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Secure Decentralized Image Classification with
Multiparty Homomorphic Encryption

Guowen Xu, Guanlin Li, Shangwei Guo, Tianwei Zhang, Hongwei Li

Abstract— Decentralized image classification plays a key role
in various scenarios due to its attractive properties, including
tolerating high network latency and less prone to single-point
failures. Unfortunately, training such a decentralized image
classification model is more vulnerable to data privacy leaks
compared to other distributed training frameworks. Existing
efforts exclusively use differential privacy as the cornerstone to
alleviate the threat to data privacy. However, differential privacy
is implemented at the expense of accuracy, which goes against our
motivation for designing an image classification model without
loss of accuracy. To address this problem, we propose D2-MHE,
the first secure and efficient decentralized training framework
with lossless precision. Inspired by the latest developments in
the homomorphic encryption technology, we design a multiparty
version of Brakerski-Fan-Vercauteren (BFV), one of the most
advanced cryptosystems, and use it to implement private gradient
updates of users’ local models. D2-MHE can reduce the commu-
nication complexity of general Secure Multiparty Computation
(MPC) tasks from quadratic to linear in the number of users,
making it very suitable and scalable for large-scale decentralized
learning systems. Moreover, D2-MHE provides strict semantic
security protection even if the majority of users are dishonest with
collusion. We conduct extensive experiments on MNIST, CIFAR-
10, and ImageNet to demonstrate the superiority of D2-MHE.
Experimental results show that D2-MHE achieves up to 5.5×
reduction in computation overhead, and at least 12× reduction
in communication overhead compared to existing schemes.

Index Terms—Privacy Protection, Decentralized Image Classi-
fication, Homomorphic Encryption.

I. INTRODUCTION

Image classification with deep learning technology has been
widely used in various scenarios, including face recognition
[1], object detection [2], and information forensics [3], [4].
To achieve satisfactory performance for complex image clas-
sification tasks, modern deep learning models need to be
trained from excessive computing resources and data samples.
A conventional approach is centralized training (Figure 1(a)):
each user is required to upload his training samples to a third
party (e.g., the cloud server), which has enough computing
resources to produce the final model. However, this fashion
raises widespread privacy concerns about training data [5].
Intuitively, an untrusted third party has a financial incentive
to abuse sensitive data collected from different users, such as
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malicious dissemination, packaging, and selling them to the
black market.

To alleviate the above problem, one potential way is to split
and distribute the training task to the users, who only need to
train the models locally and then share the gradients without
disclosing their private data. As a result, untrusted third parties
do not have access to users’ data, and the privacy risk of
training data is effectively reduced. For example, in federated
learning, a central server collects the gradients from all these
users, aggregates them, and distributes the new gradient to
each user (Figure 1(b)). In a decentralized learning system,
the central server is eliminated, so each user autonomously
exchanges gradients with its neighbors and updates its model
(Figure 1(c)).

Although users do not release their training samples in
these distributed systems, the adversary can still infer the
attributes of these samples or even reconstruct the original
samples [6], [7] from the shared gradients. This threat is more
severe in decentralized learning than in federated learning
[8], [9], as any user connected to an honest user can ac-
cess its gradients and compromise its data privacy, making
the potential attack domains and methods more diversified
and concealed. Since decentralized learning exhibits higher
robustness to network delays and single point of failure, it
becomes more promising and suitable for distributed training
with large numbers of users. Therefore, it is necessary to have
an efficient and privacy-preserving decentralized deep learning
framework. Unfortunately, privacy protection of decentralized
learning systems is still in its infancy. Although a wealth of
works have been proposed to protect the privacy of federated
learning [10], [5], [11], [12], they cannot be easily extended to
the decentralized learning scenario due to its unique network
topology and gradient propagation mechanism.

In particular, existing privacy-preserving deep learning so-
lutions are mainly evolved from the following technologies.
(1) Differential Privacy [13]: this approach adds controllable
noise to the users’ data, gradients, or intermediate values to
obfuscate the adversary’s observations while maintaining the
training accuracy. However, its implementation enforces the
need to sacrifice a certain degree of accuracy if satisfactory
security is guaranteed, which is contrary to the aim of this
paper to design an image classification model without loss
of accuracy. (2) Secure Multi-Party Computation (MPC) [14]:
this approach enables multiple entities to securely compute
arbitrary functions without revealing their secret inputs. It
has been widely used in centralized and federated learning
systems [15], [16], [17]. However, it is hard to be grafted to
the decentralized scenario due to the lack of central servers,
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Fig. 1: Different types of training systems. (a) Centralized learning: each user i uploads its dataset Di to a central server,
which trains a specific model in a centralized manner. (b) Federated learning: each user train a local model with its own
dataset. A central server is introduced to aggregate the gradients ∆wi uploaded by each user i. Then, each user updates the
local model using the aggregated value (global parameter ∆W ) returned by the server. (c) Decentralized learning: each user
trains its own local model, and exchanges gradients with other users interconnected with it in the network. Meanwhile, it
collects the gradients from the neighbors, aggregates them and updates its local model.

thus executing the secret sharing protocols across users is
rather inefficient. (3) Homomorphic Encryption (HE) [11]: this
approach enables the calculation of arbitrary (approximate)
polynomial functions in a ciphertext environment without
the need for decryption. It has been widely used in private
deep learning [18], [19], [5]. However, it requires expensive
calculations for function evaluation under ciphertext, which
can significantly affect the efficiency of decentralized learning.
(4) Other Emerging Technologies: Some emerging techniques,
such as the fractal sorting method [20], [21], [22], can be ex-
plored to encrypt gradients in decentralized systems. However,
in this paper, we require the underlying technology to perform
ciphertext operations (including addition and multiplication)
on the premise of encryption. These schemes currently have
limited support for ciphertext operations, which may result in
poor execution performance. More analysis of the limitations
of these solutions is given in Section II.

Driven by the above limitations, our goal is to remedy the
gap in the practicality of decentralized learning for protecting
the training data privacy. We propose D2-MHE, a practi-
cal, privacy-preserving and high-fidelity decentralized training
framework. D2-MHE is built based on the HE technology
with innovations to address the computational bottleneck of
ciphertext operation and distributed decryption. We explore
the benefits of a state-of-the-art HE method, Brakerski-Fan-
Vercauteren (BFV) [23], and extend it to a multiparty version
for privacy-preserving decentralized learning.

Specifically, the BFV cryptosystem is a fully homomorphic
encryption scheme based on the Ring Learning with Error
(RLWE) problem. It supports both addition and multiplication
operations in ciphertext. Compared to standard BFV, the main
difference from our multiparty version is that the decryption
capability is divided into N users. This means that the
public key pk used for encryption is disclosed to all users,
while the secret key sk is divided into N shares and can
only be recovered with the collaboration of N users. As a
result, to construct such a multiparty version, all algorithms
that require sk as input need to be modified to meet the

needs of distributed decryption. In detail, we construct four
new functions (MBFV · SecKeyGen, MBFV · PubKeyGen,
MBFV · Bootstrap and MBFV · Convert) based on the stan-
dard BFV cryptosystem, to support system secret key gen-
eration, public key generation, distributed bootstrapping, and
ciphertext conversion in a decentralized environment, respec-
tively (see Section IV-B for more details). The four novel
functions in D2-MHE can satisfy the following properties.

First, all constructed functions are bound to the given NP-
hard problem, to ensure the semantic security of the D2-
MHE cryptosystem. Second, the BFV cryptosystem reduces
the security of the scheme to the famous NP-hard problem
(i.e., Decision-RLWE [24]) by adding controllable noise in
the ciphertext. Noise must be erased in the decryption process
to ensure the correctness of the decryption. D2-MHE follows
such security guidelines, but accumulates more noise in the
process of generating the public key pk (See Section IV-B).
Moreover, this accumulated noise will be transferred to other
operations that require pk as input. Therefore, to ensure the
correctness of the decryption, we carefully control the scale
of the noise added to the newly constructed functions. Third,
in the standard BFV, the decryption is performed by a party
holding the secret key. However, in D2-MHE, this must be
done without revealing sk. Obviously, once sk is revealed, all
local gradients that users previously encrypted with pk will
be leaked. To achieve this, we design a new method to realize
ciphertext conversion [25] in BFV, i.e., converting a ciphertext
originally encrypted under the public key of the system pk into
a new ciphertext under the recipient’s public key pk′.

To the best of our knowledge, D2-MHE is the first work
to accelerate the performance of decentralized learning by
using cryptographic primitives. It provides the best accuracy-
performance trade-off compared to existing work. Our contri-
butions can be summarized as follows.

• We design a novel decentralized training framework
D2-MHE with the multiparty homomorphic encryption.
Compared to existing work, it reduces the communication
overhead of each round of gradient update from quadratic
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to linear in the number of users without sacrificing the
accuracy of the original model.

