
CapsuleFormer: A Capsule and Transformer combined model for
Decentralized Application encrypted traffic classification

Xiang Zhou
x-zhou21@mails.tsinghua.edu.cn
Shenzhen International Graduate

School, Tsinghua University
China

Xi Xiao∗
xiaox@sz.tsinghua.edu.cn

Shenzhen International Graduate
School, Tsinghua University

China

Qing Li
andyliqing@gmail.com
Peng Cheng Laboratory

China

Bin Zhang
bin.zhang@pcl.ac.cn
Pengcheng Laboratory

China

Guangwu Hu
hugw@sziit.edu.cn

School of Computer Science,
Shenzhen Institute of Information

Technology
China

Xiapu Luo
csxluo@comp.polyu.edu.hk
The Hong Kong Polytechnic

University
Hong Kong, China

Tianwei Zhang
tianwei.zhang@ntu.edu.sg

Nanyang Technological University
Singapore

ABSTRACT
Network traffic classification plays a crucial role in both network
management andmonitoring. Recently, an increasing number of De-
centralizedApplications (DApps) are appearing on various blockchain
platforms. DApps employ encryption techniques such as SSL/TLS
to safeguard the data transmitted over the network, making it
more challenging to do traffic classification. In this paper, to tackle
the challenge of insufficient classification accuracy in the exist-
ing classification of encrypted DApp traffic, we present Capsule-
Former, a novel encrypted traffic classification model for DApps.
CapsuleFormer utilizes capsule neurons instead of traditional scalar
neurons, where the neurons within the capsule embody various
attributes of particular entities. Furthermore, Transformer blocks
are adopted to generate a high-dimensional representation of the
capsule activation vector. Thus, CapsuleFormer has the capability
to extract potential features from the encrypted traffic patterns
of DApps. Moreover, we collect and open a dataset of more than
700,000 encrypted traffic flows from 10 different types of DApps.
The results of the experiments on the dataset demonstrate that Cap-
suleFormer is superior to the current methods, with an accuracy
rate of 98.7%.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0482-6/24/07. . . $15.00
https://doi.org/10.1145/3634737.3637664

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
Blockchain, Decentralized Applications (DApps), Traffic Classifica-
tion

ACM Reference Format:
Xiang Zhou, Xi Xiao, Qing Li, Bin Zhang, GuangwuHu, Xiapu Luo, and Tian-
wei Zhang. 2024. CapsuleFormer: A Capsule and Transformer combined
model for Decentralized Application encrypted traffic classification. In
ACM Asia Conference on Computer and Communications Security (ASIA CCS
’24), July 1–5, 2024, Singapore, Singapore, 12 pages. https://doi.org/10.1145/
3634737.3637664

1 INTRODUCTION
Network traffic classification plays a crucial role in both network
management and monitoring. The blockchain network adopts a de-
centralized and distributed ledger technology. Its inherent features,
namely decentralization, transparency, and immutability, enable
its wide-ranging applications in digital currencies, copyright man-
agement, digital identity verification, and other areas. The majority
of these applications are developed on the basis of decentralized
applications, called Decentralized Applications (DApps).

DApps are a type of software that runs on a decentralized blockchain
network. Until November 2022, there had been over 5,800 DApps
deployed across various blockchain platforms, including Ethereum
(28.07%), Binance Coin(BNB) chain (18.39%), and Polygon (7.64%)
[1]. These applications control business logic and deal with data
via smart contracts. Thanks to these contracts, DApps work in a
predictable manner without relying on trust in a central organi-
zation. Unlike traditional centralized applications, DApps are not
controlled by a single entity. DApps employ encryption techniques

https://doi.org/10.1145/3634737.3637664
https://doi.org/10.1145/3634737.3637664
https://doi.org/10.1145/3634737.3637664

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xiang Zhou, Xi Xiao, Qing Li, Bin Zhang, Guangwu Hu, Xiapu Luo, and Tianwei Zhang.

such as SSL/TLS to safeguard the data transmitted over the network,
making it more challenging to do traffic classification.

Traditional methods for network traffic classification, such as
using payload-based deep packet inspection (DPI) [35], are not
effective in the case of DApps deployed on blockchains as they
utilize SSL/TLS encryption to secure data. While there has been
some research on traffic classification for general applications [14,
23, 24, 29], few studies have focused specifically on DApps. Among
these studies, Wang et al. [32–34] only considered packet length
and time-related features, neglecting other potentially valuable
information in byte features. Shen et al. tried to address this issue
in [25, 26], but the results were not satisfactory. In [25], a graph
neural network approach was proposed, but the information for
model training was limited due to using only the first 25 packets in
a flow.

Capsule networks outperform traditional neural networks in
terms of feature extraction ability [11, 22]. Especially, unlike scalar-
based neural units, each component of the vector neuron in capsule
networks can capture the properties of traffic features, such as the
position of byte information and the direction between packets.
Moreover, capsule networks do not rely on pooling operations
to address the issue of information loss, thereby preserving more
fine-grained information.

Inspired by the above idea, we present the CapsuleFormer model
based on capsule networks to do traffic classification of DApps.
In order to get the input of the model, a novel feature selection
algorithm is proposed to evaluate the significance of each feature un-
der diverse sample conditions. The architecture of CapsuleFormer
consists of a PrimaryCapsule layer, a Transformer block, and a
DigitalCapsule layer. The output of each capsule is a vector, with
coordinate values indicating position, size, orientation, and other
factors. We incorporate the self-attention mechanism in Trans-
former to enhance the feature representation, which calculates
attention weights between features to capture the contextual infor-
mation of global features. The DigitalCapsule layer finally obtains
the embedding vector for classification. We thoroughly evaluate the
performance of CapsuleFormer on real-world datasets. The main
contributions of this paper are as follows:

• Based on literature [14], we put forward an enhanced fea-
ture selection algorithm based on the Laplacian method. The
improved algorithm calculates the score of each feature uti-
lizing an indefinite number of samples and its efficacy is
confirmed through experiments.
• We build a deep learning model, CapsuleFormer, to classify
DApp encrypted traffic. CapsuleFormer leverages both cap-
sule network and Transformer to extract latent features from
the encrypted traffic. This process empowers CapsuleFormer
to learn and comprehend the underlying characteristics of
the traffic. To the best of our knowledge, this approach is
novel and has not been explored before.
• We collect and open1 a real-world traffic dataset from 10
DApps on the Ethereum and BNB chains, consisting of ap-
proximately 200G of data and over 700,000 flows. The ex-
periments on this dataset demonstrate that the proposed

1https://github.com/Jsontorch/CapsuleFormer

method outperforms state-of-the-art approaches, achieving
a classification accuracy of 98.7%.

2 THREAT MODEL AND RELATEDWORK
2.1 THREAT MODEL
The DApp classification is a form of traffic attack method aimed
at identifying the DApps users access. For this attack to succeed,
attackers need to acquire the traffic generated when users access
DApps. Therefore, we assume that DApps and the blockchain net-
work will not voluntarily leak traffic information (or other sensitive
metadata) to attackers. Attackers are unable to execute any attacks
other than traffic collection within the user’s local network. This is
detailed in Fig. 1.

DApp Client
Smart Contract

Servers
Blockchain

Network

Adversary

Figure 1: The system model of DApp classification.

2.2 RELATEDWORK
As cryptographic protocols have advanced, traditional techniques
such as port-based and payload-based methods have become obso-
lete in this field. Therefore, we will not be discussing traffic classifi-
cation using these traditional methods in our survey. Instead, we
will focus on the following areas: Mobile application traffic classifi-
cation, Web application traffic classification, and DApps application
traffic classification.

2.2.1 Mobile Application Traffic Classification. This category can
be broadly divided into two main types. The first aims to directly
classify mobile application types, while the second aims to differ-
entiate user actions within mobile applications.

