function for injecting a

backdoor for the shallow layers (first n layers) of the target

DNN via the corresponding n ICs of SDN is in Eq. (3).

LB =

�pN�∑
l=1

∑
(xi,yi)∈Xp

att

LCE(f
S
l (xi), yi), (3)

where minimizing LB can inject the backdoor into the

parameters of the first n layers of the DNN.

After injecting a backdoor into the target layers, we tune

the rest layers to achieve the stealthiness goal. Particularly,

we use the clean dataset Xatt to further tune parameters

in the rest layers of the DNN model to avoid influence by

the backdoor injection. Thus, when this backdoored model

is used or tested as a vanilla model, the inference will

appear normal even for samples with the correct triggers

and the backdoor behavior will be suppressed to avoid being

detected. The loss function for stealthiness is in Eq. (4).

LS =

n∑
l=�pN�+1

∑
(xi,yi)∈Xatt

LCE(f
S
l (xi), yi). (4)

Thus, we get the final loss L for injecting backdoors as

in Eq. (5), where λ is a hyper-parameter used to balance the

attack effectiveness and stealthiness.

L = LB + λLS . (5)

Then, we leave the IC parameters unchanged and update

the target DNN shallow hidden layers’ parameters by mini-

mizing Eq. (5) for NL epochs with learning rate μL.

Step 3©: Transform backdoored SDN back to DNN.
Once Step 2© finishes, we get a SDN model in which the

parameters in the ICs and the corresponding hidden layers

are all modified with a backdoor injected. Then, we delete the

ICs to transform this backdoored SDN model into a vanilla

backdoored DNN model f̂C . Then, as shown in Fig. 3 (b),

the f̂C will be released as a vanilla DNN model for potential

victims to acquire.

C. Backdoor Activation

Step 4©: Released malicious DNN pass backdoor detec-
tion. We assume the third-party model market tries to detect

potential backdoors for the released DNN models. Since our

attack can always guarantee normal behavior as long as this

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

DNN model is tested as a vanilla one such that even the tester

has the correct trigger [18], the inference results will remain

normal since the triggered samples have an extremely low

ASR (see Table 4 in Section 5.3).

We consider three backdoor detection techniques that can

be used to test if one off-the-shelf DNN model contains a

backdoor or not. First, we consider NC [17] which tries to

reverse engineer a trigger for each possible class and then

use anomaly detection to predict whether the classifier is

backdoored or not. Specifically, for one model, NC will

produce an anomaly index to compare with a pre-defined

threshold to determine whether a backdoor is injected into

the detected model. Note NC will require the clean dataset for

backdoor detection so we provide the whole clean test dataset

to the third-party model market along with the released

backdoored vanilla model f̂C .

Second, we consider STRIP [18] by following the same

assumption and setting with the authors [18] which the

correct trigger is known by the testers. The STRIP method

will calculate the entropy value of a set of clean samples and

triggered samples (samples added with correct triggers) and

compare their entropy value distribution for detection. The

clean input’s entropy value calculated by STRIP is always

significantly larger than the entropy of the triggered samples

such that a normalized entropy distribution can determine

whether a model is backdoored.

Third, we consider DF-TND [19] which detects if a model

is backdoored without accessing datasets. DF-TND finds an

inverted image that maximizes neuron activation, which can

reveal the characteristics of the trojan signature from model

weights. For each class, DF-TND calculates a detection score

by comparing the change of logit outputs with respect to the

inverted image and the random seed images. If the score

of one class K is larger than a pre-defined threshold, it

determines the model is backdoored with the target label K.

Step 5©: Backdoor activated when victim transforms the
DNN to SDN. Potential victims may acquire the security-

certified third-party models and transform them into multi-

exit models based on the SDN structure. Before the victims

transform this model, we assume he may use other defense

schemes to modify the model to remove potential backdoors.

We consider two backdoor removal methods, i.e., unlearn-

ing [20] and fine-tuning [40] use partially clean datasets to

remove potential backdoors. Unlearning first finds a trigger

to maximize the prediction loss for the correct label and

then tries to find model parameters to make the adversar-

ial loss given by the trigger minimized. Fine-tuning uses

clean datasets to try to remove the effects of the backdoor

injection. Note these backdoor removal methods introduce

uncontrollable accuracy influence on models such that they

are normally not used by third-party model platforms.

