GNN-SL: Sequence Labeling Based on Nearest Examples via GNN

Shuhe Wang[♠]*, Yuxian Meng[♣], Rongbin Ouyang[♠], Jiwei Li[♦] Tianwei Zhang[♥], Lingjuan Lyu[▲], Guoyin Wang[★]†

Abstract

To better handle long-tail cases in the sequence labeling (SL) task, in this work, we introduce graph neural networks sequence labeling (GNN-SL), which augments the vanilla SL model output with similar tagging examples retrieved from the whole training set. Since not all the retrieved tagging examples benefit the model prediction, we construct a heterogeneous graph, and leverage graph neural networks (GNNs) to transfer information between the retrieved tagging examples and the input word sequence. The augmented node which aggregates information from neighbors is used to do prediction. This strategy enables the model to directly acquire similar tagging examples and improves the general quality of predictions. We conduct a variety of experiments on three typical sequence labeling tasks: Named Entity Recognition (NER), Part of Speech Tagging (POS), and Chinese Word Segmentation (CWS) to show the significant performance of our GNN-SL. Notably, GNN-SL achieves SOTA results of 96.9 (+0.2) on PKU, 98.3 (+0.4) on CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2) on AS for the CWS task, and results comparable to SOTA performances on NER datasets, and POS datasets.¹

1 Introduction

Sequence labeling (SL) is a fundamental problem in NLP, which encompasses a variety of tasks e.g., Named Entity Recognition (NER), Part of Speech Tagging (POS), and Chinese Word Segmentation (CWS). Most existing sequence labeling algorithms (Clark et al., 2018; Zhang and Yang, 2018; Bohnet et al., 2018; Shao et al., 2017; Meng et al., 2019) can be decomposed into two parts: (1) representation learning: mapping each input word to a higherdimensional contextual vector using neural network models such as LSTMs (Huang et al., 2019), CNNs (Wang et al., 2020), or pretrained language models (Devlin et al., 2018); and (2) classification: fitting the vector representation of each word to a softmax layer to obtain the classification label.

Figure 1: Example for the NER assignment when given a similar example.

Because the protocol described above relies on the model's ability to memorize the characteristics of training examples, its performance plummets when handling long-tail cases or minority categories. Intuitively, it's easier for a model to make predictions on long-term cases at test time when it is able to refer to similar training examples. For example, in Figure 1, the model can more easily label the word "*Phoenix*" in the given sentence as an "*ORGANIZATION*" entity when referring to a similar example.

Benefiting from the success of augmented models in NLP (Khandelwal et al., 2019, 2020; Guu et al., 2020; Lewis et al., 2020; Meng et al., 2021b), a simple yet effective method to mitigate the above issues is to apply the k nearest neighbors (kNN) strategy: The kNN model retrieves k similar tagging examples from a large cached datastore for each input word and augments the prediction with the probability computed by the cosine similarity between the input word and each of the retrieved nearest neighbors. Unfortunately, there is a significant shortcoming of this strategy. Retrieved neighbors are related to the input word in different ways: some are related in semantics while others in syntactic, some are close to the original input

^{*}wangshuhe@stu.pku.edu.cn

[↑] Peking University, [♣] JQ Investments, [♠] Zhejiang University, [♥] Nanyang Technological University, [▲] Sony AI, [★] Amazon

¹Code is available at https://github.com/ ShuheWang1998/GNN-SL.

word while others are just noise. A more sophisticated model is required to model the relationships between retrieved examples and the input word.

In this work, inspired by recent progress in combining graph neural networks (GNNs) with augmented models (Meng et al., 2021b), we propose GNN-SL to provide a general sequence-labeling model with the ability of effectively referring to training examples at test time. The core idea of GNN-SL is to build a graph between the retrieved nearest training examples and the input word, and use graph neural networks (GNNs) to model their relationships. To this end, we construct an undirected graph, where nodes represent both the input words and retrieved training examples, and edges represent the relationship between each node. The message is passed between the input words and retrieved training examples. In this way, we are able to more effectively harness evidence from the retrieved neighbors in the training set and by aggregating information from them, better token-level representations are obtained for final predictions.