1) In the first category, Tang et al.[28] introduced Trigger Re-
lationship Aware Traffic Classification (TRAC), which utilizes a
trigger relationship graph model to depict the relationships be-
tween applications. A trigger relationship analyzer is then used
to construct the graph, and the traffic is classified using the appli-
cation labels identified by the DPI engine. To overcome the "for-
getting problem" faced by current traffic classification classifiers,
Chen et al.[4] proposed an incremental learning framework that
combines the One vs Rest (OvR) strategy with neural network
classifiers. This framework allows for the incremental addition of
new applications to the classification system while preserving the
knowledge acquired by existing classifiers. Furthermore, certain
traffic classification methods incorporate conventional machine
learning techniques, such as random forest [29] and logistic re-
gression [7], recent research has predominantly leveraged deep
learning approaches such as Recurrent Neural Networks (RNNs)
[17], Capsule Networks [6], and Graph Neural Networks (GNNs)
[2, 12] for traffic classification.

2) In the second category, Coull et al.[5] proposed a method
that utilized the size of encrypted packets to infer user actions,

CapsuleFormer: A Capsule and Transformer combined model for Decentralized Application encrypted traffic classification ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

the language of messages, and even the length of these messages
with an accuracy of over 96%. This approach is particularly effec-
tive for instant messaging services. Yan et al.[36] used a two-step
approach for classifying user actions within mobile applications.
Firstly, the original data is partitioned into "bursts" to represent
different actions. Next, features such as packet length and inbound
and outbound statistics are extracted. Finally, a random forest clas-
sifier is used for classification. Liu et al.[18] presented a prompt
approach for recognizing application activity based on encrypted
traffic. The authors extracted trend features from the traffic gener-
ated by application activities and subsequently employed a random
forest algorithm for the classification process. Li et al.[15] proposed
a multi-label dataset of Internet traffic (MLDIT) and constructed
four behavior classifiers using Multi-layer Perceptron (MLP).

2.2.2 Web Application Traffic Classification. Cai et al. [3] employed
Support Vector Machines (SVMs) with kernel functions based on
the Damerau-Levenshtein edit distance and Hidden Markov mod-
els as classifiers in the Webpage and Website Fingerprinting (WF)
attacks, respectively. Panchenko et al. [20] introduced a WF attack
on the Tor network, named CUMUL, which utilized the cumulative
sum of packet lengths as a feature and classified it using an SVM
classifier. Hayes et al.[9] introduced a random decision forest-based
fingerprinting technique for websites called k-fingerprinting. This
method achieved accuracy comparable to that obtained by CUMUL.
Sirinam et al. [27] proposed Deep Fingerprinting (DF), a WF at-
tack against the Tor network. DF utilizes Convolutional Neural
Networks (CNNs) for feature extraction and classification. Wang
et al.[31] introduced a cross-platform WF attack method based on
multiple similarity loss, utilizing the K-nearest neighbor algorithm
with cosine similarity as the primary classification model. Lu et
al.[19] proposed a Graph Attention Pooling network (GAP-WF) for
precise WF. Khajehpour et al.[13] employed encrypted payloads of
network packets to fingerprint Tor traffic and utilized MLP, CNN,
and Random Forest (RF) as classifiers. Ling et al.[16] introduced a ge-
netic programming-based variant covert traffic search technique to
identifymisleading coverage traffic for deep learning-basedWF clas-
sifiers (CNN, DF, and Stacked Denoising Autoencoders (SDAE)[21]).
The results showed that in the open world, the detection rate was
0.4% with a bandwidth overhead of only 8.1% compared to the DF
model. In the closed world, the detection rate was only 1.7% and the
bandwidth overhead was 12.0% compared to the DF model. Gong
et al. [8] introduced a defense technique against WF named Suraka.
It utilizes Generative Adversarial Networks (GANs) to generate
transmission patterns and adjusts the buffered data accordingly.

2.2.3 DApps application traffic classification. Wang et al. explored
the issue of classifying encrypted traffic for DApps in three stud-
ies [32–34]. In [32], the authors employed statistical features (e.g.
packet length, time series) to build a dataset and used Gradient
Boosting Decision Tree (GBDT), Decision Tree (DT), and RF as
classifiers. [34] proposed a quadratic network based on clustering,
reducing the training set’s redundancy and using a quadratic struc-
ture to capture more constrained relationships. [33] utilized time-
and sequence-based features and employed an RF classifier. Shen et
al. also studied DApps classification in [25, 26]. In [26], the authors
fused different dimensional features through kernel functions and
used KNN, SVM, and RF as classifiers. [25] proposed the Traffic

Interaction Graph (TIG) as an info-rich representation of encrypted
DApp flows, transforming the DApps fingerprinting into a graph
classification problem via bidirectional client-server interactions.
In [37], Yang et al. perform flow classification. The authors utilized
time series and packet length sequences as primary raw features.
Furthermore, the flow data was segmented into bursts at specific
time intervals. Subsequently, these time series and packet length se-
quences were used to create feature matrices for each burst. Finally,
CNN and BiGRU were harnessed as classifiers for the classification
task.

2.3 Summary
The limitations of conventional techniques are predominantly ev-
ident in two facets. Firstly, there is inadequate utilization of the
raw data(Pcap files) from DApps, as models are constructed using
only packet length sequences or time series-related features (e.g.,
[7, 17, 25, 29]) as inputs. Secondly, DApps deployed on the same
blockchain type commonly share similar SSL/TLS protocols, run
backend code on the identical blockchain network, and manage
relevant data, potentially causing distinct DApps to exhibit analo-
gous characteristics. This feature of DApps could lead to a decline
in the classification accuracy of existing methods. Furthermore, as
noted in [25], the author’s utilization of DApp data is suboptimal,
confined to utilizing merely the initial 25 packets from the flow
to construct the graph. Compounding this issue, the graph con-
struction process itself is quite time-consuming. Additionally, the
approach presented in [34] demonstrates potential by suggesting
the division of the dataset into easy and hard datasets to potentially
augment training efficiency. However, due to the intricate nature
of the workflow stemming from the author’s choice not to employ
an end-to-end training methodology for model creation, the an-
ticipated substantial reduction in overall processing time remains
unrealized.

3 METHODOLOGY
In this section, we present our novel method, CapsuleFormer. The
overall architecture of the model is depicted in Fig. 2, composed of
four distinct components: Data Preprocessing, Feature Generation,
Model Training, and DApps Classification.

3.1 Data Preprocessing
The data preprocessing in this subsection involves several steps to
clean and prepare the raw traffic data for constructing a dataset
of features. These include packet processing, segmenting the data
into flows using packet capture (Pcap), and further filtering of the
flows.

1) Packet processing: To ensure the purity and integrity of the
raw traffic data, invalid packets must be eliminated. This includes
identifying and removing retransmitted packets, packets with mul-
tiplexed IPs and ports, acknowledged packets, packets with missing
TCP answers, and packets with non-consecutive sequence numbers.
This step helps to filter out any irrelevant or inaccurate information
in the dataset.

2) Pcap-Flows segmentation: The original Pcap data can be seg-
mented into a sequence of flows. Each flow is then defined as a
series of packets that share the same 5-tuple, which includes the

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xiang Zhou, Xi Xiao, Qing Li, Bin Zhang, Guangwu Hu, Xiapu Luo, and Tianwei Zhang.

Figure 2: The architecture overview of CapsuleFormer.

source/destination IP address, source/destination port, and proto-
col.

3) Flow filtration: After pcap-flows segmentation, some of the
smaller flows, which have a smaller size, contain less information
related to the category. To ensure data integrity, we retain the
maximum flow after segmenting the traffic, where the maximum
flow refers to the one containing the highest number of packets.

