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Abstract—As a fundamental and commonly used service, file
retrieval has been extensively studied by information retrieval,
cryptography, and big data communities. In this paper, we
consider the problem of privacy-preserving file retrieval. A
new framework named PriFR is proposed by integrating the
blockchain and cloud computing infrastructures. The large-scale
original files are encrypted and outsourced to the public cloud
server. The encrypted retrieval indexes are stored on the full
nodes in the blockchain to support traceable and unforgeable
retrieval services. This design embraces the benefits brought by
both cloud computing and blockchain. For the first time, PriFR
decomposes the file retrieval problem into the numerical query
and keyword search on the file metadata. In doing so, each file
can be characterized more precisely than the traditional keyword
search based schemes. In addition to functionality, PriFR only
applies fast and lightweight symmetric cryptographical primitives
to reach near plaintext retrieval efficiency. In specific, the numeri-
cal query is implemented atop order-preserving encryption (OPE)
that is perfectly compatible with plaintext indexing techniques.
The price for such high efficiency is its vulnerability to inference
attacks. Given enough background knowledge, the plaintext can
be recovered with high probability. To resist this attack, PriFR
injects differential privacy noises into the raw data to offer
guaranteed privacy-preserving strength with a negligible extra
efficiency cost. The experimental results have demonstrated the
effectiveness of PriFR.

Index Terms—Blockchain, big data, private query, searchable
encryption, cloud computing.

I. INTRODUCTION

File retrieval [1] is a fundamental and commonly used

service and is extensively studied in the areas of information

retrieval and big data management. At present, enterprises as

well as individual users are generating a vast volume of data at

ever-increasing speed. In addition to the growing scale of data

volume, data heterogeneity also imposes significant challenges

to high-quality data retrieval services. The evidence of this

issue is easy to find. For instance, the social networking giants

like Facebook and WeChat are gathering images, videos, and

texts from users for their profiles or social activities [2]. In

this case, heterogeneous data is often stored in a single file.

Therefore, the complexity of the file retrieval problem becomes

out of the reach of non-experts. A straightforward way is to

outsource the files to the public cloud server [1] to enjoy

the powerful data processing capability and its large storage
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space. In addition, the cloud server can provide more reliable

computing service than edge devices [3] in the Internet of

Things [4]. However, the public cloud server cannot be fully

trusted and even manipulates the retrieval results [5]. Thus, we

seek to employ blockchain as the file retrieval engine and cloud

server as the data warehouse. In doing so, we can not only

build a traceable, unforgeable (guaranteed by blockchain) file

retrieval system but also offload the heavy storage burden to

cloud servers. Such fusion of cloud computing and blockchain

infrastructures significantly relieves the tension between effi-

ciency and security [6]–[8].

However, native cloud computing and blockchain technolo-

gies can hardly address privacy concerns [9]. On one hand, the

outsourced files may contain sensitive personal information

like medical records and social activities [1], [2]. On the

other hand, the retrieval users need to keep their retrieval

requests and the queried files secret to avoid leakages that

may lead to reputation or financial losses [10]. Currently,

privacy protection has been not merely a personal preference

but a legal requirement. The European general data protection

regulation (GDPR) [11] has specified that all the personal data

stored on the remote server should be encrypted. To meet these

requirements, numerous schemes [5] are proposed to support

keyword search [12] over the encrypted files [1]. In specific,

an encrypted keyword index is generated and outsourced to

the cloud server. The original documents are also encrypted

and stored on the cloud. Then, the search user can conduct

keywords search on the encrypted files without exposing

the selected keywords. This privacy-preserving file retrieval

paradigm is well-studied and named searchable encryption

(SE) [12], [13]. Despite its high efficiency and provable

security, in this paper, we argue that merely considering

the keyword search is insufficient for practical file retrieval.

For example, a medical record file should definitely contain

attributes that are described by numbers including the patient’s

age, weight, course of disease, etc. In addition, a user may

retrieve files that are uploaded within a certain period of time.

Unfortunately, these numerical queries can hardly be supported

by existing schemes [1], [5], [14] which are indeed needed.

To achieve privacy-preserving and practical file retrieval,

in this paper, we propose a new framework dubbed PriFR.

In specific, the file retrieval problem is decomposed into the
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Fig. 1. The schematic diagram of the blockchain.

numerical query and keyword search on the file metadata.

