GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

Hanxiao Chen'? Meng Hao '

Abstract

Heterogeneous federated learning (HFL) enables
clients with different computation and communi-
cation capabilities to collaboratively train their
own customized models via a query-response
paradigm on auxiliary datasets. However, such
a paradigm raises serious privacy concerns due
to the leakage of highly sensitive query sam-
ples and response predictions. We put forth
GuardHF1L, the first-of-its-kind efficient and
privacy-preserving HFL framework. GuardHFL
is equipped with a novel HFL-friendly secure
querying scheme built on lightweight secret shar-
ing and symmetric-key techniques. The core of
GuardHFL is two customized multiplication and
comparison protocols, which substantially boost
the execution efficiency. Extensive evaluations
demonstrate that GuardHF L significantly outper-
forms the alternative instantiations based on ex-
isting state-of-the-art techniques in both runtime
and communication cost.

1. Introduction

As a promising variant of federated learning (FL), heteroge-
neous federated learning (HFL) (Li & Wang, 2019) enables
clients equipped with different computation and commu-
nication capabilities to collaboratively train their own cus-
tomized models that may differ in size, numerical precision
or structure (Lin et al., 2020). In particular, the knowledge
of models is shared via a query-response paradigm on auxil-
iary datasets, such as unlabeled datasets from the same task
domain (Choquette-Choo et al., 2021) or related datasets
from different task domains (Li & Wang, 2019; Lin et al.,
2020). In such a paradigm, each client queries others with
samples in the auxiliary querying dataset, and obtains aggre-

"University of Electronic Science and Technology of China,
China *This work was done at NTU as a visiting student. *Nanyang
Technological University, Singapore. Correspondence to: Hong-
wei Li <hongweili@uestc.edu.cn>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Hongwei Li' Kangjie Chen® Guowen Xu

3 Tianwei Zhang? Xilin Zhang'

gated response predictions via a centralized cloud server'.

Then the client retrains his local model on the query data and
corresponding predictions. This flexible approach facilitates
customized FL-driven services in areas like healthcare and
finance (Gao et al., 2022), while resolving the intellectual
property concerns of FL. models (Tekgul et al., 2021).

However, HFL suffers from several privacy issues. First,
directly sharing query samples violates their privacy. For ex-
ample, in healthcare applications, the auxiliary dataset may
contain patients’ medical conditions. Disclosure of such
highly sensitive information is illegal under current regu-
lations like General Data Protection Regulation. Second,
disclosing response predictions may still compromise the
privacy of local data (Papernot et al., 2016). Specifically, the
predicted logits indicate how confident the model is in clas-
sifying the query samples, e.g., reflecting the capabilities of
medical diagnostic systems. Even worse, they may imply
the knowledge of model parameters and training samples.

Although in traditional FL systems, the privacy issue could
be mitigated through well-studied secure gradient aggrega-
tion protocols (Bell et al., 2020), it becomes more challeng-
ing to realize this guarantee in HFL, due to the heterogeneity
of the clients’ models (refer to Appendix B.3). To bridge
this gap, a possible solution is to structurally integrate into
HFL existing secure querying (a.k.a. private inference)
schemes (Rathee et al., 2020; Huang et al., 2022; Wagh
etal.,, 2019; Tan et al., 2021). These schemes utilize various
cryptographic primitives, including homomorphic encryp-
tion (HE) (Gentry, 2009), garbled circuit (GC) (Yao, 1986)
or oblivious transfer (OT) (Ishai et al., 2003), to provide
rigorous privacy guarantees for query data and response
predictions. Although with non-trivial modifications, these
secure querying schemes can be extended to HFL scenar-
ios (refer to Section 2.3), they have two major limitations:
(1) lacking customized protocol designs and (2) relying on
heavy cryptographic primitives. These bottlenecks lead to
poor performance and hinder the efficient instantiation of
HFL. Therefore, it is necessary but challenging to design
customized protocols and implement a privacy-preserving
HFL with desirable performance.

'As demonstrated in Bonawitz et al. (2017); Bell et al. (2020),
the clients (e.g., mobile devices) in real-world applications are
generally widely distributed and coordinated only by the server.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

We introduce GuardHFL, the first-of-its-kind efficient and
privacy-preserving HFL framework to address the above
challenges’. GuardHFL is built upon the standard HFL
training paradigm (Li & Wang, 2019), which contains
three stages: local training, querying, and local re-training.
To provide privacy guarantees for HFL, GuardHFL pro-
poses an HFL-friendly secure querying scheme based on
lightweight secret sharing and sysmmetric-key primitives.
The core of this scheme is the customized multiplication
and comparison protocol, which substantially boosts ex-
ecution efficiency. More precisely, (1) we design a new
multiplication protocol based on pseudo-random functions,
which is not only suitable for practical HFL scenarios with
cross-client communication constraints, but also is efficient,
e.g., only communicating 3 elements in an ¢-bit ring. (2)
We provide a customized comparison protocol based on
the advanced adder, such as parallel prefix adder (PPA)
(Harris, 2003). We utilize an adder to evaluate comparison
operations because the adder contains only AND and XOR
gates, where AND can be efficiently computed based on our
multiplication protocol and XOR is cost-free. Besides, we
provide formal security analysis for the designed protocols,
and evaluate GuardHFL on different datasets (SVHN, CI-
FARI10, Tiny ImageNet), system configurations (IID and
Non-IID training sets) and heterogeneous models. Exten-
sive experiments demonstrate that GuardHF L outperforms
the alternative instantiations based on the state-of-the-art
techniques by about 4.4 ~ 75.6x while ensuring the model
utility.

2. Background
2.1. Heterogeneous Federated Learning

We briefly review the workflow of the standard HFL train-
ing paradigm (Li & Wang, 2019), where clients indepen-
dently design their own unique models. Due to such model
heterogeneity, clients cannot directly share model parame-
ters with each other as in the traditional FL. Instead, they
learn the knowledge of other models via a query-response
mechanism, which is similar to the knowledge distillation
technique (Hinton et al., 2015). To be more precise, each
client Pg (called the querying party) performs three-phase
operations collaboratively with a server. (1) Local training:
Pgq first trains the local model on his private dataset. (2)
Querying: The server selects C' fraction of clients as the
responding parties P4 who provide predictions given the
auxiliary querying dataset. The server receives the predic-

2Choquette-Choo et al. (2021) presented a general collabora-
tive learning scheme, called CaPC, which enables each party to
improve his local model from others’ models directly using the
existing secure querying scheme (Boemer et al., 2019b). However,
it cannot be directly applied to the HFL scenario as it requires
cross-client communication. Meanwhile, it causes high overhead
(refer to Section 4.1).

tion results from these P4, computes the aggregated result
and returns it back to Pg. (3) Local re-training: Py then
retrains the local model based on the private dataset, as well
as the query samples and corresponding predictions. Each
client in HFL can play the roles of the querying party and
the responding party at the same time, and the above pro-
cess is iterated until each local model meets the pre-defined
accuracy requirement. Note that as illustrated in existing
works (Bonawitz et al., 2017; Bell et al., 2020), the server is
responsible for routing the messages between clients, since
the clients (e.g., mobile devices) generally cannot establish
direct communication channels with others.

GuardHFL is in line with the above paradigm with the
additional benefit of privacy protection. The only difference
lies in the acquisition of auxiliary query samples in the
querying stage. In general HFL, there is a large public
auxiliary dataset (used as query samples) that every party
can access. However, considering the privacy limitation,
such a dataset is hard to collect in real-world scenarios such
as healthcare. To tackle this problem, in GuardHFL, each
party can locally construct a synthesized querying set based
on his private training samples, by utilizing existing data
augmentation strategies (refer to Section 3.4).

2.2. Threat Model

As described in Section 1, in the querying phase of HFL,
the query samples, response predictions and model parame-
ters may contain sensitive information that is of interest to
adversaries. In line with prior works (Phong et al., 2018;
Sun & Lyu, 2021; Choquette-Choo et al., 2021), we con-
sider an honest-but-curious adversary setting (Goldreich,
2009), where each entity (including the clients and the
server) strictly follows the specification of the designed
protocol but attempts to infer more knowledge about this
private information of other clients. Moreover, to maintain
its reputation and provide more services, the server does
not collude with any clients, namely that an attacker either
corrupts the server or a subset of clients but not both.

Security is modeled in the simulation paradigm (Canetti,
2001), which defines a real interaction and an ideal inter-
action. In the real interaction, the parties execute protocols
according to the specification in the presence of an adversary
A and the environment Z. In the ideal interaction, the par-
ties send their inputs to an ideal functionality that faithfully
executes the operation. Secure inference requires that no en-
vironment can computationally distinguish between real and
ideal interactions. The protocols in GuardHF L invoke mul-
tiple sub-protocols, and we use the hybrid model to describe
them similar to prior works (Rathee et al., 2020; 2021). This
is analogous to the real interaction, except that sub-protocols
are replaced by the corresponding ideal functionalities. By
convention, a protocol invoking a functionality F is referred

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

to as the “F-hybrid model”.

2.3. Extend existing secure querying solutions to HFL

To provide privacy guarantees against honest-but-curious
adversaries in Section 2.2, the clients and the server need to
securely execute the querying process. Although this pro-
cess consists of three entities (i.e., P, the server and Py), it
is non-trivial to directly extend existing secure 3-party com-
putation protocols (3PC) (Wagh et al., 2019; 2021; Knott
et al., 2021; Tan et al., 2021) to instantiate this process. The
main reason is the incapability of direct communication
between Py and Py in realistic HFL scenarios (Bonawitz
et al., 2017; Bell et al., 2020), which hinders the usage of
these 3PC solutions in HFL, unless we redesign the un-
derlying protocols and make substantial modifications to
their corresponding implementations. On the other hand,
we can extend state-of-the-art 2PC solutions (Rathee et al.,
2020; Huang et al., 2022) into this process via using the
server as the communication medium with adaptive proto-
col modifications (refer to Appendix B.4). Unfortunately, as
mentioned in Section 1, such extensions come at the cost of
heavy computational and communication complexity. Mo-
tivated by these challenges, we design various lightweight
and customized protocols to improve the efficiency of the
secure querying phase, which show significant performance
gains over extending the advanced 2PC schemes to HFL.

