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Abstract—Robotic Vehicles (RVs) have gained great popu-
larity over the past few years. Meanwhile, they are also
demonstrated to be vulnerable to sensor spoofing attacks.
Although a wealth of research works have presented various
attacks, some key questions remain unanswered: are these
existing works complete enough to cover all the sensor
spoofing threats? If not, how many attacks are not explored,
and how difficult is it to realize them?

This paper answers the above questions by comprehen-
sively systematizing the knowledge of sensor spoofing attacks
against RVs. Our contributions are threefold. (1) We identify
seven common attack paths in an RV system pipeline. We
categorize and assess existing spoofing attacks from the
perspectives of spoofer property, operation, victim charac-
teristic and attack goal. Based on this systematization, we
identify 4 interesting insights about spoofing attack designs.
(2) We propose a novel action flow model to systematically
describe robotic function executions and unexplored sensor
spoofing threats. With this model, we successfully discover
103 spoofing attack vectors, 26 of which have been verified
by prior works, while 77 attacks are never considered. (3) We
design two novel attack methodologies to verify the feasibility
of newly discovered spoofing attack vectors.

1. Introduction

Robotic Vehicles (RVs), such as self-driving cars, au-
tomated guided vehicles and drones, enrich our life with
myriad scenarios ranging from package delivery, house
cleaning to aerial photography. To accomplish these com-
plex missions, an RV system commonly integrates dozens
of functions to manage the physical components (i.e.,
sensors and actuators) and interact with the environments.
These functions are constructed as a closed-loop pipeline
with various stages [1]: (1) processing sensor data to
estimate the states (perception); (2) making decisions to
achieve the goals (planning); (3) taking actions to change
the states (control). In such cyber-physical systems, sen-
sors are not only the “eyes” for RVs to observe and un-
derstand the surroundings, but also critical attack surfaces
for an external adversary to tamper with the systems and
cause catastrophic consequences [2]–[5].

The key to this security threat is sensor spoofing, a
type of practical physical attack that tricks a victim RV
into taking dangerous actions. The adversary first injects
fake data into the sensors. Then these malicious data
are forwarded to the corresponding perception functions,
causing them to generate incorrect state estimates. Such
wrong perception results can further affect the subsequent

executions in the planning and control stages, and finally
lead to undesired hazards. For example, a LiDAR spoofer
can craft fake laser points to fool the object detection
function of an autonomous vehicle, which makes it rec-
ognize a non-existent obstacle ahead. This can force the
vehicle to brake hard on the highway, causing rear-end
collisions and endangering the safety of passengers [6].
A large number of works have proposed different types
of sensor spoofing attacks [7]–[17]. We ask the following
question: are existing works complete and in-depth enough
for us to understand the fundamentals of sensor spoofing
threats, and identify all potential attacks?

Unfortunately, the answer to the above question is
no. Existing works on sensor spoofing attacks fall into
two main categories. (1) Perception-level attacks [18]–[37]
target one particular perception function to make it esti-
mate incorrect states. (2) Vehicle-level attacks [6], [38]–
[84] consider not only fooling the perception function,
but also propagating the wrong state estimates towards
the subsequent stages and final actions. Both categories
of works are only limited to a few specific functions and
control flows in an RV system, leaving a large number
of unexplored threats. This indicates the existence of a
knowledge gap about sensor spoofing attacks, and modern
RV systems are vulnerable to unknown attacks.

To bridge this gap, this paper presents a systematic
study about sensor spoofing attacks against RV systems.
We make three contributions. First, we perform a thor-
ough systematization of sensor spoofing attacks (§ 3).
Particularly, we identify 7 common attack paths in the RV
system pipeline (§ 2). Then we categorize existing attacks
from 71 relevant papers, covering 6 types of mainstream
sensors and 3 types of RV systems. For each attack, we
analyze its practicality, aggressivity and stealthiness from
four perspectives: spoofer property, spoofing operation,
victim characteristic and attack goal. Based on the sys-
tematization, we also identify 4 interesting insights that
inspire researchers to explore more sophisticated attacks.

Second, we build a unified action flow model to de-
scribe the sensor spoofing attacks, and discover 77 new
unexplored threats (§ 4). The key insight of our model is to
abstract the spoofing attacks based on their action flows,
which are defined as end-to-end paths from the sensor
data to the RV’s final actions. Each robotic function in
an action flow can be the attack target, and compromising
it could directly or indirectly affect the RV’s behaviors.
Based on this unified model, we identify 44 action flows
and 103 spoofing attack vectors. By analyzing all these
103 attack vectors, we find 26 of them have been realized
previously, and they cover all the existing works. More
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Figure 1: Overview of an RV system pipeline.
importantly, 77 attacks have the potential to cause fatal
accidents. They are never considered in prior works.

Third, we propose two new attack methodologies
to validate the feasibility of the discovered unexplored
threats (§ 5). Specifically, we perform an investigation
towards these 77 attack vectors. We find most of them
can be easily realized using similar techniques from prior
works, while the rest can be categorized into two scenar-
ios: obstacle position altering using the LiDAR spoofer
and location altering using the camera/LiDAR spoofer. We
design novel approaches to achieve these scenarios. We
implement prototypes on the KITTI [85] dataset with the
PointRCNN model [86] and ORB-SLAM2 [87] simulator
to prove these attacks are practical.

2. RV System and Spoofing Attack Paths

2.1. RV System Pipeline

An RV system can be generally modeled as a set of
sensor inputs, system states, and control outputs. These
three components change over time when the RV takes
actions to interact with the environment. They are denoted
as zt, xt and ut at time t, respectively. Figure 1 shows
the workflow of an RV system. The pipeline is composed
of three stages.

Perception. The RV estimates its system states xt from
the raw sensor data zt. The system states xt include two
parts: xr

t represents RV’s operation states (e.g., velocity,
position) while xe

t represents the perceived environment
states (e.g., nearby obstacles, traffic lanes, pedestrians).

Planning. To accomplish the mission, the RV needs to
make a long-term policy (πT ) to transit its initial states
x1 to the final states xT . During the execution, it keeps
computing the instant control policy (πt) from xt to xt+1.
For instance, before a journal, a vehicle first needs to
plan a path (πT ) from the current position (x1) to the
destination (xT ). When driving along this path, the vehicle
needs to ensure that it does not encounter any obstacles
and complies with the corresponding traffic laws (πt).

Control. This stage instructs the actuators and drives the
RV to interact with the environment. The control outputs
ut depend on the instant policy πt and system states xt.
For example, an RV needs to stop or make a turn to avoid
the obstacle ahead.

2.2. Attack Paths

Threat model. Following the standard threat model in
sensor spoofing works, we assume that the adversary can-

not directly access the victim RV, altering its configuration
settings or installing malware apps. He can only change
the external environment or interfere with the sensor data.
The adversary’s goal is to tamper with the sensor inputs
(zt), which then compromise the system states xt and
control outputs (ut).

We analyze the possible attack paths (AtkPaths) in the
RV pipeline. An attack path describes how fake sensor
data can affect the subsequent function executions and
results (Figure 1). We first identify five attack paths to
compromise the RV:

• AtkPath1 ( ): The spoofer alters the operation
states xr

t (�) to destabilize the control stage (�), and
further cause abnormal actions ut (�). For example,
fake Inertial Measurement Unit (IMU) data can desta-
bilize a drone and drag it down [73].

• AtkPath2 ( ): The adversary falsifies the oper-
ation states xr

t (�) to influence the instant policy πt

(�). A misguided decision-making process will gen-
erate wrong actions ut (�) and put the RV in danger
(�). For instance, a drone is forced to land when it is
misdirected to a no-fly zone [38].

• AtkPath3 ( ): The spoofer changes the opera-
tion states xr

t (�) to mislead the long-term policy πT

(�) and then the instant policy πt (�). This contin-
uously controls RV’s actions ut (�) until it reaches a
malicious final state xT (�). For example, an adversary
can guide the vehicle to a wrong destination by contin-
uously and slightly shifting the GPS location [42].

• AtkPath4 ( ): This attack path is similar as Atk-
Path2, except that it tampers with the environment states
xe
t . For example, mis-estimating a non-existent obstacle

can force the RV to brake hard on the highway [6].
• AtkPath5 ( ): This attack compromises the en-

vironment states xe
t to achieve similar consequences as

AtkPath3. For example, an adversary can spoof the mi-
crophone to assign a wrong navigation mission to a ve-
hicle and force it to reach a designated destination [79].

The environment states xe
t sensed by the RV changes

along with the operation states xr
t . Once the actions are

compromised, the RV perceives the surroundings in unex-
pected manners and make false decisions. This is reflected
in Figure 1 where an adversary can leverage AtkPath1-3 to
achieve the attack result of AtkPath4-5. We identify such
two attack paths, and call them multi-round attack path.

• AtkPath6 ( ): It first performs AtkPath1
to influence the perceived environment and sensor mea-
surements zt (��� ), and then causes the launch of
AtkPath4 (	
��). For example, an adversary can
control the IMU data to trigger unnecessary motion
compensation and generate a blurred image. The blurred
images can then induce object misclassification to make
the RV take dangerous decisions [78].

