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GNN-SL: Sequence Labeling Based on Nearest Examples via GNN
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Abstract

To better handle long-tail cases in the sequence
labeling (SL) task, in this work, we intro-
duce graph neural networks sequence label-
ing (GNN-SL), which augments the vanilla SL
model output with similar tagging examples
retrieved from the whole training set. Since
not all the retrieved tagging examples benefit
the model prediction, we construct a hetero-
geneous graph, and leverage graph neural net-
works (GNNs) to transfer information between
the retrieved tagging examples and the input
word sequence. The augmented node which ag-
gregates information from neighbors is used to
do prediction. This strategy enables the model
to directly acquire similar tagging examples
and improves the general quality of predictions.
We conduct a variety of experiments on three
typical sequence labeling tasks: Named Entity
Recognition (NER), Part of Speech Tagging
(POS), and Chinese Word Segmentation (CWS)
to show the significant performance of our
GNN-SL. Notably, GNN-SL achieves SOTA
results of 96.9 (+0.2) on PKU, 98.3 (+0.4) on
CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2)
on AS for the CWS task, and results compa-
rable to SOTA performances on NER datasets,
and POS datasets. 1

1 Introduction

Sequence labeling (SL) is a fundamental problem
in NLP, which encompasses a variety of tasks e.g.,
Named Entity Recognition (NER), Part of Speech
Tagging (POS), and Chinese Word Segmentation
(CWS). Most existing sequence labeling algorithms
(Clark et al., 2018; Zhang and Yang, 2018; Bohnet
et al., 2018; Shao et al., 2017; Meng et al., 2019)
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1Code is available at https://github.com/

ShuheWang1998/GNN-SL.

can be decomposed into two parts: (1) representa-
tion learning: mapping each input word to a higher-
dimensional contextual vector using neural network
models such as LSTMs (Huang et al., 2019), CNNs
(Wang et al., 2020), or pretrained language models
(Devlin et al., 2018); and (2) classification: fitting
the vector representation of each word to a softmax
layer to obtain the classification label.

Figure 1: Example for the NER assignment when given
a similar example.

Because the protocol described above relies on
the model’s ability to memorize the characteris-
tics of training examples, its performance plum-
mets when handling long-tail cases or minority cat-
egories. Intuitively, it’s easier for a model to make
predictions on long-term cases at test time when
it is able to refer to similar training examples. For
example, in Figure 1, the model can more easily
label the word “Phoenix” in the given sentence as
an “ORGANIZATION” entity when referring to a
similar example.

Benefiting from the success of augmented mod-
els in NLP (Khandelwal et al., 2019, 2020; Guu
et al., 2020; Lewis et al., 2020; Meng et al., 2021b) ,
a simple yet effective method to mitigate the above
issues is to apply the k nearest neighbors (kNN)
strategy: The kNN model retrieves k similar tag-
ging examples from a large cached datastore for
each input word and augments the prediction with
the probability computed by the cosine similarity
between the input word and each of the retrieved
nearest neighbors. Unfortunately, there is a sig-
nificant shortcoming of this strategy. Retrieved
neighbors are related to the input word in different
ways: some are related in semantics while others
in syntactic, some are close to the original input
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word while others are just noise. A more sophisti-
cated model is required to model the relationships
between retrieved examples and the input word.

In this work, inspired by recent progress in com-
bining graph neural networks (GNNs) with aug-
mented models (Meng et al., 2021b), we propose
GNN-SL to provide a general sequence-labeling
model with the ability of effectively referring to
training examples at test time. The core idea of
GNN-SL is to build a graph between the retrieved
nearest training examples and the input word, and
use graph neural networks (GNNs) to model their
relationships. To this end, we construct an undi-
rected graph, where nodes represent both the input
words and retrieved training examples, and edges
represent the relationship between each node. The
message is passed between the input words and
retrieved training examples. In this way, we are
able to more effectively harness evidence from the
retrieved neighbors in the training set and by aggre-
gating information from them, better token-level
representations are obtained for final predictions.

To evaluate the effectiveness of GNN-SL, we
conduct experiments over three widely-used se-
quence labeling tasks: Named Entity Recognition
(NER), Part of Speech Tagging (POS), and Chinese
Word Segmentation (CWS), and choose both En-
glish and Chinese datasets as benchmarks. Notably,
applying the GNN-SL to the ChineseBERT (Sun
et al., 2021), a Chinese robust pre-training language
model, we achieve SOTA results of 96.9 (+0.2) on
PKU, 98.3 (+0.4) on CITYU, 98.5 (+0.2) on MSR,
and 96.9 (+0.2) on AS for the CWS task. We also
achieve performances comparable to current SOTA
results on CoNLL, OntoNotes5.0, OntoNotes4.0
and MSRA for NER, and CTB5, CTB6, UD1.4,
WSJ and Tweets for POS. We also conduct compre-
hensive ablation experiments to better understand
the working mechanism of GNN-SL.