Given a file, it is described by several attributes, and all the

attributes as a whole are regarded as its metadata. Then, the

goal of PriFR is to achieve numerical query and keyword

search simultaneously with rich functionality, strong privacy

preservation, and high efficiency. In sum, the main technical

contributions made by our PriFR are enumerated as follows.

• Rich functionality. To the best of our knowledge, PriFR

is the first scheme to model the file retrieval problem

into metadata search. It can support numerical queries

and keyword search simultaneously, which remedies the

shortcomings in functionality from previous works [1],

[5]. In addition, we use order-preserving encryption

(OPE) [15], [16] as the underlying technology for numer-

ical queries. Without loss of generality, PriFR focuses on

range query and it can be easily adapted to process other

numerical queries including Top-K, kNN, etc.

• High efficiency. In PriFR, only fast and lightweight

symmetric cryptographical primitives [15], [17] are used

to achieve high encryption and decryption efficiency.

The proposed OPE-based range query scheme can reach

nearly plaintext query efficiency as the plaintext indexing

technique is well supported by OPE.

• Strong privacy preservation. The high efficiency brought

by the OPE-based scheme is not free. Existing inference

attacks [15], [16] pose a significant threat to the confi-

dentiality of OPE ciphertexts. To mitigate this problem,

PriFR uses differential privacy (DP) noises [18], [19] to

further obfuscate the raw data with a provable security

guarantee. Meanwhile, the core merit of OPE (i.e., order

preservation) is retained.

The remaining contents of this paper are organized as fol-

lows. In section II, we give a brief introduction to the technical

background of blockchain and the cryptographic primitives.

Afterward, the system and threat models are described in

section III. The technical details of the numerical range query,

keyword search, and the privacy analysis of the proposed

scheme are given in section IV. We report the performance

in section V. At last, we conclude this paper in section VI.

II. BACKGROUND AND PRELIMINARIES

In this section, we first briefly review the background of

blockchain and then describe the cryptographical tools applied

in this paper. Note that, due to the limitation of space, not

every detail of the related techniques is involved. In specific,

the main characters of each preliminary and their role in the

proposed PriFR are illustrated.

A. Blockchain

Blockchain is initiated by Nakamoto [20] to build the first

peer-to-peer cryptocurrency system bitcoin. It is an append-

only distributed digital hyperledger, that eliminates the trusted

party while supporting undeniable and traceable transactions

for individual participants in the network. As shown in Fig. 1,

the blockchain is constructed by data blocks and is secured by

cryptographical techniques. All the participants in the network

run a consensus protocol to decide who generates the new

block. At present, two mainstream consensus protocols are

widely used, which are proof of work (PoW) [20] and proof

of stake (PoS) [21]. In PoW based blockchain, the participant

who is the first to solve a cryptographical puzzle will be

authorized to generate a new block. Each block comprises

two types of data. One is the block header and the other is

transaction data. The block header comprises the following

four items.

• PreBlockHash. The is the hashing value of the whole

previous block used to form the chain. Once a block

is tempered, any node in the network can detect such

behavior by simply computing and checking the block

hash values. Thus, the block integrity is preserved.

• Nonce. It is generated by miners in the PoW blockchain,

which can be regarded as a solution for PoW puzzle.

• Time Stamp. It records the time when the corresponding

block is appended.

• Merkle Root. Each transaction in the same block is

hashed as a leaf node of a Merkle hash tree [22]. To

be succinct, the block header only includes the root.

This item allows participants in the network to verify

the integrity of the transactions.

The transaction data is stored in the block body. It records the

payer and payee’s addresses, transaction value, and a signature

of the transaction generated with the payer’s private key. Be-

yond transferring cryptocurrency, the current smart contracts
[7] enables versatile self-executing agreements that are written

directly into lines of code. In theory, once the functions of the

submitted smart contracts are well-defined, any algorithm or

protocol can be instantiated [10]. Meanwhile, smart contracts

naturally inherit the benefits brought by blockchain, including

integrity preservation and tamper resistance. In this paper, we

mainly investigate the privacy-preserving file retrieval problem

on the encrypted data using smart contract enabled blockchain

[1], [23], [24]. In specific, the blockchain and smart contract

serve as the supporting platform for our proposed PriFR.