2.4. Cryptographic Primitives

Secret sharing. GuardHFL adopts the 2-out-of-2 arith-
metic sharing scheme (Shamir, 1979; Demmler et al., 2015)
over a ring Z,.. Specifically, the sharing algorithm takes
x as input and outputs random shares [z]p and [z]; such
that = = [x]o + [x]; mod 2¢. The reconstruction algorithm
takes the two shares as input and outputs x = [z]o + [z]1
mod 2¢. Besides, the boolean sharing is also employed in
GuardHFL, where = € Z, is shared as [x]§ and [z]? satis-
fying [2]F @ [x]P = x. Arithmetic operations can be evalu-
ated on secret-shared values. Given two secret-shared values
[x] and [y] owned by two parties, addition and subtraction
operations ([z] = [z] & [y] in Zy¢) can be realized locally
without any communication, i.e., each party P; computes
[2]; = []; £ [y]: mod 2°fori € {0,1}. In Appendix B.2,
we review existing protocols for multiplication operations.

Pseudo-random Function. A pseudo-random function
y < PRF(Sk,x) is a deterministic function that takes a
uniformly random seed Sk and a payload z as input and
outputs a fixed-length pseudo-random string y. The security
of PRFs ensures that the output is indistinguishable from
the uniform distribution. In GuardHFL, PRFs enable two
parties to generate the same pseudo-random values without
communication.

Algorithm 1 The GuardHFL framework
Input: Each client P}, j € [n], holds a private dataset D;
and a customized local model M;. iter is the number
of iterations. B is the number of query samples and C
is the set of selected responding parties in the current
query-response phase.
Output: Trained models M, j € [n].
1: for each j € [n] do
2: Pjlocally trains the local model M on D; using the
stochastic gradient descent optimization.
3: end for
4: for each iter do ‘
5. for each querying party P2, j € [n] do

6: Pgé ran@qmly samplF:s query data {a;b} vep] from
the auxiliary querying dataset that is generated
via the data argumentation strategies described in

Section 3.4.
for each responding party P, i € C do
8: ng secret-shares {[x]},e(5) With P and the
server, based on the protocol IIgy,e. in Section
3.1.
9: Py, Pg2 and the server jointly perform the se-
cure model prediction protocol in Section 3.2.
10: P} secret-shares the predictions {[y;]}re(p] to
Pg and the server.
11: end for
12: P, obtains {ys}pc(p), where yp = >0 yi, Via
the protocol 1Iag, in Section 3.3 with the server.
13: Pé) retrains M; based on the query dataset
{zb, Yo }ve(p) and D;.
14: end for
15: end for
3. GuardHFL

GuardHFL is built upon standard HFL systems as discribed
in Section 2.1 and enhances their privacy protection with
cryptographic techniques. Figure 1 shows the overview of
GuardHFL and the detailed description is given in Algo-
rithm 1. Similar to vanilla HFL, it includes three phases:
local training, secure querying and local re-training. Since
local training and local re-training are standard HFL train-
ing processes without privacy issues, below we focus on
formalizing our core construction, i.e., secure querying. As
detailed in Section 2.3, extending existing secure query-
ing solutions to HFL introduces expensive overhead due to
the usage of heavy cryptographic primitives and the lack
of customized protocols. To tackle this challenge, we pro-
pose a tailored secure querying scheme utilizing lightweight
secret sharing and PRF techniques, which is decomposed
into three steps: secure query-data sharing, secure model
prediction and secure result aggregation.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

1
Local data Query data :
— 1
ST :
fﬁ Train Retraln ﬂg :
i —
1
‘4}—1 @ $ | Querying
| party
Label Predlctlon -«

e N, e
x —X

@ Secure querying

‘B

Heterogeneous models

'.‘

Responding
parties

Figure 1. The high-level view of GuardHFL

In general, P first constructs querying samples locally
using data argumentation strategies (Section 3.4). Since
querying samples imply the semantic information of private
training data, they cannot be directly exposed to the server
and P4 for prediction. Therefore, GuardHFL secret-shares
query samples to the server and P4 using the designed se-
cure query-data sharing protocol (Section 3.1). Then given
the secret-shared samples, P4, Pg and the server jointly ex-
ecute the proposed secure model prediction scheme (Section
3.2) to obtain the secret-shared inference logits. After that,
the secure result aggregation protocol (Section 3.3) comes
in handy, which takes as input the secret-shared logits and
returns the aggregated results to FPp.

3.1. Secure Query-data Sharing

To perform secure model prediction based on secret sharing
techniques, Py first secret-shares the query data = with the
server and P4. Considering the communication constraint
between P and P4, we utilize PRFs to share x. Specifi-
cally, we first construct PRF seeds in pairs for Pg, P4 and
the server, denoted as Skga, Sksa, and Sksg, which are
used to generate the same random values between two par-
ties without communication (refer to Figure 12 in Appendix
B.2). After that, Py can share x using the protocol Ilgpar
as shown in Figure 2. In particular, P non-interactively
shares [z]p = 7 with P4 using PRFs on the seed Skqga.
Then Py computes [z]; = « — r and sends it to the server.

Theorem 3.1. The protocol llshae in Figure 2 securely
realizes the functionality Fshare in Table 5 in the Fpre-
hybrid model.

Proof. The formal proof is provided in Appendix C. O

3.2. Secure Model Prediction

In this step, the server and P4 execute secure model pre-
diction on the secret-shared query data with the assistance
of Pg. Similar to prior secure prediction schemes (Rathee
et al., 2020; Huang et al., 2022), neural networks include
three types of layers: linear layers, ReLU and MaxPool-

P, Server P,
Query data x
7« PRF(Skg,a) T« PRF(Skga)
xX—r
[xli=x =7 [x]o =1

Figure 2. Secure query-data sharing protocol Ilspare

ing. When evaluating each layer of models, GuardHFL
maintains the following invariant: the server and P4 begin
with secret shares of inputs, and after each layer, end with
secret shares of outputs over the same ring. This allows us
to sequentially stitch the proposed protocols to obtain a fully
secure prediction scheme. Figure 11 in Appendix B.1 gives
an end-to-end graphic depiction. Below we elaborate the
customized protocols for these three components.

Linear layers. Linear layers consist of fully-connection,
convolution and batch normalization, and the main opera-
tion of these layers is matrix multiplication (Wagh et al.,
2019; Huang et al., 2022). We design a customized matrix
multiplication protocol Iy, Which is not only compat-
ible with the communication-limited HFL setting but also
improves communication efficiency. Specifically, as shown
in Figure 3, P4 and the server aim to compute wx, where
the model parameter w is held by P4 and the shares [z]g
and [z]; of x are held by P4 and the server, respectively.
Given that wx = w(z]y + w[z]1, P4 can compute w[z]y
locally. To evaluate w[z];, Pgq first generates three random
matrices as a, b and [c]o using PRFs, and then computes
and sends [c]1 that satisfies [c]1 + [¢]o = ab in Zye to the
server’. At the same time, using PRFs, the server generates
the same b and P4 generates the same a and [c]y. Then
P, and the server can learn [y]o and [y]; (i.e., the secret
shares of wz), respectively, through one round of interac-
tion. Overall, the communication cost is 3¢ bits within 1
communication round.

3(a, b, [clo, [c]1) with the constrain ¢ = ab in Z,. can be seen
as a variant of the Beaver’s multiplication triple. Details refer to
Appendix B.2.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

Remark. Similar to Rathee et al. (2020); Huang et al. (2022),
to be compatible with cryptographic protocols, we use the
fixed-point representation, where the truncation technique
is needed to prevent values from overflowing after each
multiplication operation. Consistent with existing works
(Mishra et al., 2020; Wagh et al., 2019), we use the trunca-
tion method from Mohassel & Zhang (2017). This method
simply truncates the extra least significant bit (LSB) of a
fixed-point value, albeit at the cost of a 1-bit error of the
fractional part with the probability of 2¢=+1=* Here, ¢,
is the fractional prediction, and ¢ is the size of the secret-
sharing ring. In GuardHFL, ¢, = 20 and ¢ = 64, thus an
error of about 10~5 may occur with the probability of 2%’
which is negiliable.

Theorem 3.2. The protocol Iyaimul in Figure 3 securely
realizes the functionality Fyatmul in Table 5 in the Fpre-
hybrid model.

Proof. The formal proof is provided in Appendix C. O

P, Server P,
[x]1 Parameter w, [x]o
a,[c]o— PRF(Skga) a, [c]o— PRF(Skg4)

b « PRF(Sksq)

[c]li=ab —[c]o

b « PRE(Skgq)

= [x],-b
[cly f=lxh .

_ e

f

—_—

[¥]o = wlx]o+wf-[clo

e=w+t+a

[¥]1= eb-[c]y

Figure 3. Secure matrix multiplication protocol IInamut

ReLU. The ReL.U activation can be redefined as ReLU(z) =
x - (1 ® MSB(z)), where MSB(z) equals 0 if z > 0 and 1
otherwise. Thus, the evaluation of ReLLU consists of a MSB
(i.e., comparison) operation, followed by a multiplication
operation. Below, we first provide a customized MSB proto-
col built on the advanced adder such as parallel prefix adder
(PPA)* (Harris, 2003), and then describe the subsequent
multiplication implementation.