• We provide a rigorous security proof for D2-MHE.
Theoretical analysis shows that D2-MHE can provide
semantic security even if most of the users participating
in the training are dishonest and collude with each other.

• We conduct extensive experiments on MNIST, CIFAR-
10 and ImageNet to demonstrate the the superiority of
D2-MHE in performance, including the advantages of
communication and computation overhead compared with
existing similar schemes.

The remainder of this paper is organized as follows. Section
II discusses related work on privacy-preserving solutions and
limitations. In Section III, we review some basic concepts and
introduce the scenarios and threat models in this paper. In
Section IV, we give the details of our D2-MHE. Security
analysis and performance evaluation are presented in Sections
V and VI, respectively. Section VII concludes the paper.

II. RELATED WORKS

We review existing privacy-preserving solutions for deep
learning, which can be classified into following categories:
Differential Privacy, Secure Multi-Party Computation (M-
PC), Homomorphic Encryption (HE), and Other Emerging
Technologies. We provide a comprehensive investigation as
follows.

A. Differential Privacy (DP)

Differential privacy relies mainly on the addition of control-
lable noise to the user’s local data, gradient, or intermediate
value, to realize the confusion of user data, but to ensure
training performance [26], [27]. Several works [28], [8], [9],
[29], [30], [31] have been designed for decentralized training
scenarios. For example, Cheng et al.[8] propose LEASGD,
which achieves a predetermined privacy budget by adding ran-
dom noise to the users’ local gradients and calibrates the noise
scaling by analyzing the sensitivity of the update function in
the algorithm. Bellet et al. [29] also design a completely
decentralized algorithm to solve the problem of personalized
optimization, and use differential privacy to protect the privacy
of user data. Other works, like A(DP )2SGD [31] and ADMM
[9], implement the perturbation of the gradients of each user
with similar tricks.

Limitations: It is still unclear whether differential neural
network training can provide a satisfactory utility-privacy
trade-off for common models. This stems from the inherent
shortcomings of differential privacy: achieving a strong level
of privacy protection requires injecting a large amount of noise
during model training, which inevitably reduces the model
accuracy [32], [33](See SectionVI-A).

B. Secure Multi-Party Computation (MPC)

MPC allows multiple participants to securely compute ar-
bitrary functions without releasing their secret inputs [34],
[35]. It has been widely used in conventional deep learning
scenarios, including centralized learning and federated learn-
ing [15], [36], [16], [17]. Most of these efforts rely on users

to secretly share (utilizing Shamir’s Secret-Sharing [37] or
Additive Secret-Sharing [38]) local data or gradients to two
or more servers, and require an honest majority to perform
deep learning training and prediction without collusion. In this
way, frequent secret sharing between users is avoided, and
the complexity of communication overhead is reduced from
O(N2) to O(S2), where N and S represent the numbers of
users and servers, respectively.

Limitations: It is convincing to explore MPC-based pro-
tocols in centralized or federal learning, because third-party
servers naturally exist in these scenarios. However, grafting
MPC to a decentralized scenario has the following limitations.
(1) Decentralized learning abandons central servers to avoid
a single point of failure and communication bottlenecks. As
a result, it is conflicting to transplant the existing MPC-based
training mechanism to a decentralized mode. A trivial idea to
alleviate this problem is to execute the secret sharing protocol
between users directly, which is rather inefficient since each
user needs to perform N − 1 interactions for secret sharing at
each iteration [39] (refer to Section VI-C). (2) The existing
MPC technology generally requires that most of the entities
involved in the calculation are honest and will not collude with
each other [15], [36], [16], [17]. This is done to ensure smooth
execution of calculations. In other words, if the majority of
entities are dishonest and collude with each other, there is a
high probability that execution will be terminated or errors
will occur. However, a strong security framework should be
able to withstand attacks from adversarial collusion. In a
decentralized scenario, the need for such a security guarantee
is more urgent because any user can obtain the gradient of
other users connected to it and then easily collude with some
malicious users to break the privacy of the target user.

C. Homomorphic Encryption (HE)

(Fully) homomorphic encryption can achieve the calculation
of arbitrary (approximate) polynomial functions in ciphertext
without the need for decryption [40], [41]. Such an attractive
nature makes it widely used in private deep learning [18], [19],
[5], [11]. Informally, we can divide HE into the following two
types with different decryption methods: (1) standard HE [42],
[43] is used mainly for model inference, where the public key
is released to all participants, while the secret key is only held
by the decryptor (e.g., the user). (2) In threshold-based HE
[44], [45], [46], the secret key is securely shared with multiple
entities. As a result, each entity still performs a function
evaluation under the same public key, while decryption of
the result requires the participation of the number of entities
exceeding the threshold. Several threshold-based HE variants
[46], [44], [47] have been used in the federated learning
scenario, and one of the most representative is the threshold
Paillier-HE [46]. For example, Zheng et al. [11] propose
Helen, the first secure federated training system utilizing the
threshold Paillier-HE. In Helen, each user’s data are encrypted
with Paillier-HE and submitted to an “Aggregator”, which is
responsible for performing aggregation. Then, the Aggregator
broadcasts the aggregated results to all the users to update
the local model parameters. When the trained model reaches
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the preset convergence condition, the model parameters can be
decrypted by collaboration of multiple users without revealing
the original private key.

Limitations: Threshold Paillier-HE requires substantial
modular exponential operations for the evaluation of functions
in ciphertext and requires expensive calculations among mul-
tiple users for decryption. In a decentralized scenario, each
user receives gradients from neighboring users and aggregates
them to update its local model. This inevitably produces worse
performance if threshold Paillier-HE is simply used as its
underlying architecture (please refer to Section VI for more
details). Other variants like TFHE [44], are possibly applicable
to the decentralized environment. However, TFHE can only
encrypt one bit at a time, which is obviously unrealistic to
achieve practical training.

D. Other Emerging Technologies

Some emerging techniques, such as fractal sorting method
[20], [21], [22], have recently been proposed for encrypt-
ing images and have demonstrated good performance. For
example, Xian et al. proposed fractal sorting matrix (FSM)
[20], a new type of sorting matrix with fractal characteristics.
Then they propose a new method of global pixel diffusion
with two chaotic sequences, which offers good security and
high encryption efficiency. Xian et al. also presented the
double parameters fractal sorting matrix (DPFSM) [21], which
contains self-similar structures in the ordering of both elements
and sub-blocks in the matrix. The image encryption algorithm
based on DPFSM is demonstrated to have semantic security
and excellent encryption performance. However, since this
paper we aim to perform efficient decentralized gradient
aggregation on ciphertexts, which requires the underlying
cryptography to enable mathematical operations between ci-
phertexts, a property that fractal sorting method does not
possess. Therefore, we do not consider how to use these
emerging techniques to perform gradient updates in this paper,
leaving the exploration to the future.

Remark 1: Based on the above discussions, we argue that
differential privacy-based and MPC-based approaches are con-
trary to our motivation and the characteristics of decentralized
learning systems. In contrast, threshold-based HE seems to
be more promising, if it can be freed from the computational
bottleneck of ciphertext operation and distributed decryption.
Inspired by this, this paper focuses on exploring the benefits
of a state-of-the-art HE method, Brakerski-Fan-Vercauteren
(BFV), and the possibilities to extend it to a multiparty version
for privacy-preserving decentralized learning.

III. PRELIMINARIES

In this section, we first review some basic concepts about
decentralized parallel stochastic algorithms and BFV homo-
morphic encryption. Then, we describe the threat model and
privacy requirements considered in this paper.

A. Decentralized Parallel Stochastic Algorithms

As shown in Figure 1(c), a decentralized system can be
represented as an undirected graph (V,E), where V denotes a

set of N nodes in the graph (i.e., users in the system1), and E
denotes a set of edges representing communication links. We
have (i, j) ∈ E if and only if node i can receive information
from node j. Ni = {j|(i, j) ∈ E} represents the set of all
nodes connected to node i. E ∈ RN×N is a doubly symmetric
stochastic matrix to denote the training dependency of two
nodes. It has the following two properties: (i) Ei,j ∈ [0, 1]
and (ii)

∑
j Ei,j = 1 for all i. Commonly for a node i, we

can set Ei,j = 0 if node j /∈ Ni and Ei,j = 1/|Ni| otherwise.
For neural network training in such a decentralized system,

all nodes are required to optimize the following function [48],
[49]:

min
W∈RH

G(W ) =
1

N

N∑
i=1

EX∼DiLi(W,X) (1)

where W ∈ RH denotes the parameters of the target model.
The distribution of training samples for each user is denoted
as Di, and X ∈ RM represents a training sample from the
distribution. For each node i, Li(W,X) = L(W,X) denotes
the loss function.