To evaluate the effectiveness of GNN-SL, we conduct experiments over three widely-used sequence labeling tasks: Named Entity Recognition (NER), Part of Speech Tagging (POS), and Chinese Word Segmentation (CWS), and choose both English and Chinese datasets as benchmarks. Notably, applying the GNN-SL to the ChineseBERT (Sun et al., 2021), a Chinese robust pre-training language model, we achieve SOTA results of 96.9 (+0.2) on PKU, 98.3 (+0.4) on CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2) on AS for the CWS task. We also achieve performances comparable to current SOTA results on CoNLL, OntoNotes5.0, OntoNotes4.0 and MSRA for NER, and CTB5, CTB6, UD1.4, WSJ and Tweets for POS. We also conduct comprehensive ablation experiments to better understand the working mechanism of GNN-SL.

2 Related Work

Retrieval Augmented Model Retrieval augmented models additionally use the input to retrieve information from the constructed datastore to the model performance. As described in Meng et al. (2021b), this process can be understood as "*an open-book exam is easier than a close-book exam*". The retrieval augmented model is more familiar in the question answering task, in which the model generates related answers from a constructed datastore (Karpukhin et al., 2020; Xiong et al., 2020; Yih, 2020). Recently other NLP tasks have introduced this approach and achieved a good performance, such as language modeling (LM) (Khandelwal et al., 2019; Meng et al., 2021b), dialog generation (Fan et al., 2020; Thulke et al., 2021), neural machine translation (NMT) (Khandelwal et al., 2020; Meng et al., 2021a; Wang et al., 2021).

Graph Neural Networks The key idea behind graph neural networks (GNNs) is to aggregate feature information from the local neighbors of the node via neural networks (Liu et al., 2018; Veličković et al., 2017; Hamilton et al., 2017). Recently more and more researchers have proved the effectiveness of GNNs in the NLP task. For text classification, Yao et al. (2019) uses a Text Graph Convolution Network (Text GCN) to learn the embeddings for both words and documents on a graph based on word co-occurrence and document word relations. For information extraction, Lin et al. (2020) characterizes the complex interaction between sentences and potential relation instances via a graph-enhanced dual attention network (GEDA). For the recent work GNN-LM, Meng et al. (2021b) builds an undirected heterogeneous graph between an input context and its semantically related neighbors selected from the training corpus, GNNs are constructed upon the graph to aggregate information from similar contexts to decode the token.

3 kNN-SL

Sequence labeling (SL) is a typical NLP task, which assigns a label $y \in Y$ to each word w in the given input word sequence x = $\{w_1, \ldots, w_n\}$, where n denotes the length of the given sentence. We assume that $\{\mathcal{X}, \mathcal{Y}\} =$ $\{(x^1, y^1), \ldots, (x^N, y^N)\}$ denotes the training set, where $(x^i, y^i), \forall 1 \leq i \leq N$ denotes the pair containing a word sequence and its corresponding label sequence. Let N be the size of the training set.

3.1 *k***NN-SL**

The key idea of the kNN-SL model is to augment the process of classification during the inference stage with a k nearest neighbor retrieval mechanism, which can be split into the following pipelines: (1) using an already-trained sequence labeling model (e.g., BERT (Devlin et al., 2018) or RoBERTa (Liu et al., 2019)) to obtain word representation h for each token with the input word sequence; (2) using h as the query and finding the most similar k tokens in the cached datastore which

Figure 2: An example for the process of GNN-SL. **Step 1 Representation Extraction**: Suppose that we need to extract named entities for the given sentence: *Obama lives in Washington*. The representation for each word is the last hidden state of the pretrained vanilla sequence labeling model. **Step 2** k**NN Search**: Obtaining k nearest neighbors for EACH input word in the cached datastore, which consists of representation-label pairs for all training data. **Step 3&4 Graph Construction & Message Passing**: The queried k nearest neighbors and the input word are constructed into a graph. The message is passed from the nearest neighbors to each input word to obtain the aggregated representation. **Step 5 Prediction with Softmax**: The aggregated representation of each word is passed to a softmax layer to compute the likelihood of the assigned label.

is constructed by the training set; and (3) augmenting the classification probability generated by the vanilla SL model (i.e., p_{vanilla}) with the kNN label distribution p_{kNN} to obtain the final distribution.