Customized MSB evaluation. Given that [x]o = e/ ... ||e1
and [z]1 = fel|...]|f1, an £-bit adder is applied to perform
the binary addition e; + f; for each ¢ € [¢] to produce the
carry bits ¢y, . . ., ¢1. Thus, the MSB of x can be learned via
MSB(z) = e, @ f¢ ® ¢y, and the key task is to compute cy.
Obviously, we have ¢y = ¢p—1 A (€p—1 D fo—1) D (er—1 A
fe—1). Further, PPA defines a set of carry signal tuples
{(99, 1)) }icpe) and sets g = e; A fi, p) = e; @ f; for each
i € [{]. Then, ¢, can be expressed as ¢, = g7 | & (p)_; A

“The PPA-based solution was also used in existing works (Mo-
hassel & Rindal, 2018; Patra et al., 2021), but in GuardHFL we
give customized design for better efficiency.

Algorithm 2 Secure MSB Protocol I,
Input: The arithmetic shares [z]
Output: The boolean shares [MSB(z)]?

1: P4 and the server initiate vectors g* and p* with size
£, where g; and p; are the i-th positions of ¢* and p*
respectively.

2: Letey,...,e; and fy,...
[x]o and [x]; respectively.

3: For i € [¢], P4, Pg and the server invoke an instance
of Hytamu With inputs e; and f; to obtain [g}]5.

4: For i € [{], Pa sets [p;]¥ = e; and the server sets

, f1 denote the bit strings of

i)Y = fi.

5: forr € [2,log/ + 1] do

6: if r = 2 then

7: For i € [2, g], P4, Py and the server invoke
two instances of Ty With inputs [g3; 5] and
[p3;_1]P to obtain [t;]P. Then the server and P,
set [g7]1 = [93;1] @ [t:]-

8: For i € [2,4], Pa, Pg and the server invoke
two instances of Iygymu With inputs [p3; ;]® and
[p3;_2]" to obtain [p;]”.

9: else

10: For i € [1, 2,,,%], P4, Py and the server invoke

two instances of Iygamu With inputs [g5; ;]” and
[p3;]Z to obtain [t;]B. Then the server and Py set
l9: 11 = [g3,] @ [ti].

11: For i € [1, 5:57], Pa, Pg and the server invoke
two instances of Iypmu With inputs [p3,]? and
[p3;_1]P to obtain [p}]5.

12: endif

13: end for

14: Py sets [MSB(z)]F = e, @ [g7]8 and the server sets

MSB(2)]% = /i & (9715

g9)@@ (Pl Ao ADY A gY). PPA computes this
equation by constructing a log ¢-depth boolean circuit with
inputs {(g?, p?)}ic. And each node k of depth n in the
circuit performs the following operations, where n € [log ¢].

gk =gid o (g AP

n n—1 n—1 (1)

Pk =DPj1 AD;

Namely, it takes as input two adjacent signal tuples

(g?;f,pgﬁ:ll) and (g;L_l,p?_l), and outputs a signal tuple

(g7, p). In the end, the circuit outputs ¢}°%“, which is] eyz-
og

actly equal to ¢g. Thus, we have MSB(z) = e, @ f; @ ¢

We can carefully utilize our HFL-friendly multiplication
protocol Ilypymy in Figure 3 to evaluate AND gates in the
above circuit. Specifically, the AND operation used to gen-
erate signal tuples (g3, pi) for n > 0 can be formalized as
([@f @ [a)F) A (B ® 1) = ([alf A BIF) ® (@lf A
[b12) @ ([a]Z A D)) @ ([a)F A [b]P). The first two items

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

are computed locally by P4 and the server, respectively, and
the last two items will be obtained by invoking the protocol
IIMatmur tWice. Moreover, for the evaluation of g? =e N f;
with ¢ € [¢], the parties only need to jointly invoke the proto-
col Tytagmur ONCe to obtain [g9] since the server and P4 own
fi and e;, respectively. Overall, this method contains 3¢ — 4
AND gates, which totally requires 15¢ — 24 bits of commu-
nication within log ¢ 4+ 1 communication rounds. Algorithm
2 gives the detailed construction of our MSB protocol ITpgp.

Theorem 3.3. The protocol I, in Algorithm 2 securely
realizes the functionality Fnsp, in Table 5 in the Fyatmul-
hybrid model.

Proof. The formal proof is provided in Appendix C. O

After obtaining [MSB(z)]?, we need to compute [z] - (1 ®
[MSB(x)]?), i.e., the secret shares of ReLU(z). Given that
20 = [MSB(z))# and z; = 1 & [MSB(x)]¥, we have
ReLU(z) = ([z]o + [x]1)(20 + 21 — 22021) = 2o[z]o +
z1[x]1 + 21 (1 — 220)[z]o + 20(1 — 221)[x]1. The first two
terms can be computed locally by P4 and the server respec-
tively, while the latter two terms are evaluated using our mul-
tiplication protocol Iyamur. Taking 21 (1—22¢)[z]o as an ex-
ample, the protocol Typymu takes as input tg = (1—22¢)[x]o
from P4 and z; from the server, and outputs [tp2z1]p to Py
and [toz1]; to the server. Finally, P4 and the server learn
[y] = [ReLU(2)]. The detailed secure ReLU protocol ITgeLy
is shown in Figure 4.

Theorem 3.4. The protocol llgeLy in Figure 4 securely
realizes the functionality FreLy in Table 5 in the (Fmsb,
FMatmut)-hybrid model.

Proof. The formal proof is provided in Appendix C. O

P, Server P,
[xly----o 7 |<---- [x]o
[msb(x)]5 — — [msb(x)]5= z,

«-27y = [msb(x)]f@ 1
-t = (1-2z)[x]y

(@b, [clo, [c]1)-~

MMatmul

— [toz1]1, [t120]1

[toz1]o, [taZo]o

[Y]1= zi[x]1+ [toz1]1+ [t1Zo]1 [y]o= Zo[x]o* [toz1]o* [t120]

Figure 4. Secure ReLLU protocol IlreLy

Maxpooling. Maxpooling can be evaluated using the pro-
tocol IIrepu as well as a tree-based round optimization that
recursively partitions the values into two halves and then
compares the elements of each half. Precisely, the parties
arrange the input of m elements into a 2-ary tree with the

depth of log m, and evaluate the tree in a top-down fashion.
In each comparison of two secret-shared elements [z] and
[y], we observe that max([z], [y]) = ReLU([z] — [y]) + [y].
Hence the complexity of Maxpooling mainly comes from
the evaluation of m — 1 ReLU. Besides, as illustrated in
Wagh et al. (2019); Mishra et al. (2020), AvgPooling can be
evaluated locally without communication.

3.3. Secure Result Aggregation

After the secure prediction on a sample, the predicted logit
[x;] is secret-shared between the server and each responding
party P%, where i € [C] and C is the set of responding
parties in the current query-response phase. To prevent pri-
vacy leakage from a single prediction (Salem et al., 2019;
Ganju et al., 2018; Yang et al., 2019), we return the aggre-
gated logit to P via the secure aggregation protocol IIag,
in Figure 5. Specifically, P} and P, first generate a random
value 7; based on PRFs. Then each P} computes and sends
[;]o — r; to the server. The server sums all received values
and sends the masked aggregation to Pg, which will recon-
struct the aggregated logits of the query sample. Notice that
our secure aggregation protocol can be extended to output
the aggregated label rather than the logit, using the above
IIreLu protocol.

Theorem 3.5. The protocol lpgg in Figure 5 securely re-
alizes the functionality Fpgg in Table 5 in the Fprg-hybrid
model.

Proof. The formal proof is provided in Appendix C. O

P, Server Pfq

[xi]1. i € [C] [xi]o
T < PRF(SkQA)
ki =[xiJo =7

1; < PRF(Skga)

ki

k=30 G + Dl

y=k+3ln
y « softmax(y)

Figure 5. Secure result aggregation protocol ITag

3.4. Discussion

Query data construction. Unlike existing HFL works rely-
ing on auxiliary datasets as the query data (Choquette-Choo
etal., 2021; Lin et al., 2020), we demonstrate the feasibility
of model knowledge transfer in GuardHFL by construct-
ing a synthesized query set based on private training data,
to alleviate potential limitations (e.g., privacy, acquisition

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

and storage) of public auxiliary datasets. A simple solu-
tion is to directly use the private training data to query, like
well-studied knowledge distillation (Hinton et al., 2015).
Moreover, we also construct a synthesized dataset via the
mixup method (Zhang et al., 2018) (refer to Appendix A.2).
The synthesized dataset construction is a universal and mod-
ular method, and it can be readily extended with advanced
data augmentation strategies, such as cutout (DeVries &
Taylor, 2017) and cutmix (Yun et al., 2019). Note that this
process does not reveal any private information, since the
samples are constructed locally by the querying party based
on the local training data, without involving any other par-
ties and their private datasets. We present some exploration
and experiments in Appendix A.2 and Figure 10(c).

GPU-friendly evaluation. Our scheme is friendly with
GPUs and can be processed by highly-optimized CUDA
kernels (Tan et al., 2021). As discussed above, the crypto-
graphic protocols of GuardHFL only involve simple vector-
ized arithmetic operations, rather than homomorphic encryp-
tion and garbled circuits in prior works (Rathee et al., 2020;
Huang et al., 2022; Choquette-Choo et al., 2021). As aresult,
GuardHFL is suitable for batch querying (i.e., executing
multiple querying at the same time) with a lower amortized
cost. We evaluate the designed protocols on GPUs in Sec-
tion 4.1 and show the advantage of GPU acceleration over
CPUs in Figure 6.

4. Evaluation

Datasets and models. We evaluate GuardHFL on three
image datasets (SVHN, CIFAR10 and Tiny ImageNet). By
default, we assume independent and identically distributed
(IID) training data among clients. We also simulate disjoint
Non-IID training data via the Dirichlet distribution Dir ()
in Lin et al. (2020). The value of « controls the degree of
Non-IID-ness, where a smaller « indicates a higher degree
of Non-IID-ness. Moreover, we simulate the heterogeneity
property in HFL. In particular, for SVHN and CIFAR10, we
set the number of clients n = 50 and use VGG-7, ResNet-
8 and ResNet-10 as the clients’ local models. For Tiny
ImageNet, we set n = 10 and use ResNet-14, ResNet-16,
and ResNet-18 architectures. Each model architecture is
used by n/3 clients. Besides, the query data are constructed
via two methods as shown in Section 3.4: using the private
training data (Q-priv) or synthesizing samples (Q-syn) via
mixup (Zhang et al., 2018).