• AtkPath7 ( ): The adversary falsifies a
malicious position xr

t and causes the change of sensor
measurements zt (���� ), which then leads to
the occurrence of AtkPath4 (	
��). For example,
when multiple traffic lights exist in the camera view,
a counterfeit position can make the vehicle confused
about different traffic lights in the region-of-interests
(ROI) and take unexpected actions because ROI utilizes
position to narrow the detection scope in the sensor [45].
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Figure 2: Illustration of sensor spoofing attacks on six mainstream sensors.

Note that there can be some other two-round attack
paths from Figure 1, including AtkPath3+4 and Atk-
Path1/2/3+5. We observe that AtkPath1, AtkPath3 and
AtkPath4 aim to trigger instant abnormal events and cause
malicious actions, while AtkPath2 and AtkPath5 focus
on continuously spoofing sensors to change the long-
term goals. Thus, it is hard to combine them in practice.
AtkPath2+5 (i.e. ) can be attacked in
theory if the vehicle performs different missions according
to its position. However, we cannot find any works about
these attacks, and will not discuss them in this paper.

2.3. Systematization Scope

This paper focuses on sensor spoofing attacks against
RVs. Although there are almost 400 types of sensors on
record [88], we consider six mainstream sensors: GPS,
LiDAR, camera, IMU, microphone, and ultrasonic sen-
sor/MMW radar. They are fully or partially integrated
into modern RVs to assist them for planning and control.
Spoofing attacks on other sensors, e.g. temperature sensor
[89], pressure sensor [90], [91] and magnetic sensor [92],
[93], are beyond the scope of this paper. Attacks against
other cyber-physical systems (e.g., smart-home speakers
[94], medical devices [95]) are not studied either.

We target three types of popular RVs (autonomous
vehicles, drones, and automated guided vehicles), which
are widely adopted in our daily life. These RV systems
follow the standard modular design and pipeline described
in § 2.1. We do not consider the end-to-end robotic
systems which utilize single machine learning models to
directly output the control command from the sensor data
[96], [97], as they are generally explored in academia, and
not ready for commercial use. Besides, we mainly focus
on the vehicle-level attacks [6], [38]–[84] , i.e., an end-
to-end attack causing malicious actions from the spoofed
perceived states to the planning and control subsystems.
Perception-level attacks [18]–[36] can be regarded as the
preliminary step for vehicle-level attacks, and will not be
particularly discussed in our systematization.

While jamming attacks [98], [99] can cause malfunc-
tions of RVs, we exclude them from this work due to
two main considerations. First, sensor jamming attacks
crudely block the perceived data instead of arbitrarily
modifying the sensor readings. This gives the adversary
less flexibility to mislead the RVs in a more precise way.
Second, jamming attacks are generally not stealthy and
easy to detect [100]. Existing works have demonstrated
solutions to defeat jamming attacks on various sensors,
such as Radar [101], [102], GPS [103], [104], and ultra-
sonic sensor [105]. Meanwhile, we do not consider cyber
attacks against RVs (e.g., software and ROS vulnerabilities
[106], [107] and in-vehicle networks [108]–[110], DNN
backdoor [111], communication protocols [112], [113],
and side-channel leakage [114]) in this work because they
do not directly target on-vehicle sensors.

Comparisons with existing surveys. A few works also
conduct surveys related to RV or sensor security. However,
they are significantly different from this paper. (1) Scope:
some papers focus on the general security and safety
problems in specific RV systems, e.g., drones [115]–[123],
autonomous vehicles [46], [124]–[133]. Some papers just
target one type of sensor spoofing, e.g., GPS [7]–[11],
camera [12]–[15] or microphone [16], [94]). Differently,
we explore various types of sensor spoofing attacks against
different RV systems. (2) Contribution: we provide a
deeper analysis and categorization on spoofing attacks
in a systematic way. We identify the common attack
paths from the RV system pipeline and assess existing
works from different perspectives. We build an action flow
model, which can not only cover existing attacks but also
disclose new unexplored threats. We also design and pro-
totype new spoofing attack approaches. These are rarely
performed in prior works. Yan et al. [17] also introduced
a sensor security model to describe spoofing attacks and
predict new vectors. It focuses on the underlying signal
processing mechanisms in each sensor at the perception
level. On the contrary, our action flow model is based on
robotic function executions and interactions at the vehicle
level, which is complementary to [17].
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TABLE 1: Systematization of sensor spoofing attacks.
Spoofer Property Spoofing Operation Victim Characteristic Attack GoalSpoofing Techniques

Cost Size Signal Recog. Range Exposure xxTypexx Scenario State Attack Path
Paper

GPS Spoofing $$/$$$ S1/S2 False R2 Active
Position

AtkPath2 [38]–[41]
AtkPath3 [41]–[43]

Object
AtkPath6 [44]
AtkPath7 [45]

LiDAR
Spoofing

laser projection $$$ S2 False R2 Active Object AtkPath4 [6], [46]–[49]
shape manipulation $$ S1 True R2 Passive Object AtkPath4 [50]

object placement $$ S1 True R2 Passive Object AtkPath4 [51]

Camera
Spoofing

sticker pasting $ S1 True R2 Passive
Object AtkPath4 [52]–[60]
Object AtkPath5 [71]
Lane AtkPath4 [69], [70]

light projection $/$$ S1

False R2 Active Object AtkPath4 [61]

True R2 Active
Object AtkPath4 [62]–[68]
Lane AtkPath4 [64], [67]

Velocity AtkPath1 [72]

IMU Spoofing $$ S2 True R2 Active
Velocity AtkPath1 [73]–[77]
Object AtkPath6 [78]

Microphone
Spoofing

inaudible voice $$$ S2 False R2 Active Mission Goal AtkPath5 [79], [80]
audio injection $ S1 False R2 Passive Mission Goal AtkPath5 [79]

Ultrasonic Sensor Spoofing $ S1 False R1 Active Object AtkPath4 [81], [82]

MMW Radar Spoofing $$$ S2 False R2 Active Object
AtkPath4 [82]–[84]
AtkPath5 [84]

Satellite Signal Visible light or infrared 2D sticker 3D object Audible sound or ultrasound RF waves

Autonomous Driving Drone Mobile Base Recog. Recognizability Indoor OutdoorInjection

3. Systematization of Existing Attacks

We first present our categorization methodology
(§ 3.1). Then we perform a literature review about sensor
spoofing attacks (§ 3.2-§ 3.7). Finally, we draw some
interesting insights from the systematization (§ 3.8). Table
1 lists the summary of these works, and Figure 2 illustrates
the basic mechanism of each attack.

3.1. Systematization Methodology

1) Spoofer Property. An adversary needs a spoofer to
interfere with the victim RV. The spoofers in different
attacks can have distinct properties, which determine the
attack cost, feasibility and stealthiness. We evaluate four
properties. a) Cost: this is the price to purchase or set up
the spoofer. We consider three levels: less than $100 ($);
between $100 and $1000 ($$); more than $1000 ($$$).
b) Size: this denotes the physical size of the spoofer. It
is easier and stealthier to perform attacks with small-size
spoofers. We consider two types: non-portable – larger
than a mug (S2); portable – smaller than a mug (S1). c)
Signal type: satellite signal ( ); visible or infrared light
( ); 2D sticker ( ); 3D object ( ); audible sound or
ultrasound ( ); and RF waves ( ). d) Recognizability:
this denotes whether the spoofer or spoofed signal can
be noticed by the victim user (True), or can conceal
themselves in the environment (False).
2) Spoofing Operation. We consider different operations
the adversary performs to attack the RV. a) Range: the
minimal distance between the spoofer and RV required
for effective interference - larger than 5m (R2); smaller
than 5m (R1). b) Exposure: this indicates whether the
adversary needs to actively expose himself to perform
attacks (A) or passively mislead the sensors (P).
3) Victim Characteristic. We also assess the at-
tacks based on two characteristics of the victim RVs.
a) Type: autonomous vehicle ( ) with various sen-
sors and strict compliance to traffic rules; drone ( )
utilizing IMU and quadrotors for stability; automated
guided vehicle ( ) with limited low-end sensors due
to cost constraints. b) Scenario: the indoor scenario
( ) or outdoor scenario ( ). There are significant dif-
ferences between indoor and outdoor RV, which must
be taken into account when designing security systems

for these vehicles. In indoor environments, GPS lo-
calization is not feasible, the RV typically relies on
Simultaneous Localization And Mapping (SLAM) or
IMUs for localization. Additionally, indoor RVs also
tend to run slower than their outdoor counterparts. This
can actually be advantageous in terms of stability and
result in less crash damage in certain attack scenarios.
4) Attack Goal. We consider the attack goal from two
dimensions. a) Compromised state: various states can be
attacked, including position, nearby obstacles (Object), the
traffic lanes (Lane), velocity and mission goals. b) Attack
path: we identify the attack path (AtkPath1-7) exploited
by the adversary, as discussed in § 2.2

3.2. GPS Spoofing Attacks

The Global Position System (GPS) is widely inte-
grated into outdoor RVs for localization. The GPS re-
ceiver calculates its position based on the information
received from multiple satellites, including pseudorange
and navigation messages. A navigation message consists
of the transmission time of the code epoch and the satellite
position at that time.

