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Abstract

Backdoor attacks against deep neural network (DNN)
models have been widely studied. Various attack techniques
have been proposed for different domains and paradigms,
e.g., image, point cloud, natural language processing,
transfer learning, etc. The most widely-used way to em-
bed a backdoor into a DNN model is to poison the training
data. They usually randomly select samples from the benign
training set for poisoning, without considering the distinct
contribution of each sample to the backdoor effectiveness,
making the attack less optimal.

A recent work [40] proposed to use the forgetting
score to measure the importance of each poisoned sam-
ple and then filter out redundant data for effective back-
door training. However, this method is empirically de-
signed without theoretical proofing. It is also very
time-consuming as it needs to go through several train-
ing stages for data selection. To address such lim-
itations, we propose a novel confidence-based scoring
methodology, which can efficiently measure the contri-
bution of each poisoning sample based on the distance
posteriors. We further introduce a greedy search algo-
rithm to find the most informative samples for backdoor
injection more promptly. Experimental evaluations on
both 2D image and 3D point cloud classification tasks
show that our approach can achieve comparable perfor-
mance or even surpass the forgetting score-based search-
ing method while requiring only several extra epochs’ com-
putation of a standard training process. Our code can
be found at https://github.com/WU-YU-TONG/
computational_efficient_backdoor

1. Introduction

The diversity of security threats [1, 23] to deep neural
networks (DNNs) hinder their commercialization processes
in many computer vision (CV) tasks. One of the most se-
vere and wide-known threats is the backdoor attack [23].

*Corresponding Author

The adversary can inject a stealthy backdoor into the tar-
get model corresponding to a unique trigger during train-
ing [43, 28, 25, 17, 5, 10, 13]. During inference, the com-
promised model performs well on the benign samples but
can misbehave over the malicious samples with the trigger.

The most common approach to achieve backdoor attacks
is data poisoning, where the adversary compromises certain
training samples to embed the backdoor. A critical criterion
for a successful backdoor attack is the ratio of poisoning
samples. From the adversarial perspective, we hope to poi-
son as few samples as possible while maintaining the same
attack success rate (ASR) for two reasons: (1) a smaller poi-
soning ratio can enhance the attack feasibility. The adver-
sary only needs to compromise a small portion of training
data, so the attack requirement is relaxed. (2) The backdoor
attack with fewer poisoned samples will be more stealthy.
Numerous works proposed backdoor detection solutions via
investigating the training samples [7, 15, 29, 35, 38, 34, 18].
A smaller poisoning ratio will significantly increase the de-
tection difficulty and reduce the defense effectiveness.

A majority of backdoor attacks randomly select a fixed
ratio of training samples for poisoning, and the ratio is
heuristically determined [12, 16, 21, 41, 24]. This strategy
is less optimal as it ignores the distinction of different sam-
ples in terms of contributions to the backdoor. To overcome
this limitation, a recent work [40] proposed a new method,
forgetting score, to optimize the process of poisoning sam-
ple selection. It uses the frequency of forgetting events per
sample during model training as the score to represent the
importance of each sample to the backdoor injection. Then,
samples with higher scores are filtered out via a filtering-
and-updating strategy (FUS) in N full training circles. For-
getting score can effectively reduce the poisoning ratio by
25-50% compared with the random selection strategy while
achieving a similar ASR. It also confirms the diverse im-
pacts of different samples on the attack performance.

Forgetting score can achieve data efficiency but at the
cost of computation inefficiency. Specifically, it empirically
counts the number of times each sample is forgotten during
training to locate the critical samples that contribute more
to poisoning. Calculation of the forgetting scores requires
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multiple full training circles (N = 10 for ImageNet-10
in [40]) to reduce the number of poisoning samples, which
introduces significant efforts and is impractical for attacking
large-scale datasets. As such, an intriguing question arises:
is it possible to achieve both data efficiency and computa-
tion efficiency in backdoor poisoning, i.e., effortlessly and
precisely identifying the critical poisoning samples?