B. Cryptographical Primitives

To preserve the privacy of the outsourced cloud data while

offering efficient and functionality-rich file retrieval services,

we adopt the following cryptographical tools as the building

blocks. Note that, in this section, we do not traverse every

primitive used in PriFR. The corresponding remaining primi-

tives will be introduced in the related sections.
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Symmetric Searchable Encryption (SSE). SSE is first

proposed by Song et al. [13] to enable privacy-preserving

keyword search over the encrypted files. SSE [5] has been

intensively studied in the past two decades. A typical SSE

system [5] mainly comprises two entities, which are the data

owner and remote server (i.e., cloud server in articles [5], [8]).

We depict the basic algorithms for SSE as follows.

• System initialization. The data owner first generates pri-

vate keys for encryption. Then, it generates an inverted

index for the keyword dictionary. For instance, if a file

contains a specific keyword, its identifier (ID) will be

appended to the corresponding keyword. Afterward, the

inverted index is encrypted using a customized crypto-

system [5]. The files are encrypted using standard sym-

metric encryption (e.g., AES). The encrypted index along

with the encrypted files is outsourced to the remote server.

• Trapdoor generation. Data owner uses private keys to

generate a trapdoor for the selected keywords. Then, it

uploads the trapdoor to the remote server.

• Search on the encrypted files. Upon receiving the trap-

door, the server executes the predefined protocol to

conduct keyword matching on the encrypted index and

trapdoor. If any keyword is matched, the corresponding

encrypted files will be returned to the data owner. Then,

the data owner simply decrypts them as the search result.

Order-preserving Encryption (OPE). The ciphertexts gen-

erated by OPE [15] can preserve the order information. For

example, given two messages m1 > m2 and their OPE

generated ciphertexts c1, c2, we have c1 > c2. This prop-

erty is appealing and motivates its application for privacy-

preserving queries [15], [16]. In this paper, we use the triple

{OPE.Key,OPE.Enc,OPE.Dec} to indicate the secret key

generation, encryption, and decryption algorithms for OPE.

The technical details can be found in [15], [16].
Differential Privacy (DP). DP is regarded as the de-

facto standard privacy-preserving mechanism that offers a

mathematical quantifiable measure of the protection strength

[18]. Intuitively, the user can tune the parameter named

privacy budget to seek a satisfactory trade-off between privacy

protection and data utility [18]. Currently, there are mainly two

trendy DP paradigms, central (CDP) and local (LDP) [19].

The primary difference between CDP and LDP is the trust

setting. In CDP, a trusted aggregator is needed to perturb the

collected private data from the individuals. While LDP allows

individuals directly add the noises to the raw data. The succinct

definitions of CDP and LDP are given as follows, respectively.
Definition 2.1 (Central Differential Privacy, CDP): Given a

probabilistic algorithm A : Un → V , for all adjacent datasets

D,D′ ∈ Un, all subranges of the output S ∈ U , A is ε-DP if

the following inequation holds.

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S]. (1)

In the context of DP, the notion of two adjacent datasets mean

that D and D′ only differ in one entry.
Definition 2.2 (Local Differential Privacy, LDP): Given a

probabilistic algorithm A : U → V , for any pair of private

Fig. 2. System model.

inputs d, d′ ∈ U , all subranges of the output S ∈ U , A is

ε-LDP if the following inequation holds.

Pr[A(d) ∈ S] ≤ eεPr[A(d′) ∈ S]. (2)

Note that, the above Definitions 2.1, 2.2 are the standard DP

model. In this paper, we relax the DP model by incorporating

the data distances to strengthen the security of OPE [16].

III. PROBLEM STATEMENTS

In this section, we first introduce the system model and

elaborate on the roles of each entity to sketch the workflow

for PriRF. Afterward, the formal threat model is given.

A. System Model

As shown in Fig. 2, PriFR comprises four entities. Below,

we elaborate on the role of each entity and briefly review the

workflow.

• Data Owner (DO). It is the owner of the files that

outsources the file storage and retrieval services to the

public cloud and blockchain. DO first generates metadata

for each file and encrypts them as the retrieval index.

Then the encrypted metadata will be uploaded to the

blockchain (full node). The original files along with

their identifiers (IDs) are encrypted using fast symmetric

encryption (e.g., AES) and outsourced to the cloud server.

• Data User (DU). It is authorized by DO that can launch

file retrieval requests to the blockchain. DU receives the

encrypted IDs. Then, the encrypted IDs are sent to the

cloud server. At last, the corresponding encrypted files

are returned to DU as the final result.