2 Related Work

Retrieval Augmented Model Retrieval aug-
mented models additionally use the input to retrieve
information from the constructed datastore to the
model performance. As described in Meng et al.
(2021b), this process can be understood as “an
open-book exam is easier than a close-book exam”.
The retrieval augmented model is more familiar in
the question answering task, in which the model
generates related answers from a constructed data-
store (Karpukhin et al., 2020; Xiong et al., 2020;

Yih, 2020). Recently other NLP tasks have intro-
duced this approach and achieved a good perfor-
mance, such as language modeling (LM) (Khan-
delwal et al., 2019; Meng et al., 2021b), dialog
generation (Fan et al., 2020; Thulke et al., 2021),
neural machine translation (NMT) (Khandelwal
et al., 2020; Meng et al., 2021a; Wang et al., 2021).

Graph Neural Networks The key idea behind
graph neural networks (GNNs) is to aggregate
feature information from the local neighbors of
the node via neural networks (Liu et al., 2018;
Veličković et al., 2017; Hamilton et al., 2017). Re-
cently more and more researchers have proved the
effectiveness of GNNs in the NLP task. For text
classification, Yao et al. (2019) uses a Text Graph
Convolution Network (Text GCN) to learn the em-
beddings for both words and documents on a graph
based on word co-occurrence and document word
relations. For information extraction, Lin et al.
(2020) characterizes the complex interaction be-
tween sentences and potential relation instances via
a graph-enhanced dual attention network (GEDA).
For the recent work GNN-LM, Meng et al. (2021b)
builds an undirected heterogeneous graph between
an input context and its semantically related neigh-
bors selected from the training corpus, GNNs are
constructed upon the graph to aggregate informa-
tion from similar contexts to decode the token.

3 kNN-SL

Sequence labeling (SL) is a typical NLP task,
which assigns a label y ∈ Y to each word
w in the given input word sequence x =
{w1, . . . , wn}, where n denotes the length of
the given sentence. We assume that {X ,Y} =
{(x1, y1), . . . , (xN , yN )} denotes the training set,
where (xi, yi),∀1 ≤ i ≤ N denotes the pair con-
taining a word sequence and its corresponding label
sequence. Let N be the size of the training set.

3.1 kNN-SL
The key idea of the kNN-SL model is to aug-
ment the process of classification during the in-
ference stage with a k nearest neighbor retrieval
mechanism, which can be split into the following
pipelines: (1) using an already-trained sequence
labeling model (e.g., BERT (Devlin et al., 2018)
or RoBERTa (Liu et al., 2019)) to obtain word rep-
resentation h for each token with the input word
sequence; (2) using h as the query and finding the
most similar k tokens in the cached datastore which
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Figure 2: An example for the process of GNN-SL. Step 1 Representation Extraction: Suppose that we need to
extract named entities for the given sentence: Obama lives in Washington. The representation for each word is
the last hidden state of the pretrained vanilla sequence labeling model. Step 2 kNN Search: Obtaining k nearest
neighbors for EACH input word in the cached datastore, which consists of representation-label pairs for all training
data. Step 3&4 Graph Construction & Message Passing: The queried k nearest neighbors and the input word
are constructed into a graph. The message is passed from the nearest neighbors to each input word to obtain the
aggregated representation. Step 5 Prediction with Softmax: The aggregated representation of each word is passed
to a softmax layer to compute the likelihood of the assigned label.

is constructed by the training set; and (3) augment-
ing the classification probability generated by the
vanilla SL model (i.e., pvanilla) with the kNN label
distribution pkNN to obtain the final distribution.

Vanilla probability pvanilla For a given word
w, the output h generated from the last layer of
the vanilla SL model is used as its representation,
where h ∈ Rm. Then h is fed into a multi-layer
perceptron (MLP) to obtain the probability distri-
bution pvanilla via a softmax layer:

pvanilla(y|w, x) = softmax(MLP(h)) (1)

kNN-augmented probability pkNN. For each
word w, its corresponding embedding h is used to
query k nearest neighbors set N from the training
set using L2 Euclidean distance d(h, ·) as similar-
ity measure. The retrieved nearest neighbors set
N is formulated as (key, value) pairs, where key
represents the retrieved similar word and value
represents the corresponding SL label.

Then the retrieved examples are converted into a
distribution over the label vocabulary based on an
RBF kernel output (Vert et al., 2004) of the distance
to the original embedding h:

pkNN(y|w, x) ∝
∑

(k,v)∈N
1y=v exp(

−d(k, h)

T
)

(2)
where T is a temperature parameter to flatten
the distribution. Finally, the vanilla distribution
pvanilla(y|w, x) is augmented with pkNN(y|w, x)
generating the final distribution pfinal(y|w, x):

pfinal(y|w, x) =λpvanilla(y|w, x)+
(1− λ)pkNN(y|w, x)

(3)

where λ is adjustable to make a balance between
kNN distribution and vanilla distribution.

4 GNN-SL

4.1 Overview

Intuitively, retrieved neighbors are related to the
input word in different ways: some are similar in
semantics while others in syntactic; some are very
similar to the input word while others are just noise.
To better model the relationships between retrieved
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neighbors and the input word, we propose graph
neural networks sequence labeling (GNN-SL).

The proposed GNN-SL can be decomposed into
five steps: (1) obtaining token features using a
pre-trained vanilla sequence labeling model, which
is the same as in KNN-SL; (2) obtaining k near-
est neighbors from the whole training set for each
input word; (3) constructing an undirected graph
between each word within the sentence and its k
nearest neighbors; (4) obtaining aggregated word
representations through messages passing along
the graph; and (5) feeding the aggregated word rep-
resentation to the softmax layer to obtain the final
label. The full pipeline is shown in Figure 2.