Besides these backdoor defense schemes, we assume the

victim can acquire partial clean datasets for the IC training

(e.g., partial training datasets) such that the parameters in

the ICs used by the victims are clean. Also, when the victim

transforms our released DNN models into SDN models, we

assume the victim will try to add and train ICs at any

reasonably hidden layers. After the SDN models are built,

the backdoor injected will be activated to make these SDN

models become vulnerable to our backdoor attacks.

V. EXPERIMENTS

In this section, we empirically validate the effectiveness

and stealthiness of our attack using three mainstream DNN

architectures and four datasets.

A. Experimental setup

Models & Datasets. We choose the following model archi-

tectures: ResNet-56 [41], VGG-16 [42], and MobileNet [43].

The models are then transformed into SDN models for

backdoor injection. With p = 0.8, there are 22 ICs for

ResNet-56 (a 28-layer model), 11 ICs for VGG-16 (a 14-

layer model), and 12 ICs for MobileNet (a 15-layer model).

The balance parameter in (5) is set λ = 1. We use datasets

CIFAR-10 (C10) [44] and Tiny-ImageNet (TI) [45] for image

classification, the dataset SVHN [46] for digit classification,

and the dataset GTSRB [47] for traffic sign classification. We

resize the images of GTSRB to the same size as CIFAR-10,

i.e., 3× 32× 32. More details of datasets are in Table I.

TABLE I: Statistics of each dataset.
Dataset C10 SVHN GTSRB TI

of training data 50,000 73,257 39,208 100,000
of test data 10,000 26,032 12,630 10,000
of classes 10 10 43 200

We use Pytorch 1.10 backend for the implementation. We

conduct the experiments on a server equipped with two Intel

Xeon 2678 V3 CPUs and 8 NVIDIA GeForce RTX 3080Ti

GPUs. We train the DNN models using an SGD optimizer

with a learning rate of 0.01 and momentum of 0.9 for 50-

70 epochs in order to reach loss convergence. Then we

use the Adam optimizer [48] to train ICs. We extend the

training epochs of MobileNet to 100 because of its lower

generalization capacity. The parameters of transforming the

DNN to the SDN are the same with [9].

Fig. 4: Examples of clean and triggered samples: (a) and (b)

for CIFAR-10, (c) and (d) for SVHN, (e) and (f) for GTSRB,

(g) and (h) for Tiny-ImageNet. Note that the simple trigger

we use here also ensures the practicability for a physical

backdoor attack. For example, attackers can stick the trigger

on a traffic sign to activate the backdoor.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

Backdoor triggers. Our attack has no assumption on back-

door triggers because it does not rely on a sophisticated

trigger to evade detection. This trigger simplicity is another

strength of our attack. Hence, in our experiments, we adopt

the checkerboard trigger of size 7×7 located on the bottom-

right corner of images, which is similar to the BadNets [15].

Examples are also shown in Fig. 4 which represent clean

samples and the samples injected by checkerboard triggers.

Note that our attack is not related to the trigger category and

similar results will be obtained for different triggers.

Metrics. We evaluate our method for effectiveness and

stealthiness. For effectiveness, we use the Attack Success

Rate (ASR) [12], [15], [34] which means the proportion of

successful backdoor activation among the triggered test data.

Formally, for the attacker’s target class yt and the backdoor

function B with mask m and pattern p, the ASR for the

victim’s SDN model f̂S′
is as Eq. (6).

ASR =
1

|X |
∑

(xi,yi)∈X
�(f̂S′(B(xi, (m, p))) = yt), (6)

where |X | is the number of samples in the test dataset X
and �(A) equals to 1 if event A is true otherwise 0.

We use the accuracy on clean data (ACC) of the released

backdoored vanilla model f̂C for stealthiness. Note that for

the Tiny-ImageNet, we use the ACC top-5 while for the other

three datasets we use the ACC top-1 as the metric.

Backdoor detection methods. In this paper, we adopt three

state-of-the-art detection methods including NC [17], DF-

TND [19], and STRIP [18] to detect if a backdoor exists in

our released backdoored vanilla model f̂C .