The lack of signal authentication makes GPS vul-
nerable to spoofing attacks [134]. As shown in Figure
2(a), the adversary first uses a GPS spoofer to transmit
false GPS signals with strong power to the victim GPS
receiver. These fabricated signals lure the victim to lose
track of the satellites and lock onto the attacker’s signals.
Next, the adversary can manipulate the GPS receiver by
either adjusting the apparent pseudorange to the satellite
[20] or modifying the navigation messages [18], [19]. The
counterfeit signal is then sent to the victim GPS receiver.
1) Spoofer Property. There are two common types of
GPS spoofers: GPS simulator and Software Defined Radio
(SDR). The GPS simulator is heavy, expensive but more
powerful. Generally, a complete digital GPS simulator
with the multi-GNSS capability is as big as a computer
server (size: S2) with the price between $20,000 and
$50,000 (cost: $$$) [9]. Under different configurations,
the simulator can simulate from only 10 satellite signals
(signal: ) at one time (e.g. WelNavigate GS72 [135]) to
64 simultaneous signals and multiple GNSS systems (e.g.
Orolia GSG 5/6 series [136]). In comparison, the SDR
spoofer is more popular due to its low-cost, easy-operation
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and white-box features. An attack is successfully demon-
strated against autonomous vehicles in [42] with a pen-
size SDR spoofer at the price of $223 (cost: $$, size: S1).
The GPS spoofer can be hidden in an adversarial vehicle
to emit the imperceptible but effective fake GPS signals
[42]. Thus, it is hard for the victim to notice the attack.
(recog.: False).
2) Spoofing Operation. Both the GPS simulator and SDR
spoofer need to transfer the counterfeit satellite signals
to the victim’s GPS receiver (exposure: A). They can be
launched at longer distances (e.g., 40m away [42]) from
the victim RV (range: R2).
3) Victim Characteristic. GPS spoofing has been realized
to attack drones [11], [38]–[40] and autonomous vehicles
[42], [43] in the outdoor scenario since the satellite signals
would be blocked by walls (type: , scenario: ).
4) Attack Goal. The adversary compromises the position
of the victim RV (state: Position). This can incur addi-
tional effects for the subsequent functions with different
attack paths. (1) AtkPath2: Some attacks were proposed
to control DJI drones to enter or leave a no-fly zone [38],
[39]. Once reaching the coordinates of a no-fly zone,
the drone has to perform an emergency landing, which
is unexpected. A counterfeit position can also cause a
DJI drone to fly to an incorrect destination after entering
the return-to-home mode [40]. (2) AtkPath3: Zeng et al.
[42] introduced an attack, which continuously and slightly
shifts the GPS position to manipulate the road navigation
system of an autonomous vehicle. Then the fake navi-
gation route will match the shape of the actual roads,
and induce the vehicle to a dangerous destination. Shen
et al. [43] proposed the off-road and wrong-way attacks,
which perform continuous GPS spoofing with large lateral
deviations to mislead the autonomous vehicle to drive off
the road or onto the opposite lane.

The adversary can also change the semantic informa-
tion of the objects based on the spoofed position (state:
Object). Li et al. [44] designed an attack against the
motion compensation mechanism, which uses the GPS
information to fix LiDAR distortions. By falsifying the
positions with the GPS spoofer, the adversary can compro-
mise the LiDAR-based object detection function and make
safety-critical objects undetectable by the victim vehicle
(AtkPath: 6). Tang et al. [45] proposed to manipulate the
location with GPS spoofing to affect the position of ROI in
the traffic light detection function, thus leading the victim
vehicle to run a red light (AtkPath: 7).

GPS can also be used to estimate the velocity through
differentiating two consecutive positions [137], [138].
However, most commercial RVs use IMU or camera as
the velocity estimator rather than GPS due to the accuracy.
Thus, this paper does not consider this opportunity.

3.3. LiDAR Spoofing Attacks

A LiDAR sensor is used to measure the distance
from the RV to surroundings by the Time-of-Flight (ToF)
method, i.e. firing rapid laser pulses and capturing the
reflected light using photodiodes. With such information,
the RV can recognize the shape and position of any object
in the form of point clouds.

Three basic techniques to conduct LiDAR spoofing
attacks have been proposed in existing works. (1) Laser

projection. As shown in Figure 2(b), the adversary uses
a photodiode to synchronize with the victim LiDAR, and
then delays the received laser pulses. Then he can choose
the fake points that appear in the point cloud by crafting
a pulse waveform. Previous works have demonstrated the
possibility of relaying LiDAR laser pulses from differ-
ent locations [46] or controlling fake points at different
positions in the point cloud [6], [47]–[49] for LiDAR
spoofing attacks. (2) Shape manipulation. Since each point
position in the point cloud also depends on the shapes of
the target 3D object, the adversary can craft some objects
with carefully-designed shapes to deceive the LiDAR [50].
(3) Object placement. The adversary can use existing
objects and place them in identified positions to generate
counterfeit laser points and interfere with the perception
results of the point cloud model [51].
1) Spoofer Property. (1) For the laser projection tech-
nique, the spoofer consists of a photodiode, a laser diode,
a laser driver module and a delay generator. The prices
of the first three devices are about $1, $20 and $150 re-
spectively. The delay generator costs thousands of dollars
and its size is as big as a microwave (cost: $$$, size:
S2). It spoofs fake points with the laser signal, which is
an invisible light and hard to be noticed by the victim
(signal: , recog.: False). (2) For the shape manipulation
technique, the adversary can use a 3D printer to create a
well-designed 3D object that can generate abnormal point
clouds (signal: ). A 3D printer costs hundreds of dollars
(cost: $$). The printed adversarial object commonly has
unique and noticeable shape in the physical world to
effectively fool the point cloud model [50] (size: S1,
recog.: True). (3) For the object placement technique, the
adversary places some existing objects to generate extra
laser points (signal: ). For example, the adversary can
control drones to hover around other obstacle’s locations
[51] (cost: $$, size S1). The victim passengers can be alert
when observing multiple drones constantly flying in front
of them (recog.: True).
2) Spoofing Operation. The maximum effective attack
distance of both laser projection and shape manipula-
tion techniques depends on the firing range of the Li-
DAR, which is commonly up to 100m (range: R2).
The attacks aim to fool the point cloud model for ob-
ject detection. The laser projection technique needs the
adversary to actively inject the counterfeit laser pulses
(exposure: A) while the other two techniques deceive
the LiDAR by placing the adversarial objects without
runtime intervention (exposure: P).
3) Victim Characteristic. Almost all existing LiDAR
spoofing attacks target outdoor autonomous vehicles [6],
[46]–[50] (type: , scenario: ).
4) Attack Goal. All the three techniques aim to tamper
with the perceived environment (state: Object) and lead
the RV to make wrong actions (AtkPath: 4). Specifically,
(1) some attacks create a non-existence object (e.g., wall
[46], vehicle [49], arbitrary objects [6]) in front of the
victim vehicle. This can cause two consequences: the
victim vehicle has to perform a hard brake, which could
hurt the passengers inside or cause rear-end collisions; if
the spoofed object is placed at the cross-road, it could
freeze the victim vehicle even the traffic light is green,
causing heavy traffic congestion. (2) Some attacks erase
existing objects from the victim’s perception output [47],
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[50], [51]. As a result, the victim vehicle cannot recognize
the objects and will crash into them.

3.4. Camera Spoofing Attacks

A camera is an optical-electrical device that converts
the light perceived by lens to electrical signals. The adver-
sary can alter the results by adding visual perturbations.
1) Spoofer Property. (1) The sticker-pasting technique
creates a counterfeit patch to fool the camera (signal:

). Due to the physical constraints, the adversarial patch
is still visually abnormal (size: S1, recog.: True). It is
very cheap to print such a patch (cost: $). (2) The light-
projection technique can be implemented in two ways:
using a laser pointer to shine laser beams on the target
object or into camera, or using a projector to project
adversarial images on the road or wall (signal: ). Both
spoofers are small and can be mounted on a drone [64],
[67] (size: S1). A common laser pointer costs hundreds of
dollars (cost: $), which is much cheaper than a projector
with high lumen intensity and resolutions (cost: $$). Un-
like LiDAR, camera spoofing attacks can be implemented
using either visible natural light (recog.: True) or invisible
infrared light (recog.: False) [61]. In particular, infrared
light exploits a portion of the spectrum that is invisible to
humans but detectable by cameras.
2) Spoofing Operation. Camera spoofing is commonly
launched under the post-processing setting with a large
attack range (range: R2).
3) Victim Characteristic. Most works on camera spoof-
ing attacks target the object or lane detection function in
the outdoor autonomous driving scenario [52]–[56], [61]–
[67], [69]–[71] (type: , scenario: ). One exception is
[72], which uses light-projection spoofers to counterfeit
the lateral drift velocity and induces the drone to follow
the motion to compensate the spoofed drift (type: ).
4) Attack Goal. There are different goals and attack
paths for camera spoofing attacks. (1) Object detection:
a quantity of works attack the traffic controller detec-
tion [52]–[56], [139]. They cause the vehicle to make
wrong classification results and control actions, e.g., a
stop sign is mis-classified as a speed limit sign. Some
works target the obstacle detection function to make the
RV detect a non-existence obstacle [61]–[67], or miss an
existing obstacle [54], [57]–[60], [140]. All these works
belong to the category of (state: Object, AtkPath: 4). (2)
Lane detection: some works [64], [67], [69], [70] change
the correct trajectory of the vehicle by misleading lane
markings on the highway (state: Lane, AtkPath: 4). (3)
Object tracking: Jia et al. [71] extended the sticker pasting
attack to multiple object tracking tasks, which deceives
the RV through continuously spoofing the position of the
obstacle (state: Object, AtkPath: 5). (4) Davidson et al.
[72] proposed to use the counterfeit lateral drift velocity to
destabilize the control system and cause further damages
(state: Velocity, AtkPath: 1).