For steps (1) and (2), they are akin the strategies
taken in KNN-SL. We will describe the details for
steps (3) and (4) in order below.

4.2 Graph Construction

We formulate the graph as G = (V, E ,A,R),
where V represents a collection of nodes v and
E represents a collection of edges e. A refers to
node types and R refers to edge types.

Nodes In the constructed graph, we define three
types of nodes A:

(1) Input nodes, denoted by ainput ∈ A,
which correspond to words of the input sentence.
In the example of Figure 2 Step 3, the input
nodes are displayed with the word sequence x =
{Obama, lives, in,Washington};

(2) Neighbor nodes, denoted by aneighbor ∈ A,
which correspond to words in the retrieved neigh-
bors. The context of nearest neighbors is also
included (and thus treated as neighbor nodes)
in an attempt to capture more abundant contex-
tual information for the retrieved neighbors. For
the example in Figure 2, for each input word
with representation h, k nearest neighbors are
queried from the cached representations of all
words in the training set with the L2 distance as
the metric of similarity. Taking the input word
{Obama} as the example with k = 2, we obtain
two nearest neighbors {Obama,Trump} leverag-
ing the kNN search. The contexts of each retrieved
nearest neighbor are also considered by adding
both left and right contexts around the retrieved
nearest neighbor, where {Obama} is expanded to
{[CLS],Obama, is} and {Trump} is expanded to
{[CLS],Trump, is}}2. The analysis of the size of

2[CLS] is a special token usually applied in pre-training
language models (e.g., BERT) representing the beginning of a

the context is conducted in Section 5.5.
(3) Label nodes, denoted by alabel ∈ A, since

the labels of nearest neighbors provide important
evidence for the input node to classify, we wish to
pass the influence of neighbors’ labels to the input
node along the graph. As will be shown in ablation
studies in Section 5.5, the consideration of label
nodes introduces a significant performance boost.
Shown in Figure 2 Step 3, taking the input word
{Obama} as the example, the two retrieved nearest
neighbors are {Obama} and {Trump}, and both
the corresponding node labels are {B-PER}.

With the above formulated, A can be rewritten
as {ainput, aneighbor, alabel}.

Edges Given the three types of nodes A =
{ainput, aneighbor, alabel}, we connect them using dif-
ferent types of edges to enable information passing.

We define four types of edges for R: (1) edges
within the input nodes ainput, notated by rinput-input;
(2) edges between the neighbor nodes aneighbor and
the input nodes ainput, notated by rneighbor-input; (3)
edges within the neighbor nodes aneighbor, notated
by rneighbor-neighbor; and (4) edges between the la-
bel nodes alabel and the neighbor nodes aneighbor,
denoted by rlabel-neighbor. All types of edges are bi-
directional which allows information passing on
both sides. We use different colors to differentiate
different relations in Figure 2 Step 3.

For rinput-input and rneighbor-neighbor, they respec-
tively mimic the attention mechanism to aggre-
gate the context information within the input word
sequence or the expanded nearest context, which
are shown with the black and green color in Fig-
ure 2. For rneighbor-input, it connects the retrieved
neighbors and the query input word, transferring
the neighbor information to the input word. For
rlabel-neighbor colored with orange, information is
passed from label nodes to neighbor nodes, which
is ultimately transferred to input nodes.

4.3 Message Passing On The Graph

Given the constructed graph, we next use graph
neural networks (GNNs) to aggregate information
based on the graph to obtain the final representation
for each token to classify. More formally, we define
the l-th layer representation of node n as follows:

hln = Aggregate
∀s∈N (n)

(A(s, e, n) · M(s, e, n)) + hl−1
n

(4)

sentence.
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where M(s, e, n) denotes the information trans-
ferred from the node s to the node n along the edge
e, A(s, e, n) denotes the edge weight modeling the
importance of the source node s on the target node
n with the relationship e, and Aggregate(·) denotes
the function to aggregate the transferred informa-
tion from the neighbors of node n. We detail how
to obtain A(·), M(·), and Aggregate(·) below.

Message For each edge (s, e, n), the message
transferred from the source node s to the target
node n can be formulated as:

M(s, e, n) = W v
τ(s)h

l−1
s Wϕ(e) (5)

where d denotes the dimensionality of the vector,
W v

τ(s) ∈ Rd×d and Wϕ(e) ∈ Rd×d are two learn-
able weight matrixes controling the outflow of node
s from the node side and the edge side respectively.

As we use different types of edges for node con-
nections, we follow Hu et al. (2020) to keep a dis-
tinct edge-matrix Wϕ(e) ∈ Rd×d for each edge type
between the dot of Q(n) and K(s):

P(n, s) = K(s)Wϕ(e)Q(n)T · µ⟨τ(s), ϕ(e), τ(n)⟩√
d

,

A(s, e, n) = softmax
s∈N (n),e∈ϕ(e)

(P (Q(n),K(s))),

(6)
where µ ∈ R|A|×|R|×|A| is a learnable matrix de-
noting the contribution of each edge with a different
relationship.