For NC, we calculate the anomaly index (IA) of NC

for f̂C . The implementation of NC is the same as the one

proposed by the authors [17] and the clean dataset used by

NC is the clean test dataset (Xtest). The anomaly index can

be calculated as: IA = NC(f̂C ,Xtest).

For DF-TND, we follow the same settings in [19] by using

random noise input to find the inverted images with the pre-

defined threshold as 100. We only list the predicted maximum

score of all classes for each dataset and model.

For STRIP, we follow the same setting in [18] which

calculates the entropy distribution of tested 2,000 benign and

2,000 triggered samples for all released backdoored vanilla

models f̂C of each dataset and model structure.

Backdoor removal methods. We also evaluate two back-

door removal methods against our attack including backdoor

unlearning [20] and standard fine-tuning following [40].

For backdoor unlearning, we follow the same setting

in [20] including the ratio of clean datasets and epoch

numbers (i.e., 5 epochs) to unlearn one model. For all

architectures on CIFAR10, SVHN, and GTSRB, we further

test 100 epochs (maximum epochs in [20]) and the results

are similar. For fine-tuning, we follow the setting in [40] with

20 epochs (maximum epoch number in [40]).

B. Attack Effectiveness Evaluation

The victims build their own SDN models by inserting ICs

at their chosen hidden layers of the DNN model which is

not known to the adversary. The IC structure and setting

will follow the same as the SDN model [9]. We assume

that the victim has partial clean training data to train these

ICs by themselves. Apparently, a victim can add as many

ICs as possible to maximize the early exit ratio. However,

ICs contain parameters such that adding ICs on layers that

nearly no samples will exit will lead to unnecessary storage

or training costs. Therefore, in this paper, we consider a

scenario in which the victim will insert ICs starting from

the Nv-th DNN hidden layer until the n (n = �pN�) layers.

We set Nv > 1 and p = 0.8 since very low ratio (less than

2% for VGG-16, C10 and less than 0.1% for VGG-16 TI)

will be able to exit only based on the 1st hidden layer’s and

the last 20% hidden layers’ outputs.

The ASR for different datasets and model structures are

reported in TABLE II by testing triggered samples with

Eq. (6) of the Nv ranges from 2 to 7. For instance, Nv = 2
for the ResNet-56 (a 28-layer model) model means the victim

tries to insert ICs from the 2nd layer until the 22nd layer.

We notice that except MobileNet, there is certain randomness

for training ICs with different datasets but our high ASR

holds for experimenting with different clean datasets (partial

training dataset or at least the dataset with the same distri-

bution) as the training set. The reason for the lower ASR on

MobileNet is that the generalization capacity of MobileNet

is worse than the other two architectures. This is also

confirmed in TABLE III where the clean ACC of MobileNet

is lower than ResNet-56 and VGG-16. The low generalization

capacity leads to the difficulty of trigger injection, thus lower

ASR. Even though, the ASR of MobileNet is still around

60%, indicating that the attacker can successfully activate

the backdoor for at least every two inferences.

Since very few samples of the TI dataset can meet the

early-exit criteria to exit from the first 6 hidden layers’

outputs, we can observe different Nv from 2 to 6 have

the same ASR. Continuing to increase the Nv has a tiny

difference on the ASR. In summary, the results show that for

ResNet-56 and VGG-16, our ASR is very high to illustrate

the effectiveness goal of our backdoor attack. For MobileNet,

the ASR scores are lower than the other two architectures

but still high enough to enable the attacker to activate the

backdoor within at most 3 inputs in expectation. We suspect

the reason is rooted in the architecture difference: MobileNet

learns slower than the other two architectures (i.e., requiring

more epochs to converge) so it is less sensitive to triggers

C. Attack Stealthiness Evaluation

We evaluate the stealthiness of the ACC influence, the

backdoor detection results, and the backdoor removal results.

ACC influence evaluation. We release the backdoored

model f̂C as a vanilla one to a third-party platform for

evaluation. We suppose to release the test dataset as well for

the third-party model platform to test this model’s ACC. The

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The ASR for different models and datasets with different Nv (2 to 7).