In this paper, we propose a novel attack methodology to
confirm the above question. Our contributions are two-fold.
First, we propose the representation distance (RD) score,
a new trigger-agnostic and structure-free metric to identify
the poisoning samples that are more crucial to the success
of backdoor attacks. Specifically, our goal is to locate those
poisoning samples that have a larger distance to the target
class since they will contribute more to reshaping the deci-
sion boundary formation during training (backdoor embed-
ding). By adopting this RD score, we can filter out the poi-
soning samples that are insensitive to the backdoor infection
to reduce the poisoning ratio. Second, the RD score can be
used at a very early stage of model training (i.e. only a few
epochs after training starts) with a greedy search scheme to
select the poisoning samples. This significantly reduces the
computation compared to the forgetting score.

We perform extensive experiments on five state-of-the-
art models and 4 common datasets in the 2D image and 3D
point cloud classification tasks. Evaluations show that our
solution can effectively reduce the amount of samples to
poison for a successful backdoor attack. Most importantly,
compared to the forgetting score-based method, our solu-
tion can figure out the important poisoned sample using the
scoring models that only requires several epochs of training,
which is a tiny cost in comparison to the forgetting score-
based method. As the latter needs to go through the whole
training processes to achieve the same goal.

2. Background
2.1. Backdoor Attacks

Backdoor attacks on DNNs can be performed via differ-
ent methods including poisoning training data [12], modify-
ing off-the-shelf model’s structures [36], flipping bits at the
deployment stage [3], etc. Among these methods, poison-
ing training data is the most widely-used way, which is also
our focus in this paper. Formally, consider a model f and
its training dataset D = {(x, y)} for supervised training,
where y is the label of the data x. The adversary samples
a small proportion of X to poison*. He injects a carefully-
designed trigger (m, t) to the input x, where m is a mask
and t is a trigger. The poisoned input x′ follows:

x′ = x⊕ t = x⊙ (1−m) + t⊙m, (1)

*Here we describe the basic poisoning approaches. There are also ad-
vanced strategies, e.g., clean-label attacks [45] and clean-image attacks [4],
which are beyond the scope of this paper.

where ⊙ is the element-wise multiplication. The adversary
also changes the original label yi to a predetermined tar-
get label yt. The model trained on this poisoned dataset
will get injected with the backdoor. During the infer-
ence, the infected model will give normal prediction results
on clean data, while predicting the target label yt on the
malicious data with the trigger manipulated by the back-
door function B with high probability. Researchers have
designed backdoor attacks against different domains and
tasks, e.g., image classification [12], 3D point cloud clas-
sification [21, 41]. Recent backdoor approaches focus on
the stealthiness requirement with visually or semantically
hidden triggers [20, 26].

2.2. Poisoning Sample Selection Strategies

Little attention has been paid to the research of poisoning
sample selection in backdoor attacks. The common strategy
to poison a given dataset is to randomly select and tamper
with a certain ratio of training instances for model training
and backdoor embedding. This is based on a naive assump-
tion that all samples play equally important roles in the at-
tack process. However, more recent works have proved that
not all samples are naturally equal for standard model train-
ing [30], robust training [42], and backdoor attacks [40, 44].

Particularly, an empirical method is proposed in [40] to
record each sample’s forgetting event and measure its im-
portance to the backdoor attack. A forgetting event is de-
fined as the scenario when a sample transitions from be-
ing correctly classified to misclassified during training. A
poisoned sample also goes through such transitions sev-
eral times when the model is being trained on the poisoned
dataset. Thus, the number of forgetting events per sample
is counted as the forgetting score and used as an important
measurement in the injecting process. The forgetting score
of an arbitrary poisoned data point (x′, t) is defined as:

F(x′, t) =

M−1∑
i=1

I(fB(x′; θi) = t ∧ fB(x
′; θi+1) ̸= t) (2)

where I(A) is the indicator function (outputting 1 if A is
true and 0 otherwise); θi is the parameter of the infected
model fB(·) in the i-th epoch. According to Eq. 2, the for-
getting score is a rough estimation, which may result in a
coarse-grained ranking of the poisoning candidate. Besides,
the numbers of the forgetting events can be influenced by
the randomness in the training process, so this method re-
quires multiple times of the full model training procedure to
get stable results, which can be very computation-expensive
and even impractical.