Aggregate For each edge (s, e, n), we now have
the attention weight A(s, e, n) and the information
M(s, e, n), the next step is to obtain the weighted-
sum information from all neighboring nodes:

Aggregate(·) = W o
τ(n)( ⊕

∀s∈N (n)
MultiHead(s, e, n))

(7)
where ⊕ is element-wise addition and W o

τ(n) ∈
Rd×d is a learnable model parameter used as an
activation function like a linear layer.

The aggregated representation for each input
word is used as its final representation, passed to
the softmax layer for classification. For all our
experiments, the number of heads is 8.

5 Experiments

We conduct experiments on three widely-used sub-
tasks of sequence labeling: named entity recog-
nition (NER), part of speech tagging (POS), and
Chinese Word Segmentation (CWS). Due to the

limit of pages, we put our training details that in-
cluding the vanilla SL model and the kNN retrieval
in Appendix A.

5.1 Control Experiments

To better show the effectiveness of the proposed
model, we compare the performance of the follow-
ing setups: (1) vanilla SL models: vanilla mod-
els naturally constitute a baseline for comparison,
where the final layer representation is fed to a soft-
max function to obtain pvanilla for label prediction;
(2) vanilla + kNN: the kNN probability pkNN is
interpolated with pvanilla to obtain final predictions;
(3) vanilla + GNN: the representation generated
from the final layer of GNN is passed to the soft-
max layer to obtain the label probability pGNN; (4)
vanilla + GNN + kNN: the kNN probability pkNN
is interpolated with the GNN probability pGNN to
obtain final predictions, rather than the probability
from the vanilla model, as in vanilla + kNN.

5.2 Named Entity Recognition

The task of NER is normally treated as a char-
level tagging task: outputting a NER tag for each
character. The details for the chosen baselines and
datasets are in Appendix B, and the results are
below.

Results Results for the NER task are shown in
Table 1, and from the results:

(1) We observe a significant performance boost
brought by kNN, respectively +0.06, +1.62, +1.75
and +0.19 for English CoNLL 2003, English
OntoNotes 5.0, Chinese OntoNotes 4.0 and Chi-
nese MSRA, which proves the importance of incor-
porating the evidence of retrieved neighbors.

(2) We observe a significant performance boost
for vanilla+GNN over both the vanilla model: re-
spectively +2.14 on the BERT-Large and +1.78 on
the RoBERTa-Large for English OntoNotes 5.0,
and +1.10 on the BERT-Large and +0.40 on the
ChineseBERT-Large for Chinese MSRA. Due to
the fact that both vanilla+GNN and the vanilla
model output the final layer representation to the
softmax function to obtain final probability and
that pkNN do not participate in the final probability
interpolation for both, the performance boost over
vanilla SL demonstrates that we are able to obtain
better token-level representations using GNNs.

(3) When comparing with vanilla+kNN, we
observe further improvements of +0.33, +2.14,
+3.17 and +1.10 for English CoNLL 2003, English
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English CoNLL 2003

Model Precision Recall F1

CVT (Clark et al., 2018) - - 92.22
BERT-MRC (Li et al., 2019) 92.33 94.61 93.04

BERT-Large (Devlin et al., 2018) - - 92.8
BERT-Large+KNN 92.90 92.88 92.86 (+0.06)
BERT-Large+GNN 92.92 93.34 93.14 (+0.33)
BERT-Large+GNN+KNN 92.95 93.37 93.16 (+0.35)

RoBERTa-Large (Liu et al., 2019) 92.77 92.81 92.76
RoBERTa-Large+KNN 92.82 92.99 92.93 (+0.17)
RoBERTa-Large+GNN 93.00 93.41 93.20 (+0.44)
RoBERTa-Large+GNN+KNN 93.02 93.40 93.20 (+0.44)

English OntoNotes 5.0

Model Precision Recall F1

CVT (Clark et al., 2018) - - 88.8
BERT-MRC (Li et al., 2019) 92.98 89.95 91.11

BERT-Large (Devlin et al., 2018) 90.01 88.35 89.16
BERT-Large+KNN 89.93 91.65 90.78 (+1.62)
BERT-Large+GNN 91.44 91.16 91.30 (+2.14)
BERT-Large+GNN+KNN 91.47 91.14 91.32 (+2.16)

RoBERTa-Large (Liu et al., 2019) 89.77 89.27 89.52
RoBERTa-Large+KNN 90.00 91.26 90.63 (+1.11)
RoBERTa-Large+GNN 91.38 91.17 91.30 (+1.78)
RoBERTa-Large+GNN+KNN 91.48 91.29 91.39 (+1.87)

Chinese OntoNotes 4.0

Model Precision Recall F1

Lattice-LSTM (Zhang and Yang, 2018) 76.35 71.56 73.88
Glyce-BERT (Meng et al., 2019) 81.87 81.40 80.62
BERT-MRC (Li et al., 2019) 82.98 81.25 82.11

BERT-Large (Devlin et al., 2018) 78.01 80.35 79.16
BERT-Large+KNN 80.23 81.60 80.91 (+1.75)
BERT-Large+GNN 83.06 81.60 82.33 (+3.17)
BERT-Large+GNN+KNN 83.07 81.62 82.35 (+3.19)

ChineseBERT-Large (Sun et al., 2021) 80.77 83.65 82.18
ChineseBERT-Large+KNN 81.68 83.46 82.56 (+0.38)
ChineseBERT-Large+GNN 82.02 84.01 83.02 (+0.84)
ChineseBERT-Large+GNN+KNN 82.21 83.98 83.10 (+0.92)