Vanilla probability p_{vanilla} For a given word w, the output h generated from the last layer of the vanilla SL model is used as its representation, where $h \in \mathbb{R}^m$. Then h is fed into a multi-layer perceptron (MLP) to obtain the probability distribution p_{vanilla} via a softmax layer:

$$p_{\text{vanilla}}(y|w, x) = \text{softmax}(\text{MLP}(h))$$
 (1)

k**NN-augmented probability** p_{kNN} . For each word w, its corresponding embedding h is used to query k nearest neighbors set \mathcal{N} from the training set using L^2 Euclidean distance $d(h, \cdot)$ as similarity measure. The retrieved nearest neighbors set \mathcal{N} is formulated as (key, value) pairs, where key represents the retrieved similar word and value represents the corresponding SL label.

Then the retrieved examples are converted into a distribution over the label vocabulary based on an RBF kernel output (Vert et al., 2004) of the distance to the original embedding h:

$$p_{kNN}(y|w,x) \propto \sum_{(k,v)\in\mathcal{N}} \mathbb{1}_{y=v} \exp(\frac{-d(k,h)}{T})$$
(2)

where T is a temperature parameter to flatten the distribution. Finally, the vanilla distribution $p_{\text{vanilla}}(y|w,x)$ is augmented with $p_{\text{kNN}}(y|w,x)$ generating the final distribution $p_{\text{final}}(y|w,x)$:

$$p_{\text{final}}(y|w,x) = \lambda p_{\text{vanilla}}(y|w,x) + (1-\lambda)p_{\text{kNN}}(y|w,x)$$
(3)

where λ is adjustable to make a balance between kNN distribution and vanilla distribution.

4 GNN-SL

4.1 Overview

Intuitively, retrieved neighbors are related to the input word in different ways: some are similar in semantics while others in syntactic; some are very similar to the input word while others are just noise. To better model the relationships between retrieved neighbors and the input word, we propose graph neural networks sequence labeling (GNN-SL).

The proposed GNN-SL can be decomposed into five steps: (1) obtaining token features using a pre-trained vanilla sequence labeling model, which is the same as in KNN-SL; (2) obtaining k nearest neighbors from the whole training set for each input word; (3) constructing an undirected graph between each word within the sentence and its knearest neighbors; (4) obtaining aggregated word representations through messages passing along the graph; and (5) feeding the aggregated word representation to the softmax layer to obtain the final label. The full pipeline is shown in Figure 2.

For steps (1) and (2), they are akin the strategies taken in KNN-SL. We will describe the details for steps (3) and (4) in order below.

4.2 Graph Construction

We formulate the graph as $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A}, \mathcal{R})$, where \mathcal{V} represents a collection of nodes v and \mathcal{E} represents a collection of edges e. \mathcal{A} refers to node types and \mathcal{R} refers to edge types.

Nodes In the constructed graph, we define three types of nodes A:

(1) **Input** nodes, denoted by $a_{input} \in A$, which correspond to words of the input sentence. In the example of Figure 2 Step 3, the input nodes are displayed with the word sequence $x = \{Obama, lives, in, Washington\};$

(2) Neighbor nodes, denoted by $a_{\text{neighbor}} \in \mathcal{A}$, which correspond to words in the retrieved neighbors. The context of nearest neighbors is also included (and thus treated as neighbor nodes) in an attempt to capture more abundant contextual information for the retrieved neighbors. For the example in Figure 2, for each input word with representation h, k nearest neighbors are queried from the cached representations of all words in the training set with the L2 distance as the metric of similarity. Taking the input word {Obama} as the example with k = 2, we obtain two nearest neighbors {Obama, Trump} leveraging the kNN search. The contexts of each retrieved nearest neighbor are also considered by adding both left and right contexts around the retrieved nearest neighbor, where {Obama} is expanded to {[CLS], Obama, is} and {Trump} is expanded to $\{[CLS], Trump, is\}\}^2$. The analysis of the size of

the context is conducted in Section 5.5.