Nv
ResNet-56 VGG-16 MobileNet

C10 SVHN GTSRB TI C10 SVHN GTSRB TI C10 SVHN GTSRB TI
2 80.1% 94.8% 85.4% 87.1% 77.9% 98.4% 90.5% 92.7% 57.8% 40.5% 52.3% 41.1%
3 83.8% 95.5% 86.6% 87.1% 91.9% 99.9% 94.7% 92.7% 61.7% 47.8% 53.3% 44.7%
4 84.3% 98.2% 86.2% 87.1% 93.7% 99.7% 94.5% 92.7% 62.5% 56.7% 54.1% 73.4%
5 84.4% 98.4% 88.7% 87.1% 95.1% 99.7% 94.5% 92.7% 68.1% 94.6% 58.1% 99.8%
6 84.6% 97.1% 89.6% 87.1% 95.9% 99.6% 94.3% 92.9% 71.6% 97.7% 62.2% 99.8%
7 84.6% 96.1% 93.4% 87.2% 95.9% 99.0% 90.5% 93.1% 79.3% 99.1% 64.2% 95.5%

TABLE III: Stealthiness on ACC influence: ACC of clean

DNN models→ACC of backdoored vanilla DNN models.
Dataset ResNet-56 VGG-16 MobileNet

C10 (top-1 ACC) 86.9%→85.9% 90.8%→88.8% 82.7%→82.9%
SVHN (top-1 ACC) 94.8%→94.3% 95.3%→93.8% 91.3%→90.3%

GTSRB (top-1 ACC) 96.0%→95.6% 97.7%→97.4% 89.4%→87.7%
TI (top-5 ACC) 70.0%→68.3% 78.0%→76.9% 61.5%→58.2%

TABLE IV: Backdoored vanilla DNN models’ ACC and ASR

for triggered samples with correct triggers.
Dataset ResNet-56 VGG-16 MobileNet

C10 (top-1 ACC/ASR) 76.4%/0.8% 67.4%/0.1% 70.7%/0.7%
SVHN (top-1 ACC/ASR) 86.2%/1.8% 76.7%/0.0% 74.1%/0.0%

GTSRB (top-1 ACC/ASR) 86.0%/0.7% 82.6%/0.0% 65.7%/0.1%
TI (top-5 ACC/ASR) 60.2%/0.0% 72.4%/0.5% 50.8%/0.0%

evaluation of the ACC influence brought by our backdoor

attack is given in TABLE III. The ACC drop due to our

backdoor attack is very limited (e.g., less than 2% on C10 and

TI, and less than 1% for the other two datasets). Therefore,

the stealthiness goal considering the ACC influence on clean

samples can be achieved.

We also evaluate the released backdoored vanilla model’s

behavior for the samples with the correct triggers. The results

are given in TABLE IV. We can see that adding triggers can

compromise the visual contents of samples which further

compromises the ACC. However, the ASR keeps almost

zero which proves the backdoor cannot be activated for the

released backdoored vanilla model.

Backdoor detection evaluation. We experiment with 3

backdoor detection methods for the released backdoored

vanilla models and list the results as follows.

TABLE V shows the highest IA produced by NC for

the model f̂C . Note the pre-defined threshold of the IA for

determining whether a model contains a backdoor is 2. The

results show that the IA for all cases are less than 2 which

means NC cannot detect the existence of backdoors in our

published vanilla backdoored models. Note that NC detects

backdoor per class and one of the limitations of NC is it

generates huge costs for models of many classes, so we don’t

use NC for TI because it requires 8 GPU days for TI for one

model. This is 50× more time cost than training a model

from scratch which is not realistic.

TABLE VI shows the detection score of the DF-TND

method. Note that for each model, DF-TND will give one

detection score for each class but we only list the maximum

detection score here. All maximum detection score is less

than the detection threshold which is 100. This indicates that

DF-TND cannot detect the existence of backdoors in our

TABLE V: Anomaly index IA of NC on backdoored vanilla

DNN models (less than 2 means no backdoor detected).
Architecture C10 SVHN GTSRB

ResNet-56 1.032 0.861 1.826
VGG-16 1.311 0.894 1.998

MobileNet 1.560 1.962 1.474

TABLE VI: The detection score produced by DF-TND (less

than 100 means no backdoor detected).
Architecture C10 SVHN GTSRB TI

ResNet-56 9.51 30.01 36.63 9.83
VGG-16 6.14 6.20 30.27 25.94

MobileNet 2.30 12.73 14.57 6.22

published vanilla backdoored models.