Chinese MSRA

Model Precision Recall F1

Lattice-LSTM (Zhang and Yang, 2018) 93.57 92.79 93.18
Glyce-BERT (Meng et al., 2019) 95.57 95.51 95.54
BERT-MRC (Li et al., 2019) 96.18 95.12 95.75

BERT-Large (Devlin et al., 2018) 94.97 94.62 94.80
BERT-Large+KNN 95.34 94.64 94.99 (+0.19)
BERT-Large+GNN 96.29 95.51 95.90 (+1.10)
BERT-Large+GNN+KNN 96.31 95.54 95.93 (+1.13)

ChineseBERT-Large (Sun et al., 2021) 95.61 95.61 95.61
ChineseBERT-Large+KNN 95.83 95.68 95.76 (+0.15)
ChineseBERT-Large+GNN 96.28 95.73 96.01 (+0.40)
ChineseBERT-Large+GNN+KNN 96.29 95.75 96.03 (+0.42)

Table 1: NER results for two English datasets: CoNLL
2003 and OntoNotes 5.0, and two Chinese datasets:
MSRA and OntoNotes 4.0.

OntoNotes 5.0, Chinese OntoNotes 4.0 and Chi-
nese MSRA dataset, respectively, showing that the
proposed GNN model has the ability to filtrate the
useful neighbors to augment the vanilla SL model.

(4) There is an inconspicuous improvement
brought by interpolating both the kNN probabil-
ity and GNN probability (vanilla + kNN + GNN)
over the proposed GNN-SL (vanilla + GNN), e.g.,
+2.16 v.s. +2.14 on the BERT-Large for English
OntoNotes 5.0, and +1.13 v.s. +1.10 on the BERT-

PKU

Model Precision Recall F1

Multitask pretrain (Yang et al., 2017) - - 96.3
CRF-LSTM (Huang et al., 2019) - - 96.6
Glyce-BERT (Meng et al., 2019) 97.1 96.4 96.7

BERT-Large (Devlin et al., 2018) 96.8 96.3 96.5
BERT-Large+KNN 97.2 96.1 96.6 (+0.1)
BERT-Large+GNN 96.9 96.6 96.8 (+0.3)
BERT-Large+GNN+KNN 96.9 96.7 96.8 (+0.3)

ChineseBERT-Large (Sun et al., 2021) 97.3 96.0 96.7
ChineseBERT-Large+KNN 97.3 96.1 96.7 (+0.0)
ChineseBERT-Large+GNN 97.6 96.2 96.9 (+0.2)
ChineseBERT-Large+GNN+KNN 97.7 96.2 96.9 (+0.2)

CITYU

Model Precision Recall F1

Multitask pretrain (Yang et al., 2017) - - 96.9
CRF-LSTM (Huang et al., 2019) - - 97.6
Glyce-BERT (Meng et al., 2019) 97.9 98.0 97.9

BERT-Large (Devlin et al., 2018) 97.5 97.7 97.6
BERT-Large+KNN 97.8 97.8 97.8 (+0.2)
BERT-Large+GNN 98.0 98.1 98.0 (+0.4)
BERT-Large+GNN+KNN 98.0 98.1 98.0 (+0.4)

ChineseBERT-Large (Sun et al., 2021) 97.8 98.2 98.0
ChineseBERT-Large+KNN 98.1 98.0 98.1 (+0.1)
ChineseBERT-Large+GNN 98.2 98.4 98.3 (+0.3)
ChineseBERT-Large+GNN+KNN 98.3 98.4 98.3 (+0.3)

MSR

Model Precision Recall F1

Multitask pretrain (Yang et al., 2017) - - 97.5
CRF-LSTM (Huang et al., 2019) - - 97.9
Glyce-BERT (Meng et al., 2019) 98.2 98.3 98.3

BERT-Large (Devlin et al., 2018) 98.1 98.2 98.1
BERT-Large+KNN 98.3 98.4 98.3 (+0.2)
BERT-Large+GNN 98.4 98.3 98.4 (+0.3)
BERT-Large+GNN+KNN 98.4 98.3 98.4 (+0.3)

ChineseBERT-Large (Sun et al., 2021) 98.5 98.0 98.3
ChineseBERT-Large+KNN 98.5 98.1 98.3 (+0.0)
ChineseBERT-Large+GNN 98.9 97.9 98.5 (+0.2)
ChineseBERT-Large+GNN+KNN 98.9 98.0 98.5 (+0.2)

AS

Model Precision Recall F1

Multitask pretrain (Yang et al., 2017) - - 95.7
CRF-LSTM (Huang et al., 2019) - - 96.6
Glyce-BERT (Meng et al., 2019) 96.6 96.8 96.7

BERT-Large (Devlin et al., 2018) 96.7 96.4 96.5
BERT-Large+KNN 96.2 96.9 96.6 (+0.1)
BERT-Large+GNN 96.6 97.0 96.8 (+0.3)
BERT-Large+GNN+KNN 96.6 97.0 96.8 (+0.3)

ChineseBERT-Large (Sun et al., 2021) 96.3 97.2 96.7
ChineseBERT-Large+KNN 96.3 97.2 96.7 (+0.0)
ChineseBERT-Large+GNN 96.1 97.7 96.9 (+0.2)
ChineseBERT-Large+GNN+KNN 96.2 97.7 96.9 (+0.2)

Table 2: CWS results for four datasets: PKU, CITYU,
MSR, and AS.