3.5. IMU Spoofing Attacks

The Inertial Measurement Unit (IMU) is one core
sensor to help RVs adjust the speed of the rotors or motors
for stabilizing the balance. It consists of a gyroscope,
an accelerometer and a magnetometer to measure the

rotation, acceleration, and orientation of an RV. The IMU
commonly adopts the Micro-electromechanical (MEMS)
technology. Specifically, the gyroscope and accelerometer
use a similar mass-spring structure. Once the RV moves,
the sensing mass will vibrate continuously, which changes
the capacitance and then induces electrical signals. The
signals will be digitized by the analog-to-digital con-
verter (ADC) and output linear and angular rates. Recent
works show that both gyroscope and accelerometer are
susceptible to resonant acoustic interference [22]–[24],
[73]–[77]. As shown in Figure 2(d), the adversary can
generate sound waves with the similar frequency as the
spring-mass structure. Such acoustic signals can set up
resonance, forcing the sensing mass to move and spoofing
the designated values.
1) Spoofer Property. An IMU spoofer consists of a func-
tion generator, a sound amplifier and a tweeter speaker.
Since the resonant frequency of the victim IMU is com-
monly below 1MHz [74], [77], a $320 low-end function
generator with the maximum frequency of 20MHz is
effective for generating fake signals [75] (cost: $$, size:
S2, signal: ). It needs to be operated near its maximum
amplitude (around 110dB Source Pressure Level) [74],
[77], [78], which is hard not to be noticed (recog.: True).
2) Spoofing Operation. The attack distance of the IMU
spoofer depends on the strengths of the received mod-
ulated acoustic signal, which is further determined by
the signal transmitting power. Son et al. [73] showed
the attack distance can reach 37.58m with LRAD 450XL
[141] or UltraElectronics UyperShield [142] (range: R2).
The spoofer actively injects resonant noise to the victim
sensor (exposure: A), and induce the it to directly generate
spoofed raw data.
3) Victim Characteristic. The IMU spoofing attack can
cover almost all types of RVs for both indoor and outdoor
scenarios (type: , scenario: ).
4) Attack Goal. There are two types of goals for IMU
spoofing attacks. The first type is to tamper with the
linear or angular velocity, and make the victim RV lose
control with the spoofed velocity (state: Velocity, Atk-
Path: 1). For instance, Trippel et al. [74] proposed the
output biasing and output control attacks on the MEMS
accelerometer. They were then extended to the gyroscope
with the side-swing and switching attacks [75], [77].
Nashimoto et al. [76] further discussed the attack that
involves an accelerometer, gyroscope and magnetometer.
The second type is to spoof the sensors to fool the victim
RV for object detection (state: Object, AtkPath: 6). Ji et
al. [78] introduced a novel attack that could deceive the
image-stabilization-based objection detection function in
the autonomous driving system. They found the spoofed
IMU data can cause an object to become undetected, mis-
classified or create a non-existent object.

3.6. Microphone Spoofing Attacks

The microphone is the key component of a voice-
control system for human-RV interaction [79]. For ex-
ample, the user can issue voice commands to specify the
destination for autonomous driving, or launch a mission
by a service robot. Commonly, RVs use the MEMS mi-
crophone, which consists of a transducer, an amplifier, a
low pass filter (LPF), and an ADC. When a sound wave
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is received, the air pressure flexes the membrane in the
transducer and changes the capacitance [143]. The LPF
and ADC filter the amplified signals beyond the frequency
range of human hearing (20Hz ∼ 20kHz).

The microphone spoofing attack aims to make the
target system execute malicious voice commands without
being detected or recognized by normal users. Recent
attacks leverage two methods to achieve this goal: (Fig-
ure 2(e)). (1) Inaudible voice technique: the adversary
replays synthetic ultrasound signals and disguises them
to legitimate digital speech signals based on the nonlin-
earity of the amplifier [25]–[29], [80]. (2) Audio injection
technique: the adversary hides the adversarial audio in the
background noise or songs [30]–[34].
1) Spoofer Property. The microphone spoofer in the in-
audible voice method is similar as the IMU spoofer while
the function generator requires a much larger sampling
range (cost: $$$, size: S2). The audio injection method
can be achieved with a media player (cost: $, size: S1).
Both methods are difficult to be noticed by the victim
since the malicious voice is either inaudible or hidden
(signal: , recog.: False).
2) Spoofing Operation. Over the years, the effective
attack distance for the inaudible voice technique has been
increased from 1.75m [25] to 19.8m [80] (range: R2).
The adversary shifts a high-frequency inaudible signal
to a low-frequency audible signal, and then injects it to
the speech recognition function (exposure: A). In con-
trast, the audio injection technique aims to hide the mali-
cious acoustic commands into the normal audio waveform
(range: R2, exposure: P).
3) Victim Characteristic. Recent works on microphone
spoofing attacks target the voice-control system in au-
tonomous vehicles [79], [80] (type: , scenario: ).
Modern vehicles (e.g., Tesla [144], Audi [145], Lincoln
[146]) support a list of voice commands that will be
converted into the navigation goal, which are vulnerable
to the spoofing attacks.
4) Attack Goal. The adversary generates malicious voice
commands, which are further converted into unexpected
missions for the RV to execute (state: mission goal, Atk-
Path: 5). For instance, Yan et al. [80] applied the inaudible
voice technique [25]–[29] to manipulate some in-car fea-
tures in an Audi autonomous vehicle, such as navigation,
entertainment, environmental controls and mobile phone
control. Zhou et al. [79] discussed the possibility of using
the audio injection method [30]–[32], [34], [35] to control
navigation functions in autonomous driving systems as
well.

3.7. Ultrasonic & MMW Radar Spoofing Attack

The ultrasonic sensor and MMW radar also utilize
the ToF method to measure the distance between the
RV and an obstacle. The ultrasonic sensor transmits and
receives ultrasound waves, which have a relatively low
speed (340m/s) and are vulnerable to bad weather. There-
fore, it is commonly used in simple scenarios, such as
automatic parking. In contrast, the MMW radar relies
on the millimeter waves, and is widely used in outdoor
autonomous vehicles. It can assist LiDAR and cameras
to detect obstacles under extreme weather conditions. In
addition, it can also be used to track objects and estimate

their velocity. As shown in Figure 2(f), the adversary can
spoof these two sensors by relaying the received signal
and sending it back to the transmitter [36], [81]–[84].

1) Spoofer Property. The ultrasonic spoofer consists of
an envelope detector, ultrasonic transducers, amplification
circuits, a buffer amplifier and a square wave generator.
A recent work [81] showed an Arduino board at the price
of $20 can generate the required square waves of the
selected frequency (40∼50kHz) (cost: $, size: S1, signal:

). Due to the large frequency range in the radar, e.g.,
76∼77GHz MRR Radar installed on Tesla, an effective
spoofer that works at such high frequency can cost more
than 10 thousand dollars with a large size [82] (cost: $$$,
size: S2, signal: ). Both ultrasound and MMW radar
waves are imperceptible (recog.: False).

2) Spoofing Operation. Both attacks generate counterfeit
signals and actively inject them into the victim’s sensors
(exposure: A). The attack distance of the ultrasonic spoof-
ing attack is up to 2 meters [81] (range: R1) while that of
the radar spoofing attack can reach 26m [84] (range: R2).

3) Victim Characteristic. Both attacks target autonomous
vehicles in an outdoor scenario (type: , scenario: ).
The ultrasonic spoofing attack can also be applied in an
indoor parking lot (scenario: ).

4) Attack Goal. Existing spoofing attacks aim to create a
non-existence object in front of the victim RV or falsify
the location of an existing obstacle (state: Object). These
attacks lead to two different attack paths. (1) Some works
launch the ultrasonic spoofing attack [81], [82] against
different commercial autonomous vehicles. Miura et al.
[83] reduced the cost of radar spoofing attack by using a
replica radar and one additional small Micro-Control Unit
(MCU). Sun et al. [84] deployed radar spoofing attacks
to cause vehicle stalling, hard braking and lane changing.
These attacks follow the AtkPath4. (2) Sun et al. [84] also
proposed the multi-stage and cruise control attacks, which
lead to a high speed crash by leveraging a long-term plan
and control in autonomous driving. This is AtkPath5.

3.8. Insights and Lessons

We identify some interesting observations and lessons
from the above systematization.

Insight 1: Compared to autonomous vehicles, there
are relatively fewer attacks targeting drones and au-
tomated guided vehicles.

According to Table 1, we can observe that the majority
of works (38/48) target autonomous vehicles, which share
widely-considered attack goals and scenarios. Since all the
three types of RVs share many functions and mechanisms,
those spoofing attacks might be applied to the drones and
automated guided vehicles as well. Considering they are
playing more important roles in our daily life, such as
delivery, photography, surveillance and house cleaning,
more efforts should be devoted to the study of attacks
against them. Their unique features (e.g., limited comput-
ing resources, low-end sensors, eyes in the sky) also lead
to other types of attacks, such as cloud-based DoS attacks
[147] and privacy invasion attack [148].
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Figure 3: The action flow model of RV systems.