Decentralized Parallel Stochastic Gradient Decay algorithm
(D-PSGD) [49] is usually used to solve the above optimization
problem. Its main idea is to update the local model by
requiring each user to exchange gradients with their neighbors
(technical details are shown in Algorithm 1). In this paper,
our goal is to implement D-PSGD in a privacy-preserving way.

Algorithm 1 Decentralized Parallel Stochastic Gradient Decay
Input: Initialize W0,i = W0, E, step length η, and K.

1: for k = 0, 1, 2, · · ·K − 1 do
2: Each node i select sample Xk,i and calculate ∆Wi =

OLi(Wk,i, Xk,i).
3: Receive Wk,j of all nodes in Ni, node i calculates

Wk+ 1
2
,i = Ei,iWk,i +

∑
j∈Ni

Ei,jWk,j

4: Node i computes Wk+1,i ←Wk+ 1
2
,i − η∆Wi

5: Node i broadcast Wk+1,i to all nodes in Ni.
6: end for

Output: 1
N

∑N
i=1WK,i.

B. BFV Homomorphic Encryption

The BFV cryptosystem [23] is a fully homomorphic encryp-
tion scheme based on the Ring-learning with error (RLWE)
problem. It supports both addition and multiplication opera-
tions in ciphertext. In this section, we briefly introduce the
basic principles of the standard BFV algorithm used in the
centralized scenario. In Section IV, we will explain in detail
how to convert this standard BFV to the multiparty version
and enable decentralized training.

Suppose the ciphertext space is composed of polynomial
ring Rq = Zq[X]/(Xn+1), and the quotient ring of polynomials
with coefficients in Zq , where Xn + 1 is a monic irreducible
polynomial with degree of n = 2b. The set of integers in
(−q2 ,

q
2 ] is used to denote the representatives of the congruence

1In this paper we use the terminologies of node and user interchangeably.
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classes modulo q. Similarly, the plaintext space is denoted as
the ring Rt = Zt[X]/(Xn+ 1) where t < q. We use Λ = bq/tc
to represent the integer division of q by t. Unless otherwise
stated, we consider the arithmetic of Rq . Therefore, the symbol
of polynomial reductions is sometimes omitted from the BFV
execution. Informally, the standard BFV encryption system
consists of the following five algorithms.

1. BFV · SecKeyGen(1λ) → sk: Given the security param-
eter λ, this algorithm selects an element s uniformly on the
polynomial ring R3 = Z3[X]/(Xn + 1), where the coeffi-
cients of every polynomial in R3 are uniformly distributed
in {−1, 0, 1}. Then, it outputs the secret key sk = s.

2. BFV · PubKeyGen(sk)→ pk: Given the secret key s, this
algorithm selects an element p1 uniformly on the polynomial
ring Rq and an error term e from χ. χ is a distribution over Rq
with coefficients obeying the centered discrete Gaussian with
standard deviation σ and truncated to support over [−B,B].
Then it outputs pk = (p0, p1) = (−(sp1 + e), p1). According
to the current version of the homomorphic encryption standard
[50], (σ,B) are set as ( 8√

2π
≈ 3.2, b6 · σe = 19). As a result,

the selected noise is not only random, but its norm is controlled
between [−19, 19] (please refer to [23], [50] for more details
of the parameter settings).

3. BFV · Encrypt(pk, x) → ct: Given the public key pk =
(p0, p1), this algorithm samples an element µ uniformly from
R3 and two error terms e0, e1 from χ. Then, it outputs the
ciphertext ct = (Λx+ µp0 + e0, µp1 + e1).

4. BFV · Eval (pk, f, ct1,ct2, · · · , ctN ) → ct′: Given the
public key pk, the function f to be evaluated, and N(N ≥ 1)
ciphertext inputs (ct1,ct2, · · · , ctN ), this algorithm outputs the
ciphertext result ct′. Note that since BFV supports addition
and multiplication operations in ciphertext, it is feasible to
securely evaluate a function f that can be (approximately)
parsed as a polynomial. To achieve this, BFV uses BFV · Add
and BFV ·Mul operations to perform homomorphic addition
and multiplication, respectively, and uses relinearization key
(rlk) to ensure consistency of the ciphertext form after each
multiplication. In addition, BFV · Bootstrap is used to reduce
the noise of the ciphertext back to a fresh-like one, which
enables further calculations even if the noise of the current
ciphertext reaches the limit of the homomorphic capacity. The
reader can refer to [23] for more details.

5. BFV · Decrypt(sk, ct) → x: Given the secret key s
and the ciphertext ct = (c0, c1), this algorithm outputs the
decrypted plaintext x =

[⌊
t
q [c0 + c1s]q

⌉]
t
, where [c0 + c1s]q

denotes c0 + c1s mod q.
The security of the BFV cryptosystem is reduced to the

famous Decisional-RLWE Problem [24]. Informally, given a
random a, a secret key s and an error term e uniformly
sampled from Rq , R3 and χ, respectively, it is computationally
difficult for an adversary to distinguish the two distributions
(sa+e, a) and (g, a) without the knowledge of s and e, where
g is uniformly sampled from Rq .

C. Threat Model and Privacy Requirement

As shown in Figure 1(c), we consider a decentralized
learning system with N users. Each user i with a local dataset

Di adopts the D-PSGD algorithm to collaboratively train a
deep learning model with others. In this paper, each user is
considered to be honest but curious, i.e., they follow the agreed
procedure to perform the training task, but may try to obtain
the private data (i.e., gradients) of other users along with the
collected prior knowledge. As a result, attacks from malicious
adversaries by violating the execution of the protocol are
beyond the scope of this paper. Such a threat model has
been widely used in existing works about privacy-preserving
machine learning [18], [35], [5], [39]. Moreover, we allow
the collusion of the majority of users to enhance the attack
capabilities. Specifically, for the union composed of user i
and its set of connected nodes Ni, i.e., U = i ∪Ni, collusion
of at most |U − 1| = |Ni| users is allowed at any training
stage, where |Ni| denotes the number of users in the set Ni.
Our goal is to protect the confidentiality of sensitive data (i.e.,
gradients) for each benign user. This means that during the
training process, we should guarantee that no user i can learn
the gradient ∆Wj of any benign user j, except those that can
be inferred from its own input data ∆Wi.

IV. PROPOSED SCHEME

We present a novel privacy-preserving framework, Decen-
tralized Deep learning with Multiparty Homomorphic Encryp-
tion (D2-MHE), which enables N users to train the target
model collaboratively under the decentralized network. We
first give the overview of D2-MHE for implementing the D-
PSGD algorithm with the multiparty version of BFV, and then
further explain the detailed algorithms.

A. Overview

Essentially, in D2-MHE, users iteratively execute the D-
PSGD algorithm with the Multiparty BFV (MBFV) cryptosys-
tem. The complete algorithm is shown in Algorithm 2, where
the newly constructed functions (marked in red) are intro-
duced to convert the standard BFV into a multiparty version.
During decentralized training, each node requires additional
operations to securely execute the D-PSGD compared to the
original algorithm, including generating additional variables
for encryption/decryption, and modifying certain operations to
implement the ciphertext calculations. We describe each step
in Algorithm 2 as well as Figure 2.

(1) In the initialization phase, each node i generates its
own secret key ski and public key pki using the standard
BFV. Then, for each set Ni, i ∈ [1, N ], a new function
MBFV · SecKeyGen is used to generate shares (si, sj |j ∈ Ni)
of the system secret key sk = s, where s = si +

∑
j∈Ni

sj .
Then, a new function MBFV · PubKeyGen is exploited to
generate the public key pk corresponding to s. Note that
for two different Ni and Nj , we need to repeat the above
key generation process to ensure that distinct key pairs are
produced for each group.

(2) For each node j, instead of sending the original gra-
dient Wk,j to other neighboring nodes, it uses the standard
BFV · Encrypt to send the ciphertext E(Wk,j) (line 6 and
Figure 2(a)) to all the connected users i ∈ Nj .
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Fig. 2: A high-level view of our D2-MHE. (a) Step 1: Exchange encrypted local parameters with connected nodes. (b) Step
2: Each node locally aggregates parameters from other nodes. (c) Step 3: Each node interacts with connected nodes to convert
the local aggregated value into ciphertext under its own public key. (d) Step 4: Each node decrypts the aggregated value and
updates the local parameters.