Experimental configuration. Each of the entities, i.e., Pg,
P4, and the server, is run on the Ubuntu 18.4 system with
Intel(R) 562 Xeon(R) CPU E5-2620 v4(2.10 GHz) and 16
GB of RAM and NVIDIA 1080Ti GPU. Following existing
works (Rathee et al., 2020; Tan et al., 2021), we set the
secret-sharing protocols over a 64-bit ring Zss4, and encode
inputs using a fixed-point representation with 20-bit preci-

Table 1. Extra runtime (sec) of GuardHFL over vanilla HFL sys-
tems in the plaintext environment. CIFAR10 and SVHN have the
same runtime due to the same input size and model architecture.

#of 1. Query 3. Result
Queries data sharing aggreg.

Dataset 2. Secure prediction

VGG-7 RESNET-8 RESNET-10
CIFAR1O 1000 5.08 205.46 270.78 305.46 0.09
(SVHN) 2500 7.16 511.63 657.83 758.16 0.12
5000 11.32 1019.12 1346.79 1521.23 0.30

RESNET-14 RESNET-16 RESNET-18
TINY 1000 9.87 2700.96 2971.47 3084.81 0.18
IMAGENET 2500 18.78 6815.69 7217.28 7503.50 0.32

Table 2. Comparison with CaPC on runtime (sec) over MNIST
and three heterogeneous models as the batch size (BS) of query
data increases.

Model CryptoNets CryptoNets-ReLU MLP
GuarDpHFL CAPC GuarpHFL CAPC GuarpHFL CAPC
BS=128 0.03 17.75 0.24 48.83 0.75 65.01
BS=256 0.05 17.56 0.31 70.14 0.83 86.37
BS=512 0.07 17.62 0.50 112.42 1.05 129.81
BS=1024 0.13 17.77 0.89 201.42 1.58 216.61

sion. The security parameter x is 128 in the instantiation of
PRFs. Unless otherwise stated, we only report the perfor-
mance on the GPU accelerator. More experimental setup is
given in Appendix A.1.

4.1. Efficiency

We report the efficiency of GuardHFL, and compare it with
CaPC (Choquette-Choo et al., 2021) and HFL instantiations
based on state-of-the-art secure querying protocols (Rathee
et al., 2020; Huang et al., 2022).

End-to-end performance. We show the extra overhead
introduced by GuardHFL compared with the vanilla HFL
system in the plaintext environment. This is caused by
the secure querying phase, which consists of three steps
described in Section 3. Table 1 reports the runtime of each
step for different models and datasets>. We observe that
the cost is dominated by the secure model prediction step.
Specifically, it takes 16.9 minutes to evaluate 5000 query
samples securely on VGG-7 and CIFAR10, and only 11.32
second and 0.3 second are spent on the secure query-data
sharing and secure result aggregation steps. More time is
required to evaluate Tiny ImageNet because of larger input
sizes and model architectures.

Comparison with CaPC. As described in Section 1, similar
to GuardHFL, CaPC (Choquette-Choo et al., 2021) was
proposed to support private collaborative learning utilizing
the secure querying scheme (Boemer et al., 2019b), but

>To clearly illustrate the efficiency of GuardHFL, unless other-
wise specified, we only report the overhead of one pair of querying
and responding parties, as well as the server, in each iteration as
described in Section 3.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

Table 3. Comparison with advanced secure prediction protocols
on runtime (sec) and communication (MB) cost over three hetero-
geneous models.

Method VGG-7 ResNet-8 ResNet-10
TIME CoMM. TIME CoMM. TIME COMM.
CrRYPTFLOW2 48.70 651.51 56.21 1110.39 97.46 1395.18
CHEETAH 395 116.14 4.29 94.51 6.79 169.35
CrRYPTGPU 1.61 144.51 2.02 131.39 2.79 221.57
GUARDHFL 0.73 75.52 0.98 87.60 1.29 120.26

with the unrealistic cross-client communication. In Table 2,
we compare the secure querying process of GuardHFL
with CaPC. Following CaPC’s setup, we evaluate three
small-scale models (CryptoNets (Gilad-Bachrach et al.,
2016), CryptoNets-ReLLU (Gilad-Bachrach et al., 2016) and
MLP (Boemer et al., 2019b)) on MNIST. We observe that
GuardHFL is two orders of magnitude faster than CaPC on
these three models. In terms of communication overhead,
we provide a theoretical comparison. (1) For linear layers,
CaPC requires to communicate 2 homomorphic ciphertexts
within 2 rounds. GuardHFL needs communicating 3 ring
elements (each with 64-bit). Note that the size of ciphertexts
is much larger than the size of the ring elements. (2) For non-
linear layers, e.g., ReLU, CaPC adopts the GC technique
that requires 2 rounds with 8¢\ — 4\ communication bits
(A = 128 and ¢ = 64 in our setting) (Rathee et al., 2020).
GuardHFL only requires communicating 15¢ —3log ¢ —12
bits, a 70x improvement over CaPC.

Comparison with alternative instantiations. To further
demonstrate the efficiency of GuardHFL, we instantiate
HFL based on advanced secure inference schemes, includ-
ing Cheetah (Huang et al., 2022) and CrypTFlow?2 (Rathee
et al., 2020), using the methods described in Appendix B.4.
Table 3 reports the comparison of the secure querying phase
over CIFAR10. We observe that GuardHFL achieves a
significant efficiency improvement on three heterogeneous
models. For example, GuardHFL requires 57.4~75.6x
less runtime and 8.6~12.7 x less communication compared
to CrypTFlow2. This is because the latter needs heavy HE-
based multiplication and OT-based comparison operations
within multi-communication rounds. Moreover, as shown
in Section 2.3, extending 3PC protocols such as CryptGPU
(Tan et al., 2021) to HFL is non-trivial. Nevertheless, since
GryptGPU is one of the most advanced protocols under GPU
analogs, we also compare with it assuming no communica-
tion limitation. We would like to mention that despite such
an unfair comparison, GuardHFL still has performance
advantages, i.e., roughly 2.1x and 2.0x in runtime and
communication overhead, respectively.

Impact of GPU acceleration. To explore the impact of
GPU acceleration, we evaluate GuardHFL on both CPU
and GPU settings with different batch sizes of query data.

—+— Resnet8-GPU -#- Resnet8-CPU
Resnet10-GPU Resnet10-CPU~
—— Resnet12-GPU -#- Resnet12-CPU

—+— VGG7-GPU -»- VGG7-CPU o
VGGY-GPU VGGY-CPU--~"
=200 —— VGGI1-GPU -»- VGGIi-CPU

w
=3
S

sec
v

>

200

Runtime (sec)
x

-
=)
S

50 7 e
; 2

10 20 30 40 50 60
Batch Size

o
o

0 10 20 30 40 50 60 0
Batch Size

(a) VGG-style (b) ResNet-style

Figure 6. The runtime of GuardHFL on CIFAR10 under
CPU/GPU with varied batch sizes of query data.

Accuracy
o]

o
Accuracy
[=2]

o

—— VGG7 (Q-syn)
—— Resnet8 (Q-syn) -P— Resnet8 (Q-priv)

-»- VGG7 (Q-priv)

—— VGG7 (Q-syn)
—— Resnet8 (Q-syn) -P— Resnet8 (Q-priv)

-»- VGG7 (Q-priv)

Resnet10 (Q-syn) Resnet10 (Q-priv) Resnet10 (Q-syn) Resnet10 (Q-priv)

0 2 4 6 8 10 0 2 4 6 8 10
Iterations Iterations

(a) SVHN (b) CIFAR10
Figure 7. Accuracy curves of each heterogeneous model in
GuardHFL as the number of iterations increases.

Figure 6 reports the results of VGG-style and ResNet-style
networks on CIFAR10, where the GPU-based setting is
always superior to the CPU analogs. As the batch size
increases, the advantage of GPU-based protocols becomes
more pronounced.

4.2. Accuracy

We report the accuracy of each heterogeneous model in
GuardHFL, and explore the impact of various factors on
the model accuracy such as the Non-IID setting, and the
number of query data.

End-to-end model accuracy. Table 4 reports the model
accuracy on three datasets in GuardHF L. We observe that
for SVHN and CIFARI10, using Q-priv to query can increase
the accuracy by about 4%, while the accuracy gain is about
10% when using 10K query samples with Q-syn. The main
reason is that synthetic samples could provide a good cov-
erage of the manifold of natural data. We also observe that
more synthetic query data can achieve better performance
from Table 4. Furthermore, with an increased number of
participating clients, the accuracy improves slightly. Figure
7 shows the accuracy curves versus the number of iterations.
We use SVHN and CIFARI10 as examples, as they converge
much faster with better readable curves than Tiny ImageNet.
We can observe that each heterogeneous model on both
datasets can converge well based on two types of query data,
and Q-syn shows better performance.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

o u o

% 900000000 OCOOCOIOOIOOITNITOTS 7':) 00000

§5 seocsenessccccncsncone Es @e0co@oc 00000 ¢-00

#4141 00000000000000000000 21 00000°@0 . °:Qe

S3 00000000000000000000 83 e (Y XX}

©, Oz e o
1 1 @ L]
0 60000000OCOCOIOCOIOCOOIOTCO 0 0e@-00@cccoc@oc0@o oo

012345678 910111213141516171819
Party IDs

b a=1

01234567 8910111213141516171819
Party IDs

(a) a =100

~
S)

Before GuardHFL
= GuardHFL (Q-priv)

= GuardHFL (Qi8yn) |
0.5 1

Class labels
(=2}
(=}

Accuracy (%)
w
o

N
o

0 @900 000 - 30
01234567 8910111213141516171819 - 100
Party IDs Degree of Non-IID-ness

(c) a=0.5 (d) Accuracy

Figure 8. Visualization of Non-IID-ness among clients with different Dirichlet distribution & on CIFAR10. The size of scattered points

indicates the number of training samples of that class.