Large for Chinese MSRA. This demonstrates that
as the evidence of retrieved nearest neighbors (and
their labels) has been assimilated through GNNs in
the representation learning stage, the extra benefits
brought by interpolating pknn in the final prediction
stage is significantly narrowed.

12684



Task NER
English CoNLL 2003 English OntoNotes 5.0 Chinese OntoNotes 4.0 Chinese MSRA

Model Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT+GNN 92.97 93.37 93.17 91.40 91.15 91.27 83.04 81.56 82.30 96.69 95.51 95.90
BERT+GNN-without Label nodes 92.99 93.29 93.14 (-0.03) 91.66 90.70 91.18 (-0.09) 83.23 81.06 82.13 (-0.17) 95.86 95.31 95.58 (-0.32)

Task CWS
PKU CITYU MSR AS

Model Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT+GNN 96.9 96.6 96.8 98.0 98.1 98.0 98.4 98.3 98.4 96.6 97.0 96.8
BERT+GNN-without Label nodes 97.1 96.2 96.7 (-0.1) 97.9 97.8 97.9 (-0.1) 98.4 98.2 98.3 (-0.1) 96.3 97.1 96.7 (-0.1)

Task POS
Chinese CTB5 Chinese CTB6 Chinese UD1.4 English WSJ

Model Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT+GNN 96.87 96.69 96.78 96.44 94.82 95.63 96.15 96.47 96.31 98.85 98.99 98.95
BERT+GNN-without Label nodes 96.36 96.58 96.46 (-0.32) 95.69 94.69 95.19 (-0.42) 95.99 96.05 96.02 (-0.29) 98.97 98.87 98.92 (-0.003)

Table 3: Experiments without label nodes on three tasks: NER, CWS, and POS.

Chinese CTB5 Chinese CTB6 Chinese UD1.4

Model Precision Recall F1 Precision Recall F1 Precision Recall F1

Joint-POS(Sig) (Shao et al., 2017) 93.68 94.47 94.07 - - 90.81 89.28 89.54 89.41
Joint-POS(Ens) (Shao et al., 2017) 93.95 94.81 94.38 - - - 89.67 89.86 89.75
Lattice-LSTM (Zhang and Yang, 2018) 94.77 95.51 95.14 92.00 90.86 91.43 90.47 89.70 90.09
Glyce-BERT (Meng et al., 2019) 96.50 96.74 96.61 95.56 95.26 95.41 96.19 96.10 96.14

BERT-Large (Devlin et al., 2018) 95.86 96.26 96.06 94.91 94.63 94.77 95.42 94.17 94.79
BERT-Large+KNN 96.36 96.60 96.48 (+0.42) 95.14 94.77 94.95 (+0.18) 95.85 95.67 95.76 (+0.97)
BERT-Large+GNN 96.86 96.66 96.76 (+0.70) 96.46 94.82 95.64 (+0.85) 96.14 96.46 96.30 (+1.51)
BERT-Large+GNN+KNN 96.77 96.69 96.79 (+0.73) 96.44 94.84 95.64 (+0.85) 96.20 96.47 96.34 (+1.55)

ChineseBERT (Sun et al., 2021) 96.35 96.54 96.44 95.47 95.00 95.23 96.02 95.92 95.97
ChineseBERT+KNN 96.41 96.15 96.52 (+0.08) 95.48 95.09 95.29 (+0.06) 96.11 96.11 96.11 (+0.14)
ChineseBERT+GNN 96.46 97.41 96.94 (+0.50) 96.08 95.50 95.79 (+0.77) 96.18 96.54 96.36 (+0.39)
ChineseBERT+GNN+KNN 96.46 97.44 96.96 (+0.52) 96.13 95.58 95.85 (+0.82) 96.25 96.57 96.40 (+0.43)

Table 4: POS results for three Chinese datasets: CTB5, CTB6 and UD1.4.

5.3 Chinese Word Segmentation

The task of CWS is normally treated as a char-
level tagging problem: assigning seg or not seg for
each input word. We put the details of the chosen
baselines and datasets in Appendix B, and below
are the results.

Results Results for the CWS task are shown in
Table 2. From the results, same as the former Sec-
tion 5.2, with different vanilla models as the back-
bone, we can observe obvious improvements by
applying the kNN probability (vanilla + kNN) or
the GNN model (vanilla + GNN), while keeping the
same results between vanilla + GNN and vanilla +
GNN + kNN, e.g., for PKU dataset +0.1 on BERT
+ kNN, +0.3 both on BERT + GNN and BERT +
GNN + kNN. Notablely we achieve SOTA for all
four datasets with the ChineseBERT: 96.9 (+0.2)
on PKU, 98.3 (+0.3) on CITYU, 98.5 (+0.2) on
MSR and 96.9 (+0.2) on AS.