Notably, our approach only focuses on the poisoning
sample selection stage and does not require the modifica-
tions of other stages in backdoor embedding. So it can be
well applied to various backdoor techniques and trigger de-
signs. Some other works [44, 14] proposed to optimize the
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trigger designs to advance the backdoor attacks for differ-
ent purposes, e.g., achieving higher ASR or lower poison-
ing budget. They need to design specific triggers which are
different from our scenario. So we do not consider these
works in the paper. It is interesting to integrate our sample
selection scheme with trigger optimization in future work.

2.3. Threat Model

We follow the standard threat model in poisoning-based
backdoor attacks [12, 16, 2, 13, 6, 27]. The adversary pro-
vides a poisoned dataset to the victim. The victim then
trains a model from this compromised dataset, which will
be potentially infected with the backdoor. During infer-
ence, the adversary crafts malicious samples by injecting
a trigger into any clean sample. Such samples will mislead
the infected model to give wrong predictions desired by the
adversary. It is also expected that the infected model still
behaves normally over clean samples.

We consider the white-box and black-box settings to
demonstrate the data poison generalization, following the
settings in [40]. For white-box, the adversary knows the
model details including the architecture, training algorithms
and hyper-parameters, etc. For black-box, the adversary is
totally agnostic to the victim’s training procedure. For each
case, the adversary can only tamper with the datasets, but
cannot interfere with the training process.

3. Methodology
3.1. Overview

Given a benign training set D = (x, y), our goal is to
select a subset P , and compromise it to get a poisoned set
P ′ = {(x′, y′)|(x, y) ∈ P}. Here, (x, y) denotes a be-
nign input and its ground-truth label, x′ = x ⊕ t is the
poisoned sample with the pre-defined trigger t, and y’ is the
adversary’s desired wrong label. The poisoned subset P ′ is
subsequently blended with the rest of the benign data from
D to form the poisoned training set. Then, the victim fol-
lows the conventional training procedure to obtain a model
fB(·), which actually optimizes the following objective, and
potentially gets the backdoor embedded:

θ = argmin
θ

1

|P ′|
∑

(x′,y′)∈P′

L(fB(x
′; θ), y′)

+
1

|D\P|
∑

(x,y)∈D\P

(fB(x; θ), y)

(3)

Clearly, poisoning a larger subset can lead to higher
backdoor effectiveness. To achieve the attack feasibility and
stealthiness, the adversary’s goal in this paper is to mini-
mize ||P|| while still keeping the attack success rate (ASR)
at a relatively high level. Similar as [40], we aim to propose
a new scoring mechanism to evaluate the impact of each

poisoned sample on the infected model. This enables us to
select the most critical samples with high scores to make the
poisoning process more efficient.

benign sample poisoned sample backdoor area
RD score target class original class

Figure 1. Intuitive explanation of our insight. The left figure
shows a clean model without any backdoor. In the middle figure,
a sample closer to the decision boundary will have less impact on
the backdoor when it is poisoned. In the right figure, a sample far-
ther away from the decision boundary can cause a more significant
change to the model when it is selected for poisoning.

Our approach is inspired by [30], which finds data sam-
ples with high contributions to the formation of the deci-
sion boundary in the early training stage. We hypothesize
that it is also possible to discover crucial poisoned samples
without performing the entire training process. Intuitively,
the poisoned samples which tend to contribute more to the
backdoor have a larger distance to the target class, as they
may result in a more intensive reshaping of the decision
boundary. This feature makes them have a more signifi-
cant impact on the model than others. Fig. 1 shows an
intuitive explanation of our insight. A poisoned sample far-
ther away from the decision boundary will cause a bigger
“backdoor area”, which confirms its significant impact on
the backdoor. Our goal is to find such samples as the poi-
soning targets. Since the model in the early training stage
can have relatively high accuracy, we assume it can extract
benign features and project them to different classes, which
helps us identify critical poisoning candidates.