• Blockchain (BC). It stores the encrypted metadata and

ID for each file. Once a retrieval request arrived, BC
conducts secure metadata matching by invoking pre-set

smart contracts and returns the encrypted IDs to DU.

• Cloud Server (CS). It plays the role of a public data

warehouse. CS stores the large-scale encrypted files and

their encrypted IDs. Upon receiving the retrieved file IDs

from DU, CS returns the corresponding encrypted files.

B. Threat Model

In this paper, we consider BC and CS to be semi-honest

(i.e., honest but curious), which is practical for real-world

scenarios [8], [23]–[25]. In specific, the BC and CS will follow

the pre-set protocols strictly without any deviation. However,
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they may conduct passive inference on the collected private

data to mine some desired information, for economic interests,

or for voyeurism [8]. DO is the owner of all the data and thus

is assumed to be fully trusted. DU is the authorized user of the

data and is also considered to be fully trusted. Note that, in

works [5], DU is considered to be semi-honest or malicious.

Therefore, access control [26] and verification mechanisms

[24] are needed, which is out of the scope of this paper.

IV. PROPOSED SCHEME

In this section, we present the technical details of PriFR.

As discussed in Section I, the problem of private file re-

trieval is modeled as metadata matching. This problem is

then decomposed into three sub-problems, which are private

numerical range query, encrypted keyword search, and final

result revealing. We elaborate on each subroutine in the

following subsections.

A. Private Range Query

There are two mainstream technical routes [27] on solving

private numerical range queries. The first route is comparing

the queried range bounds with each data record. For instance,

given a query range [a, b], a, b ∈ R and database D with data

records xi ∈ R, i ∈ |D|, the results of a query is actually

directly computed by inspecting inequation a ≤ xi ≤ b
without accessing the original values of a, b, xi. To support

the numerical comparison over the ciphertext domain, OPE

[15] as a lightweight crypto-system, is extensively used. The

second route is converting the range query problem into a set

membership test. For instance, the query range [1, 10] can be

represented by a set of numbers like {1, 1.1, 1.2, ..., 10}. Then,

we can determine the query result by inspecting whether xi

belongs to the given set. To implement such a set membership

test, exiting encrypted keyword search (e.g., SSE) efforts

[27] can be exploited if we treat xi and the elements in set

{1, 1.1, 1.2, ..., 10} as keywords.

Why we choose OPE as the cornerstone. It is straightfor-

ward if we turn to use existing SSE methods for answering

encrypted range queries. However, the high efficiency and

scalability can hardly be preserved. First, the current SSE

method [5], [27] works well for keyword search, but when

the query range becomes large, the size of queried keywords

expands at least linearly which ultimately leads to significant

additional costs. Second, the efficient query indexing technique

like B+ tree can hardly be compatible with SSE implemen-

tation. Therefore, to conquer these two issues, we use OPE

as the building block for PriFR. Compare to the SSE method

[27], due to the use of OPE, PriFR can not only reduce the

encryption and communication costs but also perfectly support

any plaintext query boosting technique.

Enhancing the security of OPE by DP. As the OPE ci-

phertexts preserve the order information, inference attacks

[15] have long been the main threat, that can even recover

partial plaintexts. Introducing DP noises [16] can offer a

quantifiable guarantee against inference attacks and high utility

simultaneously. The key idea is encoding the raw data using

relaxed DP mechanisms, then invoking OPE to encrypt the

encoded data. In the following paragraphs, we first give the

definitions of relaxed DP mechanisms. Based on the relaxed

DP, a new raw data encoding method is introduced [16]. At

last, we give the detail of the private range query protocol.

Definition 4.1 (Distance-based Central Differential Privacy,
dCDP): Given a probabilistic algorithm A : Un → V , for all

adjacent datasets D,D′ ∈ Un that differ in one element di, d
′
i,

respectively; all subranges of the output S ∈ U , A is ε-dCDP

if the following inequation holds.

Pr[A(D) ∈ S] ≤ eε|di−d′
i|Pr[A(D′) ∈ S]. (3)

Definition 4.2 (Distance-based Local Differential Privacy,
dLDP): Given a probabilistic algorithm A : U → V , for all

pair of private values d, d′, all subranges of the output S ∈ U ,

A is ε-dLDP if the following inequation holds.