3.2 Feature Generation
1) Feature extraction: A detailed description of all features used in
this analysis is provided below:

• General flow-level descriptive statistical features: For a flow,
various statistical measures are calculated including mean,
maximum, minimum, standard deviation, variance, median,
skewness, kurtosis, and a ratio of the standard deviation to
the square root of the flow length with respect to its time
series and packet length, respectively.
• Port number: Including source and destination ports.
• The rate of packets and bytes: Number of packets per second
in the flow, number of bytes per second in the flow.
• Time and protocol: The average arrival time of packets in
the flow, timestamp of the first outbound packet and the first
inbound packet in the flow, timestamps of the first 100 pack-
ets in the flow, duration of the flow, and the used transport
protocol.
• Statistical features of bidirectional packets in the flow: In-
cluding the proportion of bidirectional packets, proportion
of bidirectional bytes, total number of bidirectional pack-
ets, total number of bidirectional bytes, and average packet
length.
• Packet length distribution: Binning into 150 bins, resulting
in a list of length 150.
• Binning statistics features: Dividing the flow’s packet se-
quence into groups of 20 and tallying the number of outgo-
ing packets in each group to create a sequence of outgoing
group totals. Calculating the standard deviation, mean, me-
dian, maximum, and minimum of this sequence.
• Inbound/outbound packets: Obtaining the number of out-
bound and inbound packets in the first 30 and last 30 packets
of a flow.

• Payload features: Calculating the mean and variance of the
payload in a sequence of packets in a flow. Distribution of
bytes of payload in the flow.
• Percentage of elements of a flow: Dividing the packet length
and delay sequence into 10 equal parts and calculating the
percentage of elements in each bin over the total elements
as a feature. This feature is a list of lengths 10.
• Length of the longestmonotonically increasing sub-sequence
in the flow: Including both increasing and decreasing, calcu-
lated separately for time and packet length sequences.
• Variance of the forward and backward direction of the flow:
Given a sequence, first, three representative positions (i.e.,
the first, second, and third quartiles) are selected from the
sequence. Then, for each selected position, the sequence is
divided into two sub-sequences in the forward and backward
directions. Finally, the variance of these sub-sequences is
calculated as a feature.
• Jump count in the flow: Calculating the number of elements
in a sequence whose value is significantly greater than the
mean difference of the adjacent elements in the sequence.

2) Feature selection: After the calculations in Feature extrac-
tion, the total dimension of the features is 599. In order to prevent
overfitting, we propose a feature selection algorithm based on the
Laplacian algorithm [10]. In the Laplacian algorithm, all samples are
used to construct the similarity matrix. Intuitively, it is understood
that the number of samples used to construct the similarity matrix
affects the experimental performance and the overall experimental
duration. Therefore, considering this aspect, we are reworking the
original algorithm to facilitate the determination of the optimal
number of samples to be used when constructing the similarity
matrix. The algorithm’s specific steps are described in Algorithm 1.
It takes the results obtained from feature extraction and the number
of samples used to construct the similarity matrix as inputs. Since
we’re utilizing supervised learning and have known target labels,
we don’t need to compute the Euclidean distances between samples
in all categories, thus reducing the time cost.

Initially, for all samples within the same category, we calculate
the Euclidean distances among them and store these values in a
list E (lines 6-7). For samples not within the same category, we set
the corresponding elements in the similarity matrix to 0 (line 9).
Following this, we sort the list E in ascending order (line 13), and

CapsuleFormer: A Capsule and Transformer combined model for Decentralized Application encrypted traffic classification ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

select the top 𝑎 elements into list G, aiming to obtain the nearest
𝑎 samples to a specific sample. Then, for the nearest 𝑎 samples
within the same category based on Euclidean distance, we set the
corresponding elements in the similarity matrix to 1 (line 17) and
set the remaining elements to 0 (line 19) in the similarity matrix. At
this point, we obtain the similarity matrix constructed based on the
entire dataset. Subsequently, we obtain the degree matrix 𝐷 and
Laplacian matrix 𝐿 from the similarity matrix (line 23). Finally, we
utilize f𝑟 , 𝐷 , 𝐿 to compute the score for each feature (lines 24-30).

Furthermore, we employ the improved algorithm to calculate the
score of each feature using an indeterminate number of samples.
This approach demonstrates highly effective for feature extraction
in DApps, as illustrated by the results obtained in the experimental
section.

Algorithm 1 Feature Selection Algorithm

Input: 𝑋 ∈ 𝑅𝑛×𝑚 , 𝑛: Number of flows, 𝑚:Number of features,
𝑎:Number of flows in constructing matrix 𝑆 .

Output: 𝐿𝑟 : The Score of the 𝑟 -th feature.
1: 𝑓𝑟𝑖 denotes the 𝑖-th flow of the 𝑟 -th feature, 𝑖 = 1, · · · ,𝑚. x𝑖

denotes the 𝑖-th flow.
2: Generate the similarity matrix 𝑆 .
3: for x𝑖 ∈ 𝑋 do
4: for x𝑗 ∈ 𝑋 do
5: if x𝑖 and x𝑗 belong to the same category. then
6: 𝑑

(
x𝑖 , x𝑗

)
=

x𝑖 − x𝑗

2

7: put 𝑑
(
x𝑖 , x𝑗

)
into a list 𝐸.

8: else
9: 𝑆𝑖 𝑗 = 0
10: end if
11: end for
12: end for
13: Sort 𝐸 in ascending order. Put the first 𝑎 elements of 𝐸 into list

𝐺 .
14: for x𝑖 ∈ 𝑋 do
15: for x𝑗 ∈ 𝑋 do
16: if 𝑑

(
x𝑖 , x𝑗

)
∈ 𝐺 then

17: 𝑆𝑖 𝑗 = 1
18: else
19: 𝑆𝑖 𝑗 = 0
20: end if
21: end for
22: end for
23: Define f𝑟 = [𝑓𝑟1, 𝑓𝑟2, · · · , 𝑓𝑟𝑚]𝑇 , 𝐷 = diag(𝑆1), 1 =

[1, · · · , 1]𝑇 , 𝐿 = 𝐷 − 𝑆
24: for 1 ≤ 𝑟 ≤ 𝑚 do
25: f̃𝑟 = f𝑟 − f𝑇𝑟 𝐷1

1𝑇𝐷11

26: 𝐿 = f̃𝑇𝑟 𝐿f𝑟
27: 𝐷 = f̃𝑇𝑟 𝐷 f̃𝑟
28: 𝐿𝑟 =

𝐿

𝐷
29: end for
30: return 𝐿𝑟

3.3 The CapsuleFormer Classifier
In this subsection, we propose CapsuleFormer classifier, as shown
in Fig. 3, which can effectively classify encrypted traffic in DApps.
The size of the input matrix to the CapsuleFormer is 22 × 22. The
CapsuleFormer consists of three parts: a convolutional layer, a
Transformer block, and a capsule layer. In a capsule network, a
capsule is comprised of a set of neurons with specific parameters.
The activation vector of a capsule neuron carries information about
multiple attributes, such as position, size, and direction, through
its coordinate values. The length of the vector represents the prob-
ability of the feature’s existence [22].

1) Convolutional layer: The input data dimension to the con-
volutional layer is 1 × 22 × 22. To enhance the model’s learning
capabilities, we normalize the input data so that the values are
between 0 and 1. Initially, the convolutional kernel size is 3 × 3,
with a stride of 1 and 256 kernels. After convolution, we apply the
ReLU activation function to increase the model’s non-linearity.

After the first convolutional layer, we obtain a feature map of
size 256 × 20 × 20. Then, it goes through the second convolutional
layer, containing 256 kernels with the kernel size of 9 × 9 and a
stride of 2. The output dimension is 256 × 6 × 6. Next, we crop
the channel dimension to 32 eight-dimensional vectors, where 8 is
the length of the capsule neurons. The second convolutional layer
with the cropping operation is also called the primary capsule layer.
At this point, the primary capsule layer has 1152 capsules with a
dimension of 8.

2) Transformer block [30]: The third layer is a Transformer block,
whose main purpose is to enhance the feature representation by
mapping the vector output from the primary capsule layer to a
higher dimensional space. To achieve this, the output from the
previous layer is first processed through a fully connected pre-net,
resulting in a tensor with a dimension of 1152×10. Then this tensor
is input into the Transformer where it calculates the 𝑄,𝐾,𝑉 values
for the 1152 capsules according to the formula, and then calculates
the attention scores for each head according to equation (1)-(2).