Table 4. The model accuracy of three datasets in GuardHFL on
different ratios of participating clients (0.6, 0.8 and 1), and query-
ing strategies (Q-priv and Q-syn).

Dataset SVHN CIFAR10 Tiny ImageNet
Ratio of clients 0.6 0.8 1 0.6 0.8 1 0.6 0.8 1
Before GuardHFL 75.46 56.66 22.26
Q-priv 79.43 79.56 80.29 60.82 61.01 61.49 24.89 2511 2523
2.5K 80.09 80.32 81.69 62.87 63.05 63.23 25.82 26.03 26.23
Qusyn 5.0K 83.32 83.52 83.82 63.04 63.44 63.69 26.22 26.46 26.75
7.5K 84.54 84.78 85.12 62.97 63.64 63.88 27.14 27.54 27.75
10K 84.58 84.97 85.62 63.79 63.82 64.56 27.67 28.19 28.46

Impact of Non-IID datasets. We illustrate the impact of
Non-IID data on model accuracy in Figure 8, using CI-
FARI10 as an example. Figures 8(a), 8(b) and 8(c) visualize
the distributions of Non-IID samples among clients with
different Dir(«r). When oo = 100, the distribution is close
to uniform sampling. When o = 0.5, the sample distri-
bution of each class among clients is extremely uneven.
From Figure 8(d) we observe that the higher the degree of
Non-IID-ness, the lower the accuracy of models. Notably,
GuardHFL can still significantly improve the performance
of models under the Non-IID environment.

Impact of other factors. Due to space constraints, we re-
port other experimental results in Appendix A.2. Briefly,
Figure 9 shows the accuracy of each heterogeneous model
with different numbers of query data. As the number of
query data increases, accuracy increases by about 5%. Fig-
ures 10(a) and 10(b) illustrate the impact of different num-
bers of private training data on SVHN and CIFAR10. We
observe that as the number of training data increases, the
model performance is on the rise. Figure 10(c) details the
impact of different query data construction methods. The
results show that existing data augmentation strategies, such
as Cutmix, Cutout, and Mixup, are effective for query data
construction and improve the model accuracy.

5. Conclusion

We propose GuardHFL, an efficient and private HFL frame-
work to formally provide the privacy guarantee of query

samples, model parameters and response predictions. The
core construction of GuardHFL is a customized secure
querying scheme, in which two efficient multiplication and
comparison protocols are designed based on lightweight
secret sharing and PRF techniques. Extensive experiments
demonstrate that GuardHF L outperforms prior art in both
communication and runtime performance.

We consider the following future directions. (1) The commu-
nication cost of GuardHF L, which is also the limitation of
the standard HFL paradigm, will be further improved. One
possible mitigation is to extend the insight of the k-regular
graph in FL (Bell et al., 2020) to HFL, and carefully design
protocols from scratch. The main idea is that in FL it is
enough for each party to speak to £ < n — 1 other parties
via the server, where n is the number of parties. (2) The
security of GuardHFL will be improved to defeat more
powerful malicious adversaries who may deviate from the
protocol specifications. Unfortunately, even using the best-
known techniques, the overhead will be increased by several
orders of magnitude. We leave these improvements as future
work.

Acknowledgements

The authors would like to thank the anonymous review-
ers for their insightful comments. This work is sup-
ported by the National Key R&D Program of China under
Grant 2022YFB3103500, the Key-Area Research and De-
velopment Program of Guangdong Province under Grant
2020B0101360001, the National Natural Science Founda-
tion of China under Grants 62020106013 and 61972454,
the Fundamental Research Funds for Chinese Central
Universities under Grant ZYGX2020ZB027, the Natural
Science Foundation of Chongqing, China under Grant
cstc2019jcyjmsxmX0322, and Singapore Ministry of Edu-
cation (MOE) AcRF Tier 2 MOE-T2EP20121- 0006.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

References

Abdalla, M., Bellare, M., and Rogaway, P. The oracle
diffie-hellman assumptions and an analysis of dhies. In
Proceedings of CT-RSA, pp. 143—-158. Springer, 2001.

Bell, J. H., Bonawitz, K. A., Gascén, A., Lepoint, T., and
Raykova, M. Secure single-server aggregation with (poly)
logarithmic overhead. In Proceedings of ACM CCS, 2020.

Boemer, F., Costache, A., Cammarota, R., and Wierzynski,
C. ngraph-he2: A high-throughput framework for neural
network inference on encrypted data. In Proceedings of
the ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, 2019a.

Boemer, F., Lao, Y., Cammarota, R., and Wierzynski, C.
ngraph-he: a graph compiler for deep learning on ho-
momorphically encrypted data. In Proceedings of the
ACM International Conference on Computing Frontiers,
2019b.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of ACM
CCS, 2017.

Brutzkus, A., Gilad-Bachrach, R., and Elisha, O. Low
latency privacy preserving inference. In Proceedings of
ICML, 2019.

Canetti, R. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings of
FOCS, 2001.

Chen, H., Dai, W., Kim, M., and Song, Y. Efficient multi-
key homomorphic encryption with packed ciphertexts
with application to oblivious neural network inference. In
Proceedings of ACM CCS, 2019.

Choquette-Choo, C. A., Dullerud, N., Dziedzic, A., Zhang,
Y., Jha, S., Papernot, N., and Wang, X. Capc learning:
Confidential and private collaborative learning. In Pro-
ceedings of ICLR, 2021.

Demmler, D., Schneider, T., and Zohner, M. Aby-a frame-
work for efficient mixed-protocol secure two-party com-
putation. In Proceedings of NDSS, 2015.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Diao, E., Ding, J., and Tarokh, V. Heterofl: Computation
and communication efficient federated learning for het-
erogeneous clients. In Proceedings of ICLR, 2021.

10

Diffie, W. and Hellman, M. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644—
654, 1976.

Dinh, C. T, Tran, N. H., and Nguyen, T. D. Personalized
federated learning with moreau envelopes. In Proceed-
ings of NeurIPS, 2020.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized
federated learning with theoretical guarantees: A model-
agnostic meta-learning approach. In Proceedings of
NeurlPS, 2020.

Ganju, K., Wang, Q., Yang, W., Gunter, C. A., and Borisov,
N. Property inference attacks on fully connected neural
networks using permutation invariant representations. In
Proceedings of ACM CCS, 2018.

Gao, D, Yao, X., and Yang, Q. A survey on heterogeneous
federated learning. arXiv preprint arXiv:2210.04505,
2022.

Gentry, C. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of ACM STOC, 2009.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high throughput
and accuracy. In Proceedings of ICML, 2016.

Goldreich, O. Foundations of cryptography. Cambridge
university press, 2009.

Harris, D. A taxonomy of parallel prefix networks. In
Proceedings of Asilomar Conference on Signals, Systems
& Computers, pp. 2213-2217, 2003.

Hinton, G., Vinyals, O., and Dean, J.
the knowledge in a neural network.
arXiv:1503.02531, 2015.

Distilling
arXiv preprint

Huang, Z., Lu, W.-j., Hong, C., and Ding, J. Cheetah: Lean
and fast secure two-party deep neural network inference.
In Proceedings of USENIX Security, 2022.

Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. Extending
oblivious transfers efficiently. In Proceedings of Crypto,
volume 2729, pp. 145-161, 2003.

Jayaraman, B. and Evans, D. Evaluating differentially pri-
vate machine learning in practice. In Proceedings of
USENIX Security, 2019.

Jayaraman, B. and Wang, L. Distributed learning without
distress: Privacy-preserving empirical risk minimization.
In Proceedings of NeurIPS, 2018.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
Gazelle: A low latency framework for secure neural net-
work inference. In Proceedings of USENIX Security,
2018.

Keller, M. and Sun, K. Secure quantized training for deep
learning. In Proceedings of ICML, 2022.

Knott, B., Venkataraman, S., Hannun, A., Sengupta, S.,
Ibrahim, M., and van der Maaten, L. Crypten: Secure
multi-party computation meets machine learning. In Pro-
ceedings of NIPS, 2021.

Langley, P. Crafting papers on machine learning. In Pro-
ceedings of ICML, pp. 1207-1216, 2000.

Lee,J.,Lee, E., Lee, J.-W., Kim, Y., Kim, Y.-S., and No, J.-S.
Precise approximation of convolutional neuralnetworks
for homomorphically encrypted data. arXiv:2105.10879,
2021.

Li, D. and Wang, J. Fedmd: Heterogenous federated learn-
ing via model distillation. In Proceedings of NeurIPS
Workshop on Federated Learning for Data Privacy and
Confidentiality, 2019.

Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble
distillation for robust model fusion in federated learning.
In Proceedings of NeurlPS, 2020.

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., and
Popa, R. A. Delphi: A cryptographic inference service
for neural networks. In Proceedings of USENIX Security,
2020.

Mohassel, P. and Rindal, P. Aby3: A mixed protocol frame-
work for machine learning. In Proceedings of ACM CCS,
2018.

Mohassel, P. and Zhang, Y. Secureml: A system for scalable
privacy-preserving machine learning. In Proceedings of
IEEE S&P, 2017.

Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., and
Talwar, K. Semi-supervised knowledge transfer for deep

learning from private training data. In Proceedings of
ICLR, 2016.

Patra, A., Schneider, T., Suresh, A., and Yalame, H. Aby2.0:
Improved mixed-protocol secure two-party computation.
In Proceedings of USENIX Security, 2021.

Phong, L. T., Aono, Y., Hayashi, T., Wang, L., and Moriai,
S. Privacy-preserving deep learning via additively ho-
momorphic encryption. IEEE TIFS, 13(5):1333-1345,
2018.