(3) **Label** nodes, denoted by $a_{label} \in A$, since the labels of nearest neighbors provide important evidence for the input node to classify, we wish to pass the influence of neighbors' labels to the input node along the graph. As will be shown in ablation studies in Section 5.5, the consideration of label nodes introduces a significant performance boost. Shown in Figure 2 Step 3, taking the input word {Obama} as the example, the two retrieved nearest neighbors are {Obama} and {Trump}, and both the corresponding node labels are {B-PER}.

With the above formulated, \mathcal{A} can be rewritten as $\{a_{input}, a_{neighbor}, a_{label}\}$.

Edges Given the three types of nodes $\mathcal{A} = \{a_{input}, a_{neighbor}, a_{label}\}$, we connect them using different types of edges to enable information passing.

We define four types of edges for \mathcal{R} : (1) edges within the input nodes a_{input} , notated by $r_{input-input}$; (2) edges between the neighbor nodes $a_{neighbor}$ and the input nodes a_{input} , notated by $r_{neighbor-input}$; (3) edges within the neighbor nodes $a_{neighbor}$, notated by $r_{neighbor-neighbor}$; and (4) edges between the label nodes a_{label} and the neighbor nodes $a_{neighbor}$, denoted by $r_{label-neighbor}$. All types of edges are bidirectional which allows information passing on both sides. We use different colors to differentiate different relations in Figure 2 Step 3.

For $r_{\text{input-input}}$ and $r_{\text{neighbor-neighbor}}$, they respectively mimic the attention mechanism to aggregate the context information within the input word sequence or the expanded nearest context, which are shown with the black and green color in Figure 2. For $r_{\text{neighbor-input}}$, it connects the retrieved neighbors and the query input word, transferring the neighbor information to the input word. For $r_{\text{label-neighbor}}$ colored with orange, information is passed from label nodes to neighbor nodes, which is ultimately transferred to input nodes.

4.3 Message Passing On The Graph

Given the constructed graph, we next use graph neural networks (GNNs) to aggregate information based on the graph to obtain the final representation for each token to classify. More formally, we define the l-th layer representation of node n as follows:

$$h_n^l = \underset{\forall s \in \mathcal{N}(n)}{\operatorname{Aggregate}} (\mathbf{A}(s, e, n) \cdot \mathbf{M}(s, e, n)) + h_n^{l-1}$$
(4)

sentence.

²[CLS] is a special token usually applied in pre-training language models (e.g., BERT) representing the beginning of a

where M(s, e, n) denotes the information transferred from the node *s* to the node *n* along the edge *e*, A(s, e, n) denotes the edge weight modeling the importance of the source node *s* on the target node *n* with the relationship *e*, and Aggregate(\cdot) denotes the function to aggregate the transferred information from the neighbors of node *n*. We detail how to obtain $A(\cdot)$, $M(\cdot)$, and Aggregate(\cdot) below.

Message For each edge (s, e, n), the message transferred from the source node s to the target node n can be formulated as:

$$\mathbf{M}(s, e, n) = W_{\tau(s)}^{v} h_{s}^{l-1} W_{\phi(e)}$$
(5)

where d denotes the dimensionality of the vector, $W_{\tau(s)}^{v} \in \mathbb{R}^{d \times d}$ and $W_{\phi(e)} \in \mathbb{R}^{d \times d}$ are two learnable weight matrixes controling the outflow of node s from the node side and the edge side respectively.