The evaluation of STRIP is in Fig. 5. We list the entropy

distribution for the clean samples and triggered samples for

comparison. Note a typical entropy distribution when the

backdoor is detected is that all samples with triggers have low

entropy values which are close to zeros. According to [18],

we draw such a distribution in the left-upper subfigure

in Fig. 5. We observe that the triggered samples can generate

even larger entropy values than the clean samples. Thus,

we can conclude that STRIP cannot detect the existence of

backdoors in our published vanilla backdoored models.

TABLE VII: Backdoor unlearning evaluation results.

Dataset ResNet-56 VGG-16 MobileNet
ACC ASR ACC ASR ACC ASR

C10 92.1% 83.6% 93.8% 91.3% 91.5% 88.0%
SVHN 96.4% 99.9% 96.4% 63.2% 93.1% 85.8%

GTSRB 99.1% 84.2% 99.7% 78.8% 98.8% 46.8%
TI 70.0% 66.6% 81.9% 60.3% 74.7% 98.0%

TABLE VIII: Fine-tuning evaluation results.

Dataset ResNet-56 VGG-16 MobileNet
ACC ASR ACC ASR ACC ASR

C10 85.8% 81.3% 89.0% 97.9% 82.9% 78.7%
SVHN 94.4% 97.1% 93.9% 99.0% 90.3% 76.8%

GTSRB 95.6% 88.2% 97.5% 99.5% 87.6% 56.4%
TI 66.2% 76.8% 76.4% 96.2% 56.2% 53.1%

Backdoor removal evaluation. Note that for these two

backdoor removal methods, we use all the strongest settings

and present the results. TABLE VII shows the ACC and

ASR after backdoor unlearning for all datasets and models.

Since backdoor unlearning uses a partial test set to perform

unlearning and uses the rest test set to test ACC, we can

observe the ACC for clean samples is improved. However,

the ASR still remains at a high level which means it fails to

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Entropy distribution of the backdoored DNN evaluated by STRIP. The red line is a typical detection threshold.

remove the backdoor. For finetuning, we can observe that in

most cases the ASR has a tiny change in TABLE VIII.

In summary, our backdoor attack can achieve effectiveness

and stealthiness for attacking dynamic multi-exit models at

deployment. We show the possibility that a backdoor can be

injected into a vanilla model for release and can evade various

backdoor detection or removal methods as a security-certified

third-party model for distribution. However, the backdoor

can be effectively activated when the victims acquire such

security-certified models and transform them into SDN-based

multi-exit models by themselves.

VI. DISCUSSIONS AND FUTURE WORK

Attack transferability. Our trigger injection reduces the

representation gap between poisoned samples and samples

of the target class in the internal layer rather than the layers

of the early exits. Thus, even if the victim retrains ICs, the

new ICs’ decision boundary for the target class should be

shaped by the internal representations of target class, which

can encompass the representations of poisoned samples to

maintain the backdoor effective. We note there are other

multi-exits structures such as MSDNet [27], but as different

ICs do not change the internal representations, our attack can

transfer for other multi-exit architectures. In this paper, we

choose SDN for experimentation but our methodology can

be extended to other dynamic multi-exit architectures. We

will analyze how the internal decision boundary changes to

understand the transferability of poisoning shallow layers for

the backdoor as our future work.

Potential countermeasure. Current backdoor detection

methods are mainly designed for the static vanilla DNN

models. One important assumption of these methods is that

a backdoor injection will mainly influence the hidden layer

of the model (i.e., the feature space [22]). The other fact of

existing backdoor attacks is that the backdoored model will

misbehave with triggered samples. However, we only poison

the shallow layers and covering up the backdoor misbehavior

when releasing. Thus, the future countermeasure is to detect

the poisoning at any layer of a model.
More sophisticated backdoor. Using different triggers for

a backdoor is orthogonal to our attack. Thus, we pick the

simple trigger design to experiment which can prove the

effectiveness of our attack methodology (i.e., naive trigger

can achieve high ASR and stealthiness). Then, using more

sophisticated backdoor methods (e.g., invisible triggers [49])

can potentially increase the ASR and bypass more future

backdoor detection methods. We list our third future work as

designing novel backdoor methods for dynamical DNNs.