11

Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta,
D., Rastogi, A., and Sharma, R. Cryptflow2: Practical
2-party secure inference. In Proceedings of ACM CCS,
2020.

Rathee, D., Rathee, M., Goli, R. K. K., Gupta, D., Sharma,
R., Chandran, N., and Rastogi, A. Sirnn: A math library
for secure rnn inference. In Proceedings of IEEE S&P,
pp- 1003-1020, 2021.

Riazi, M. S., Weinert, C., Tkachenko, O., Songhori, E. M.,
Schneider, T., and Koushanfar, F. Chameleon: A hy-
brid secure computation framework for machine learning
applications. In Proceedings of AsiaCCS, 2018.

Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M.,
and Backes, M. Ml-leaks: Model and data independent
membership inference attacks and defenses on machine
learning models. In Proceedings of NDSS, 2019.

Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J. R., Froelicher,
D., Bossuat, J.-P.,, Sousa, J. S., and Hubaux, J.-P. Posei-
don: Privacy-preserving federated neural network learn-
ing. In Proceedings of NDSS, 2021.

Shamir, A. How to share a secret. Communications of the
ACM, 22(11):612-613, 1979.

Sun, L. and Lyu, L. Federated model distillation with noise-
free differential privacy. In Proceedings of IJCAI, 2021.

Tan, S., Knott, B., Tian, Y., and Wu, D. J. Cryptgpu: Fast
privacy-preserving machine learning on the gpu. In Pro-
ceedings of IEEE S&P, 2021.

Tekgul, B. G., Xia, Y., Marchal, S., and Asokan, N. Waffle:
Watermarking in federated learning. In Proceedings on
IEEE SRDS, 2021.

Wagh, S., Gupta, D., and Chandran, N. Securenn: 3-party
secure computation for neural network training. Proceed-
ings on Privacy Enhancing Technologies, 2019(3):26-49,
2019.

Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal,
P, and Rabin, T. Falcon: Honest-majority maliciously
secure framework for private deep learning. Proceedings
on Privacy Enhancing Technologies, 1:188-208, 2021.

Yang, Z., Zhang, J., Chang, E.-C., and Liang, Z. Neural
network inversion in adversarial setting via background
knowledge alignment. In Proceedings of ACM CCS,
2019.

Yao, A. C.-C. How to generate and exchange secrets. In
Proceedings of IEEE FOCS, 1986.

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

Yoon, T., Shin, S., Hwang, S. J., and Yang, E. Fedmix: Ap-
proximation of mixup under mean augmented federated
learning. In Proceedings of ICLR, 2021.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y.
Cutmix: Regularization strategy to train strong classifiers
with localizable features. In Proceedings of ICCV, 2019.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
Hoang, N., and Khazaeni, Y. Bayesian nonparametric
federated learning of neural networks. In Proceedings of
ICML, 2019.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In Proceed-
ings of ICLR, 2018.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distilla-
tion for heterogeneous federated learning. In Proceedings
of ICML, 2021.

12

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

A. More Details on Experiment Evaluation
A.1. Experimental Setup

Datasets. We evaluate GuardHFL on the following standard datasets for image classification: (1) SVHN is a real-world
image dataset obtained from house numbers in Google Street View images, which contains 600,000 32x32 RGB images of
printed digits from 0 to 9. (2) CIFARI10 consists of 60,000 32x32 RGB images in 10 classes. There are 50,000 training
images and 10,000 test images. (3) Tiny ImageNet contains 100,000 images of 200 classes downsized to 64 x 64 colored
images. Each class has 500 training images, 50 validation images and 50 test images.

Training procedure. At the local training phase, each client trains the local model from scratch using stochastic gradient
descent optimization. For SVHN, CIFAR10, and Tiny ImageNet, the loss function is cross-entropy with the learning rate of
0.5, 0.1, 0.01, respectively. Besides, the batch size is 256, 64 and 64, respectively. When the clients retrain the local model
at the local retraining step, they use Adam optimizer for 50 epochs with learning rate of 2e-3 decayed by a factor of 0.1 on
25 epochs, where the batch size is 256 on SVHN, and 64 on both CIFAR10 and Tiny ImageNet.

A.2. Experimental Results

Impact of the number of query data. Figure 9 shows the accuracy of each heterogeneous model with different numbers of
query data. We observe that GuardHFL consistently improves the model accuracy on the above datasets and heterogeneous

models. Specifically, as the number of query data increases (from 2.5K to 10K), the accuracy of all three models increases
by about 5%.

70 35
100 e VGG7 ResNet14
90 ™= ResNet8 . mmm ResNet8 .30 Mm ResNet16
q s £ 65 mmm ResNet10 S s ResNet18
(=) R— N
; so 'l 'BH 'BR | - > > 25
2 70 5 = 20
° Q - Q
3t 255 <
< 60 < B N N 15
50 50 10
2500 5000 7500 10000 2500 5000 7500 10000 2500 5000 7500 10000
Number of Query Data Number of Query Data Number of Query Data
(a) SVHN (b) CIFAR10 (c) Tiny ImageNet

Figure 9. The accuracy of each heterogeneous model as the number of query data increases. Dashed lines represent the model accuracy
before GuardHFL.

Impact of the number of private training data. Figures 10(a) and 10(b) illustrate the model accuracy of GuardHFL
under different number of private training data on SVHN and CIFAR10. We can observe that as the number of training data
increases, the model performance is on the rise. The main reason is that models can learn better on more training data and
can construct more synthetic samples to query, so as to promote the transfer of model knowledge.

Impact of query data construction strategies. Figure 10(c) gives the model accuracy under three advanced data
augmentation strategies, including cutmix (Yun et al., 2019), cutout (DeVries & Taylor, 2017), and mixup (Zhang et al.,
2018). Cutmix (Yun et al., 2019) can be formulated as &; ; = M - x; + (1 — M) - 2, where M € {0, 1}V *# is a binary
mask matrix of size W x H to indicate the location of dropping out and filling from the two images x; and z;. Cutout
(DeVries & Taylor, 2017) augments the dataset with partially occluded versions of original samples. Mixup (Zhang et al.,
2018) constructs synthetic samples by a convex combination on two images x; and x; with different coefficients), in which
Z;; = A-xz; + (1= X)-x;. We observe that those strategies are good choices for the query data construction in GuardHFL.

B. More Details on the Designed Scheme
B.1. Graphic depiction of end-to-end secure prediction scheme

Figure 11 gives a graphic depiction to illustrate the end-to-end secure prediction scheme, where the input is a secret-shared
sample [z]. The whole process maintains the following invariant: the server and P4 begin with secret shares of the

13

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

100 70
Before GuardHFL Before GuardHFL 90 Before GuardHFL

90w GuardHFL (Q-priv) _.60 ™= GuardHFL (Q-priv) _ s Cutmix
¥ 80 ™ GuardHFL (Qssyn) X s GuardHFL (Q=syn) X 80 mm Cutout
2 70 ?50 5’70 s Mixup
@
5 60 = 40 © 60
3 9 3
g 50 < 5 3 50

40 <

40
30 20
200 500 600 800 1000 200 500 600 800 1000 3
Number of Private Data Sample Number of Private Data Sample CIFAR10 SVHN
(a) SVHN (b) CIFAR10 (c) Various query data construction methods

Figure 10. The model accuracy under different number of training data and query data construction methods on SVHN and CIFAR10.

input and after each layer, end with secret shares (over the same ring) of the output. The honest-but-curious security of
GuardHFL will follow trivially from sequential composibility of individual layers. To be specific, [z] first passes through a
convolutional layer that can be formalized as the secure matrix multiplication operation w [x] (w; is the parameter) using
the protocol Iymy in Figure 3. The secret-shared outputs of this layer, i.e., [y1]o and [y1]1, are obtained by P, and the
server, respectively. For the subsequent ReLU layer, the protocol IIgery in Figure 4 is executed to return [y2]o and [y2]1 to
P, and the server respectively. Then Maxpooling on [y] can be evaluated via the protocol IlgeLu as described in Section
3.2, to output the secret-shared values [ys3]o and [y3]1. When the secure prediction reaches the final fully-connected layer
with inputs [y,,—1]o and [yn—1]1, the protocol ymy is executed. In the end, P4 and the server obtain the secret-shared
predicted logit, i.e., [logit]o and [logit];, respectively.

[x]1 1l 211 sli n-1la [logit],

Conv / RelU MaxPooling / FC
Sedc.ur.e (Protocol Myatmul) (Protocol Tgey,y) (Protocol Tgey,y) [o] (Protocol Myaemu)
Prediction 1] = wy[x] 2] = RelU(yaD [ys] < maxpool(lyz)) [logit] = wi[yn-1]
Py \
[x]o, w1 [y1lo [y2]o [¥3lo [Yn-1lo, wi [logit]o

Figure 11. End-to-end secure model prediction protocol. Green boxes represent linear layers (including convolutional/fully connected
layers), and blue boxes represent non-linear layers (including ReLU/Maxpooling layers).

B.2. More details on cryptographic protocols

Secret sharing and Beaver’s multiplication protocol. As shown in Section 2.4, GuardHFL utilizes the arithmetic secret
sharing primitive to protect the privacy of sensitive information. Given two secret-shared values [z] and [y] owned by
two parties P;, ¢ € {0, 1}, addition and subtraction operations ([z] = [z] £ [y] in Z,¢) can be realized locally without any
communication, i.e., each P; computes [2]; = [z]; £ [y]; mod 2°. Besides, multiplication operation, i.e., [2] = [x][y], is
evaluated using Beaver’s multiplication triples (Demmler et al., 2015), where each triple refers to (a, b, ¢) with the constraint
¢ = ab. The triples are generated by cryptographic techniques (Demmler et al., 2015) or a trusted dealer (Riazi et al., 2018).
Specifically, the multiplication over secret-sharing values can be evaluated in the following:

Py Py

z =y = ([z]o + [z]1)([ylo + [W]1) = [z]olylo + [z]1 [yl +[z]oly]r + [z]1[ylo

where for ¢ € {0, 1}, [x];[y]; can be computed locally, and [z];[y]1—; will be evaluated as follows. Taking [z]o[y]1 as an
example, assuming Py and P already hold (a, [c]o) and (b, [c]1), respectively, P, first sends [x]o 4+ a to Py, while P; sends

14

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

[y]s — b to Py. Then Py computes one share as [z]o([y]o — b) — [c]o, and P, computes another as ([x]; + a)[y]1 — [c]1,
locally. In this way, the outputs are still in the form of secret sharing.