Algorithm 2 Privacy-preserving D-PSGD

Input: Each node i generates ski ← BFV · SecKeyGen(1λ) and pki ← BFV · PubKeyGen(ski). For each set Ni, i ∈ [1, N ], nodes i and
j ∈ Ni generate (si, sj |j ∈ Ni)← MBFV · SecKeyGen(1λ) where s = si +

∑
j∈Ni

sj . Initialize W0,i = W0, E, η, and K.
1: Each node i cooperates with the nodes in Ni to generate pk ← MBFV · PubKeyGen(si, sj |j ∈ Ni)
2: Each node i broadcasts pki to all nodes j ∈ Ni.
3: for k = 0, 1, 2, · · ·K − 1 do
4: Each node i performs the following operations in parallel:
5: Randomly select sample Xk,i and calculate ∆Wi = OLi(Wk,i, Xk,i)
6: Obtain E(Wk,j) ← BFV · Encrypt(pk,Wk,j) from all j ∈ Ni, and calculate E(Wk+ 1

2
,i) with the algorithm

MBFV · Bootstrap(ct, si, sj |j ∈ Ni) as follows:

E(Wk+ 1
2
,i)← BFV · Eval(pk, f,E(Wk,i),E(Wk,j)|j ∈ Ni)

where f = Ei,iWk,i +
∑
j∈Ni

Ei,jWk,j .
7: Broadcast E(Wk+ 1

2
,i) to all nodes j ∈ Ni.

8: Convert E(Wk+ 1
2
,i) into a new ciphertext E′(Wk+ 1

2
,i)← MBFV · Convert(E(Wk+ 1

2
,i), pki, si, sj |j ∈ Ni) with pki.

9: Decrypt E′(Wk+ 1
2
,i) as Wk+ 1

2
,i ← BFV · Decrypt(ski,E′(Wk+ 1

2
,i)).

10: Update Wk+1,i ←Wk+ 1
2
,i − η∆Wi.

11: Broadcast E(Wk+1,i)← BFV · Encrypt(pk,Wk+1,i) to all nodes in Ni.
12: end for
Output: 1

N

∑N
i=1WK,i.

(3) Each node i calculates the encrypted weighted average
E(Wk+ 1

2 ,i
) with the help of a new function MBFV · Bootstrap

(Figure 2(b)), which is the multiparty bootstrapping procedure.
MBFV · Bootstrap can reduce the noise of a ciphertext (such
as the intermediate value ct in line 6) back to a fresh-like
one, which enables further calculations even if the noise of the
current ciphertext reaches the limit of homomorphic capacity.

(4) To securely decrypt E(Wk+ 1
2 ,i

), we construct a new
function MBFV · Convert, which can obliviously re-encrypt
E(Wk+ 1

2 ,i
) that is originally encrypted under the system public

key pk, into a new ciphertext E′(Wk+ 1
2 ,i

) under the recipient’s
public key pki (line 8 and Figure 2(c)).

(5) As a result, each node i can decrypt E′(Wk+ 1
2 ,i

) with
its secret key ski, and then update its local model parameters
(lines 9-10 and Figure2(d)).

To sum up, in D2-MHE, we construct four new
functions (MBFV · SecKeyGen, MBFV · PubKeyGen,
MBFV · Bootstrap, and MBFV · Convert) based on the
standard BFV cryptosystem, which are used to support system
secret key generation, public key construction, distributed
bootstrapping procedure, and ciphertext conversion in a
decentralized learning environment. Note that the functions
MBFV · SecKeyGen and MBFV · PubKeyGen are only

executed once during the entire training process. Besides, all
nodes encrypt their local gradients under the same public key
pk and broadcast to other nodes. As a result, compared with
existing MPC-based works, where each node needs to secretly
share its gradients to all neighbors, our method only requires
each user to broadcast a ciphertext to all users. Therefore,
from the perspective of the whole system, D2-MHE reduces
the communication overhead of each round of gradient update
from quadratic to linear without sacrificing the accuracy of
the original model.

Remark 2: Our D2-MHE is inspired by work [38], which
proposes a cryptographic primitive called multiparty homo-
morphic encryption from ring-learning-with-errors. However,
there are three major differences between [38] and our work,
which makes [38] incompatible with our scenario. (1) [38] fo-
cuses on the construction of relinearization keys for multiparty
HE, thereby ensuring the correctness of multiplication between
ciphertexts. It is hard to apply it to our system which mainly
consists of ciphertext aggregation operations rather than multi-
plications. (2) [38] considers to convert a ciphertext originally
encrypted under the system secret key into a new ciphertext
under the recipient’s secret key which is securely shared with
other users. In our system, we need access to the recipient’s
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public key instead of the secret key. (3) [38] is mainly designed
for scenarios such as private information retrieval and private
set intersection, while our scheme is tailored to decentralized
learning. Due to the above differences, compared to [38], our
proposed algorithms are more concise and efficient and are
more suitable for decentralized deep learning.

B. Detailed Implementations of the Four Functions

We provide the details of the above four newly constructed
functions in D2-MHE. For readability, we take the variables
in Algorithm 2 as inputs/outputs of the functions.

1. MBFV · SecKeyGen(1λ) → (si, sj |j ∈ Ni): Given a
security parameter λ, this function generates shares (si, sj |j ∈
Ni) of the system secret key sk = s for each setNi, i ∈ [1, N ].
In this paper, we focus on additive secret sharing [38] of the
key, i.e., s = si +

∑
j∈Ni

sj , which can also be replaced
by Shamir’s threshold secret sharing [37] with less strict
requirements. We propose a simple method to implement
MBFV · SecKeyGen(1λ), i.e., each user independently gener-
ates si through the standard BFV · SecKeyGen(1λ). Then, we
can simply set s = si+

∑
j∈Ni

sj . This means that s is not set
beforehand but is determined when all nodes have generated
their own shares. The advantage of generating s in this way
is that each node i does not need to share its si with others.
It is a common way to generate a collected key and has been
proven to be secure [46], [51]2. Note that (pk, sk) is bound
to each Ni = {j|(i, j) ∈ E}, rather than generated for all
nodes in the system. Given two different Ni and Nj , the key
pairs generated for these two groups do not need to be the
same, since this will not affect the subsequent homomorphic
calculation and decryption.

2. MBFV · PubKeyGen(si, sj |j ∈ Ni) → pk: This process
is to emulate the standard BFV · PubKeyGen procedure, i.e.,
generating the public key pk = (p0, p1) corresponding to s. To
achieve this, all users should agree on a public polynomial p1,
which is uniformly sampled in the distribution Rq . Then, each
node i and all nodes j ∈ Ni independently sample ei, ej over
the distribution χ, and compute p0,i = −(p1si + ei), p0,j =
−(p1sj + ej), j ∈ Ni. Next, each node k ∈ i ∪Ni broadcasts
p0,i to other nodes. Therefore, each node k ∈ i ∪Ni can
construct the public key of the system by performing the
following operations:

pk = ([
∑

k∈i∪Ni

p0,k]q, p1) = ([−(p1
∑

k∈i∪Ni

sk +
∑

k∈i∪Ni

ek)]q, p1)

We observe that pk generated with this way has the same form
as the public key generated by the standard BFV · PubKeyGen,
but with a larger norm of ||s|| and ||e||, where ||s|| and ||e||
denote the 2-Norm for vectors s and e, respectively. The
growth of norms is linear with |Ni|, therefore, it is not a
concern (proved in [44], [47]), even for a large number of
|Ni| (See discussion below).

2The s generated in this way may not conform to the property of being
uniformly distributed under R3. However, this is not a problem because our
security proof (refer to Section V) does not rely on this property. Furthermore,
there are many other ways [11], [52] to generate uniform keys that are subject
to the distribution R3, which require private channels between users.

3.MBFV · Convert(E(Wk+ 1
2 ,i

), pki, si, sj |j ∈ Ni) →
E′(Wk+ 1

2 ,i
): This function is used to convert E(Wk+ 1

2 ,i
) into

a new ciphertext E′(Wk+ 1
2 ,i

) under the public key pki. As
a result, node i can decrypt it with its secret key without
accessing the system secret key s. To achieve this, given node
i’s public key pki = (p0,i, p1,i), and E(Wk+ 1

2 ,i
) = (c0, c1),

each node k ∈ i ∪Ni samples µk, e0,k, e1,k over the
distribution χ and executes the following operations:

(h0,k, h1,k) = (skc1 + µkp0,i + e0,k, µkp1,i + e1,k) (2)

Then, each (h0,k, h1,k) is submitted to node i. Subse-
quently, node i first computes h0 =

∑
k∈i∪Ni

h0,k, and
h1 =

∑
k∈i∪Ni

h1,k, and then generates the new ciphertext
E′(Wk+ 1

2 ,i
) = (c′0, c

′
1)=(c0 + h0, h1).