Insight 2: The same attack path and consequence can
be triggered by different sensors and spoofers, thus
giving the adversary more choices to conduct attacks.

As shown in Figure 1, each attack path starts from
the mis-estimated states (�/	) and ends with abnormal
actions (�). So once the operation or environment state
is compromised, the subsequent wrong executions will
occur correspondingly. The goal of the attack on RVs is
to spoof the RV’s state and ultimately cause it to perform
dangerous actions. Since some sensors provide similar
functionalities to RVs (e.g., LiDAR and camera), attackers
can achieve the same attack goal through different attack
paths. It is important to note that even though the attack
results may be the same, the attack methods can be
different depending on the sensor being used for state
estimation. This insight can inspire us to analyze spoofing
attacks that go from sensor to actuator and thus identify
more unexplored attacks. For instance, the SLAM func-
tion enables an RV to localize itself with the camera or
LiDAR inputs. Then the position-dependent AtkPath2 and
AtkPath3 related to the GPS spoofers in Table 1 can also
be implemented by the camera or LiDAR spoofers. The
adversary can choose the most convenient and efficient
attack solution to achieve his desired goal.

Insight 3: There are much fewer studies about the
multi-round spoofing attacks.

Among all the seven attack paths, AtkPath6 and Atk-
Path7 are multi-round attacks, which are the combinations
of two single-round paths: the adversary first exploits an
xr
t -related attack path to change RV’s perceived envi-

ronmental measurements, and then causes the spoofing
attack on an xe

t -related path. The interaction between the
RV and its surrounding environment bridges these two
distinct attack paths. From Table 1, we observe there are
only 3 out of 42 works exploring two specific multi-
round attacks: target blurring and ROI altering attacks. We
hypothesize that the lack of such studies is due to the com-
plexity of multi-round mechanisms and RV-environment
interactions. We believe there are more opportunities for
designing such attacks. On one hand, researchers can use
other sensor spoofers to implement the target blurring

and ROI altering attacks; on the other hand, more multi-
round attack paths besides AtkPath6 and AtkPath7 can be
explored in the future.

Insight 4: GPS, Microphone, MMW Radar spoofing
and laser projection are more stealthy than others.

A successful spoofing attack should be stealthy enough
to avoid the detection of the victim. To achieve this, we
identify the following combinations of spoofer character-
istics. (1) Passive exposure + small size: a passive attack
is to hide the spoofer in the environment without human
intervention, so it is hard for the victim to recognize the
existence of the spoofer. Thus, the spoofer is imperceptible
as long as it is small enough and highly integrated into
the environment, e.g., the audio injection attack. (2) Active
exposure + imperceptible signal + remote attack range:
Spoofing at a long distance (e.g. 10 meters) is stealthy
even if someone is observing, because spoofers are too
small to be identified at such a long distance. In addition,
the imperceptible signal (e.g., GPS, laser, ultrasonic and
MMW radar) allows the victim to detect the attack only by
observing the cheater at a distance, which further ensures
the stealthiness. We encourage that other spoofing attacks
can improve their stealthiness from these two dimensions.

4. A Unified Model for Spoofing Attacks

We propose a novel action flow model to systemati-
cally describe the spoofing attacks. This model not only
covers all the existing attacks summarized in § 3, but also
reveals new attacks that are never considered previously.

4.1. Action Flow Model

Existing studies on sensor spoofing attacks tend to
follow an ad-hoc way: researchers first identify the mis-
estimated state that can incur the desired consequence, and
then design the spoofing methodology that can falsify the
state. The lack of systematization cannot guarantee the
comprehensiveness of the discovered unexplored sensor
spoofing threats. To address this limitation, we build an
action flow model to abstract possible control flows in
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different RV systems and scenarios. Each control flow can
lead to some potential spoofing attacks. It is important
to note that the action flow and attack path are different:
action flow only describes an RV system while attack path
is an extension of action flow with security considerations.
More specifically, attack path is a higher-level abstraction
of RV systems, helping distinguish the target states of
each sensor spoofing attack. Action flow is specific to
each sensor type and the function type inside the system,
helping identify new unexplored attacks.

Figure 3 shows our action flow model, which con-
sists of 12 interacted robot functions. This is established
by surveying the function compositions and interactions
of various RVs from both industrial ecosystems [149],
[150] and academic papers [106], [112], [151]. Among
them, sensors directly interact with five functions: Objec-
tion Detection, Segmentation, Localization/SLAM, Speech
Recognition and Distance Detection. Then these functions
further interact with other subsequent functions. First, Ob-
jection Detection recognizes nearby obstacles in real-time.
Then Object Tracking assigns each predicted obstacle an
ID and dynamically tracks it. Meanwhile, Segmentation
estimates the static environmental information. Combining
these two, Environment Prediction estimates the obstacle
trajectories with probabilities/priorities. Second, Local-
ization/SLAM estimates the operation states of the RV
based on the known/unknown map. This information is
the key to judge which obstacles in the surrounding en-
vironment have a high possibility of interacting with the
RV. Third, Speech Recognition provides an interface for
executing new tasks through human-computer interaction.
Goal Planning transfers each task goal to a set of sub-
tasks and dispatches them to other planning functions.
For example, Path Routing calculates a path from the esti-
mated position to the destination given by Goal Planning.
Parking/Landing Planning plans a set of trajectories to
complete the parking or landing task. Both the planned
path and the trajectory will be sent to Motion Planning,
which outputs the suitable velocity to avoid obstacles.
Finally, Motion Controller transfers this velocity to each
actuator and ensures the stability of the RV.

The five functions (Objection Detection – Distance
Detection) are the main targets for the adversary to com-
promise the RV system. We define the action flow (Act-
Flow) as a complete flow from one sensor to a final control
function1. Then we hypothesize that each action flow
could give rise to some sensor spoofing vectors, where
the adversary can tamper with the corresponding sensor
data to affect RV’s final actions. Table 3 in the appendix
lists 44 possible action flows with the corresponding attack
paths. A single-round action flow refers to the flow going
from the perception to control stages once, while a multi-
round action flow goes through the pipeline multiple times
with the interaction between the RV and environment. We
observe that some action flows have been exploited to
launch sensor spoofing attacks, while most have not been
investigated yet, leaving a large unknown attack surface
for RV systems.

We obtain three interesting observations from the sum-
mary of these action flows and attack vectors. (1) Most

1. An action flow (ActFlow) provides more information than an attack
path in § 2.2 since it is at the granularity of robotic functions

existing works design the attacks heuristically, and they
mainly focus on the immediate action damage from the
mis-estimation of RV states. (2) Some action flows require
specific function compositions and sensor types. They
can only be launched against specific types of RVs. (3)
Spoofing attacks based on multi-round action flows are
rarely considered by prior works due to their complex
mechanisms. Only three papers discussed these attacks.
Below we give detailed analysis about each type of spoof-
ing attacks.

4.2. Attack Vector Analysis

Some action flows may share the same composition
and interactions of robotic functions, and only differ in
the target sensors. The corresponding spoofing attacks will
have common characteristics. To simplify the analysis,
we treat these action flows as the same flow pattern
(FlowPtn). Then the 44 action flows lead to 14 different
flow patterns.

Table 2 summarizes these attacks with different target
sensors and spoofing techniques. Each attack falls into one
of two cases: (1) there are already existing works realizing
this attack. We list the references in the corresponding
cells. Most of these works have been empirically verified
and tested on simulators (e.g., Baidu Apollo [149]) or
physical world. (2) There is no existing work exploring
this attack, yet it is possible and realistic. In § 4.3, we
further analyze and categorize them into three cases based
on the attack feasibility ( // // ). Below we discuss
the mechanism of each flow pattern, while detailed attack
scenarios are illustrated in Figure 4.

1) FlowPtn 1 (Object Detection→Motion Planning→
Motion Controller): This flow pattern contains the action
flows of ActFlow1,3,10. They are responsible for avoiding
obstacles and taking correct actions based on the traffic
controller, such as traffic lights and signs. To achieve
correct motion planning, the RV needs to obtain the
accurate position and property of these traffic controllers.
We summarize three possible attacks that can manipu-
late the objects and compromise the executions (Figure
4.FlowPtn1). (i) Obstacle Appearing: the RV mistakenly
recognizes a non-existent obstacle in front. Then it brakes
hard and stops at the intersection even if the traffic light
is green. (ii) Obstacle Missing: the RV fails to detect an
existing obstacle in front, and crash into it directly. (iii)
Traffic Controller Misclassification: the RV misclassifies
the traffic sign or traffic light into a wrong category and
takes dangerous actions.

According to Table 2, we observe that a number of
attack vectors have been realized in prior works while
some have never been explored. Specifically, there is no
related work focusing on obstacle appearing attack using
shape manipulation, object placement and sticker pasting
spoofers. Moreover, for the obstacle missing, one possible
attack is to simply use radar absorbing material to imple-
ment. Recently, LiDAR is also used for traffic controller
classification [152], but no work explores misclassification
attack using LiDAR spoofers.