Diffie-Hellman key agreement protocol. In GuardHFL, we utilize PRFs to overcome the cross-client communication
limitation, where the consistent PRF seed between clients are generated using the Diffie-Hellman (DH) key agreement
protocol (Diffie & Hellman, 1976). Note that the consistent seed between the server and the client can be directly sampled
by the server and then sent to the client without the DH protocol. Figure 12 gives the secure seed generation protocol Ilgeeq.
Formally, the DH protocol consists of the following three steps:

* DH.param(k) — (G, g, q, H) generates a group G of prime order ¢, along with a generator g, and a hash function H.
* DH.gen(G, g,q, H) — (x;,¢*¢) randomly samples x; € G as the secret key and let g* as the public key.
» DH.agree(z;, g%, H) — s, ; outputs the seed s; ; = H((g%9)").
Correctness requires that for any key pairs (x;, %) and (x;, g%/) generated by two paries P; and P; using DH.gen under the
same parameters (G, g, q, H), DH.agree(x;, g%/, H) = DH.agree(x;, ¢**, H). Besides, in GuardHFL, security requires

that for any adversary who steals g*¢ and g®7 (but neither of the corresponding x; and), the agreed secret s; ; derived
from those keys is indistinguishable from a uniformly random value (Abdalla et al., 2001).

P, Server P,
Sample kg € G Sample Skgo, Sksy € G Sample k; € G
=g A B B=gh
B, Sksq A, Sksa
Sksq Sksa
Skoa = DH.agree(ky, B, H) Skoa = DH.agree(ky, A, H)

Figure 12. Secure PRF seed generation protocol IIseeq

B.3. Distinguish GuardHFL from other private settings.

GuardHFL is in line with the standard HFL paradigm (Li & Wang, 2019) with the additional benefit of privacy protection.
As declared in the Introduction, GuardHFL is the first-of-its-kind privacy-preserving HFL framework, which is different
from existing privacy-preserving training efforts. The latter can be divided into two categories: (1) privacy-preserving
federated learning (Bonawitz et al., 2017; Bell et al., 2020), and (2) secure multi-party training (Tan et al., 2021; Keller &
Sun, 2022). In the following, we give a detailed analysis.

Comparison to privacy-preserving federated learning. In the privacy-preserving federated learning (FL), each clients
locally computes the gradient with his private database, and then a secure aggregation protocol is executed at the server
side for aggregating the local gradients and updating the global model. However, as described in the Introduction, secure
gradient aggregation cannot be realized in HFL, due to the heterogeneity of the clients’ models. Instead, GuardHFL
follow a general HFL training paradigm (Li & Wang, 2019), which contains three steps: local training, querying, and local
re-training. GuardHFL focuses on solving the privacy issue caused by the querying stage, and mainly proposes a query
datasets generation (refer to Section 3.4) and a secure querying protocol (refer to Section 3.1 - Section 3.3).

Comparison to secure multi-party training. Secure multi-party training is typically an outsourced training setting, where
resource-constrained clients outsource the entire training task to non-colluding multiple servers in a privacy-preserving
manner. It requires a secure training protocol to finally yield a well-trained model. Different from secure multi-party training,
GuardHFL enables clients to collaboratively and securely train their own customized models that may differ in size and
structure. Moreover, as discussed above, the general HFL paradigm contains three steps: local training, querying and local
re-training, where the local training and re-training stages are evaluated locally without revealing privacy. Therefore, the
privacy-preserving HFL requires an HFL-friendly secure querying protocol (i.e., a customized inference protocol).

B.4. Extend existing 2PC protocols to HFL.

With non-trivial adaptation, existing secure 2-party querying schemes (Mishra et al., 2020; Rathee et al., 2020; Huang
et al., 2022) can be extended to the communication-limited HFL setting. However, as shown in Section 4.1, such extension

15

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

introduces expensive communication and computation overheads compared with our GuardHFL. In the following we
divide these schemes into three categories, i.e., pure OT-based protocols, pure HE-based protocols, and hybrid protocols,
and give the corresponding extension designs.

To extend the pure OT-based secure querying protocols such as CrypTFlow2 (Rathee et al., 2020) into HFL, Py first
secret-shares query samples to the server and P4 using our protocol IIghare in Section 3.1. Then the server and P4 execute
secure prediction based on the method proposed in Rathee et al. (2020). After that, adopting our secure aggregation protocol
ITgg in Section 3.3, the aggregated predictions will be returned to Pg. Although the OT-based schemes can be extended to
HFL by combining the designed protocols in GuardHFL, it requires too many communication rounds due to the usage of
OT primitives.

To extend the pure HE-based secure querying protocols (Gilad-Bachrach et al., 2016; Lee et al., 2021) to HFL, Py, first
encrypts the query samples and asks the server to pass them to P4. After that, P4 evaluates secure prediction non-
interactively in the ciphertext environment. Then P4 sends encrypted predictions to the server. The server aggregates these
encrypted predictions utilizing the additive homomorphism of HE and sends the aggregated results to Pg. Although it is
trivial to extend the schemes equipped with the HE-based scheme to the communication-limited setting, they have two key
problems: 1) activation functions need to be approximated as low-degree polynomials, which leads to serious accuracy loss;
2) the HE-based secure prediction protocol is difficult to extend to large-scale models due to the inherent high computation
complexity.

For hybrid secure querying protocols that evaluates linear layers using HE and non-linear layers using OT or GC, such as
Cheetah (Huang et al., 2022), we discuss the extension algorithm for each layer separately. For the linear layer, 1) Pg
encrypts query samples with HE and sends the ciphertext to P, through the server®. 2) P4 evaluates linear layers locally,
and returns the encrypted masked outputs to Pg through the server. 3) Py decrypts it to obtain the masked outputs, which
are then sent to the server. As a result, the masked outputs of linear layers are secret-shared between the server and Pjy.
For the non-linear layer, given that the server and P4 hold shares of the linear layer’s outputs, the two parties invoke the
OT-based protocols to evaluate non-linear functions. Therefore, such an extension comes at the cost of heavy computational
and communication complexity.

In summary, although existing 2PC protocols can be extended to the HFL setting with the cross-communication restriction,
they sacrifice efficiency due to the lack of customized protocols and the adoption of heavy cryptographic primitives.
Therefore, it is necessary to design an efficient cryptographic framework for HFL. And GuardHFL shows better adaptability
and efficiency in the natural HFL scenarios.

C. Security analysis

Intuitively, GuardHF L only reveals the aggregated prediction to P without the responding parties’ model parameters, and
the server and P4 learn zero information about the querying parties’ data. This is because all intermediate sensitive values
are secret-shared. Next, we give a formal analysis.

Our security proof follows the standard ideal-world/real-world paradigm (Canetti, 2001): in the real world, three parties (i.e.,
the server, Pg, and P,) interact according to the protocol specification, and in the ideal world, they have access to an ideal
functionality shown in Table 5. When a protocol invokes another sub-protocol, we use the F-hybrid model for the security
proof by replacing the sub-protocol with the corresponding functionality. Note that our proof works in the Fprr-hybrid
model where Fprr represents the ideal functionality corresponding to the PRF protocol. The executions in both worlds are
coordinated by the environment Env, who chooses the inputs to parties and plays the role of a distinguisher between the real
and ideal executions. We will show that the real-world distribution is computationally indistinguishable to the ideal-world
distribution.

Theorem C.1. Ilsy,.. securely realizes the functionality Fshare in the Fprp-hybrid model.

Proof. Note that Pg and P4 receive no messages in Ilspare, and hence the protocol is trivially secure against the corruption
of Py and P4. Next, the only message that the server receives is the value [z];. However, [z]; = x — 7, where given the
security of PREF, r is a random value unknown to the server. Thus, the distribution of [z]; is uniformly random from the
server’s view and the information learned by the server can be simulated. O

%To be more precise, this step is for the input layer. In the hidden layer, one of the input shares of the linear layer should be encrypted
by the server and sent to Pa.

16

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

Table 5. The ideal functionality

Input sharing functionality Fshare:

* Input: Pg: query data x.
s Output: Py4: [z]o € Zoe. Server: [x]; = x — [z]p mod 2.

Matrix multiplication functionality Fmatmul:

o Input: Server: [z]; € Zoe. Pa: [x]o € Zye, model parameter w.
e Output: Server: [y]; € Zgye. Pa: [y]o = wx — [y]; mod 2°.

MSB functionality Fpep:

o Input: Server: [z]1 € Zoe. Pa: [x]o € Zoe.
* Output: Server: [msb(x)]P € Zy. Pa: [msb(z)]F = msb(x) @ [msb(x)]¥ mod 2.

ReLU functionality FreLy:

o Input: Server: [z]1 € Zoe. Pa: [x]o € Zoe.
* Output: Server: [y]; € Zgye. Pa: [y]o = ReLU(x) — [y]; mod 2°.

Result aggregation functionality Fagg:

« Input: Server: [x;]1 € Zoe, i € [C]. Pi: [xi]o € Zge.

e Output: Pg: y = softmax(zg1 Z;)-

Theorem C.2. Ilpatmu Securely realizes the functionality Fyatmul in the Fpre-hybrid model.