Pr[A(D) ∈ S] ≤ eε|d−d′|Pr[A(D′) ∈ S]. (4)

Definition 4.1 and 4.2 are distance-based relaxed DP models.

Intuitively, less noise will be injected into the data if the

neighbor databases or pair of values have a short distance.

Thus, ε-dCDP and ε-dLDP can make a subtle balance between

the data utility and privacy protection for OPE. Below, based

on the ε-dLDP model, we show the technical details of the

raw data encoding method, dubbed as CddLDP.

Construction of CddLDP. Assume I is the input distri-

bution, and its prior distribution is D. The output domain

{od1, ..., odt} is denoted as O. Let m be the number that

needs to be encoded and ε be the privacy budget. P be a t-
partition {[u1, v1], ..., (ut, vt]} on I. The output encoding is

written as OE. CddLDP is constructed by following two steps.

Step 1. For all i ∈ [t], computes the weighted median for

each interval (ui, vi] according to D. If D is not available, the

uniform distribution will be adopted.

Step 2. For all m ∈ I, and i ∈ [t], computes the encoding

probability distribution for each m as:

fm,i = Pr[CddLDP(m,P, ε)] =
e−|m−wi|·ε/2

∑t
j=1 e

−|m−wj |·ε/2
. (5)

At last, the output encoding is randomly sampled from fm =
{fm,1, ..., fm,t} as OE ← fm. As shown in Equation 5, the

classic exponential DP mechanism [18] is used.

By integrating CddLDP, the DP-enabled OPE scheme can be

implemented with the assistance of authenticated encryption

[17]. To be succinct, we only give the triple of authenticated

encryption {AE.Key,AE.Enc,AE.Dec} to represent the key

generation, encryption, and decryption algorithms, respec-

tively. We write the augmented OPE as OPEε. The syntax

of OPEε is defined as follows.

• OPEε.Key(λ). It invokes SKOPE ← OPE.Key(λ) and

SKAE ← AE.Key(λ), where λ is the security parameter.

The private keys {SKOPE, SKAE} are returned.

• OPEε.Enc(·). It encrypts the data m ∈ I by com-

puting OE ← CddLDP(m,P, ε/2), (SKOPE
′, c0) ←
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OPE.Enc(SKOPE,OE,Π), c1 ← AE.Enc(SKAE,m). The

returned ciphertext is a triple CT = (SKOPE
′, c0, c1).

• OPEε.Dec(·). It takes the private keys and cipher-

text triple as the input and then computes m ←
AE.Dec(SKAE, c1) , OE ← OPE.Dec(SKOPE, c0) to

obtain the plaintext pair (m,OE).

Range query using OPEε. In this part, we illustrate the

implementation details for the range query protocol built atop

OPEε. Recall that, in the context of OPE, each ciphertext is

unique. In addition, OPEε has introduced randomness into the

ciphertexts. Thus, a query issuer needs to maintain the state

information for each plaintext. For a simple example, given the

plaintext set M = {m1, ...,mt}, its corresponding plaintext

set N = {n1, ..., nt}, then a query issuer needs to keep the

maximum and minimum ciphertexts in N for each mi. They

are written as max 〈mi〉 and min 〈mi〉. In the remainder of this

paper, we use 〈m〉 to denote the ciphertext of data m. Thus, to

issue a range query [a, b], the queried records should belong

to [min 〈a〉 ,max 〈b〉]. This principle remains unchanged when

OPEε is applied. Below, we depict the detailed design of the

range query protocol.
We define the notations and the input/output items. The

dataset with t records is written as M . In M , each record

is denoted as (mi, ki), i ∈ [t]. mi is the private data that

needs to be encrypted, and ki is the other associated data.

The query issuer can decide whether to encrypt ki or not.