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 ,𝑉 = 𝑋𝑊𝑉 (1)
where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑥𝑙×𝑑 are trainable parameters, 𝑥𝑙 is a di-
mension of the primary capsule, 𝑑 is the hidden layer dimension.
Subsequently, the outcome of this self-attention head is calculated:

ℎ𝑒𝑎𝑑 = 𝐴𝑡𝑡𝑒𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑
)𝑉 (2)

It should be noted that the trainable parameters𝑊𝑄 , 𝐾𝑄 ,𝑉𝑄 are
different for each head, in order to calculate attention scores from
multiple perspectives. Finally, the outputs of multiple headers are
concatenated together, and the formula used for this is defined as
follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (3)
where 𝑊𝑂 ∈ Rℎ𝑑×𝑑𝑚𝑜𝑑𝑒𝑙 . h represents the number of headers,
while 𝑑𝑚𝑜𝑑𝑒𝑙 denotes the dimension of the final output.

The final output tensor has a dimension of 1152 × 10.
3) DigitCaps: The Transformer block produces 1152 capsules,

each with a vector length of 10. Initially, each vector 𝑢𝑖 passes
through a parameter matrix𝑊𝑖 𝑗 to obtain prediction vectors 𝑢 𝑗 |𝑖 .

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xiang Zhou, Xi Xiao, Qing Li, Bin Zhang, Guangwu Hu, Xiapu Luo, and Tianwei Zhang.

Figure 3: The schematic illustration of CapsuleFormer. An arrow represents the output vector of a capsule.

Then, each prediction vector is multiplied by a coefficient 𝑐𝑖 𝑗 and
summed for 𝑖 to obtain the capsule 𝑠 𝑗 . The formulas for calculating
the prediction vectors and the input vector 𝑠 𝑗 of the capsule are as
follows:

𝑠 𝑗 =
∑︁
𝑖

𝑐𝑖 𝑗𝑢 𝑗 |𝑖 , 𝑢 𝑗 |𝑖 =𝑊𝑖 𝑗𝑢𝑖 (4)

where 𝑐𝑖 𝑗 is the coupling coefficient, which is calculated by equation
(5).

𝑐𝑖 𝑗 =
exp

(
𝑏𝑖 𝑗

)∑
𝑘 exp (𝑏𝑖𝑘)

(5)

where 𝑏𝑖 𝑗 is updated through Algorithm 2.

Algorithm 2 Dynamic Routing Algorithm

1: procedure ROUTING (𝑢 𝑗 |𝑖 , 𝑟 , 𝑙)
2: for all capsule i in layer l and capsule j in (𝑙 + 1) : 𝑏𝑖 𝑗 ← 0
3: for 𝑟 iterations do
4: all capsule 𝑖 in

layer 𝑙 : 𝑐𝑖 ← softmax (𝑏𝑖) ⊲ Softmax computes 𝑐𝑖 𝑗
5: all capsule 𝑗 in layer (𝑙 + 1) : 𝑠 𝑗 ←

∑
𝑖 𝑐𝑖 𝑗𝑢 𝑗 |𝑖

6: all capsule 𝑗 in
layer (𝑙 + 1) : 𝑣 𝑗 ← squash

(
𝑠 𝑗
)

⊲ squash computes 𝑣 𝑗
7: all capsule 𝑖 in

layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1) : 𝑏𝑖 𝑗 ← 𝑏𝑖 𝑗 +𝑢 𝑗 |𝑖 · 𝑣 𝑗
8: end for
9: return 𝑣 𝑗

To utilize the length of the capsule output vector as an indication
of the presence probability of a category, the input vector 𝑠 𝑗 of the
capsule is compressed to a range between 0 and 1 through a non-
linear squashing function. The definition of the squashing function

is presented below:

𝑣 𝑗 =

𝑠 𝑗

2
1 +

𝑠 𝑗

2 𝑠 𝑗

𝑠 𝑗

 (6)

where 𝑣 𝑗 is the output vector of the capsule.
The L2 norm representation of digit capsules is indicative of

the probability of entity existence. In order to minimize the loss
corresponding to positive samples andmaximize the loss of negative
samples, the margin loss is employed as the loss function for a single
digit capsule. Mathematically, the margin loss is defined as follows:

𝐿𝑘 = 𝑇𝑘 max (0, 𝑥 − ∥v𝑘 ∥)2 + 𝜆 (1 −𝑇𝑘)max (0, ∥v𝑘 ∥ − 𝑥)2 (7)

where 𝑘 represents the predicted class,𝑇𝑘 equals 1 when the class 𝑘
exists, otherwise, it equals 0. The upper bound 𝑥 and lower bound 𝑥
are respectively set to 0.9 and 0.1. This setting aims to avoid wasting
time in further strengthening the L2 norm of the digit capsules
when the representation of positive and negative samples is good
enough, as reflected in the L2 norm of their corresponding digit
capsules being large or small enough. Further training is mainly
focused on more difficult-to-classify samples. The parameter 𝜆 is set
to 0.5 to balance the weights of the two boundaries, thus avoiding
the L2 norm of digit capsules being too small at the beginning of
training. The total loss for the network is the sum of the losses for
all individual capsules. The parameters of each layer and the input
and output dimensions in the CapsuleFormer model are shown in
Table 1.

Finally, we will use the trained CapsuleFormer model to predict
unknown encrypted DApp traffic, and evaluate its performance.
And we utilize the test results to guide the selection of hyperpa-
rameters.

CapsuleFormer: A Capsule and Transformer combined model for Decentralized Application encrypted traffic classification ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 1: Parameters of each layer in the CapsuleFormer
model

Layer Kernel sizeStrideNumber Input Output
Conv1 3 1 256 1 × 22 × 22 256 × 20 × 20

PrimaryCaps 9 2 1 256 × 20 × 20 1152 × 8 × 1
Encoder block - - 5 1152 × 8 × 1 1152 × 10 × 1
DigitCaps - - 1 1152 × 10 × 1 10 × 16 × 1
Norm - - 1 10 × 16 × 1 10 × 1 × 1

4 DATASETS AND METRICS
4.1 Dataset
The initial step involved gathering DApps traffic data from the
network environment. The dataset is obtained by selecting DApps
based on their user volume ranking on a specific website, and data is
being collected in April 2022 for approximately two weeks. A total
of 10 categories were collected, five DApps each on the Ethereum
and BNB chains. The process involved accessing specific DApps
through a Chrome browser on a computer, navigating randomly
within the DApps, and then using tcpdump to capture the encrypted
traffic data. Each DApp category was visited 1000 times, and the
resulting raw data were processed by the data processing method
outlined in Section III. The final dataset details can be found in
Table 2.

Table 2: Details of Encrypted Traffic Data for DApps

DApps Flow Size Label
sushi 10651 15.6G 1

uniswap 95658 29.8G 2
solo.top 29007 2.97G 3
venus 50060 12.7G 4

pancakeswap 76814 15.6G 5
biswap 78707 21.4G 6

alpacafinance 70297 17.4G 7
dodoex 73539 8.29G 8
tokenlon 78566 13.0G 9
curve 67099 64.2G 10

4.2 Performance Metrics
To validate the experimental results, we utilize a set of standard
evaluation metrics. Additionally, we conducted a 10-fold cross-
validation on the dataset. This procedure involves applying strati-
fied sampling to randomly extract samples from each class, main-
taining a 4:1 ratio for the creation of both training and testing sets.
Ultimately, the average results are used as the final classification
results. Before delving into the evaluation metrics, we will first
define several parameters that are necessary for the evaluation
metrics. For each category, we have True Positive (TP), which is the
number of instances where the sample’s true class is positive, and
the model correctly identifies it as such; False Negative (FN), which
is the number of instances where the sample’s true class is positive
but the model incorrectly identifies it as negative; False Positive

(FP), which is the number of instances where the sample’s true class
is negative but the model incorrectly identifies it as positive; and
True Negative (TN), which is the number of instances where the
sample’s true class is negative, and the model correctly identifies it.
By using these four parameters, we can compute four main eval-
uation metrics for the classification results: Accuracy, Precision,
Recall, and F1 Score.