The correctness of MBFV · Convert is shown as follows:
Given node i’s public key pki = (p0,i, p1,i), and E(Wk+ 1

2 ,i
) =

(c0, c1), where c0 + sc1 = ∆m+ ect, p0,i = −(skip1,i + ecl),
we have

BFV · Decrypt(ski,E′(Wk+ 1
2
,i))

= b t
q

[c0 +
∑

k∈i∪Ni

(skc1 + µkp0,i + e0,k)

+ ski
∑

k∈i∪Ni

(µkp1,i + e1,k)]qe

= b t
q

[c0 + sc1 + µp0,i + skiµp1,i + e0 + skie1]qe

= b t
q

[ΛWk+ 1
2

+ ect + eCovt]qe

= Wk+ 1
2

(3)

where ed =
∑
k∈i∪Ni

ed,k for d = 0, 1. µ =
∑
k∈i∪Ni

µk.
Therefore, the additional noise involved in MBFV · Convert is
eCovt = e0+skie1+µecl, which must satisfy the condition of
||ect + eCovt|| < q/(2t) for the correctness of the decryption.
Note that ect and ecl are the noises introduced in the process
of encryption and key generation respectively, their sizes are
small because the norm of the initialized noise is controlled
between [−B,B]. µ =

∑
k∈i∪Ni

µk, where each µk is
uniformly selected from polynomial ring R3 = Z3[X]/(Xn+1),
i.e., coefficients of every polynomial in R3 are uniformly
distributed in {−1, 0, 1}. Therefore, the norm of ||µecl|| is
much smaller than q/(2t), where q is much larger than t.
Furthermore, since each ski is selected from the polynomial
ring R3, we have e0 + skie1 smaller than q/(2t). Based on
this, it is easy to ensure that ||ect + eCovt|| is smaller than
q/(2t).

4. MBFV · Bootstrap(ct, si, sj |j ∈ Ni) → ct′: This is the
multiparty bootstrapping procedure. It can reduce the noise
of a ciphertext ct to a fresh-like one ct′, and then it allows
for further calculations if the noise of the current ciphertext
reaches the limit of homomorphic capacity. Specifically, given
a ciphertext ct = (c0, c1) with noise variance σ2

ct, a common
random polynomial α, each node k ∈ i ∪Ni samples Mk over
Rt, e0,k, e1,k over χ, and executes the following operations:

(η0,k, η1,k) = (skc1 − ΛMk + e0,k,−skα+ ΛMk + e1,k) (4)
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Then, each (η0,k, η1,k) is submitted to node i. After-
wards, node i first computes η0 =

∑
k∈i∪Ni

η0,k, and
η1 =

∑
k∈i∪Ni

η1,k, and then generates the new ciphertext

ct′=(
[⌊

t
q [c0 + η0]q

⌉]
t
Λ + η1, α) with noise variance Nσ2.

C. Discussions

Noise analysis. We observe that the noise incurred is∑
k∈i∪Ni

ek in MBFV · PubKeyGen, and eCovt = e0+skie1+
µecl in MBFV · Convert. All noise is controllable since we can
preset the range of e, ski, and µ (please refer to the literature
[23] for a more theoretical analysis). This comes from our
carefully constructed noise mechanism. Since the ciphertext is
large in size and is difficult to remove during the decryption
process, our criterion is to keep the accumulated noise items
without ciphertext.
The utility of MBFV · Bootstrap. The implementation of
MBFV · Bootstrap requires interaction between multiple n-
odes, which will increase the communication overhead of each
user. However, MBFV · Bootstrap is rarely used in our sce-
narios. In detail, according to the standard BFV, a ciphertext
is correctly decrypted if the noise contained in the ciphertext
satisfies ||ect|| < q/2t, where q and t denote the spaces of
ciphertext and plaintext, respectively. In comparison, the noise
of a ciphertext involved in D2-MHE is ect+eCovt ≈M×ect,
where M can be roughly parsed as a linear function of the
average number of adjacent nodes of each node in the system.
The noise scale will be further increased to M × T × ect, if
T times of homomorphic addition operations are performed
without utilizing bootstrapping. Since the size of ||ect|| is
usually smaller than 1, for the correctness of the decryption,
it is enough to ensure that M × T < q/2t. Hence, given a
64-bit plaintext space and a 512-bit ciphertext space, we only
need to guarantee M×T < 2512

264 = 2448. Therefore, assuming
M = 1024, D2-MHE can still perform 2438 consecutive ho-
momorphic additions without the assistance of bootstrapping.

In summary, MBFV · Bootstrap provides a trade-off be-
tween computation overhead and communication overhead. It
is very practical to calculate a function without knowing the
complexity of the computation complexity in advance.

V. SECURITY ANALYSIS

We now discuss the security of D2-MHE. Com-
pared with the standard BFV, D2-MHE constructs four
new functions: MBFV · SecKeyGen, MBFV · PubKeyGen,
MBFV · Bootstrap, and MBFV · Convert. Since the imple-
mentation of MBFV · SecKeyGen is essentially calling the
standard BFV · SecKeyGen multiple times, it inherits the secu-
rity of the original algorithm. Therefore, this section focuses
on the security of the other three functions. In addition, in D2-
MHE, each user i interacts with the connected nodesNi, while
being separated from other users in the system. Therefore, we
take the set U = i∪Ni as the object of discussion. In brief, the
security of D2-MHE is mainly tied to the Decisional-RLWE
Problem [24] and the property of Additive Secret-Sharing
[38]. Here, we provide arguments in a real/ideal simulation
formalism [53].

Before explaining the details of the proof, we define some
variables which are useful for subsequent descriptions. Specif-
ically, suppose that the security parameter of D2-MHE is λ,
the adversary set is A ⊆ U , and |A| ≤ |U| − 1. REALU,λU
is a random variable used to refer to the joint view of all
users in xU , which contains all users’ input in D2-MHE and
information received from other users. Since there is at least
one honest user in the set U , we define this honest user as
gh for convenience of description. The set H = U\(A ∪ gh)
represents other honest users. With these symbols, the sketch
of our proof is that for any adversary set A, when only the
input and output of A are provided, there exists a simulator
SIM with Probabilistic Polynomial Time (PPT) computation
ability, which can simulate the view of A, and make A unable
to distinguish the real view from the simulated ones.

A. Analysis of MBFV · PubKeyGen
We consider an adversary set A to attack

MBFV · PubKeyGen defined in Section IV-B. For each
user k ∈ U , its private inputs are sk and ek, and the
output received from the function is the public key of the
system pk. Therefore, given A’s inputs {sk, ek}, k ∈ A and
pk = (p0, p1), the simulator needs to construct a simulated
view which is indistinguishable from the adversary’s view
under the implementation of the real protocol.

Theorem 1. Given the security parameter λ, user set U ,
adversary set A ⊆ U ,|A| ≤ |U| − 1, A’s inputs {sk, ek}k∈A,
pk = (p0, p1), honest user gh, and H = U\(A ∪ gh), there
exists a PPT simulator SIM, whose output is indistinguishable
from the real REALU,λU output.

SIMU,λA ({sk, ek}k∈A, pk)
c≡REALU,λU ({sj , ej}j∈U , pk)

Proof. Since SIM has A’s inputs {sk, ek}, k ∈ A, and the out-
put pk = (p0, p1) of MBFV · PubKeyGen, it needs to simulate
all p0,j = [−(p1sj+ej)]q, j ∈ U under two constraints: (i) the
sum of all simulated p0,j and those generated by A must be
equal to p0, and (ii) the simulated p0,j for A must be equal to
the real ones, otherwise the adversary can easily distinguish
them. We use the symbol ˜p0,j to denote the simulated shares
of p0. SIM can generate ˜p0,j in the following ways:

˜p0,j =


− [(p1sj + ej)]q : if user j ∈ A
sample from Rq : if user j ∈ H

[p0 −
∑

j∈A∪H
˜p0,j ]q : if user j = gh

We explain how the above simulation guarantees the
indistinguishability between ( ˜p0,1, ˜p0,2, · · · ˜p0,|U|) and
(p0,1, p0,2, · · · p0,|U|). Specifically, for each user j ∈ A,
since SIM has inputs {sj , ej} from A, it can generate the
share p0,j = [−(p1sj + ej)]q , which is exactly the same as
the real value. For each user j ∈ H, SIM simulates p0,j
by sampling an element uniformly in the distribution Rq .
Decisional-RLWE Problem [24] ensures that the sampled
value is indistinguishable from the real p0,j . In addition,
the property of Additive Secret Sharing [38] makes it a
negligible probability to restore sj and ej of the honest user,
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even if the collusion of multiple users. For user j = gh, we
consider the following two cases: (i) When H 6= ∅, ˜p0,j is
uniformly random in the distribution Rq , since

∑
j∈A∪H ˜p0,j

is a random value distributed in Rq . As a result, the same
indistinguishability is achieved as described above. (ii) When
H = ∅, it means that |U − 1| users are adversaries. Since pk
is open to all users, adversaries can reconstruct the share of
user gh through pk and their own knowledge. Therefore, SIM
calculates and outputs the real value for the share of gh.