2) FlowPtn 2 (Object Detection→Object Tracking→Env
Prediction→Motion Planing→Motion Controller): This
pattern includes action flows ActFlow2,4,11. They focus
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TABLE 2: Possible attacks in different flow patterns.
LiDAR CameraFlow

Pattern
Possible Attacks

(Target Function) MMW Radar LP SM OP SP LP GPS IMU Ultrasonic
Sensor Microphone

Obstacle Appearing (A1) [82]–[84] [6], [46]–[49] [61], [64], [67], [68]
Obstacle Missing (A1) [48] [50] [51] [54], [57]–[60] [62], [66]FP1 Traffic Controller
Misclassification (A1)

AF1
[ ]

AF3
[ ]

[52]–[56] [61]–[65], [67]

AF10
[ ]

Trajectory Appearing (B) [84] [71]
Trajectory Missing (B) [71]FP2
Trajectory Altering (C1)

AF2
[ ]

AF4
[ ]

[71]

AF11
[ ]

FP3 Lane Altering (A2) [69], [70] [67]
AF12
[ ]

FP4 Deviating Position
Altering (E)

AF8
[ ]

AF16
[ ]

[41], [43]
AF21

[ ]
AF26
[ ]

FP5 Predicted Priority
Altering (C1)

AF5
[ ]

AF13
[ ]

AF18
[ ]

AF23
[ ]

Target Deviating
Position Altering (D1) [41], [42]

FP6 Loop Closure
Failure (A3)

AF6
[ ]

AF14
[ ]

AF19
[ ]

AF24
[ ]

Destabilizing Velocity
Altering (F) [74]–[77]

FP7 Destabilizing Position
Altering (F)

AF9
[ ]

[72]

AF17
[ ]

AF22
[ ]

AF27
[ ]

FP8 Specific Location
Altering (D2)

AF7
[ ]

AF15
[ ]

[38]–[40]
AF20
[ ]

AF25
[ ]

FP9 Obstacle Distance
Altering (A5) [81], [82]

AF31
[ ]

FP10 Lateral Distance
Altering (A5)

AF32
[ ]

FP11,
12,13

Target Goal
Generation (C2) [79], [80]

AF28-30
[ ]

Target Blurring (A3) [44] [78]FP14 ROI Altering (A3)
AF39-41
[ ]

AF36-38
[ ] [45]

AF42-44
[ ]

AF33-35
[ ]

// // : Unexplored attacks LP/SM/OP: Laser Projection/Shape Manipulation/Object Placement SP/LP: Sticker Pasting/Light Projection
A1: Object detection A2: Segmentation A3: Localization/SLAM A4: Speech recognition A5: Distance detection B: Object tracking

C1: Environment prediction C2: Goal planning D1: Path routing D2: Parking/Landing planning E: Motion planning F: Motion controller
FP: Flow Pattern AF: Action Flow

on tracking the dynamic targets and predicting their tra-
jectories. Similar to Flow Pattern 1, we consider three
possible attacks that manipulate the tracked target or
predicted trajectory (Figure 4.FlowPtn2). (i) Trajectory
Appearing: the adversary can fool the RV to assign a
track id to a non-existent object and then brake hard to
avoid hitting it. (ii) Trajectory Missing: the spoofer can
make the victim RV loss the tracking target, which could
shorten the safe distance and cause the RV to crash into
the target. (iii) Trajectory Altering: the adversary alters
the predicted trajectory of the target. This can also reduce
the safe distance with potential vehicle crashes.

From Table 2, we can observe that recent work [84]
has discussed the possibility of trajectory appearing using
the radar spoofer and only one related work [71] has
designed all these three attacks through the sticker pasting
spoofer. However, the implementation using other sensor
spoofers are never considered.

3) FlowPtn 3 (Segmentation→Env Prediction→Motion
Planning→Motion Controller): This flow pattern includes
ActFlow12, which identifies the road conditions (e.g.,
lanes) and guides RV’s motion control. Thus, one possible
attack is Lane Altering, which makes the RV identify
wrong traffic lanes (Figure 4.FlowPtn3). Past works have
demonstrated such attack using sticker pasting [69], [70]
and light projection spoofing [67].

4) FlowPtn 4 (Localization/SLAM→Motion Planning
→Motion Controller): This flow pattern (Act-
Flow8,16,21,26) assists the localization of the RV.
For example, autonomous vehicles need to drive in
the center of the lane for safety. The Localization
function helps the vehicle determine if it is on the right
track. Thus, one possible attack is Deviating Position
Altering, which exploits this lateral deviation to cause
mis-prediction of RV’s location. As shown in Figure
4.FlowPtn4, the RV is spoofed to a position away from
the lane. Due to the false position, the RV takes actions
to move in the opposite direction and further drive
off the road pavement or on the wrong ways. Table 2
summarizes that such attack has only been realized by

the GPS spoofer [43]. Due to the different demands on
the cost and scenario, some Localization functions only
depend on LiDAR [153], camera [154] or IMU sensor
[155], thus spoofing on these sensors can also achieve
the same attack consequence.

5) FlowPtn 5 (Localization/SLAM→Env Prediction→
Motion Planning→Motion Controller): This pattern cov-
ers the action flows of ActFlow5,13,18,23. They predict
whether the RV should take actions due to surrounding
objects. The predicted outcome is one of three priorities:
ignore, caution and normal. The first two indicate the
object will not and will most likely affect RV’s trajectory,
while the last one indicates other conditions by default.
Thus, one possible attack is Predicted Priority Altering,
which misleads the RV from the caution priority to the
ignore priority, thus taking dangerous actions subsequently
(Figure 4.FlowPtn5). It can be launched by targeting Li-
DAR, camera, GPS or IMU sensors. There are no prior
works realizing such attack vector.

6) FlowPtn 6 (Localization/SLAM→Path Routing→ Mo-
tion Planning→Motion Controller): These action flows
(ActFlow6,14,19,24) control the RV to navigate from
one location to another or map an unknown area, i.e.,
SLAM. Two possible attacks are introduced by generating
wrong paths or causing failure of the mapping task: (i)
Target Deviating Position Altering: the RV is guided to
a wrong destination (Figure 4.FlowPtn6(a)); (ii) Loop
Closure Failure: the RV fails to assert that it returns to
a previously visited location so that the map cannot be
correctly generated (Figure 4.FlowPtn6(b)).

From Table 2, the target deviation position altering
attack has been realized in [42], which adopts the GPS
spoofer to slightly shift RV’s position to make the fake
navigation route match the shape of the actual roads.
As we discussed in FlowPtn 4, spoofing other sensors
can achieve the same consequence as well, especially for
indoor RVs without GPS sensors. There are no prior
works realizing the loop closure failure attack. We can use
the GPS spoofer to mislead the RV to a fake position when
recognizing the previous map, or use other sensor spoofers
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Figure 4: Illustration of spoofing attacks on flow pattern 1-11.

to directly modify the perceived object to mismatch the
previous landmarks (§ 5.2).

7) FlowPtn 7 (Localization/SLAM→Motion Controller):
These action flows (ActFlow9,17,22,27) aim to stabilize
the RV based on the variance of the velocity or posi-
tion. For example, drones need to dynamically adjust the
fuselage to prevent overturning, or adjust its position to
maintain hovering according to the changes of the ground
below. Thus, two possible attacks can be proposed to
destabilize the RV (Figure 4.FlowPtn7). (i) Destabilizing
Velocity Altering: the adversary forges an angular veloc-
ity in a single direction and makes the RV overturned.
(ii) Destabilizing Position Altering: the spoofer creates a
continuous slight difference on the ground that misleads
the RV to laterally move to a designated position.

As presented in Table 2, many works use the IMU
spoofer to alter the destabilizing velocity [74]–[77]. Since
the camera [156] or LiDAR [157] is also used to estimate
odometry through matching the position of extracted fea-
tures in two adjacent frames/point cloud data, spoofing
these sensors is another way to achieve such attacks. To
the best of our knowledge, GPS is rarely used as the
odometry estimator. Davidson et al. [72] realized the
destabilizing position altering attack on a drone using
a light projection spoofer. If an adversary can slightly
move a sticker pasting spoofer on the ground while the
drones hovers, such attack can also be achieved. Besides,
spoofing false LiDAR points or GPS signals can modify
the hovering height.