Proof. Note that P receives no messages in Ilyatmul, and hence the protocol is trivially secure against corruption of Fp.
The only message that P4 receives is the value [x]; — b. However, given the security of PRF, b is a random value unknown
to P4. Thus, the distribution of [z]; — b is computationally indistinguishable from a uniformly random distribution in P4’s
view, and the information learned by P4 can be simulated. Next, during the protocol, the server learns [c]; and w + a.
However, the distribution of [c]; and w + a is computationally indistinguishable from a uniformly random distribution in the
server’s view, since given the security of PRF, a and [c]; are random values unknown to the server. Thus, the information
learned by the server can be simulated. O

Theorem C.3. Il securely realizes the functionality Fmsp in the Fyatmu-hybrid model.

Proof. Note that as shown in Section 3.2, I1,,q, just consists of AND gates, which is instantiated by the protocol ITyatmy-
Therefore, the msb protocol is trivially secure in the Fyatmy-hybrid model. O]

Theorem C.4. Ilge y securely realizes the functionality FreLy in the (Fmatmuls Fmsb)-Fybrid model.

Proof. Note that as shown in Section 3.2, Ilge y consists of IIsp and ITyaemy. Therefore, the ReLU protocol is trivially
secure in the (Fmatmuls Fmsb)-hybrid model. O]

Theorem C.5. Ilage securely realizes the functionality Fagg in the Fpre-hybrid model.

Proof. Note that P4 receives no messages in Ilz4, and hence the aggregation protocol is trivially secure against the
corruption of P,4. Next, the only message that the server receives is the value [z;]o — ;. However, given the security of

17

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

Table 6. Comparison with prior works on properties necessary for federated learning

Framework Privacy Usability Efficiency
Data Model Model w/o Dataset GPU Protocol
Privacy Privacy Heterogeneity Dependency Compatibility Efficiency

Bonawitz et al. (2017) v X X v X v
Bell et al. (2020) v X X v X v
Sav et al. (2021) v v X v X X
Jayaraman & Wang (2018) v X X v X v
Li & Wang (2019) X v v X v -
Choquette-Choo et al. (2021) v v v X X X
Lin et al. (2020) X X v X v -
Sun & Lyu (2021) X v v X v v
Diao et al. (2021) X X v v v -
GuardHFL v v v v v v

PREF, r; is a random value unknown to the server. Thus, the distribution of [z;]o — r; is computationally indistinguishable
from a uniformly random distribution in the server’s view and the information learned by the server can be simulated. After
the aggregation, Py only learns the aggregated result) _, c[c] Tis but is unknown to each z;. Therefore, the aggregation
protocol is secure assuming the aggregation result will not reveal privacy. O

D. Related Work

D.1. Heterogeneous federated learning

Federated learning (FL) achieves collaboration among clients via sharing model gradients. While successful, it still faces
many challenges, among which, of particular importance is the heterogeneity that appear in all aspects of the learning
process. This consists of model heterogeneity (Li & Wang, 2019) and statistical heterogeneity (Zhu et al., 2021). Statistical
heterogeneity means that parties’ data comes from distinct distributions (i.e., Non-IID data), which may induce deflected
local optimum. Solving the statistical heterogeneity has been extensively studied, such as Dinh et al. (2020); Zhu et al.
(2021); Yurochkin et al. (2019); Fallah et al. (2020); Yoon et al. (2021), and is out of the scope of this work. Nevertheless,
GuardHFL may help to alleviate the statistical heterogeneity due to the customized model design and the knowledge
distillation-based aggregation rule.

Our work mainly focuses on the model heterogeneity that has been explored in recent works (Li & Wang, 2019; Lin et al.,
2020; Choquette-Choo et al., 2021). In particular, Li & Wang (2019) proposed the first FL. framework FedMD supporting
heterogeneous models by combining transfer learning and knowledge distillation techniques. They first used a public dataset
to pre-train the model and transferred to the task of private datasets. After that, to exchange the knowledge, each party
used the public data and the aggregated predictions from others as carriers for knowledge distillation. To further improve
model accuracy, Lin et al. (2020) proposed FedDF, similar to FedMD, which also used the model distillation technique for
knowledge sharing. The difference is that they first performed FedAvg on parties’ local models and integrated knowledge
distillation on the aggregated model. The dependence on model averaging leads to limited model heterogeneity. Later, Diao
et al. (2021) focused on heterogeneous parties equipped with different computation and communication capabilities. In their
framework, each party only updated a subset of global model parameters through varying the width of hidden channels,
which reduces the computation and communication complexity of local models. However, this approach only learns a single
global model, rather than unique models designed by parties. Moreover, as described in the Introduction, HFL suffers from
several privacy issues, which are not considered in the above works. To address the privacy concern, GuardHFL provides
end-to-end privacy-preserving HFL services.

The privacy-preserving techniques (i.e., secure aggregation) have been studied in federated learning (Bonawitz et al., 2017;
Bell et al., 2020; Sav et al., 2021; Jayaraman & Wang, 2018). However, these techniques can not be directly extended to
privacy-preserving HFL. Recently, Sun & Lyu (2021) proposed a noise-free differential privacy solution for HFL to guarantee
each party’s privacy. However, as shown in Jayaraman & Evans (2019), there is a huge gap between the upper bounds on

18

GuardHFL: Privacy Guardian for Heterogeneous Federated Learning

privacy loss analyzed by advanced mechanisms and the effective privacy loss. Thus, differentially private mechanisms offer
undesirable utility-privacy trade-offs. To further formally guarantee the privacy, Choquette-Choo et al. (2021) proposed
CaPC, leveraging hybrid cryptographic primitives to realize confidential and private collaborative learning. Specifically,
parties learn from each other collaboratively utilizing a secure inference strategy based on 2PC and HE protocols and a
private aggregation method. As noted in the Introduction, the usage of heavy cryptography in CaPC leads to huge efficiency
and communication overheads.

In summary, we give a comparison between prior FL works and GuardHFL in Table 6.

D.2. Secure neural network prediction

Since secure prediction is a critical component of GuardHFL, we briefly introduce its recent progress. Neural networks
present a challenge to cryptographic protocols due to their unique structure and exploitative combination of linear computa-
tions and non-linear activation functions. In real scenarios, model prediction can be viewed as a two-party computation case,
where one party with private query data wants to obtain prediction results from the other party who owns the model. During
the whole process, the cryptographic protocols, typically HE and secure multi-party computation (MPC), are applied to
ensure the confidentiality of the private data and model parameters.

Many existing works (Boemer et al., 2019b; Gilad-Bachrach et al., 2016; Brutzkus et al., 2019) support pure HE protocols
for secure predictions. Typically, nGraph-HE (Boemer et al., 2019b;a) allows linear computations using the CKKS HE
scheme. However, since a solution that builds upon HE protocols should be restricted to compute low degree polynomials,
the non-polynomial activation functions, such as Maxpooling and ReLLU, are forced to be evaluated in the clear by the party
who owns private query data. This leaks the feature maps, from which adversaries may deduce the model weights. To solve
this problem, Gilad-Bachrach et al. (2016) and Chen et al. (2019) use low-degree polynomial approximation to estimate
non-linear functions. Unfortunately, such approximations affect the inference accuracy, and lead to huge computation
overhead.

On the other hand, several libraries (Mohassel & Zhang, 2017; Knott et al., 2021; Wagh et al., 2019) employ primarily
MPC techniques in secure predictions, which provide linear and non-linear protocols through the usage of oblivious transfer
(OT), garbled circuit (GC) and secret sharing. In particular, CryptTen (Knott et al., 2021) performs linear operations based
on n-out-of-n arithmetic secret sharing over the ring Z,:. However, it requires a trusted third party to assist the secure
prediction process, which is unrealistic in the real-world setting. CrpytGPU (Tan et al., 2021) builds on CrypTen, working
in the 3-party setting based on the replicated secret sharing primitive. Although the scalability is poor, it introduces an
interface to losslessly embed cryptographic operations over secret-shared values in a discrete somain into floating-point
operations, which can implement the whole inference process on the GPU. Recently, Keller & Sun (2022) proposed a secure
quantized training protocol that outperforms CryptGPU in the cryptographic performance. Unfortunately, this work cannot
be applied in HFL and is not comparable to GuardHF L. The main reasons are: (1) GuardHFL and Keller & Sun (2022)
are concerned with completely different tasks. GuardHFL builds on the standard HFL setting, where multiple parties
collaboratively train individual models with the assistance of a server. Keller & Sun (2022) focuses on the outsourced
training scenario, i.e., multiple servers jointly execute standard model training algorithm to obtain a well-trained model.
(2) Moreover, the protocols in Keller & Sun (2022) are designed for a specific network architecture, i.e., quantized neural
networks, which cannot be applied to the general models in GuardHF L. Therefore, Keller & Sun (2022) and GuardHFL
are two fully orthogonal works.

In addition, many works focus on hybrid protocols, in which they combine the advantages of HE and MPC to improve
prediction efficiency (Juvekar et al., 2018; Mishra et al., 2020; Rathee et al., 2020; Huang et al., 2022). For example,
HE-transformer (Boemer et al., 2019a) employs nGraph-HE (Boemer et al., 2019b) for the evaluation of linear operations,
and utilizes GCs of the ABY framework (Demmler et al., 2015) for the evaluation non-linear functions. However, GC is
inefficient especially for large networks with thousands of parameters, since non-linear operations cannot be parallelized
between query samples. After that, CrypTFlow?2 (Rathee et al., 2020) implements two types of protocols for linear operations,
i.e., the HE-based method and OT-based method. For non-linear layers, they also design efficient protocols based on OTs.
More recently, Cheetah (Huang et al., 2022) improves CrypTFlow?2 with customized HE-based linear protocols and improved
OT-based non-linear protocols, which achieves the state-of-the-art efficiency. Nevertheless, as shown in Section 4.1, directly
extending the protocols in Cheetah into HFL cannot obtain satisfying performance. Therefore, we propose GuardHFL,
which avoids the adoption of heavy cryptographic tools like HE and OT, and only employs secret sharing and PRFs to
achieve high efficiency, confidentiality and practicability.

19