Accuracy is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 +𝑇𝑁 (8)

Precision is defined as:

𝑃𝑟𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (9)

Recall is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (10)

And F1 score is defined as:

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (11)

4.3 Comparison of Models
To validate the effectiveness of our model, we compare our model
with several other methods, as outlined below:
• Appscanner [29]: A random forest classifier is employed to
classify outbound, inbound, and bidirectional flows using
statistical features of packet length such as minimum and
maximum values.
• EDC [15]: This method also employs simple features such
as packet length, port number, and packet direction, and
utilizes a simple MLP with only two hidden layers as the
classifier.
• FAAR [18]: A random forest classifier is employed to classify
the data, after extracting features using the packet length
and wavelet decomposition.
• GDA [25]: This method constructs a graph for each flow
using the first 25 packets of the flow, where the packets are
divided into bursts. An edge is then established between
packets within the same burst, and an edge is also estab-
lished between the beginning of the last burst and the last
packet. Each packet also has a direction, and the graph is
then classified.
• CBFM [37]: This method first divides flows into bursts within
specific time intervals. Following this, time series and packet
length sequences within each burst are harnessed to con-
struct burst feature matrices. Finally, CNN and BiGRU are
employed as classifiers to classify the burst feature matrices
derived from the burst sequence of each flow.
• FS-Net [17]: This method utilizes the packet length as an
initial feature and then obtains an Embedding representa-
tion of the packet length. The Embedding representation
is then fed into a model, which is composed of an autoen-
coder and a Bi-directional Gated Recurrent Unit (Bi-GRU)
for classification.
• SPCaps [6]: This method employs the bytes of each packet
sequence payload as features. The process begins by extract-
ing the first 784 bytes of each packet sequence, reshaping

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xiang Zhou, Xi Xiao, Qing Li, Bin Zhang, Guangwu Hu, Xiapu Luo, and Tianwei Zhang.

them into a 1x28x28 tensor, and then feeding them into a
basic capsule network classifier for classification.
• CQNet [34]: The method first extracts byte sequences from
pcap files to form the raw dataset. These sequences are then
input into a CNN model, previously trained on Fashion-
MNIST, to generate embedding features. Following this, the
obtained embedding features undergo clustering techniques,
which partition the overall dataset into easy dataset and
hard datastet. Ultimately, the researchers utilize a quadruplet
network designed using a Siamese architecture to conduct
training specifically on the hard datastet.

4.4 Experimental Setup
The proposed approach, which is implemented using Python 3.7.13
and PyTorch 1.12.1, is trained on an Ubuntu operating system,
utilizing an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz with 10
CPU cores, 128 GB of RAM, as well as an NVIDIA GeForce RTX
3080 GPU for acceleration.

5 EXPERIMENTAL RESULTS
In this section, we first validate the effectiveness of Algorithm 1.
Since variations in parameter 𝑎 can significantly impact the model’s
accuracy, which holds crucial implications for real-world applica-
tions, we also conduct experiments on parameter𝑎. Moreover, as the
input feature dimensions can affect the model’s performance and
have implications for the actual deployment of the model, we also
experiment with input dimensions. Subsequently, to understand
the superiority of our method and provide reference benchmarks
for comparison, we conduct comparisons with other methods to
evaluate the performance of our model. Furthermore, to analyze
the importance and effects of each module, we perform ablation
experiments on each module to explore their contributions to the
overall performance. Finally, to evaluate the model’s scalability
and its practical application within computational constraints, we
study the time complexity of the proposed model in the system. To
provide insight into the specifics of the experiments, we present the
hyperparameters of the model in Table 3. Our Research Questions
(RQ) are as follows:
• RQ1: How well does Algorithm 1 perform? And how does
the parameter 𝑎 affect the experimental results?
• RQ2: How does the input feature dimension affect overall
performance?
• RQ3: How does the performance of our model compare to
that of other models?
• RQ4: What is the contribution of each module in the model
to the overall performance?
• RQ5:What is the time complexity of the proposed model?

5.1 Examination of Feature Selection (RQ1)
1) In order to demonstrate the benefits of feature selection, we
performed experiments in the feature generation step of the Cap-
suleFormer framework by removing feature selection while keeping
all other conditions constant. The resulting confusion matrix is pre-
sented in Fig. 4 and Fig. 5. As depicted in Fig. 4 and Fig. 5, the
classification performance of classes 0, 1, 4, and 6 was noticeably
improved after applying feature selection, thereby demonstrating

Table 3: Hyperparameters of the CapsuleFormer

Hyperparameters #
Batch Size 128
Optimizer Adam

Learning Rate 0.001
lr_scheduler ExponentialLR
lr_decay 0.9

Number of epochs 50
Activation Functions Relu
Number of MLP layers 1

1 2 3 4 5 6 7 8 9 10
Predicted

1
2

3
4

5
6

7
8

9
10

Ac
tu
al

0.87 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.06 0.0

0.02 0.75 0.0 0.09 0.06 0.04 0.03 0.0 0.01 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.03 0.01 0.0 0.0 0.79 0.02 0.06 0.02 0.07 0.0

0.01 0.01 0.0 0.02 0.0 0.96 0.0 0.0 0.0 0.0

0.04 0.0 0.0 0.01 0.01 0.02 0.78 0.0 0.14 0.0

0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.98 0.01 0.0

0.02 0.0 0.0 0.0 0.04 0.0 0.01 0.01 0.92 0.0

0.0 0.01 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.97
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: confusionmatrices for CapsuleFormer performance
without(w/o) feature selection (FS). (Refer to Table 2 for DApp
categories)

1 2 3 4 5 6 7 8 9 10
Predicted

1
2

3
4

5
6

7
8

9
10

Ac
tu
al

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.98 0.01 0.0 0.0 0.0 0.01 0.0 0.0

0.0 0.0 0.0 0.99 0.01 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.99 0.0 0.0 0.01 0.0 0.0

0.0 0.01 0.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.01 0.99 0.0 0.0 0.0

0.0 0.03 0.01 0.0 0.0 0.0 0.0 0.96 0.0 0.0

0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.01

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: confusionmatrices for CapsuleFormer performance
with feature selection (FS). (Refer to Table 2 for DApp cate-
gories)

that the incorporation of feature selection can enhance the feature
representation ability of the original model.

2) To demonstrate the influence of the number of samples utilized
in constructing the similarity matrix on the effectiveness of the
feature selection algorithm. In Algorithm 1, we experimented with
adjusting the value of parameter 𝑎 from 1 to 5, 10, 15, and so on.

CapsuleFormer: A Capsule and Transformer combined model for Decentralized Application encrypted traffic classification ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

As depicted in Fig. 6, it is evident that with the increment of 𝑎
from 0 to 405, the accuracy of the model exhibits an ascending
trend. Nonetheless, there is a minor oscillation present; however,
the overall trajectory demonstrates a consistent enhancement. The
pinnacle accuracy is attained at 𝑎 value of 405. However, upon
further increase in the value of 𝑎, the model’s accuracy initiates an
oscillation that leads to a decline.

To sum up, the optimal performance on the test set is achieved
when building the similarity matrix S using 405 samples. Therefore,
405 samples will be the basis for constructing the similarity matrix
S in this experiment.

0 200 400 600 800 1000
The value of a in Algorithm 1.

0.976

0.978

0.980

0.982

0.984

0.986

0.988

Ac
cu

ra
cy

(405, 0.9870)

Figure 6: Impact of the value of 𝑎 in Algorithm 1 on Model
Accuracy in Constructing the Similarity Matrix

5.2 Input dimensions of the CapsuleFormer
model (RQ2)

Fig. 7 shows the test accuracy of CapsuleFormer across different
input dimensions. The graph reveals a clear trend: as input dimen-
sions expand from 10×10 to 22×22, CapsuleFormer’s test accuracy
consistently improves. The zenith of accuracy is attained at 22 × 22
input dimensions. Nevertheless, when dimensions surpass 22 × 22,
CapsuleFormer’s test accuracy starts diminishing. Concurrently,
at 10 × 10 input dimensions, the test accuracy of CapsuleFormer
drops to its lowest point of 0.5127. This can be attributed to the
limited utilization of only 100 features from the 599-dimensional
input, resulting in insufficient data for robust model training and
diminished generalization capabilities. Additionally, as input di-
mensions surpass 22×22, the model succumbs to overfitting, which
consequently leads to a decline in test accuracy.