8) FlowPtn 8 (Localization/SLAM→Parking/Landing
Planning→Motion Planning→Motion Controller): This
pattern covers the action flows of ActFlow7,15,20,25,
which control specific RV tasks, such as parking or land-
ing. To complete the action flow, the RV is provided
with one target location. Thus, one possible attack is
Specific Location Altering, where the adversary triggers
the launch of these tasks at wrong time or locations. As
shown in Figure 4.FlowPtn8, by spoofing a location to a
no-fly zone, the victim drone is enforced to perform an
immediate landing. Table 2 shows related works on such

attack based on the GPS spoofer. If an adversary needs to
implement such attack on the RV using LiDAR or camera
for localization, he can construct a similar environment to
cheat the loop-closure system by the LiDAR or camera
spoofer. Besides, spoofing IMU to accumulate position
errors can also achieve the same effect.
9) FlowPtn 9 (Distance Detection→Parking/Landing
Planning→Motion Planning→Motion Controller): This
flow pattern refers to ActFlow31, which ensures the safe
distance between the RV and obstacles in the parking or
landing tasks. Thus, one possible attack is Obstacle Dis-
tance Altering, which uses the ultrasonic sensor spoofer
to shorten this distance and cause the RV to brake hard
(Figure 4.FlowPtn9) [81], [82].
10) FlowPtn 10 (Distance Detection→Motion Con-
troller): The action flow ActFlow32 is responsible for
ensuring a lateral safe distance between the RV and nearby
cars encroaching on its lane. Therefore, we propose a
new attack: Lateral Distance Altering. As shown in Fig-
ure 4.FlowPtn10, by deploying many ultrasonic spoofers
along the roadside, the vehicle needs to frequently change
different directions to ensure it is safe within the desig-
nated road lane. This could make the autonomous driving
less smooth, and annoy or even hurt the passengers. This
attack is realizable but no prior works ever considered it
(Table 2).
11) FlowPtn 11,12 and 13 (Speech Recognition→Goal
Planning→[Path Routing/Parking/Landing Planning: Mo-
tion Planning]/-→Motion Controller): These three action
flows focus on launching and performing various missions
according to the user’s voice commands. They are vulner-
able to the Target Goal Generation attack, which triggers
malicious missions using a microphone spoofer. It has
been implemented in prior works [79], [80].
12) FlowPtn 14 (Localization/SLAM→Motion Controller
� Object Detection): Finally, we consider multi-round
action flows2. There are two observations that lead to two
attack vectors. (i) The quality of the perceived images

2. In this paper, we only consider two-round ActFlows. Attacks with
more rounds are more complex, and will be investigated as future work.
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or laser points highly depends on the stabilization of
the RV. For example, the jitters of camera or LiDAR
can cause blurred images and irregular distributions of
point clouds. Hence, we have the Target Blurring attack,
which spoofs the sensors to jitter the RV and cause the
failure of object detection in LiDAR or camera (Figure
4.FlowPtn11(a)). (ii) The ROI depends on the current
position of the RV. Therefore, we have the ROI Altering
attack, which falsifies well-designed positions and alters
the detected ROI. As shown in Figure 4.FlowPtn11(b),
the vehicle mis-estimates the traffic signals based on the
second traffic light rather than the first one due to the
spoofed position.

As shown in Table 2, past works realize the target
blurring attacks against the motion compensation mecha-
nism in autonomous vehicles to blur the images [78] and
point clouds [44]. For other RVs that do not adopt this
compensation mechanism (e.g., indoor automated guided
vehicles and drones), we can use other spoofers to cause
jitters. Tang et al. [45] implemented an ROI altering attack
with the GPS spoofer. Also, spoofing other location-
related sensors can also achieve the same consequence.

4.3. Feasibility Analysis

With the action flow model, we have identified 77
unexplored threats that are not considered in prior works
and have the potential to cause fatal accidents. Below we
discuss the feasibility of these attacks from three cases.

C1. Learn from each other ( ): In LiDAR spoofing
attacks, we summarize three techniques: laser projection,
shape manipulation and object placement. They are ac-
tually able to achieve the same compromised state (i.e.,
spoofing the same points) by using an active LiDAR
spoofer, creating and placing an adversarial object, respec-
tively. As a result, a new attack based on one spoofing
technique is also feasible if this attack has been realized
with another technique. For example, in FlowPtn1, the
implementation of obstacle appearing attack using LiDAR
object placement can be inspired by the same attack
with laser projection [6], [46]–[49]. Similarly, the two
techniques for camera sensors (sticker pasting and light
projection) can also target the same perception function,
and their attacks have similar feasibility.

C2. Easy to prove ( ): (1) The obstacle missing at-
tack (ActFlow1) and trajectory missing attack (ActFlow2)
using radar can be simply implemented by using radar
absorbing materials. Moreover, trajectory altering attack
can also be implemented by combining existed appear-
ing attacks. (2) Traffic controller misclassification attack
using LiDAR (ActFlow3) can be easily transferred from
camera. For example, an adversary can leverage a laser
beam to change the semantic information of a traffic sign.
(3) Loop closure failure attack (FlowPtn6.SLAM). The
SLAM algorithm helps the RV recognize a visited loca-
tion. By adding enough visual noise in the critical region
of the environment, the RV will fail to detect the loop
closure and then generate the wrong map. (4) Destabiliz-
ing velocity altering attacks based on LiDAR or camera
spoofing (ActFlow9,17). The LiDAR- or camera-based
odometer estimates RV’s velocity based on the offset of
the detected point clouds/pixels. As prior works [50], [51],

Figure 5: An example of obstacle position altering.

[54], [57]–[60], [66] have shown that both two sensors can
be spoofed to lose the target (FlowPtn1), these techniques
can also cause wrong estimates of the odometer to realize
these attacks. (5) Attacks based on GPS spoofing (Act-
Flow18,19,22). GPS spoofing is more mature than other
spoofing attacks, thus predicted priority altering attack can
be easily achieved (ActFlow18). Note that GPS is rarely
used as the main sensor for mapping (ActFlow19) and
odometry (ActFlow22). (6) Attacks based on IMU spoof-
ing (ActFlow23,24,26,33-35). These attacks aim to alter
RV’s position. They can be realized following the desta-
bilizing velocity altering attack using the IMU spoofer
(ActFlow27), which can cause the accumulative error.

C3. Need to validate ( ): (1) Trajectory appearing,
missing and altering attacks based on LiDAR spoofing
(FlowPtn2, ActFlow4). Past work [71] only demonstrated
a camera-based sticker pasting method for these attacks
(ActFlow11) . It is unknown whether we can spoof the
LiDAR to achieve the same result. (2) Attacks based
on camera spoofing (ActFlow13,14,16,36-38) or LiDAR
spoofing (ActFlow5,6,8,39-41). They are built on the as-
sumption that the SLAM function can be fooled to re-
localize the RV to a false position. To show their practi-
cality, we design two novel methodologies and implement
prototypes in the next section.

5. Two Novel Attack Methodologies

We present two new approaches to validate the feasi-
bility of attack vectors in case 3 (§ 4.3). We believe each
approach has sufficient technical novelty and contributions
as an individual research project. Due to the page limit,
we only describe the basic mechanism and evaluation. We
expect researchers can extend them to design more spoof-
ing attacks, since they are the basis of the 36 unexplored
vectors in case 3.

5.1. Obstacle Position Altering (LiDAR)

RVs utilize state-of-the-art DNN models to interpret
3D point clouds captured by the LiDAR for object detec-
tion. In general, a 3D object detection model M extracts
features from the input point cloud X , and outputs a set
of bounding boxes Y = M(X). Each box is attached to a
detected object with its location Yloc, size Ysize, heading
Yh, and confidence score C of predicted categories. Boxes
with the confidence score lower than a threshold will be
filtered out, and the remaining box is the detected object.

The goal of our attack is to fool M to mis-recognize a
moving object in a wrong location, and then the RV will
mis-estimate the object’s trajectory. Figure 5 shows an
example. There is a running vehicle in front of the victim
RV. The adversary can spoof the point clouds to mislead
the victim that this vehicle was switching to the left
lane. Then the RV will accelerate, and the safety distance
will be reduced, which can cause car crash (FlowPtn2,4).
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Figure 6: Position altering attack on PointRCNN.

Note this attack is different from existing LiDAR spoofing
attacks [6], [46]–[51], which manipulate the existence of
static obstacles. Our attack aims to alter the predicted
trajectory of a moving object. Although the same attack
goal has been realized by camera spoofing [71], our attack
targets the LiDAR-based RVs (e.g., Baidu Apollo), and is
technically more challenging due to the complex and non-
differentiable feature of point cloud models.

Formally, we inject an adversarial object x∗ into the
original input X . The model output Y ∗ = M(X+x∗) has
the same size and category as Y . However, its location
Y ∗
loc and heading Y ∗

h are different. To craft a qualified
x∗, we adopt a common object (e.g., drone) and try to
find a malicious placement s∗ = (x∗, y∗, z∗, α∗, β∗, γ∗)
in the environment, where the first three variables denote
its location, and the last three denote its orientation. s∗ can
maximize the distance between the predicted and original
locations of the bounding box:

max
s∗

||Y ∗
loc, Yloc|| (1)

We can use an optimization method to identify s∗.
The challenge is that the optimization objective is non-
differentiable, and it is hard to calculate the gradient. To
address this issue, we follow [158] to estimate the gradient
as below:

�̂s∗LM(s∗) =
1

m

m∑

i=1

LM(s∗ + εui) ∗ ui

ε
(2)

where ui is a random variable with a uniform distribution;
ε is a positive smoothing factor; LM is the loss function
to quantify the MSE distance between Y ∗

loc and Yloc. m
is a hyperparameter to control the gradient estimation.

Algorithm 1 details the optimization process. The
adversary iteratively adjusts the location and orientation
of the adversarial object to affect the bounding box of the
target obstacle. In each iteration, we estimate the gradient
with Eq. 2, and use Project Gradient Descent (PGD) to
update the gradient.