The private key pair of OPEε is {SKOPE, SKAE}. P represents

the partition used for OPEε. Assume the input is a range

query [a, b]; a, b ∈ I, the output is a set of queried records

R = {ki|mi ∈ [a, b], (mi, ki) ∈ M}. The range query can be

achieved by the following three phases.
Phase 1. Initialization : 1). Data owner (DO) first pre-

pares the input dataset M = {m1, ...,mt}. Then it invokes

N ← OPEε(SKOPE, SKAE,M,Π,P, ε/2). The ciphertext set

is then sent to the service provider (i.e., BC). 2). For all output

encoding OE ∈ O, the aforementioned state information is

generated by DO and shared with DU.
Phase 2. Issue and answer range query : 1). DU gen-

erate an encrypted query as Q ← [min 〈P(a)〉 ,max 〈P(b)〉]
according to the state information. Then, DU sends it to

BC. 2). Upon receiving the query, BC simply compares

the values between the encrypted dataset N and Q. The

returned query result can be written as R′ ← {(xi0, xi1)|i ∈
[t];xi0 ∈ [min 〈P(a)〉 ,max 〈P(b)〉]}. At last, R′ along with

the corresponding encrypted file IDs are sent back to DU.

Note that, this step can be implemented using any plaintext

indexing technique like B+ tree to boost query efficiency.
Phase 3. Result filtering : As the DP noises are injected

into the dataset, the query result inevitably may contain a few

false positive items. Thus, DU should filter out these wrong

items. If R′ �= φ, for all xi1 ∈ R′, DU first invokes x′
i ←

AE.Dec(SKAE, xi1). Then if x′
i ∈ [a, b], the corresponding file

ID will be accepted as a correct item. Otherwise, it will be

asserted as a false item and abandoned. At last, DU uploads

the correct file IDs to CS and fetches the encrypted original

files. The files will be decrypted as the final result.

Note that, the above private range query protocol can be

implemented by using smart contracts. In specific, once the

encrypted dataset is prepared, DO may generate a smart

contract to request query service to BC. Then the integrity

of the protocol is guaranteed.

Remark. In sum, the encoding method CddLDP is used as

the subroutine of OPEε.Key(λ), and OPEε.Key(λ) is applied

to encrypt the data records and to support private range query.

To ease the understanding, we choose to illustrate the entire

protocol in a bottom-up manner rather than summarizing them

into a single algorithm.

B. Encrypted Keyword Search

It is insufficient in terms of functionality if a file retrieval

system only supports numerical range queries. Thus, we seek

to use the SSE method [5], [27] to offer keyword search

service as a complement to PriFR. In this paper, we do

not aim to present a novel SSE scheme, which has been

extensively studied in the past two decades. Therefore, we

propose to use the existing SSE scheme [27] and integrate

it into our blockchain-based PriFR. The pipeline of keyword

searches for PriFR roughly contains the following four steps.

1) DO extracts keywords from the files and builds a plaintext

dictionary. Then it constructs an encrypted inverted index Ind
atop the dictionary. The encrypted files along with the file IDs

are uploaded to CS. Ind is sent to BC. The private key is shared

with DU. 2). When DU needs to issue a keyword search, it

uses the private key to generate a trapdoor Trap for selected

keywords. Afterward, Trap is sent to BC for searching on Ind.

3). The search result (encrypted file IDs) will be returned to

DU. 4). At last, DU uploads the encrypted file IDs to CS and

fetches the encrypted original files. The files will be decrypted

as the final result. The encrypted keyword search service can

also be implemented by smart contracts [7].

C. Final Result Revealing

In Subsection IV-A and IV-B, the subroutines for numerical

range query and keyword search are introduced, respectively.

However, solely using one of the functions can hardly support

metadata matching for PriFR. Thus, when both range query

and keyword search are needed, BC should hold the interme-

diate results and filter out the matched encrypted file IDs. It is

trivial if these two types of queries are conducted by the same

node in BC, a simple set intersection operation can reveal the

result. If these two services are provided by two distinct nodes,

we need to handle this problem carefully for different privacy

requirements. In case the intermediate results (i.e., encrypted

file IDs) are considered non-sensitive information in BC, one

party can just share the IDs with another party. Then, the result

can be revealed by a set intersection operation. However, in

some scenarios, this information is considered sensitive. In

another word, the set intersection needs to be revealed without

leaking the remaining elements. This problem can be solved by

invoking a private set intersection (PSI) [28] protocol. It offers

privacy-enhancing property at the cost of significant additional

computational/communication costs. This is out of the scope
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of this paper, the interested readers are referred to [28]. Note

that, as the last step, DU still needs to filter out the false

positives incurred by OPEε.

D. Privacy Analysis

PriFR is built atop the proven secure cryptographical prim-

itives as discussed in Section IV. Therefore, the privacy of the

original file data as well as the metadata is strictly preserved,

especially in the DP-enabled range query protocol. Below, we

give a brief discussion on the privacy issue for all the shared

data in the system.