From the experimental results, it can be observed that the model
performs optimally when the input dimensions are 22×22. Both too
small and too large values exhibit significant performance degrada-
tion. In summary, this study adopts the input dimensions of 22× 22
as the selected features for the final CapsuleFormer model.

5.3 Comparison Experiments (RQ3)
Table 4 presents the experimental results of our proposed model
and its comparison with other models on the DApps dataset. All the
methods utilized for comparison are applicable to the classification

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Test accuracy for different input dimensions.

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(22, 0.9870)

Figure 7: Impact of input dimensions on Model Accuracy

of encrypted traffic. Based on the data presented in the Table 4, the
following conclusions can be drawn:

1) Based on Table 4, it is evident that CapsuleFormer demon-
strates a favorable performance scale regarding Precision and Recall
for the majority of DApp categories, with only minimal deficiencies
in a few categories. Additionally, when examining all categories,
CapsuleFormer’s F1 score and Accuracy surpass those of other
models. This analysis indicates that our method exhibits excellent
robustness.

2) For Appscanner, FS-Net, EDC, and FAAR methods, they are
mainly designed for traditional application traffic classification and
behavior classification. As a result, these methods use fewer origi-
nal features, usually only packet length or time series, which are
less informative for classifying DApp encrypted traffic. Addition-
ally, these methods exhibit suboptimal performance because the
special characteristics of DApp encrypted traffic were analyzed in
introduction and related work.

3) The method of GDA, which uses graph neural networks to
classify DApps. However, the GDA method only employs a few
initial packets of a flow in graph construction, which may not
contain all the necessary information for training a classification
model. Furthermore, the primary metadata information for differ-
ent DApp flows is not always located in the initial packets, which
further reduces the effectiveness of the model. As for the CBFM
and CQNet methods, despite their specialized design for DApp en-
crypted traffic classification, their effectiveness remains suboptimal
due to their reliance solely on byte information, lacking integration
of more nuanced temporal or packet length details that could cap-
ture inter-flow relationships. This contributes to their diminished
classification accuracy. Additionally, SPCaps, leveraging capsule
networks for traffic classification, showcases strong performance
attributed to the inherent enhanced information representation
capabilities within capsule networks.

4) Through an examination of the principles and experimental
results of the aforementioned methods, it can be inferred that the
superiority of our proposed CapsuleFormer method in detecting
DApp encrypted traffic over other methods is primarily attributed
to Firstly, it combines the most common features of traffic in the
feature construction process, and we additionally utilize the byte

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xiang Zhou, Xi Xiao, Qing Li, Bin Zhang, Guangwu Hu, Xiapu Luo, and Tianwei Zhang.

Table 4: Results of the CapsuleFormer Compared with other Models for the Classification of Blockchain Encrypted Traffic

DApp
Appscanner EDC FAAR GDA CBFM FS-Net SPCaps CQNet CapsuleFormer

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

sushi 0.7530 0.9515 0.8931 0.8342 0.9880 0.9986 0.8723 0.8293 0.9112 0.9730 0.9859 0.9841 0.9996 0.8516 0.9761 0.9463 1.0000 1.0000

uniswap 0.5030 0.4918 0.2355 0.9636 0.5014 0.5694 0.8875 0.9233 0.9901 0.9223 0.5264 0.7712 0.9998 0.8507 0.9557 0.9713 1.0000 1.0000

solo.top 0.5458 0.4352 0.0000 0.0000 0.5107 0.3377 0.8952 0.8634 0.9202 0.9625 0.6080 0.4158 0.9996 0.9778 0.9659 0.9527 0.9009 1.0000

venus 0.5609 0.4204 0.6982 0.2504 0.5064 0.4032 0.8571 0.8906 0.9211 0.9532 0.4982 0.5629 1.0000 0.9576 0.9537 0.9670 1.0000 0.9600

pancakeswap 0.6143 0.3382 0.8432 0.1986 0.6438 0.4355 0.9132 0.8725 0.9703 0.9910 0.5636 0.6180 0.9990 0.8198 0.9623 0.9409 0.9901 1.0000

biswap 0.6702 0.5910 0.7203 0.4286 0.5605 0.6277 0.8327 0.8879 0.9055 0.8767 0.7485 0.6307 0.9991 0.9315 0.9677 0.9487 1.0000 1.0000

alpacafinance 0.7731 0.7874 0.9398 0.3928 0.9026 0.7682 0.8995 0.8997 0.9361 0.9616 0.8357 0.8239 1.0000 0.8711 0.9599 0.9780 1.0000 1.0000

dodoex 0.4327 0.7755 0.6988 0.3940 0.4454 0.7588 0.8608 0.9183 0.9407 0.9129 0.7919 0.4810 0.5271 0.9991 0.9789 0.9669 0.9895 0.9400

tokenlon 0.7800 0.6103 0.8045 0.5293 0.7815 0.6153 0.9113 0.8973 0.9321 0.9077 0.8490 0.6221 1.0000 0.9113 0.9779 0.9817 1.0000 0.9700

curve 0.7785 0.7063 0.9933 0.4443 0.7515 0.7156 0.8739 0.9029 0.9818 0.9349 0.6798 0.8244 1.0000 0.9568 0.9593 0.9549 1.0000 1.0000

F1-score 0.6128 0.4779 0.6307 0.8840 0.9398 0.6799 0.9223 0.9632 0.9871

Accuracy 0.6366 0.5102 0.6607 0.8757 0.9502 0.7069 0.9004 0.9667 0.9870

feature of packet payload. This allows us to retain more information
from the original traffic information for model training. Secondly,
our method utilized a feature selection algorithm improved by the
Laplacian algorithm. This approach enabled us to effectively cap-
ture the optimal number of samples required for constructing the
similarity matrix, thereby resulting in the best model performance.
Thirdly, we use a capsule network, which has the advantage of
using a vector to represent a neuron, which has richer semantic
information than the traditional scalar neuron and is better for rep-
resenting the traffic information during model processing. Finally,
we use the Encoder Block, which can better measure the importance
of the input vectors, i.e., it allows the traffic information to interact
with each other, so that high-dimensional traffic information that
is beneficial to the model classification can be filtered out. These
advantages are not available in the previous models.

5.4 Ablation Study (RQ4)
To assess the validity and efficiency of the model, we conducted
an ablation analysis of its components. We evaluated the results
of the experiments on the DApps encrypted traffic dataset using
precision, recall, F1, and accuracy metrics. The results are displayed
in Table 5. We ablate the Transformer Block, Capsule Network, and
both modules (using only the pure CNN architecture-based DF [27]
) from our approach.

We observed that using the Transformer Block alone in our
method led to improved evaluation metrics Precision and Recall for
most categories compared to the pure CNN architecture-based DF
module. Moreover, the F1 score increased by approximately 0.3 from
0.5259 to 0.8317, while the Accuracy increased by about 0.25 from
0.5850 to 0.8320. Using Capsule Network alonewithout Transformer
Block also resulted in significant improvements in most category
evaluation metrics compared to the DF method, with an increase
of about 0.4 in F1 score and approximately 0.33 in Accuracy. The
CapsuleFormer model that employed both Transformer Block and
Capsule Network achieved the best performance, an increase of
0.077 in F1 score and 0.07 in Accuracy compared with the model

without Transformer. Therefore, it can be inferred that among these
types of models, the feature representation ability of the pure CNN
architecture-based DF model is the weakest, while the Transformer
Block has better feature representation ability than DF for DApp
encrypted traffic. Incorporating both models (Transformer Block,
Capsule Network) results in superior performance compared to
employing either of the models individually.