Fig. 2 shows the workflow of our proposed methodol-
ogy. It consists of two innovative components. (1) We in-
troduce a new Representational Distance (RD) score, which
can quantify the contribution of each sample to the back-
door learning process by only training the model for a very
few epochs (§ 3.2). This is much more efficient than the
forgetting score in [40]. (2) We design a greedy search al-
gorithm to select the optimal set of samples for poisoning
based on their RD scores (§ 3.3). With the selected set P ,
we can follow the conventional steps to construct the poi-
soning set P ′, merge it with the rest of the samples, and
train the backdoored model.
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Figure 2. Workflow of our methodology.

3.2. RD Score

During training, the model parameters θ are updated it-
eratively. Without loss of generality, we consider the basic
gradient descent algorithm as follows:

θi+1 = θi − η
∑

(x,y)∈D

∇θl(f(x; θi), y) (4)

So the update of the parameters θ between two itera-
tions is

∑
∇θl(f(x; θi), y). A contributive sample x

tends to influence θ more, so the corresponding gradient
||∇θl(f(x; θi), y)|| has a relatively higher value. So we can
use the following objective to find the most effective sam-
ples to form P ′:

P ′
opt = argmax

P′

∑
x′∈P′

||∇θl(fB(x
′; θ), y′)|| (5)

The gradient in Eq. 5 can be written as the sum of each
coordinate’s gradient in the posterior given by the model
fB, according to the chain rule:

∇θl(fB(x
′; θ), y′) =

K∑
k=1

∇fk
B (x′;θ)l(fB(x

′; θ), y′)T∇θf
k
B (x

′; θ)
(6)

where fk
B (x

′; θ) stands for the k-th logit of the output. We
use the cross-entropy as the loss function as it is a popular
choice for classification tasks. We observe it can be ex-
tended to other tasks with different forms of loss functions,
as experimentally shown in § 4.2. We also have:

∇fk
B (x′;θ)l(fB(x

′; θ), y′) = fk
B (x

′; θ)− y′ (7)

where t is the one-hot vector corresponding to the target
class. Therefore Eq. 5 can be written as:

P ′
opt = argmax

P′

∑
x′∈P′

||(fk
B (x

′; θ)− y′)T∇θf
k
B (x

′; θ)||

(8)
We introduce the Representation Distance (RD) score to ap-
proximate Eq. 8 based on the analysis in § 3.1. It evaluates

the distance between the model prediction and the target
class at the representation level. It is defined as the l2 norm
between the posteriors of the poisoned sample and the one-
hot vector of its target classes:

RD(x′) = ||fB(x′; θ)− y′||2 (9)

where (x′, y′) is the poisoned data point and y′ is the one-
hot vector corresponding to the target label. The RD score
shares almost the same monotonicity as other loss functions
for classification, e.g, cross-entropy, making it applicable to
different tasks as the selection criterion.

3.3. Searching Strategy

Given a candidate set P , we can compute its average RD
score to measure its poisoning effectiveness. Specifically,
we first convert P into the poisoned set P ′ by injecting the
trigger to each sample and tampering with its label. Then,
we merge P ′ and D\P to train a backdoored model fB.
Note that we only need to train a very few epochs, which
are enough to give accurate RD scores. Finally, we com-
pute the RD score of each x′ from P ′ according to Eq. 9,
and then the average score of all samples. A set P with the
highest score should be selected for poisoning.

However, it requires us to consider all the possible com-
binations of samples from D. The search space is

( ||D||
||P′||

)
,

which is too large to perform in practice with large datasets.
We exploit a greedy search strategy to solve this problem.
Our observation is that the RD scores of poisoned samples
are very likely to maintain their order from one combination
to another. Inspired by FUS in [40], we exploit a similar
strategy to search for the samples. Specifically, we initial-
ize a candidate set P ′ by randomly selecting and poisoning
samples from D. Then, we calculate the RD score of each
sample x′ from P ′, based on which the samples are sorted.
The samples with lower scores below a specified ratio α
are filtered out and replaced by the same amount of new
samples randomly chosen from D. This process is repeated
until it reaches the maximum number of iterations N . α(·)
decays with the iteration growing. Algorithm. 1 shows the
greedy search algorithm based on the RD scores.