• Privacy of OPEε encrypted data for the range query. The

data encrypted by OPEε can generates indistinguishable

ciphertexts under frequency-analyzing ε-dCDP ordered

choose plaintext attacks (ε-IND-FA-OCPA) [16]. If the

privacy budget ε is given, the attack resistance strength

can be rigorously guaranteed (ε-dCDP). Thus, the privacy

of OPEε encrypted data is well preserved.

• Privacy of the SSE encrypted data. At present, the latest

SSE scheme can not only provide provable privacy pro-

tection in the static setting but also offers forward and

backward privacy even when DO can dynamically update

the encrypted files [5], [27]. In addition, if a novel attack

can break through the existing scheme, PriFR can just

use an alternative secure scheme.

• Privacy of the outsourced file data. The files stored on

the CS are encrypted using advanced encryption standard

(AES), which has been commonly used and proven to be

secure if the length of the private key is set appropriately.

V. PERFORMANCE EVALUATION

In this section, we elaborate on the performance of the pro-

posed PriFR. Due to the limitation of space, in this conference

version, we mainly report the impacts of differential privacy

noises on query accuracy for OPEε and the extra records

processed. In specific, we first give the details of experimental

settings and the used datasets. Then, the effects of the privacy

budget and workload are reported, respectively. At last, we

give some additional discussions on the other issues related to

the performance of PriFR.

A. Experimental Settings and Datasets

We implement the experiments on the local computing

matching (Server) with Intel (R) Xeon(R) E5-2697 v3 2.6GHz

CPUs with 28 threads on 14 cores and 64GB memory.

The programming language is Python and the open-source

library pyca/cryptography is applied. Below, we give a brief

introduction to the testing data about their features.

• Texas PUDF [29]. It is a public medical dataset released

by the state of Texas. PUDF stands for public use data

file. Texas PUDF contains large-scale hospital discharge

data in Texas collected from 1999. In specific, we use

the attribute PAT ZIP that is zipcode within domain

[70601, 88415]. It roughly contains 730K records.

• NY SPARCS [30]. It is also a public medical dataset

released by the state of New York. SPARCS stands for

(a) Impact of ε on M1 (b) Impact of workload on M1

Fig. 3. Performance evaluated by metric M1 (%).

statewide planning and research cooperative system. It

has roughly 2500K hospital inpatient discharge records.

The attribute length of stay ranging in [1, 120] is used.

Tow mainstream metrics are adopted [16], that are the

relative proportion of missing records M1 and the proportion

of additional records M2 processed by OPEε. Specifically, they

are defined as follows.

M1 =
missing records

correct records
%; M2 =

additional records

size of dataset
%. (6)

The first metric M1 can capture the false negatives. For

instance, the number 9.7 should be included if the query

range is [1, 10]. However, if the added DP noise is larger

than 0.3, 9.7 will be excluded falsely. Note that, the false

positives can be easily filtered out by DU. The second metric

M2 indicates the processed extra records. Since the underlying

encryption techniques including OPE and AE used in OPEε
are the same as the previous scheme [15]. Thus, the scale

of additional computational/communication overheads brought

by OPEε can be characterized by this metric.

B. Experimental Results

Recall that the standard OPE [15] can perfectly preserve the

order information for all the ciphertexts. Thus, the mainstream

plaintext indexing method for range query including R-tree,

B+ tree, etc., can be directly constructed over the OPE

ciphertext domain. Thus, OPE is regarded as the fastest crypto-

graphic primitive for private numerical queries. In PrivFR, the

DP noises are added to obtain ε-dCDP privacy guarantee. As

the order information is mildly obfuscated by the added noises,

two factors are incurred. First, some false negatives (missing

correct records) are inevitable when the noisy plaintexts jump

out of the original range. This factor is characterized by the

metric M1. Second, due to the use of range partition algorithm

P and a few records may be noisily mapped to the intervals.

Thus, a few additional records need to be processed for issued

queries. As a result, a mild additional performance cost is

imposed. We use the metric M2 to evaluate this factor.

Performance evaluated by metric M1. We first report the

impact of privacy budget ε on M1. In theory, with the decrease

of ε, the noise scale will be compressed which ultimately

leads to fewer missing records. The results reported in Fig.