5.5 Time Complexity (RQ5)
Feature generation process. In the feature generation phase, Ta-
ble 6 highlights that EDC has the lowest time consumption per
flow, at 2.056E-3 seconds. CBFM, on the other hand, is the method
with the highest time consumption, at 1.259 seconds. Other meth-
ods such as Appscanner, EDC, FAAR, FS-Net, and others, rely on
packet length or a supplementary time series for their initial fea-
tures, which makes the computation process simpler and less time-
intensive. GDA uses graph neural networks but only considers the
first 25 packets of a flowwhen constructing the graph, requiring less
information and resulting in shorter processing times. CQNet, as a
non-end-to-end framework, initially employs a CNN pre-trained
on the Fashion-MNIST dataset for feature extraction. Subsequently,
it categorizes data into simpler and more complex subsets, both
requiring time-intensive processes, leading to more time overhead.
SPCas and CapsuleFormer have similar time consumption, with
SPCas requiring more time due to its two-step flow separation pro-
cedure. Our method, which uses a wealth of flow information in the
feature extraction stage, has a slightly higher time consumption.

Training and testing process. The training time consumption
refers to the average time required by the classifier to train a single
sample, while the test time consumption represents the average
time taken by the trained classifier to classify unknown samples.
As shown in Table 6, GDA is the method that consumes the least
amount of time during the training process, taking an average of
6.286E-5 seconds to train a single flow. On the other hand, Cap-
suleFormer consumes the most time, with an average of 4.726E-3
seconds. Despite the similar time consumption for all methods, the

CapsuleFormer: A Capsule and Transformer combined model for Decentralized Application encrypted traffic classification ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 5: Results of Ablation Study on Blockchain Encrypted Traffic dataset

DApp DF
CapsuleFormer

w/o
Transformer Block

CapsuleFormer
w/o

Capsule Network
CapsuleFormer

Precision Recall Precision Recall Precision Recall Precision Recall
sushi 0.0000 0.0000 0.9252 0.9900 0.8434 0.7000 1.0000 1.0000

uniswap 0.9250 0.7400 0.8571 0.7800 0.9487 0.7400 1.0000 1.0000
solo.top 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.9009 1.0000
venus 0.8761 0.9900 0.8929 1.0000 0.6993 1.0000 1.0000 0.9600

pancakeswap 0.5833 0.0700 0.9600 0.4800 0.7671 0.5600 0.9901 1.0000
biswap 0.9462 0.8800 0.8929 1.0000 0.9552 0.6400 1.0000 1.0000

alpacafinance 0.3550 0.9300 0.7578 0.9700 0.7959 0.7800 1.0000 1.0000
dodoex 0.8085 0.3800 0.9901 1.0000 1.0000 0.9800 0.9895 0.9400
tokenlon 0.3127 0.9100 0.9706 0.9900 0.5928 0.9900 1.0000 0.9700
curve 1.0000 0.9500 0.9897 0.9600 1.0000 0.9300 1.0000 1.0000
F1 0.5259 0.9101 0.8317 0.9871

Accuracy 0.5850 0.9170 0.8320 0.9870

number of model parameters is the primary factor that affects the
training process, with all models having a similar number of param-
eters. During the testing process, GDA is the most efficient method,
with a time consumption of 6.059E-7 seconds, while CapsuleFormer,
with its larger input dimension, is the most time-consuming, taking
an average of 1.373E-3 seconds. Despite the fact that CapsuleFormer
did not exhibit superior performance in terms of feature generation
time, training time, and testing time per sample, it is worth noting
that all methods processed each sample in less than one second, and
the difference in time consumption among other methods was rela-
tively small. Hence, it can be inferred that the time consumption of
CapsuleFormer has minimal impact. Additionally, CapsuleFormer
achieved the best classification performance among the methods
evaluated.

Table 6: A Comparison of the Duration of the Feature Gener-
ation, Training, and Testing Processes for Each Method

Methods Feature generation
process(s)

Training
process(s)

Testing
process(s)

Appscanner 6.619E-3 1.797E-3 1.793E-4
EDC 2.056E-3 5.144E-4 2.915E-4
FAAR 1.341E-2 1.089E-3 3.747E-5
SPCas 0.110 5.127E-4 2.503E-4
CBFM 1.259 3.619E-4 7.818E-5
FS-Net 5.839E-3 1.623E-4 7.954E-5
GDA 2.465E-3 6.286E-5 6.059E-7
CQNet 0.197 6.805E-4 5.955E-4

CapsuleFormer 0.750 4.726E-3 1.373E-3

6 DISCUSSION
Our method requires a relatively long time for feature extraction
from flows as well as during training and testing of the model.
Therefore, our system is not suitable for high real-time demands in
DApp classification scenarios. Additionally, to enhance the speed

of feature extraction, it is possible to consider reducing the time
consumed by discarding less important features, while improving
training and testing speed through model pruning and compression.
The second limitation is that our system faces reduced accuracy
when dealing with unmonitored DApps due to feature variations.
This issue can be addressed by periodically updating the system
model.

7 ETHICAL CONSIDERATIONS & DATA
ACCESS

Due to the utilization of data from an actual DApp network for our
evaluation, user security remained our foremost concern through-
out the research period. The data collection employed proxy IP ad-
dresses, ensuring that users’ real IP addresses were not exposed. Ad-
ditionally, the number of accesses to DApp service servers was kept
extremely limited in comparison to their actual user volume. Fur-
thermore, we made the data publicly available upon acceptance of
this paper, allowing other researchers to evaluate other approaches
without having to collect new data samples.

8 CONCLUSION
In this paper, we propose a new feature selection algorithm for
constructing efficient encrypted traffic datasets for DApps, and
also introduce a novel classification model called CapsuleFormer,
which can distinguish encrypted traffic for DApps. Instead of utiliz-
ing conventional scalar neurons, CapsuleFormer employs capsule
neurons and incorporates Transformer blocks to upgrade feature
representation through the mapping of training data to a higher
dimensional space. The current study involved conducting experi-
ments on ten diverse DApp dataset categories obtained from the
Ethereum and BNB chains. The experimental results demonstrate
that CapsuleFormer exhibits superior classification performance
when compared to existing methods, surpassing them by a con-
siderable margin. In future endeavours, our goal is to expand the
capabilities of CapsuleFormer to provide even finer-grained traffic

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xiang Zhou, Xi Xiao, Qing Li, Bin Zhang, Guangwu Hu, Xiapu Luo, and Tianwei Zhang.

classification in DApps and also to optimize its performance by
reducing its processing time.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China (61972219), the Overseas Research Cooper-
ation Fund of Tsinghua Shenzhen International Graduate School
(HW2021013), Singapore Ministry of Education AcRF Tier 2 (MOE-
T2EP20121-0006), Guangdong Basic and Applied Basic Research
Foundation(2022A1515010417), Key Project of Shenzhen Munici-
pality(JSGG20211029095545002), and the Major Key Project of PCL
(PCL2023A05).

REFERENCES
[1] [n. d.]. Dapps. https://www.dapp.com/dapps Accessed on November 20, 2022.
[2] Wei Cai, Gaopeng Gou, Minghao Jiang, Chang Liu, Gang Xiong, and Zhen Li.

2021. MEMG: Mobile Encrypted Traffic Classification With Markov Chains
and Graph Neural Network. In 2021 IEEE 23rd Int Conf on High Performance
Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int
Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data
Systems & Application (HPCC/DSS/SmartCity/DependSys). IEEE, 478–486.

[3] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching
from a distance: Website fingerprinting attacks and defenses. In Proceedings of
the 2012 ACM conference on Computer and communications security. 605–616.

[4] Yige Chen, Tianning Zang, Yongzheng Zhang, Yuan Zhou, Linshu Ouyang, and
Peng Yang. 2021. Incremental learning for mobile encrypted traffic classification.
In ICC 2021-IEEE International Conference on Communications. IEEE, 1–6.

[5] Scott E Coull and Kevin P Dyer. 2014. Traffic analysis of encrypted messaging
services: Apple imessage and beyond. ACM SIGCOMM Computer Communication
Review 44, 5 (2014), 5–11.