4. Experiments
4.1. Configurations
Dataset and triggers. We mainly evaluate our method with
two classical tasks, i.e., 2D image classification and 3D
point cloud classification. Fig. 3 shows examples of some
clean and poisoned samples. We use the following datasets:
• CIFAR-10 [19]: this dataset consists of colorful images

with the size of 32× 32. It has 60,000 images belonging
to 10 categories of different objects. To poison the im-
age data, we inject a 5 × 5 square yellow patch located
at the right bottom of the clean sample and change the
corresponding label to the target label.
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Algorithm 1: Greedy Search
input : clean dataset D, poison ratio r, trigger

pattern t, filter ratio α(·), iteration round N
output: efficient poison dataset P ′

opt

1 initialize P ′ by randomly poisoning r · ||D||
samples from D

2 for i := 1 to N do
3 scores←RDSCOREON(P ′)
4 SORTBYSCORES(scores, P ′)
5 Filter α(i) · ||P ′|| samples out from P ′

6 Poison α(i) · ||P ′|| samples to get new P ′

7 end
8 return P ′ as P ′

opt

CIFAR10 ImageNet10 ScanObjectNN Modelnet40

C
le
an

Tr
ig
ge
re
d

Figure 3. Example of the clean and poisoned samples.

• ImageNet-10 [8]: this dataset is the subset of ImageNet,
which consists of 1,431,167 images in total. It contains
13,000 images of the size 224 × 224 belonging to 10
classes. We use a 32 × 32 blue patch located at the right
bottom of each image as the trigger.

• ModelNet40 [39]: this dataset contains 12,311 3D mod-
els manually crafted using CAD tools. These 3D models
belong to 40 classes, including airplanes, bathtubs, etc.
To poison the dataset, we put a small model of an airplane
inside each original model for poisoning and making their
centers of gravity coincide. Then we obtain 3,000 3D
points to form the point cloud for each sample by ran-
domly sampling on the surface of the models.

• ScanObject [37]: this dataset has more than 15,000 ob-
jects from 15 categories. Each sample comes from real-
world indoor objects and contains 2,048 3D points. To
add the trigger, we randomly replace 200 points of the
poisoned samples with the 3D points of a bag.

Model architectures. For image classification tasks, we
follow [40] to choose two SOTA models, i.e. ResNet18 and
VGG16. We train the models at a learning rate of 0.05 for
30 epochs and set the batch size as 128 and 64 for CIFAR-
10 and ImageNet-10, respectively.

For the 3D point cloud tasks, we choose three dif-
ferent architectures, PointNet [31], PointNet++ [32], and
PointCNN [22]. These models are trained at a learning rate

of 0.01 for 50 epochs with a batch size of 128. Specially, we
use 2,048 points for each dataset when training PointCNN
to reduce the training time.
Baseline attack implementations. We select two base-
lines for comparison. (1) Random sample selection: we
randomly select samples from classes other than the target
one. The number of samples being selected follows the poi-
son ratio, i.e., ||P|| = r · ||D||. (2) Forgetting score [40]:
we first train the scoring model in the setting of the ordinary
training process and record the forgetting event for each poi-
soning sample. The number of forgetting events happening
on the samples is regarded as the forgetting score. This im-
plementation is the same as in [23]. For our method, we
train the scoring models for a few epochs. The models are
subsequently used to calculate the RD score for each sample
by Eq. 9. As the scoring budget shown in Table. 1

Task Method Scoring Budget (Total Epochs)
CIFAR-10 and
ImageNet-10

RD Score 60 (6 epochs per iteration)
Forgetting Score [40] 300 (30 epochs per iteration)

ModelNet40 RD Score 100 (10 epochs per iteration)
Forgetting Score [40] 500 (50 epochs per iteration)

ScanObject RD Score 100 (10 epochs per iteration)
Forgetting Score [40] 750 (75 epochs per iteration)

Table 1. searching budget.