5.4 Part of Speech Tagging

The task of POS is normally formalized as a
character-level sequence labeling task, assigning
labels to each of the input word. The details of the

English WSJ

Model Precision Recall F1

Meta BiLSTM (Bohnet et al., 2018) - - 98.23

BERT-Large (Devlin et al., 2018) 99.21 98.36 98.86
BERT-Large+KNN 98.98 98.85 98.92 (+0.06)
BERT-Large+GNN 98.84 98.98 98.94 (+0.08)
BERT-Large+GNN+KNN 98.88 98.99 98.96 (+0.10)

RoBERTa-Large (Liu et al., 2019) 99.22 98.44 98.90
RoBERTa-Large+KNN 99.21 98.52 98.94 (+0.04)
RoBERTa-Large+GNN 98.90 99.06 99.00 (+0.10)
RoBERTa-Large+GNN+KNN 98.90 99.06 99.00 (+0.10)

English Tweets

Model Precision Recall F1

FastText+CNN+CRF - - 91.78

BERT-Large (Devlin et al., 2018) 92.33 91.98 92.34
BERT-Large+KNN 92.77 92.02 92.39 (+0.05)
BERT-Large+GNN 92.38 92.52 92.45 (+0.11)
BERT-Large+GNN+KNN 92.42 92.53 92.48 (+0.14)

RoBERTa-Large (Liu et al., 2019) 92.40 91.99 92.38
RoBERTa-Large+KNN 92.44 92.11 92.46 (+0.08)
RoBERTa-Large+GNN 92.49 92.53 92.51 (+0.13)
RoBERTa-Large+GNN+KNN 92.49 92.54 92.52 (+0.14)

Table 5: POS results for two English datasets: WSJ and
Tweets.

chosen baselines and datasets are in Appendix B,
and below are the results.

Results Results for the POS task are shown in
Table 4 for Chinese datasets and Table 5 for English
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Figure 3: Experiments on English OntoNotes 5.0
datasets by varying the number of neighbors k.

F1-score on English OntoNotes 5.0

Context (l+r+1) / Model F1-score

The Vanilla SL Model 89.16

GNN-SL
+ by setting context=3 91.16 (+2.00)
+ by setting context=5 91.24 (+2.08)
+ by setting context=7 91.27 (+2.11)
+ by setting context=9 91.27 (+2.11)
+ by setting context=11 91.27 (+2.11)

Table 6: F1-score on English OntoNotes 5.0 by varying
the context size of the retrieved neighbors

datasets. As shown, with different vanilla models
and datasets, the phenomenons are the same as the
former Section 5.2 that improves largely based on
the kNN probability and further on the GNN model.
For the results of Chinese CTB5 as the example,
+0.42 on BERT + kNN, further +0.70 on BERT +
GNN, and +0.73 on BERT + GNN + kNN.

To forward visualize the phenomenon that some
retrieved neighbors are close to the original input
sentence while others are just noise, we sample
examples from the NER English OntoNotes5.0
dataset in Appendix C.

5.5 Ablation Study
The Number of Retrieved Neighbors To eval-
uate the influence of the amount of retrieved
neighbors, we conduct experiments on English
OntoNotes 5.0 for the NER task by varying the
number of neighbors k. The results are shown in
Figure 3. As can be seen, as k increases, the F1
score of GNN-SL first increases and then decreases.
The explanation is as follows, as more examples
are, more noise is introduced and relevance to the
query decreases, which makes performance worse.

Effectiveness of Label Nodes In Section 4.2, la-
bels are used as nodes in the graph construction
process. To evaluate the effectiveness of that strat-
egy, we conducted contrast experiments by remov-
ing the label nodes. The experiments are based on
the BERT-Large model and adjusted to the best
parameters, and the results are shown in Table
3. All the results show a decrease after remov-
ing the label nodes, especially -0.42 for the POS
Chinese CTB6 dataset and -0.32 for the NER Chi-
nese MSRA dataset, which proves the necessity of
incorporating label information of neighbors.

The Size of the Context Window In Section 4.2,
to acquire the context information of each retrieved
nearest word we expand the retrieved nearest word
to the nearest context. We experiment with varying
context sizes to show the influence. Results on
NER English OntoNotes 5.0 are shown in Table 6.
We can observe that, as the context size increases,
performance first goes up and then plateaus. That
is because a decent size of context is sufficient to
provide enough information for predictions.

kNN search without Fine-tuning In section 4,
we use the representations obtained by the fine-
tuned pre-trained model on the labeled training
set to perform kNN search. To validate its neces-
sity, we also conduct an experiment that directly
uses the BERT model without fine-tuning to extract
representation. We evaluate its influence on NER
CoNLL 2003 and observe a sharp decrease when
switching the fine-tuned SL model to a non-fine-
tuned BERT model, i.e., 93.17 v.s. 92.83. That
is due to the gap between the LM task and the
SL task, and that nearest neighbors retrieved by a
vanilla pre-trained language model might not be
the NEAREST neighbor for the SL task.

6 Conclusion

In this work, we propose GNN-SL, which aug-
ments the vanilla SL model output with similar
tagging examples retrieved from the whole training
set. Since not all the retrieved tagging examples
benefit the model prediction, we construct a hetero-
geneous graph, and leverage graph neural networks
(GNNs) to transfer information from the retrieved
nearest examples to the input word. This strategy
enables the model to directly acquire similar tag-
ging examples and improves the effectiveness in
handling long-tail cases. We conduct multi exper-
iments and analyses on three sequence labeling
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tasks: NER, POS, and CWS. Notably, GNN-SL
achieves SOTA 96.9 (+0.2) on PKU, 98.3 (+0.4)
on CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2)
on AS for the CWS task.