[6] Susu Cui, Bo Jiang, Zhenzhen Cai, Zhigang Lu, Song Liu, and Jian Liu. 2019. A
session-packets-based encrypted traffic classification using capsule neural net-
works. In 2019 IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 429–436.

[7] Yanjie Fu, Junming Liu, Xiaolin Li, and Hui Xiong. 2018. A multi-label multi-view
learning framework for in-app service usage analysis. ACM Transactions on
Intelligent Systems and Technology (TIST) 9, 4 (2018), 1–24.

[8] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav: Gener-
ating Realistic Traces for a Strong Website Fingerprinting Defense. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 1558–1573.

[9] Jamie Hayes, George Danezis, et al. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique.. In USENIX security symposium. 1187–1203.

[10] Xiaofei He, Deng Cai, and Partha Niyogi. 2005. Laplacian score for feature
selection. Advances in neural information processing systems 18 (2005).

[11] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. 2018. Matrix capsules with
EM routing. In International conference on learning representations.

[12] Ting-Li Huoh, Yan Luo, and Tong Zhang. 2021. Encrypted Network Traffic
Classification Using a Geometric Learning Model. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM). IEEE, 376–383.

[13] Amirhossein Khajehpour, Farid Zandi, Navid Malekghaini, Mahdi Hemmatyar,
Naeimeh Omidvar, and Mahdi Jafari Siavoshani. 2022. Deep Inside Tor: Exploring
Website Fingerprinting Attacks on Tor Traffic in Realistic Settings. In 2022 12th
International Conference on Computer and Knowledge Engineering (ICCKE). IEEE,
148–156.

[14] Maciej Korczyński and Andrzej Duda. 2014. Markov chain fingerprinting to
classify encrypted traffic. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE, 781–789.

[15] Wenbin Li and Gaspard Quenard. 2021. Towards a Multi-Label Dataset of Internet
Traffic for Digital Behavior Classification. In 2021 3rd International Conference on
Computer Communication and the Internet (ICCCI). IEEE, 38–46.

[16] Zhen Ling, Gui Xiao, Wenjia Wu, Xiaodan Gu, Ming Yang, and Xinwen Fu. 2022.
Towards an efficient defense against deep learning based website fingerprinting.
In IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE,
310–319.

[17] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. Fs-net: A
flow sequence network for encrypted traffic classification. In IEEE INFOCOM
2019-IEEE Conference On Computer Communications. IEEE, 1171–1179.

[18] Xue Liu, Shigeng Zhang, Huihui Li, and Weiping Wang. 2021. Fast Application
Activity Recognition with Encrypted Traffic. In Wireless Algorithms, Systems,

and Applications: 16th International Conference, WASA 2021, Nanjing, China, June
25–27, 2021, Proceedings, Part II 16. Springer, 314–325.

[19] Jie Lu, Gaopeng Gou, Majing Su, Dong Song, Chang Liu, Chen Yang, and
Yangyang Guan. 2021. GAP-WF: Graph attention pooling network for fine-
grained SSL/TLS Website fingerprinting. In 2021 International Joint Conference
on Neural Networks (IJCNN). IEEE, 1–8.

[20] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale.. In NDSS.

[21] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2017. Automated website fingerprinting through deep learning. arXiv
preprint arXiv:1708.06376 (2017).

[22] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing
between capsules. Advances in neural information processing systems 30 (2017).

[23] Meng Shen, Mingwei Wei, Liehuang Zhu, and Mingzhong Wang. 2017. Classi-
fication of encrypted traffic with second-order markov chains and application
attribute bigrams. IEEE Transactions on Information Forensics and Security 12, 8
(2017), 1830–1843.

[24] Meng Shen, Mingwei Wei, Liehuang Zhu, Mingzhong Wang, and Fuliang Li. 2016.
Certificate-aware encrypted traffic classification using second-order markov
chain. In 2016 IEEE/ACM 24th International Symposium on Quality of Service
(IWQoS). IEEE, 1–10.

[25] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2021.
Accurate decentralized application identification via encrypted traffic analysis
using graph neural networks. IEEE Transactions on Information Forensics and
Security 16 (2021), 2367–2380.

[26] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, Xiaojiang Du, and Yiting Liu.
2019. Encrypted traffic classification of decentralized applications on ethereum
using feature fusion. In Proceedings of the International Symposium on Quality of
Service. 1–10.

[27] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep fin-
gerprinting: Undermining website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1928–1943.

[28] Heyi Tang, Yong Cui, JianpingWu, Xiaowei Yang, and Zhenjie Yang. 2019. Trigger
relationship aware mobile traffic classification. In Proceedings of the International
Symposium on Quality of Service. 1–10.

[29] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2016.
Appscanner: Automatic fingerprinting of smartphone apps from encrypted net-
work traffic. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 439–454.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[31] Shihao Wang, Liangmin Wang, Shangnan Yin, Hui Zhao, and Hao Shentu. 2020.
CPWF: Cross-platform website fingerprinting based on multi-similarity loss. In
2020 International Conference on Networking and Network Applications (NaNA).
IEEE, 73–80.

[32] Yu Wang, Zhenzhen Li, Gaopeng Gou, Gang Xiong, Chencheng Wang, and Zhen
Li. 2020. Identifying DApps and user behaviors on ethereum via encrypted traffic.
In Security and Privacy in Communication Networks: 16th EAI International Con-
ference, SecureComm 2020, Washington, DC, USA, October 21-23, 2020, Proceedings,
Part II 16. Springer, 62–83.

[33] Yu Wang, Chencheng Wang, Gang Xiong, and Zhen Li. 2021. Multi-scene Classi-
fication of Blockchain Encrypted Traffic. In Blockchain and Trustworthy Systems:
Third International Conference, BlockSys 2021, Guangzhou, China, August 5–6,
2021, Revised Selected Papers 3. Springer, 329–337.

[34] YuWang, Gang Xiong, Chang Liu, Zhen Li, Mingxin Cui, and Gaopeng Gou. 2021.
CQNet: A clustering-based quadruplet network for decentralized application
classification via encrypted traffic. In Machine Learning and Knowledge Discovery
in Databases. Applied Data Science Track: European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13–17, 2021, Proceedings, Part IV 21. Springer, 518–534.

[35] Chengcheng Xu, Shuhui Chen, Jinshu Su, Siu-Ming Yiu, and Lucas CK Hui.
2016. A survey on regular expression matching for deep packet inspection:
Applications, algorithms, and hardware platforms. IEEE Communications Surveys
& Tutorials 18, 4 (2016), 2991–3029.

[36] Feipeng Yan, Ming Xu, Tong Qiao, Ting Wu, Xue Yang, Ning Zheng, and Kim-
Kwang Raymond Choo. 2018. Identifying wechat red packets and fund transfers
via analyzing encrypted network traffic. In 2018 17th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications/12th IEEE Inter-
national Conference on Big Data Science and Engineering (TrustCom/BigDataSE).
IEEE, 1426–1432.

[37] Chen Yang, Can Wang, Weidong Zhang, Huiyi Zhang, and Xuangou Wu. 2023.
Decentralized Application Identification via Burst Feature Aggregation. In 2023
26th International Conference on Computer Supported Cooperative Work in Design
(CSCWD). IEEE, 1551–1556.

https://www.dapp.com/dapps

	Abstract
	1 Introduction
	2 THREAT MODEL AND RELATED WORK
	2.1 THREAT MODEL
	2.2 RELATED WORK
	2.3 Summary

	3 Methodology
	3.1 Data Preprocessing
	3.2 Feature Generation
	3.3 The CapsuleFormer Classifier

	4 DATASETS AND METRICS
	4.1 Dataset
	4.2 Performance Metrics
	4.3 Comparison of Models
	4.4 Experimental Setup

	5 EXPERIMENTAL RESULTS
	5.1 Examination of Feature Selection (RQ1)
	5.2 Input dimensions of the CapsuleFormer model (RQ2)
	5.3 Comparison Experiments (RQ3)
	5.4 Ablation Study (RQ4)
	5.5 Time Complexity (RQ5)

	6 DISCUSSION
	7 Ethical considerations & data access
	8 CONCLUSION
	References