All the above methods can be integrated with existing
poisoning methods. We follow the attacks in [11, 40] to
alter both the data and labels on training data. We choose
the class with the label ‘0’ as the target class of the back-
door, i.e., ‘airplane’ in CIFAR-10 and ModelNet40, ‘bag’
in ScanObject, and ‘Penguin’ in ImageNet-10. All experi-
ments are run on two GeForce RTX 3090 GPUs.
Metric. We mainly use the attack success rate (ASR) to
evaluate the efficiency of our method calculated as follows:

ASR =

∑
(x′,y′)∈P′ I(fB(x′) = y′)

||P ′||
(10)

where D′
t is the validation set of the backdoor. Besides,

we examine the performance of infected models over clean
samples to measure their functionality-preserving require-
ment.

4.2. Main Results

We discuss the effectiveness of our method and compare
it with other baselines.
Attack effectiveness on 2D image tasks. Fig. 4 and 5
show the performance of random selection, forgetting score,
and our method on CIFAR-10 and ImageNet-10 datasets,
respectively. From the two figures, we have the following
observations. (1) Our method has comparable performance
to the forgetting score when the poison ratio is relatively
high. (2) Our method has higher ASR when the poison-
ing ratio is very low. We hypothesize that this is due to the
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Figure 4. ASR of the three methods on CIFAR-10. We repeat the
experiments three times for both score-based selection strategies
and ten times for random selection. We set α to 0.3 and N to 10.
The training epoch of the models for RD score is 6 while that for
forgetting score is 50.

coarse-grained nature of the forgetting score, as the num-
bers of the “forgetting events” can only be integers. This
makes the forgetting score method unable to tell the subtle
differences among its candidates. (3) Both the score-based
selection strategies enjoy smaller variances than random se-
lection, making the backdoor more reliable.
Attack effectiveness on 3D point cloud tasks. We test the
performance of our method on two different architectures
and datasets, as shown in Fig. 6. We have the following
observations. (1) Our method can achieve a similar ASR as
the forgetting score on ModelNet40 but at nearly half of the
poisoning ratio. (2) Both the RD and forgetting score meth-
ods are not as effective on ScanObject. This is because the
ASR of the backdoor injected by data poisoning is highly
related to the performances of the model: Fig. 7 discloses
the positive correlation between the ASR and prediction ac-
curacy of all tasks. The ASR reflects the ability of a model
to correctly extract features from the data. As the model
with a relatively low ASR tends to notice fewer features, it
prunes to neglect the features of the trigger within the poi-
soned samples, which, thereby, degrades the quality of the
injected backdoor.
Conclusion. To sum up, we can draw two conclusions.
First, the RD score can achieve higher ASR than the random
selection and forgetting score methods on various tasks and
models. Second, it retains its effectiveness for models using
other loss functions. For instance, PointNet [31] is trained
by optimizing a two-term loss function.

4.3. Ablation Study

We investigate how the hyper-parameters in our method
can influence the attack performance. Particularly, we look
into three hyper-parameters: the filtering ratio α, the num-
ber of iterations N , and the number of training epochs
for the scoring model. All the experiments are conducted
on ResNet18 trained on CIFAR-10 if not exclusively men-
tioned.

0.004 0.005 0.006 0.007 0.008 0.009
Poison Ratio

0.85

0.90

0.95

1.00

AS
R

RD Score
Forgetting Score
Randomly Select

Figure 5. ASR of the three methods on ImageNet-10. We repeat
the experiments three times for both score-based selection strate-
gies and five times for random selection. We set α to 0.3 and N to
10. The training epoch of the models for RD score is 6 while that
for forgetting score is 30.