B. Analysis of MBFV · Convert
Similar to the above analysis, we consider an adversary

set A to attack the function MBFV · Convert. The goal of A
is to derive honest users’ shares {h0,k, h1,k}k∈H∪gh . Hence,
given A’s inputs {sk, µk, e0,k, e1,k}, k ∈ A, public key pki =
(p0,i, p1,i), and original ciphertext E(Wk+ 1

2 ,i
) = (c0, c1), the

simulator must construct a simulated view that is indistinguish-
able from the adversary’s view under the implementation of
the real protocol.

Theorem 2. Given the security parameter λ, user set
U , adversary set A ⊆ U ,|A| ≤ |U| − 1, A’s inputs
{sk, µk, e0,k, e1,k}k∈A, pki = (p0,i, p1,i), original ciphertext
E(Wk+ 1

2 ,i
) = (c0, c1), honest user gh, and H = U\(A ∪ gi),

there exists a PPT simulator SIM, whose output is indistin-
guishable from the real REALU,λU output.

SIMU,λA ({sk, µk, e0,k, e1,k}k∈A)
c≡REALU,λU ({sj , µj , e0,j , e1,j}j∈A)

Proof. We know that A’s inputs {sk, µk, e0,k, e1,k}k∈A are
accessible to SIM. Based on this, SIM is required to simulate
all {h0,j , h1,j}j∈U under two constraints: (i) the sum of
all simulated h0,j and h1,j must be equal to h0 and h1,
if the recipient (i.e., user i) of the converted ciphertext is
malicious, and (ii) the simulated {h0,k, h1,k} for A must be
equal to the real ones. Otherwise, the adversary can easily
distinguish them. We use the symbols ˜h0,j and ˜h1,j to denote
the simulated shares. SIM can generate ˜h0,j and ˜h1,j in the
following ways:

( ˜h0,j , ˜h1,j) =



([sjc1 + µjp0,i + e0,j ]q, [µkp1,i + e1,j ]q),

if user j ∈ A.
sample from Rq, if user j ∈ H.
sample from Rq, if user j = gh&&user i /∈ A

([h0 −
∑

j∈A∪H

˜h0,j ]q, [h1 −
∑

j∈A∪H

˜h1,j ]q),

if user j = gh&&user i /∈ A.

We explain how the above simulation guarantees the indis-
tinguishability between ( ˜h0,j , ˜h1,j)j∈U and {h0,j , h1,j}j∈U .
Specifically, for each user j ∈ A, since SIM has A’s inputs
{sk, µk, e0,k, e1,k}, it can generate the share p( ˜h0,j , ˜h1,j) =
([sjc1 + µjp0,i + e0,j ]q, [µkp1,i + e1,j ]q), which is exactly
the same as the real value. For each user j ∈ H, SIM
simulates {h0,j , h1,j} by sampling an element uniformly in the
distribution χ. Decisional-RLWE Problem [24] ensures that the
sampled value is indistinguishable from the real {h0,j , h1,j}

. Besides, the property of adding secret sharing [38] makes
it a negligible probability to restore {sj , µj , e0,j , e1,j} to the
honest user, even under the collusion of |U| − 2 users. For
user j = gh, we consider the following two cases: (i) When
user i /∈ A, ˜h0,j , ˜h1,j) is uniformly random on the distribution
χ. This happens because the adversary cannot access the final
values h0 and h1. Therefore, in this case, it is not necessary
to ensure that the sum of all the simulated h0,j and h1,j is
equal to h0 and h1. In addition, the same indistinguishability
is achieved as described above. (ii) When i ∈ A, it means that
h0 and h1 are submitted to A. Therefore, ( ˜h0,j , ˜h1,j) can be
constructed as ([h0−

∑
j∈A∪H

˜h0,j ]q, [h1−
∑
j∈A∪H

˜h1,j ]q).
As a result, the sum of all simulated h0,j and h1,j is equal
to h0 and h1. This guarantees the indistinguishability between
the simulated view and the real view.

C. Analysis of MBFV · Bootstrap
Finally, we discuss the security of the function

MBFV · Bootstrap. Specifically, given the adversary set
A, the goal of A is to derive honest users’ shares
{η0,k, η1,k}k∈H∪gh . The simulator needs to construct a
simulated view that is indistinguishable from the adversary’s
view with A’s inputs {sk,Mk, e0,k, e1,k}, k ∈ A and the
public ciphertext ct = (c0, c1).

Theorem 3. Given the security parameter λ, user set
U , adversary set A ⊆ U ,|A| ≤ |U| − 1, A’s inputs
{sk,Mk, e0,k, e1,k}k∈A, original ciphertext ct = (c0, c1),
honest user gh, and H = U\(A ∪ gi), there exists a PPT
simulator SIM, whose output is indistinguishable from the real
REALU,λU output.

SIMU,λA ({sk,Mk, e0,k, e1,k}k∈A)
c≡REALU,λU ({sj ,Mj , e0,j , e1,j}j∈A)

(5)

Proof. Given A’s inputs {sk,Mk, e0,k, e1,k}k∈A, SIM is re-
quired to simulate all {η0,j , η1,j}j∈U under two constraints:
(i) the sum of all simulated η0,j and η1,j must be equal to
η0 and η1, if the recipient (i.e., user i) of the new ciphertext
ct′ is malicious, and (ii) the simulated {η0,j , η1,j} for A must
be equal to the real ones. Otherwise, the adversary can easily
distinguish them. We use the symbols ˜η0,j and ˜η1,j to denote
the simulated shares. SIM can generate ˜η0,j and ˜η1,j in the
following ways:

( ˜η0,j , ˜η1,j) =



([sjc1 − ΛMj + e0,j ]q, [−sjα+ ΛMj + e1,j ]q),

if user j ∈ A.
sample fromRq, if user j ∈ H
sample from Rq, if user j = gh&&user i /∈ A.

([η0 −
∑

j∈A∪H

˜η0,j ]q, [η1 −
∑

j∈A∪H

˜η1,j ]q),

if user j = gh&&user i /∈ A.

We explain how this simulation guarantees the indistinguisha-
bility between ( ˜η0,j , ˜η1,j)j∈U and {η0,j , η1,j}j∈U . Specifically,
for each user j ∈ A, since SIM has inputs {sj ,Mj , e0,j , e1,j}
from A, it can generate the share p( ˜η0,j , ˜η1,j) = ([sjc1 −
ΛMj + e0,j ]q, [−sjα + ΛMj + e1,j ]q), which is exactly the
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same as the real value. For each user j ∈ H, SIM simulates
{η0,j , η1,j} by sampling an element uniformly in the distribu-
tion Rq . The Decisional-RLWE Problem [24] ensures that the
sampled value is indistinguishable from the real {η0,j , η1,j} .
Besides, the property of Additive Secret-Sharing [38] makes
it a negligible probability to restore {sj ,Mj , e0,j , e1,j} to the
honest user, even under the collusion of |U|−2 users. For user
j = gh, we consider the following two cases: (i) When user
i /∈ A, ˜η0,j , ˜η1,j) is uniformly random on the distribution Rq .
This is because the adversary cannot access the final values
η0 and η1. Therefore, in this case, it is not necessary to ensure
that the sum of all simulated η0,j and η1,j is equal to η0 and
η1. In addition, the same indistinguishability is achieved as
described above. (ii) When i ∈ A, it means that η0 and η1
are submitted to A. Hence, ( ˜η0,j , ˜η1,j) can be constructed as
([η0−

∑
j∈A∪H ˜η0,j ]q, [η1−

∑
j∈A∪H ˜η1,j ]q). As a result, the

sum of all simulated η0,j and η1,j is equal to η0 and η1. This
guarantees the indistinguishability between the simulated view
and the real view.

VI. PERFORMANCE EVALUATION

We evaluate the performance of D2-MHE in terms of
classification accuracy, computation and communication over-
heads. Specifically, we simulate a decentralized system with
varied numbers of users using Pytorch, where we make use
of Onet3 to build the decentralized communication protocol.
The average connection rate is AN = 0.2 (i.e., each user
is randomly connected to 20% of all users in the system).
Our multiparty version of BFV is modified based on the
standard BFV in the SEAL library [54], where the security
parameters are taken as 2048 and 4096, respectively, to test
the performance. The Smart-Vercauteren ciphertext packing
technique [55] is used to accelerate the efficiency of encryption
and ciphertext computation: we set the plaintext slot to 1024,
which can pack 1024 plaintexts into one ciphertext at a
time, and support Single-Instruction-Multiple-Data (SIMD)
operations. We consider three image classification tasks trained
in the decentralized learning system: (1) a MLP model with
two fully connected layers (100 and 10 neurons, respectively)
for MNIST; (2) a CNN model with two convolutional layers
(kernel size of 3×1 per layer) and three fully connected layers
(384 neurons per hidden layer and 10 neurons in the output
layer) for CIFAR-10, and (3) ResNet-18 and EfficientNet-B0
to train ImageNet, respectively. All experiments are carried
out on a server running Centos7.4 OS, equipped with 256G-
B RAM, 64 CPUs (Intel(R) Xeon(R) Gold 6130 CPU @
2.10GHZ), and 8 GPUs (Tesla V100 32G).