7 Limitation

Admittedly, the main limitation of this work is the
selection of k nearest neighbors. Intuitively, high-
quality nearest neighbors can make GNN learn the
representation more easily. Thus, in future work,
we will focus on the process of kNN selection in-
cluding that attempt more measures rather than
space cosine similarity distance and more represen-
tations extracted with different strategies.
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A Trainng Details

The Vanilla SL Model As described in Section 4,
we need the pre-trained vanilla SL model to extract
features to initial the nodes of the constructed graph.
For all our experiments, we choose the standard
BERT-large (Devlin et al., 2018) and RoBERTa-
large (Liu et al., 2019) for English tasks, as well as
the standard BERT-large and ChineseBERT-large
(Sun et al., 2021) for Chinese tasks.

kNN Retrieval In the process of kNN retrieval,
the number of nearest neighbors k is set to 32, and
the size of the nearest context window is set to 7
(setting both the left and right side of the window
to 3). The two numbers are chosen according to
the evaluation in Section 5.5 and perform best in
our experiments. For the k nearest search, we use
the last layer output of the pre-trained vanilla SL
model as the representation and the L2 distance as
the metric of similarity comparison.

B Baselines and Datasets

NER For the datasets, we conduct experiments
on CoNLL2003 (Sang and De Meulder, 2003) and
OntoNotes5.0 (Pradhan et al., 2013) for the English
task, and MSRA (Levow, 2006), OntoNotes4.0
(Pradhan, 2011) for the Chinese task.

For the chosen baselines, we make a comparison
with Cross-View Training CVT (Clark et al., 2018),
BERT-MRC (Li et al., 2019) for English datasets
and Lattice-LSTM (Zhang and Yang, 2018), Glyce-
BERT (Meng et al., 2019), BERT-MRC (Li et al.,
2019) for Chinese datasets.

CWS Four Chinese datasets retrieved from
SIGHAN 20053 are used: PKU, MSR, CITYU,
and AS, and benchmarks Multitask pretrain (Yang
et al., 2017), CRF-LSTM (Huang et al., 2019) and
Glyce+BERT (Meng et al., 2019) are chosen for
the comparison.

POS We use Wall Street Journal (WSJ) and
Tweets (Ritter et al., 2011) for English datasets,
Chinese Treebank 5.0, Chinese Treebank 6.0, and
UD1.4 (Xue et al., 2005) for Chinese datasets.

For the comparisons, we choose Meta-BiLSTM
(Bohnet et al., 2018) for English datasets and Joint-
POS (Shao et al., 2017), Lattice-LSTM (Zhang and
Yang, 2018) and Glyce-BERT (Meng et al., 2019)
for Chinese datasets.

3The website of the 4-th Second International Chi-
nese Word Segmentation Bakeoff (SIGHAN 2005) is:
http://sighan.cs.uchicago.edu/bakeoff2005/

C Examples

To illustrate the augment of our proposed GNN-
SL, we visualize the retrieved kNN examples as
well as the input sentence in Table 7. For the first
example the long-tail case “Phoenix”, which is as-
signed with “LOCATION” by the vanilla SL model,
is amended to “ORGANIZATION” by the nearest
neighbors. Especially, we can observe that both 1-
th and 8-th retrieved labels are “ORGANIZATION”
while the 16-th retrieved label is “LOCATION”
which is against the ground truth. That phe-
nomenon proves that retrieved neighbors do relate
to the input sentence in different ways: some are
close to the original input sentence while others
are just noise, and our proposed GNN-SL has the
ability to better model the relationships between
the retrieved nearest examples and the input word.
For the second example, with the augment of the
retrieved nearest neighbors, our proposed GNN-SL
outputs the correct label “PERSON” for the word
“Tom Moody”.

12689



Input Sentence #1

Hornak moved on from Tigers to Phoenix for studies and work.
Ground Truth: ORGANIZATION, Vanilla SL Output: LOCATION, GNN-SL Output: ORGANIZATION

Retrieved Nearest Neighbors Retrieved Label

1-th: Hornak signed accomplished performance in a Tigers display against Phoenix. ORGANIZATION
8-th: Blinker was fined 75,000 Swiss francs ($57,600) for failing to inform the English club of his previous commitment to Udinese. ORGANIZATION
16-th: Since we have friends in Phoenix, we pop in there for a brief visit. LOCATION
Input Sentence #2

Australian Tom Moody took six for 82 but Tim O’Gorman, 109, took Derbyshire to 471.
Ground Truth: PERSON, Vanilla SL Output: - (Not an Entity), GNN-SL Output: PERSON

Retrieved Nearest Neighbors Retrieved Label

1-th: At California, Troy O’Leary hit solo home runs in the second inning as the surging Boston Red Sox. PERSON
8-th: Britain’s Chris Boardman broke the world 4,000 meters cycling record by more than six seconds. PERSON
16-th: Japan coach Shu Kamo said: The Syrian own goal proved lucky for us. PERSON

Table 7: Retrieved nearest examples from English OntoNotes 5.0 dataset, where the labeled words are underlined.
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