The filtering ratio α. We vary the value of α in the greedy
search algorithm to investigate its influence. Although the
effect of α on the average ASR is not quite clear, we argue
that it should still be set to a moderate value. As shown in
Fig. 8, the variances tend to be smaller when α is around 0.2
to 0.4 in most cases. This is because α influences the final
P from two aspects. The first aspect is that it represents
the ratio of the randomly chosen samples in P , so when α
is too big, most of the poisoned samples in P are randomly
picked, which has negative impacts on the ASR. The second
aspect is that a big α enables the algorithm to go through
more samples in D, making it more likely to find effective
samples to poison. The trade-off discloses the reason why
our method seems to perform better when the filter ratio α
is around 0.3-0.4.
Number of iterations N . We examine the influence of the
number of iterations by changing N in the greedy search
algorithm. According to Fig. 9, we can conclude that (1)
the overall ASR is generally lower when N is small; (2)
the variations dwindle when using more iterations. Both of
the observations are aligned with our intuition, as a small
number of iterations can introduce more randomness to the
final results, resulting in lower ASR. In contrast, a larger N
enables us to check more candidate samples and evaluate
them more thoroughly, which helps to stabilize the ASR and
reduce the variances.
Number of training epochs for the scoring model. To
support our hypothesis in § 3.2, we examine the influence
of the number of training epochs for the scoring model, as
shown in Fig. 10. In comparison with the forgetting score,
we can draw two main conclusions. (1) the RD score per-
forms better in the early stage of the training process while
being gradually enervated as the training epoch grows. We
think this is because in the late stage of the training pro-
cess, poisoned samples with a large impact on the model
are almost fitted, resulting in smaller RD scores, as the RD
score is the estimation of the gradient with the sample in

4810



0.002 0.004 0.006 0.008 0.010
Poison Ratio

0.82

0.84

0.86

0.88

AS
R

RD Score
Forgetting Score
Randomly Select

(a) ModelNet40 & PointNet
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(b) ModelNet40 & PointNet++
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(c) ScanObject & PointNet++

Figure 6. ASR of the three methods on 3D point cloud classification tasks. We repeat the experiments three times for the scoring-based
methods and 5 times for random selection. We reduce the iteration time N to 7 when conducting the greedy search on both of the scoring
methods. For ScanObject, we set the training epoch to 75 and the learning rate to 0.01.

Table 2. ASR (%) under the black-box setting for hyper-parameters in the training process. The experiments are conducted on
ResNet18 models with the CIFAR-10 dataset. We train the scoring model for 6 epochs and set the iteration number and the filter ratio to
10 respectively. Other parameters in Adam keep aligned with its PyTorch implementation. For the backdoored model, we fix its training
settings to use SGD as the optimizer, 0.05 as the learning rate, and 128 as the batch size.

batch size optimizer LR 0.007 0.008 0.009 0.010 0.011
64 SGD 0.01 93.52 (2.13) 93.53 (3.18) 95.41 (2.85) 96.89 (2.70) 97.33 (2.22)
64 Adam 0.01 91.13 (6.12) 92.70 (5.60) 95.25 (2.85) 96.07 (2.70) 96.43 (2.12)
64 Adam 0.05 92.12 (8.95) 94.22 (1.03) 95.59 (2.39) 95.59 (2.66) 97.71 (0.98)

128 SGD 0.01 93.54 (3.33) 93.67 (2.97) 95.17 (1.90) 96.41 (5.88) 98.25 (1.09)
128 SGD 0.05 93.98 (1.78) 93.49 (2.70) 98.01 (1.90) 96.07 (2.04) 98.89 (0.45)
128 Adam 0.01 93.52 (2.13) 93.53 (3.18) 95.67 (2.99) 96.36 (3.76) 97.78 (0.62)
128 Adam 0.05 95.32 (1.26) 95.60 (6.42) 97.51 (0.15) 94.35 (2.33) 99.15 (0.38)

Random Choosing 85.72 (2.76) 87.16 (5.28) 90.94 (3.03) 91.38 (3.74) 92.65 (5.50)
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Figure 7. ASR and prediction accuracy on various models and
tasks. All the ASRs are obtained using RD scores at the highest
poison ratio we use in the experiments, i.e., 0.0017 for CIFAR-
10, 0.0095 for ImageNet-10, 0.01 for ModelNet40, and 0.09 for
ScanObject. At the above ratios, the ASR of the backdoors be-
comes stable.
the poisoned set P according to the analysis in § 3.2. This
explains the observed results that the ASRs are even lower
than the random selection when the training epoch of the
scoring model is higher than 15. (2) The forgetting score
is almost ineffective in the early training stage. Given that
the forgetting score is calculated by counting the times that
an arbitrary sample is originally assigned to the target la-
bel in the last epoch and changes its label in this epoch, the

maximum forgetting score with m training epochs for the
scoring model is m/2. When m is too small, the forget-
ting scores fall in a narrow interval, making the rank of the
poison candidates more indistinguishable and easier to be
disturbed by the randomness during the training process.