We select the following baselines for comparison. (1) D-
PSGD [56] is the original D-PSGD algorithm without any
privacy protection. (2) LEASGD [30], A(DP )2SGD [31]
and DLDP [8] are the three most advanced decentralized
learning algorithms with differential privacy. We reproduce
these algorithms using exactly the same parameter configu-
ration as the authors in their papers. (3) Threshold Paillier-HE
[57], [46] is a classic homomorphic encryption algorithm that
supports distributed key encryption and decryption operations.

3https://github.com/dedis/cothority

We extend the threshold Paillier-HE to the decentralized mode
for comparison. (4) COPML [58] is a distributed learning
framework based on Shamir’s secret sharing protocol, which
can be considered a special kind of decentralized learning with
a connection rate of AN = 1. It is also feasible to adapt this
framework to a generalized decentralized network.

A. Classification Accuracy

We first discuss the performance of D2-MHE on the model
classification accuracy. Table I shows the performance compar-
isons of D2-MHE with existing approaches in the decentral-
ized settings of 50 and 100 users, where we use ImageNet-Res
and ImageNet-Eff to denote the ImageNet classification task
over ResNet-18 and EfficientNet-B0, repectively. Compared
with D-PSGD, we observe that the accuracy drop of HE-based
solutions (including D2-MHE and Paillier-HE) is negligible,
which is mainly attributed to the losslessness of the HE
encryption algorithm. Although HE can only handle integers
in ciphertext, existing optimization methods (e.g., conversion
of fixed point arithmetic circuits [59]) ensure that the error
of ciphertext evaluation for any floating point number is
maintained within 2−d (usually d ≥ 13).

In contrast, other three works based on differential privacy
inevitably result in a large accuracy drop even if the privacy
budget ε > 8, which is already vulnerable to various types
of privacy inference attacks4. Here we take the membership
attack [60] under ε = 8 as an example. Based on the definition
of differential privacy [61], the condition Pr[F (D) ∈ S] ≤
e8 × Pr[F (D′) ∈ S] should be guaranteed for any two
neighboring sets D and D′. In other words, even if the target
record detected in the dataset D has a probability of 0.0001,
it can be detected with a probability of up to 0.9999 in D′

that contains the record. This allows the adversary to infer the
presence or absence of the target record from the training data
with very high confidence.

Remark 3: Note that HE-based schemes always exhibit
superiority in accuracy over DP-based schemes, as the latter
obtains a proper trade-off between accuracy and privacy by
introducing noise. However, the comparison with the DP-based
solution is not only to illustrate the advantages of our method
in accuracy; a more noteworthy conclusion is that it is still
unclear whether DP-based algorithms can provide satisfactory
accuracy and privacy trade-offs in practical applications. Our
experimental results are consistent with the results in work
[32], i.e., current mechanisms for differentially private deep
learning may rarely offer acceptable accuracy-privacy trade-
offs for complex learning tasks. Therefore, one of the main
motivations to compare with DP is to explain the choice to
use HE primitives, which may provide better accuracy and
privacy performance.

B. Computation Overhead

We further analyze the computation cost of D2-MHE.
In summary, the computational load of each user depends

4According to [32], differential privacy with ε > 1 will loss its effectiveness
for deep learning training
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TABLE I: Classification accuracy of different privacy-preserving approaches

# of users Dataset D-PSGD LEASGD A(DP )2SGD DLDP D2-MHE Paillier-HE

50

MNIST 91.23% 87.67% (ε = 8.71) 84.68% (ε = 9.43) 86.7% (ε = 9.21) 91.17% 91.19%
CIFAR-10 65.21% 57.61% (ε = 11.23) 53.44% (ε = 12.13) 50.7% (ε = 9.81) 65.13% 65.10%

ImageNet-Res 69.75% 59.61% (ε = 14.23) 56.47% (ε = 13.17) 56.7% (ε = 9.88) 69.74% 69.23%
ImageNet-Eff 77.37% 59.64% (ε = 16.23) 57.44% (ε = 13.15) 56.3% (ε = 9.69) 77.32% 77.20%

100

MNIST 92.43% 88.89% (ε = 8.91) 85.82% (ε = 9.79) 87.15% (ε = 9.98) 91.18% 91.14%
CIFAR-10 68.32% 59.69% (ε = 12.49) 54.14% (ε = 13.58) 52.9% (ε = 11.31) 68.25% 68.26%

ImageNet-Res 74.75% 59.41% (ε = 13.53) 56.47% (ε = 13.36) 56.72% (ε = 9.71) 74.74% 74.60%
ImageNet-Eff 80.41% 60.61% (ε = 13.23) 59.44% (ε = 12.53) 59.7% (ε = 9.61) 80.41% 80.37%

TABLE II: Computation overhead of different privacy-preserving approaches for each user (unit: seconds)

Key Size Dataset Method Initialization Encryption Ciphertext
Evaluation Decryption Total time

2048

MNIST
D-PSGD - - - - 2.47
D2-MHE 0.66 9.96 0.54 15.04 26.2

Paillier-HE 2.93 21.93 1.27 33.41 59.54

CIFAR-10
D-PSGD - - - - 17.18
D2-MHE 0.67 23.98 1.31 36.23 62.19

Paillier-HE 3.01 43.69 2.48 57.24 106.42

ImageNet-Eff
D-PSGD - - - - 49.37
D2-MHE 0.69 207.98 14.31 257.23 480.21

Paillier-HE 3.42 230.69 39.48 402.24 675.83

4096

MNIST
D-PSGD - - - - 2.30
D2-MHE 1.42 21.41 1.24 32.62 56.69

Paillier-HE 18.98 139.25 2.38 148.98 309.59

CIFAR-10
D-PSGD - - - - 17.23
D2-MHE 1.41 51.56 2.99 78.55 134.51

Paillier-HE 19.24 335.28 5.75 358.68 718.95

ImageNet-Res
D-PSGD - - - - 58.14
D2-MHE 1.47 241.23 17.31 266.23 526.24

Paillier-HE 21.31 992.68 93.45 1277.34 2384.78

mainly on the key size used for encryption and the average
number of users connected to it. Intuitively, a user needs more
computing resources to handle operations with a larger key
size and interact with more users during the training process.
To demonstrate this, we first fix the number of users as 100
in the system and record the running time of each user in
a single iteration (i.e., a gradient update with a mini-batch
of 256). Table II shows the experimental results compared to
some baseline methods. To facilitate analysis, we divide the
total computation cost into four components: (1) Initialization
is to prepare the public and secret keys of the system. This only
needs to be executed once for both D2-MHE and Threshold
Paillier-HE. (2) Encryption is used to encrypt the gradients
of each user. (3) Ciphertext Evaluation is used to perform the
cipertext computation. (4) Decryption is carried out to decrypt
the final results.

From Table II, we observe that the overhead of D2-MHE
and Threshold Paillier-HE is larger than D-PSGD, because
all gradients are encrypted and processed under ciphertext.
However, the overhead of D2-MHE is significantly lower than
that of Threshold Paillier-HE, especially for large key sizes.
This is mainly due to the following two reasons: (i) The key-
sharing and reconstruction processes in Threshold Paillier-
HE (including the Initialization and Decryption phases) are
highly affected by the key size. A large key size makes it
inevitable to perform modular exponential calculations in a
large ciphertext space, thereby completing key distribution
and distributed decryption. On the contrary, D2-MHE only
involves vector operations in the traditional sense, which is

much less affected by the key size. (ii) Compared to the
threshold Paillier-HE, the BFV cryptosystem is more suitable
for SIMD technology, which can process multiple ciphertexts
in parallel more efficiently.