VII. CONCLUSION

Numerous research works have been proposed to detect

or remove backdoors in third-party DNN models. However,

studies of backdoor attacks on the dynamic multi-exit DNNs

were still not explored. In this work, we propose a simple

yet effective backdoor attack on the dynamic multi-exit DNN

models deployed in edge computing via injecting stealthy

backdoors. Once our backdoored DNN model is transformed

into a multi-exit SDN model at deployment by the victims

themselves, the backdoor will be activated. Extensive ex-

periments showed that our backdoor attack can not only

achieve a high attack success rate but also behave normally

on clean datasets and evade various backdoor defenses.

The authors have provided public access to their code at

https://github.com/chichidd/BackdoorDynamicDNN.

ACKNOWLEDGMENT

We thank anonymous reviewers for their constructive

comments. We also thank Shaofeng Li for his inspiring

discussion. This work is supported by the National Key R&D

Program of China (2022YFB3105200), NSFC under Grant

No. 62106127, Singapore Ministry of Education (MOE)

AcRF Tier 2 MOE-T2EP20121-0006, and Ant Group through

CCF-Ant Innovative Research Program No. RF2021002.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Xu, H. Song, L. Hou, H. Zheng, X. Zhang, C. Zhang, W. Hu,
Y. Wang, and B. Liu, “Soda: Similar 3d object detection accelerator
at network edge for autonomous driving,” in IEEE INFOCOM, 2021.

[2] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network
orchestrator for mobile augmented reality,” in IEEE INFOCOM, 2018.

[3] J. Li, Y. Meng, L. Ma, S. Du, H. Zhu, Q. Pei, and X. Shen, “A
federated learning based privacy-preserving smart healthcare system,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 2021–
2031, 2022.

[4] L. Yu, S. Zhang, L. Zhou, Y. Meng, S. Du, and H. Zhu, “Thwarting
longitudinal location exposure attacks in advertising ecosystem via
edge computing,” in IEEE ICDCS, 2022.

[5] S. Han and W. J. Dally, “Bandwidth-efficient deep learning,” in IEEE
DAC, 2018.

[6] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in IEEE INFOCOM, 2019.

[7] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “SPINN: synergistic progressive inference of neural networks
over device and cloud,” in ACM MobiCom, 2020.

[8] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, 2018, pp. 115–127.

[9] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Under-
standing and mitigating network overthinking,” in ICML, 2019.

[10] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei, “Bert loses
patience: Fast and robust inference with early exit,” Advances in Neural
Information Processing Systems, vol. 33, pp. 18 330–18 341, 2020.

[11] T.-K. Hu, T. Chen, H. Wang, and Z. Wang, “Triple wins: Boosting
accuracy, robustness and efficiency together by enabling input-adaptive
inference,” in ICLR, 2020.

[12] S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor
attacks on deep neural networks via steganography and regularization,”
IEEE Transactions on Dependable and Secure Computing, 2020.

[13] X. Chen, A. Salem, M. Backes, S. Ma, and Y. Zhang, “Badnl:
Backdoor attacks against nlp models,” in ICML 2021 Workshop on
Adversarial Machine Learning, 2021.

[14] S. Li, T. Dong, B. Z. H. Zhao, M. Xue, S. Du, and H. Zhu, “Backdoors
against natural language processing: A review,” IEEE Security &
Privacy, vol. 20, no. 05, pp. 50–59, 2022.

[15] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[16] J. Bai, B. Wu, Y. Zhang, Y. Li, Z. Li, and S.-T. Xia, “Targeted attack
against deep neural networks via flipping limited weight bits,” ICLR,
2021.

[17] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in IEEE S&P, 2019.

[18] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,” in
ACSAC, 2019.

[19] R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M. Wang,
“Practical detection of trojan neural networks: Data-limited and data-
free cases,” in ECCV, 2020.

[20] Y. Zeng, S. Chen, W. Park, Z. M. Mao, M. Jin, and R. Jia, “Adversarial
unlearning of backdoors via implicit hypergradient,” in ICLR, 2022.