4.4. Black-box Evaluation

We investigate the performance of our method in the
black-box setting to show the high transferability of the RD
score. Specifically, we examine the ASR under the circum-
stances that the scoring models have different training con-
figurations from the backdoored models, e.g., model archi-
tecture, batch size, optimizer, etc.

According to Table 2, the RD score retains its effective-
ness when the model hyper-parameters are different. How-
ever, these hyper-parameters can indeed influence the ASRs
slightly. When the batch size optimizer and learning rate of
the scoring model are all different from that of the model for
backdoor injection, the ASR is the lowest. This is aligned
with our intuition: since the RD score is based on the gra-
dients in the training process, the way that the model pa-
rameters are updated can enlarge the divergences between
the scoring model and the backdoored model, leading to an
inaccurate evaluation of the score.
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Figure 8. ASR of the RD score in different poison ratios when α in greedy search changes. We repeat each experiment three times. In
all the experiments, we set N to 10 and the training epoch of the scoring model to 6
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Figure 9. ASR of the RD score in different poison ratios when the iteration time N in greedy search changes. We repeat each
experiment three times. In all the experiments, we set the training epoch of the scoring model to 6

5 10 15 20 25
Training Epochs of The Scoring Model

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

AS
R

RD Score
Forgetting Score
Random Selection

Figure 10. The influence of the training epoch of the scoring
models on both methods. All the experiments are conducted us-
ing a 0.001 poison ratio on CIFAR-10, ResNet18.

0.0007 0.0008 0.0009 0.0010 0.00110.80

0.85

0.90

0.95

1.00

RD Score
Forgetting Score

(a) MobileNet

0.0007 0.0008 0.0009 0.0010 0.0011
0.80

0.85

0.90

0.95

1.00

RD Score
Forgetting Score

(b) VGG16

Figure 11. ASRs of the forgetting score and our RD score. We
use ResNet18 as the victim model and change the architecture of
the scoring model to MobileNet and VGG16.

Additionally, we use different model architectures to test
the transferability of our approach among different models.
From 11, our observation is that in comparison with the for-
getting score, our method is more transferable when using
a different architecture of the scoring model from the target
model, especially with a relatively low poisoning ratio.

We can thereby draw our conclusions: (1) our method
does not rely on the knowledge of the training details while
retaining its effectiveness in selecting the important poison-

ing samples from the training set. (2) Our approach has
more transferability than the forgetting score.

5. Conclusion and Future Work
In this paper, we propose a novel score to measure the

contribution of poisoned samples to the backdoor learning
process by evaluating the L2 norm of the given poisoned
samples to the target class. By filtering out the samples
with lower scores, our method achieves much better back-
door ASR than the random selection strategy. We conduct
extensive experiments on a variety of datasets and model ar-
chitectures to show the generality and transferability of our
method in comparison with prior works.

For future works, we claim that although the RD score
is of high ability to be adjusted to different tasks, its ef-
fectiveness in some scenarios has not been thoroughly in-
vestigated. In the future, we hope to pivot our research
interests in two directions. First, for high-level tasks like
object detection [33], the scoring mechanisms are supposed
to handle the following unique challenges: (1) multi-tasks,
e.g., object localization and classification, how to reduce
the poison budget by taking these aspects simultaneously
is a critical issue; (2) multi-instance, e.g., one sample may
include several objects, how to measure the importance of
a given poisoned sample makes the problem more com-
plicated when designing the scoring methods. Secondly,
there are few works focusing on the poisoning efficiency of
non-classification tasks like natural language generation [9].
The searching method necessitates satisfying diverse loss
functions. Therefore, it may be challenging to adjust simi-
lar approaches to select the important poison samples.
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