3(a) are consistent with this principle. For Texas PUDF,

when ε = 1, M1 is roughly 0.033%. It indicates that on

average only around 3.3 records may be missed in 104 correct

records. In addition, ε = 1 is commonly chosen in real
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(a) Impact of ε on M2 (b) Impact of workload on M2

Fig. 4. Performance evaluated by metric M2 (%).

scenarios [18]. For NY SPARCS, M1 will be lower because

the generated intervals (i.e,. P) are smaller which leads to

more missing records. In specific, M1 is roughly 0.67% when

ε = 1. The trend of M1 for NY SPARCS is the same as

Texas PUDF. Another way to reduce M1 is to issue a batch

of queries at once. Thus, increasing the workload can improve

the utility of PriFR. As shown in Fig. 3(b), M1 drops from

0.042% to 0.006% and 0.9% to 0.12% for Texas PUDF and

NY SPARCS, respectively when the workload varies from 1
to 20. Thus, PriFR fits more to the large workload.

Performance evaluated by metric M2. For M2, the trends are

similar to M1 when varying either parameter ε or the workload,

which is demonstrated in Fig. 4(a) and Fig. 4(b). Specifically,

for Texas PUDF, the size of additional records retrieved by

PriFR is mild (roughly 1.2%) when ε = 0.01. If ε is set to 1,

M1 drops to around 0.39%. For the same ε, for NY SPARCS,

M2 is roughly 2.5%. It means that on average nearly 2.5
additional records are retrieved in 100 records. Thus, the

extra time cost is negligible. Similarly, as shown in Fig.

4(b), with the increasing of workload, the reduction of M2 is

significant for both Texas PUDF and NY SPARCS. It drops

from 3.9% to 0.8% and 3.7% to 0.22% for Texas PUDF
and NY SPARCS when varying the workload from 1 to 20,

respectively. Note that, for Texas PUDF, M2 will be lower

because the generated intervals (i.e,. P) are larger which leads

to fewer missing records. Due to this reason, the curve of

Texas PUDF changes more moderately than NY SPARCS,

which is demonstrated in Fig. 4.

Computational complexity. In this part, we discuss the

computation complexity of the proposed OPE-based numerical

query scheme. Assume that, the number of data records and the

number of partitions are n, t, respectively. At a high level, the

data domain is partitioned into t intervals. Then, data records

are mapped into intervals. To conceal the original data and to

enable decryption, each record is encrypted by a symmetric

encryption method [17]. Obviously, the computational cost of

generating an OPE generated database is linear to n. Assume

that the time cost of domain partition (i.e., OPE encoding) is

TP , and the encryption cost of one record is TE . Then, the

computation complexity is TP + nTE , where TP ∼ O(t). In

this paper, the differential privacy noises are introduced into

the domain partition algorithm, which brings negligible cost.

Moreover, PriFR only needs to invoke the partition algorithm

once for a given data domain. As the numerical range query

can be directly conducted over the OEP encrypted data, no

additional computational cost is incurred [16]. Thus, in theory,

and practice, OPE is regarded as the most efficient crypto-

system for privacy-preserving numerical range queries.

Remark. SSE [5] is extensively studied in the past decades,

and its theoretical best-possible efficiency/security trade-offs

are provided. The goal of this paper is not to propose a new

SSE scheme. Interested readers may refer to [1], [5], [27] for

the performance of SSE.

Discussion. As the data domain partition and record map-

ping algorithm CddLDP introduces differential private noises,

some of the data records may be mapped into the wrong

partition. Thus, false positives are inevitable. Fortunately, the

returned encrypted results should be decrypted by using the

private key SKAE. Thus, this issue can be easily addressed by

filtering out the wrong results over the plaintext domain by

DU. There should be no technical challenge. In theory, the

false positive ratio can be calibrated by the differential private

[18] noises. For instance, the less ε the larger the false positive

ratio is. This type of error is captured by metric M2.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a practical and privacy-preserving

file retrieval system PriFR by integrating cloud computing and

blockchain. PriFR cannot only enjoy the rich storage resources

of the cloud server but also leverage the blockchain infras-

tructure for secure and reliable file metadata retrieval. Rich

functionalities are achieved with strong privacy preservation

at mild extra costs. The new framework and pipeline proposed

in PriFR may motivate future research on secure big data

retrieval with the assistance of blockchain. In the future, we

will investigate blockchain-enabled big data processing.
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