Algorithm 1 Position Altering Attack

INPUT: clean point cloud X; # of attack iterations N ; loss threshold
θ; target object to be altered T ; adversarial object x∗

OUTPUT: adversarial object placement s∗.
1: Initialize: s∗
2: for j = 0; j < N ; j ++ do
3: grad = 0; counter = 0; i = 0
4: while i < m do
5: loss = LM(s∗ + ε ∗ ui)
6: if loss > θ then
7: i = i+ 1
8: grad = grad+ (loss/ε) ∗ ui

9: end if
10: grad = grad/m
11: s∗+ = sign(grad) ∗ ε
12: end while
13: end for

It is worth noting that we focus on the trajectory al-
tering attack in ActFlow4. There are also two attacks (tra-

Figure 7: Failure of loop closure in the ORB-SLAM2
simulator.

jectory appearing and missing) in this action flow. They
can be achieved using the same method by changing the
optimization objective adaptively: instead of maximizing
the location distance, we can manipulate the confidence
score C of the bounding boxes to create a non-existence
target, or hide an existing target. Due to the page limit,
we leave this as future work.
Experiments. We choose PointRCNN [86], one of the
most widely used LiDAR detection models. We use the
popular KITTI dataset [85] to train this model, where the
samples are collected by the Velodyne HDL-64E Lidar.
We use a drone as the adversarial object due to its flex-
ibility and stealthiness [51]. The location of the drone is
restricted to a space of 3m * 3m * 1m around the target
vehicle. We set ε = 0.1, and s∗ is initialized as random
values between [−1, 1].

Figure 6 shows the outcome of our position altering
attack. The objective of this attack was to deceive the
victim vehicle’s LiDAR and cause a misestimation of the
position of the front vehicle. This was achieved by utiliz-
ing a drone and iteratively optimizing its pose through
50 iterations using Algorithm 1. We can observe the
PointRCNN model in the victim vehicle was successfully
manipulated, leading to a wrong prediction of the position
of the front vehicle shifting to the left. This incorrect
estimation could result in the victim vehicle accelerating
and overtaking, potentially causing a rear-end collision.

5.2. Location Altering (Camera/LiDAR)

SLAM is widely adopted in many RVs for localiza-
tion and mapping. State-of-the-art SLAM algorithms take
camera images or LiDAR point clouds as input. One key
module in SLAM is loop closure, which checks if the RV
has returned to a previously mapped region to reduce the
uncertainty in the map estimation. Different algorithms
share the similar idea in loop closure detection: the RV
constructs the surroundings of the current location with
the sensor data, and compares them with the established
global map. A loop closure is detected when the similarity
between the current environment and a part of the map is
higher than a threshold. To attack the loop closure func-
tion, the adversary can modify the environment to increase
the similarity between two distinct locations. Then the RV
will mistakenly think a new location is visited before, and
mis-estimate its location. This leads to a series of spoofing
attacks (ActFlow5,6,8,13,14,16,36-41).
Experiments. We target ORB-SLAM2 [87], the most
popular real-time SLAM algorithm in both academia and
industry. We implement this algorithm in a simulated
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environment with its default setting, and choose a mid-size
city in KIITI [85] as our experimental scenario. During the
SLAM process, the vehicle extracts the FAST keypoints
[159] and ORB descriptors [160] from each frame. It
calculates the similarities between the current and past
frames based on their relative scale, position and angles of
the keypoints. A loop closure is reported if this similarity
exceeds a pre-defined threshold.

As shown in Figure 7, we try to cause false loop
closure on two distinct locations: the current keyframe is a
T-turn intersection, while the target keyframe is a straight
road. We increase their similarity by two means: (1)
moving certain physical objects from the target keyframe
to the current keyframe (purple box); (2) adding some
patches to both keyframes (yellow box). We hope to bring
minimum changes to the environment, so we carefully
select the objects and patches that are relatively small but
contain many FAST keypoints. They are either printed
out as patches to stick on the wall, or used as references
to find the same objects and place them in the current
frame. We maintain the relative scale and position of the
selected objects in two scenes so that they can effectively
contribute to the similarity calculation.

After adding the patches and objects, we get 34 pairs
of matched keypoints between the current and target
keyframes (divided into 3 groups based on the relative an-
gles, connected by green, blue and red lines, respectively),
which fulfill the ORB-SLAM2 loop closure requirements.
The green boxes in the left side of Figure 7 denote the
current positions of the autonomous vehicle in the map.
When the vehicle reaches the intersection, it mistakenly
detects a loop closure, and relocates itself to the position
of the target frame. This verifies the feasibility of the
location altering attack.

6. Discussion and Future Work

6.1. Attacks against Multi-Sensor Fusion

This paper mainly discusses spoofing attacks with sin-
gle sensors. Modern RV systems start to integrate Multi-
sensor Fusion (MSF) algorithms to smooth out errors
and uncertainties of each single sensor and improve the
perception robustness. As our action flow model is built
upon the interaction among robotic functions, it can de-
scribe these sophisticated attacks against MSF as well.
For instance, some MSF-based object detection functions
use LiDAR data to assist the camera to discern the depth
range [149], [161]–[163]. The adversary can use a single
LiDAR spoofer to make the obstacle closer to the victim
and cause collisions [164]. Cao et al. [50] observed that
the shape of a 3D object can cause position changes in
LiDAR point clouds as well as pixel value changes in
camera images. Then they proposed a spoofing method
to blind the MSF-based object detection by optimizing a
3D-printed obstacles. Both two attacks can be categorized
as action flow AF3.

6.2. Spoofing Defenses

We focus on spoofing attacks, and the systematization
of defense solutions is not covered in this paper. Generally,

defense works can be classified into two categories: (1)
Detection: the defender aims to identify the existence
of the spoofing activities [92] or fake signals [165]. (2)
Prevention: the defender tries to correct the spoofed data
or state by filtering [166], randomization [47], fusion [81],
etc. Interested readers can refer to [17] for more details.

An interesting direction is to leverage our action flow
model to build a unified defense. Since the model depicts
the interactions between RV functions, it can also iden-
tify the key to mitigate corresponding attacks. Each flow
pattern consists of multiple functions, and each function
may be subject to a spoofing attack. So we can design
methodologies for system monitoring at the function level,
and combine them to detect anomalies in different flows.
Our proposed defensive scheme focuses on using the
interaction between different action flows to detect attacks,
while the scheme in [17] relies on the feature of each
victim function for monitoring and prevention, such as
adaptive filtering and randomization. We leave this as
future work.

6.3. More Evaluations

In § 5 we present the feasibility and preliminary
results of two proposed attack methodologies. They can
be further extended in the following ways. (1) We can
optimize the attack designs. For instance, for the obstacle
position altering attack, we can test more common objects
to generate the fake points. For the location altering attack,
we can try to reduce the number of injected obstacles and
patches when increasing the similarity. (2) We give some
examples to show the success of the attacks. More quanti-
tative evaluations and comparisons can better demonstrate
their effectiveness. (3) We evaluate the attacks with the
dataset and simulator. Physical experiments will make the
results more convincing. In the future, we will improve the
attacks from these aspects, and also realize other attack
vectors analyzed in § 4.3.

7. Conclusion
In this paper, we first systematize the knowledge of

sensor spoofing attacks against RV systems. Then an
action flow model is introduced to describe existing at-
tacks and predict new attack vectors. Our model and
analysis can benefit RV researchers and practitioners in
understanding the unexplored sensor spoofing threats, and
inspecting their designs. We also propose two new attack
methodologies against the trajectory tracking and loop clo-
sure detection. We expect these methodologies can inspire
researchers to improve our identified attack vectors, and
design the corresponding defenses.
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TABLE 3: All the possible action flows that can be spoofed and the corresponding works.
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AtkPath1 [72] ActFlow17 FlowPtn7

GPS

AtkPath3 - ActFlow18 FlowPtn5
AtkPath3 [41], [42] ActFlow19 FlowPtn6
AtkPath2 [38]–[40] ActFlow20 FlowPtn8
AtkPath3 [41], [43] ActFlow21 FlowPtn4
AtkPath1 - ActFlow22 FlowPtn7

IMU

AtkPath3 - ActFlow23 FlowPtn5
AtkPath3 - ActFlow24 FlowPtn6
AtkPath2 - ActFlow25 FlowPtn8
AtkPath3 - ActFlow26 FlowPtn4
AtkPath1 [73], [74], [77] ActFlow27 FlowPtn7

Microphone
AtkPath5 [79], [80] ActFlow28 FlowPtn12
AtkPath5 [79], [80] ActFlow29 FlowPtn11
AtkPath5 [79], [80] ActFlow30 FlowPtn13

Ultrasonic Sensor
AtkPath4 [81], [82] ActFlow31 FlowPtn9
AtkPath4 - ActFlow32 FlowPtn10
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IMU � Env - �
Env � Camera AtkPath6 [78] ActFlow33
Env � LiDAR AtkPath6 - ActFlow34
Env � Camera AtkPath7 - ActFlow35

FlowPtn14

Camera � Env - �
Env � Camera AtkPath6 - ActFlow36
Env � LiDAR AtkPath6 - ActFlow37
Env � Camera AtkPath7 - ActFlow38

FlowPtn14

LiDAR � Env - �
Env � Camera AtkPath6 - ActFlow39
Env � LiDAR AtkPath6 - ActFlow40
Env � Camera AtkPath7 - ActFlow41

FlowPtn14

GPS � Env - �
Env � Camera AtkPath6 - ActFlow42
Env � LiDAR AtkPath6 [44] ActFlow43
Env � Camera AtkPath7 [45] ActFlow44

FlowPtn14
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