We also evaluate the impact of connection rates on the
computation overhead of D2-MHE. We fix the number of
users in the system to 100, and change the connection rate
from 0.1 to 0.8. The key size of both D2-MHE and Threshold
Paillier-HE is 4096 bit. Smart-Vercauteren ciphertext packing
techniques [55] are used to accelerate the efficiency of encryp-
tion and ciphertext computation, where we set the plaintext
slot as 1024 to pack 1024 plaintexts into one ciphertext at
a time to support Single-Instruction-Multiple-Data (SIMD)
operations. Figure 3 shows the running time of each user in
a single iteration (i.e., a gradient update with a mini-batch
of 256), where we do not experiment on ImageNet since the
results are similar to other datasets. We can observe that as
the connection rate increases, D2-MHE has more significant
advantages over Threshold Paillier-HE in terms of computation
overhead. This is mainly due to the inefficiency of Threshold
Paillier-HE distributed decryption. As the average number of
users connected to each user increases, the number of modular
exponential operations performed by Threshold Paillier-HE
increases linearly. As a result, it is quite time-consuming to
recover the secret key of the system under the ciphertext
through exponential operations, thereby decrypting the target
ciphertext. On the contrary, D2-MHE only involves vector
operations in the traditional sense, which is much less affected
by changes in the connection rate compared to Threshold
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Fig. 3: Total running time of each user for different connection rates.

Paillier-HE.

C. Communication Overhead

TABLE III: Theoretical communication overhead of the user
i for different approaches

Method Gradients-sharing Aggregation Total
D-PSGD O(λ3) O(|Ni|λ3) O((|Ni|+ 1)λ3)
COPML O(|Nj |λ1) O(|Ni|λ1) O(

∑
j∈N,Ei,j 6=0 |Nj |λ1 + |Ni|λ1)

D2-MHE O(λ2) O(2|Ni|λ2) O((2|Ni|+ 1)λ2)

We finally analyze the performance of D2-MHE in terms
of communication overhead, We theoretically compare the
communication complexity of D2-MHE with D-PSGD and
COPML. The results are shown in Table III, where λi
(i = 1, 2, 3) denotes the size of a single message. The
total computation costs are divided into 2 components (i.e.,
Gradients-sharing and Aggregation) to facilitate our analysis.
Specifically, in the Gradients-sharing phase, each user i in
COPML is required to share its every gradient to each user
set (Nj |j ∈ N,Ei,j 6= 0), which results in the communication
complexity of O(

∑
j∈N,Ei,j 6=0 |Nj |λ1). In contrast, in D2-

MHE, the gradients of all users are encrypted with the same
public key. As a result, the user i only needs to transmit a
single gradient to other users. In the Aggregation phase (lines
6-8 in Algorithm 2), the complexity of COPML is consistent
with that of D-PSGD, that is, the information returned by each
user to generate the aggregated gradient. In general, compared
to D-PSGD, the communication complexity of D2-MHE is
only increased by a constant multiple, while the complexity
of COPML can reach O(

∑
j∈N,Ei,j 6=0 |Nj |λ1 + |Ni|λ1).

TABLE IV: Experimental communication overhead of user i
for different approaches and datasets (unit: MB)

Dataset Model Gradients-sharingAggregation Total

MNIST COPML 674 33.7 707.7
D2-MHE 18.9 37.8 56.7

CIFAR-10 COPML 3235 161.76 3396.76
D2-MHE 90.72 181.44 272.16

ImageNet-Eff COPML 10237 279.43 10516.43
D2-MHE 363.38 246.35 609.73

ImageNet-Res COPML 31726 549.51 32275.51
D2-MHE 484.52 329.17 813.69

It should be noted that COPML uses a packed
secret sharing method to reduce the complexity of
communication from O(

∑
j∈N,Ei,j 6=0 |Nj |λ1 + |Ni|λ1) to

O(

∑
j∈N,Ei,j 6=0 |Nj |λ1+|Ni|λ1)

K ), where K is the number of
secrets packed each time. However, packed secret sharing [62]
is restricted to K < min(Nj |j ∈ N,Ei,j 6= 0) and only
tolerates the collusion of min |(Nj |j ∈ N,Ei,j 6= 0)| − K
users at most. On the contrary, we use the Smart-Vercauteren
ciphertext packing technique [55] to pack multiple plaintexts
into one ciphertext, where the number of plaintext slots is
independent of the number of users in the system. As a result,
compared with existing works, D2-MHE has a significant
advantage in communication overhead.

We also present the experimental results in terms of com-
munication overhead. We define the sizes of a single message
in COPML and D2-MHE as 64 bit and 4096 bit, respectively.
Such parameters are commonly used to ensure the security
of the MPC protocol and the HE. Additionally, the system
has 100 users with a connection rate of 0.2. Note that,
for communication overhead, the connection rate exhibits a
linear relationship with each user in COPML, but has no
effect on our method. To be precise, the increase of the
connection rate makes the number of adjacent nodes of each
user increase linearly. Since the communication cost of each
user has a positive linear relationship with the number of
adjacent nodes, this implies a linear relationship between the
connection rate and the communication cost of each user.
However, our method requires each user only to transmit a
ciphertext to all users, regardless of the value of the connection
rate. We iteratively execute the above two schemes 500 times
and 1000 times under the MNIST, CIFAR-10, and ImageNet
datasets, respectively. Then we record the total communication
overhead in Table IV. For simplicity, we assume min(Nj |j ∈
N,Ei,j 6= 0) = 10, so the maximum number of secrets shared
by the package sharing protocol in COPML is K < 10 = 9.
Furthermore, the average number of (

∑
j∈N,Ei,j 6=0 |Nj |) is

set to 20. In our D2-MHE, the plaintext slot of the Smart-
Vercauteren ciphertext packing technique [55] is 1024, which
can pack 1024 plaintexts into one ciphertext at a time. We
can observe that compared with COPML, D2-MHE has a
significant advantage in the communication overhead. This
is mainly due to the large number of interactions in the
gradient sharing process of COPML. Moreover, we use Smart-
Vercauteren ciphertext packing techniques [55], [63] to pack
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multiple plaintexts into one ciphertext, where the number of
plaintext slots is independent of the number of users in the
system.

VII. CONCLUSION

In this work, we propose D2-MHE, a practical, privacy-
preserving, and high-fidelity decentralized deep learning
framework. To the best of our knowledge, D2-MHE is the first
work to protect the privacy and accelerate the performance of
decentralized learning systems using cryptographic primitives.
Experimental results show that D2-MHE can provide the op-
timal accuracy-performance trade-off compared to other state-
of-the-art works. In the future, we will focus on improving
the computation overhead of D2-MHE, since this is the main
bottleneck of the current homomorphic encryption applied to
real-world applications.
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[46] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty computation from
threshold homomorphic encryption,” in Proceedings of EUROCRYPT.
Springer, 2001, pp. 280–300.

[47] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Rasmussen,
and A. Sahai, “Threshold cryptosystems from threshold fully homomor-
phic encryption,” in Proceedings of CRYPTO. Springer, 2018, pp.
565–596.

[48] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Practical low-rank com-
munication compression in decentralized deep learning,” Proceedings of
NeurIPS, vol. 33, 2020.

[49] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep
learning with arbitrary communication compression,” in Proceedings of
ICLR, 2020.

[50] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter et al., “Homomorphic
encryption standard,” in Protecting Privacy through Homomorphic En-
cryption. Springer, 2021, pp. 31–62.

[51] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in Pro-
ceedings of EUROCRYPT. Springer, 2015, pp. 337–367.

[52] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in proceedings of IEEE S&P, 2017, pp.
19–38.

[53] R. Canetti, A. Jain, and A. Scafuro, “Practical uc security with a global
random oracle,” in Proceedings of ACM CCS, 2014, pp. 597–608.

[54] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-
seal v2. 1,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 3–18.

[55] G. Xu, H. Li, H. Ren, J. Sun, S. Xu, J. Ning, H. Yang, K. Yang, and
R. H. Deng, “Secure and verifiable inference in deep neural networks,”
in Proceedings of ACM ACSAC, 2020, pp. 784–797.

[56] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Proceedings of
neurIPS, 2017, pp. 5336–5346.

[57] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, and A. A. Nicolosi,
“Efficient rsa key generation and threshold paillier in the two-party
setting,” Journal of Cryptology, vol. 32, no. 2, pp. 265–323, 2019.

[58] E. Dawson and D. Donovan, “The breadth of shamir’s secret-sharing
scheme,” Computers & Security, vol. 13, no. 1, pp. 69–78, 1994.

[59] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in USENIX
Security, 2018, pp. 1651–1669.

[60] M. A. Rahman, T. Rahman, R. Laganière, N. Mohammed, and Y. Wang,
“Membership inference attack against differentially private deep learning
model.” Trans. Data Priv., vol. 11, no. 1, pp. 61–79, 2018.

[61] M. Jagielski, J. Ullman, and A. Oprea, “Auditing differentially private
machine learning: How private is private sgd?” in Proceedings of
NeurIPS, vol. 33, 2020, pp. 22 205–22 216.
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