[21] H. Qiu, Y. Zeng, S. Guo, T. Zhang, M. Qiu, and B. Thuraisingham,
“Deepsweep: An evaluation framework for mitigating DNN backdoor
attacks using data augmentation,” in Proceedings of the 2021 ACM
AsiaCCS, 2021, pp. 363–377.

[22] K. Huang, Y. Li, B. Wu, Z. Qin, and K. Ren, “Backdoor defense via
decoupling the training process,” in ICLR, 2022.

[23] I. Leontiadis, S. Laskaridis, S. I. Venieris, and N. D. Lane, “It’s always
personal: Using early exits for efficient on-device CNN personalisa-
tion,” in Proceedings of the 22nd International Workshop on Mobile
Computing Systems and Applications, 2021.

[24] R. G. Pacheco, K. Bochie, M. S. Gilbert, R. S. Couto, and M. E. M.
Campista, “Towards edge computing using early-exit convolutional
neural networks,” Inf., vol. 12, no. 10, p. 431, 2021.

[25] M. Ebrahimi, A. da Silva Veith, M. Gabel, and E. de Lara, “Combining
DNN partitioning and early exit,” in EdgeSys@EuroSys 2022: Pro-
ceedings of the 5th International Workshop on Edge Systems, Analytics
and Networking, 2022. ACM, 2022, pp. 25–30.

[26] A. Bakhtiarnia, N. Milosevic, Q. Zhang, D. Bajovic, and A. Iosifidis,
“Dynamic split computing for efficient deep edge intelligence,” in
ICML 2022 Workshop on Dynamic Neural Networks, 2022.

[27] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
Weinberger, “Multi-scale dense networks for resource efficient image
classification,” ICLR, 2018.

[28] H. Qiu, Q. Zheng, T. Zhang, M. Qiu, G. Memmi, and J. Lu, “Toward
secure and efficient deep learning inference in dependable IoT sys-
tems,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3180–3188,
2020.

[29] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in ACSAC, 2019.

[30] ——, “Attacking and protecting data privacy in edge–cloud collab-
orative inference systems,” IEEE Internet of Things Journal, vol. 8,
no. 12, pp. 9706–9716, 2020.

[31] T. Dong, H. Qiu, T. Zhang, J. Li, H. Li, and J. Lu, “Fingerprinting
multi-exit deep neural network models via inference time,” arXiv
preprint arXiv:2110.03175, 2021.

[32] Z. Li, Y. Liu, X. He, N. Yu, M. Backes, and Y. Zhang, “Auditing
membership leakages of multi-exit networks,” in ACM CCS, 2022.

[33] S. Li, H. Liu, T. Dong, B. Z. H. Zhao, M. Xue, H. Zhu, and J. Lu,
“Hidden backdoors in human-centric language models,” in ACM CCS,
2021.

[34] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack for
deep neural network by mixing existing benign features,” in ACM CCS,
2020.

[35] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” CoRR, vol. abs/1506.02626,
2015.

[36] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference,” in IEEE
CVPR, 2018.

[37] H. Phan, Y. Xie, J. Liu, Y. Chen, and B. Yuan, “Invisible and efficient
backdoor attacks for compressed deep neural networks,” in IEEE
ICASSP, 2022.

[38] Y. Tian, F. Suya, F. Xu, and D. Evans, “Stealthy backdoors as
compression artifacts,” IEEE Trans. Inf. Forensics Secur., vol. 17, pp.
1372–1387, 2022.

[39] H. Ma, H. Qiu, Y. Gao, Z. Zhang, A. Abuadbba, M. Xue, A. Fu,
Z. Jiliang, S. F. Al-Sarawi, and D. Abbott, “Quantization backdoors to
deep learning commercial frameworks,” CoRR, vol. abs/2108.09187,
2021.

[40] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention
distillation: Erasing backdoor triggers from deep neural networks,”
ICLR, 2021.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE CVPR, 2016.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[43] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[44] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[45] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231N, vol. 7, no. 7, p. 3, 2015.

[46] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

[47] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The german traffic
sign detection benchmark,” in IJCNN, 2013.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[49] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor
attack with sample-specific triggers,” in Proceedings of the IEEE/CVF
CVPR, 2021, pp. 16 463–16 472.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on September 10,2023 at 07:30:27 UTC from IEEE Xplore. Restrictions apply.