As we use different types of edges for node connections, we follow Hu et al. (2020) to keep a distinct edge-matrix $W_{\phi(e)} \in \mathbb{R}_{d \times d}$ for each edge type between the dot of Q(n) and K(s):

$$P(n,s) = K(s)W_{\phi(e)}Q(n)^{\mathsf{T}} \cdot \frac{\mu\langle \tau(s), \phi(e), \tau(n) \rangle}{\sqrt{d}}$$
$$A(s,e,n) = \underset{s \in \mathcal{N}(n), e \in \phi(e)}{\operatorname{softmax}} (P(Q(n),K(s))),$$
(6)

where $\mu \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{R}| \times |\mathcal{A}|}$ is a learnable matrix denoting the contribution of each edge with a different relationship.

Aggregate For each edge (s, e, n), we now have the attention weight A(s, e, n) and the information M(s, e, n), the next step is to obtain the weightedsum information from all neighboring nodes:

$$\operatorname{Aggregate}(\cdot) = W^{o}_{\tau(n)}(\bigoplus_{\forall s \in \mathcal{N}(n)} \operatorname{MultiHead}(s, e, n))$$
(7)

where \oplus is element-wise addition and $W^o_{\tau(n)} \in \mathcal{R}^{d \times d}$ is a learnable model parameter used as an activation function like a linear layer.

The aggregated representation for each input word is used as its final representation, passed to the softmax layer for classification. For all our experiments, the number of heads is 8.

5 Experiments

We conduct experiments on three widely-used subtasks of sequence labeling: named entity recognition (NER), part of speech tagging (POS), and Chinese Word Segmentation (CWS). Due to the limit of pages, we put our training details that including the vanilla SL model and the kNN retrieval in Appendix A.

5.1 Control Experiments

To better show the effectiveness of the proposed model, we compare the performance of the following setups: (1) **vanilla SL models**: vanilla models naturally constitute a baseline for comparison, where the final layer representation is fed to a softmax function to obtain p_{vanilla} for label prediction; (2) **vanilla** + kNN: the kNN probability p_{kNN} is interpolated with p_{vanilla} to obtain final predictions; (3) **vanilla** + **GNN**: the representation generated from the final layer of GNN is passed to the softmax layer to obtain the label probability p_{GNN} ; (4) **vanilla** + **GNN** + kNN: the kNN probability p_{GNN} to obtain final predictions, rather than the probability from the vanilla model, as in vanilla + kNN.

5.2 Named Entity Recognition

The task of NER is normally treated as a charlevel tagging task: outputting a NER tag for each character. The details for the chosen baselines and datasets are in Appendix B, and the results are below.

Results Results for the NER task are shown in Table 1, and from the results:

(1) We observe a significant performance boost brought by kNN, respectively +0.06, +1.62, +1.75 and +0.19 for English CoNLL 2003, English OntoNotes 5.0, Chinese OntoNotes 4.0 and Chinese MSRA, which proves the importance of incorporating the evidence of retrieved neighbors.

(2) We observe a significant performance boost for vanilla+GNN over both the vanilla model: respectively +2.14 on the BERT-Large and +1.78 on the RoBERTa-Large for English OntoNotes 5.0, and +1.10 on the BERT-Large and +0.40 on the ChineseBERT-Large for Chinese MSRA. Due to the fact that both vanilla+GNN and the vanilla model output the final layer representation to the softmax function to obtain final probability and that p_{kNN} do not participate in the final probability interpolation for both, the performance boost over vanilla SL demonstrates that we are able to obtain better token-level representations using GNNs.

(3) When comparing with vanilla+kNN, we observe further improvements of +0.33, +2.14, +3.17 and +1.10 for English CoNLL 2003, English

English CoNLL 2003							
Model	Precision	Recall	F1				
CVT (Clark et al., 2018)	-	-	92.22				
BERT-MRC (Li et al., 2019)	92.33	94.61	93.04				
BERT-Large (Devlin et al., 2018)	-	-	92.8				
BERT-Large+KNN	92.90	92.88	92.86 (+0.06)				
BERT-Large+GNN	92.92	93.34	93.14 (+0.33)				
BERT-Large+GNN+KNN	92.95	93.37	93.16 (+0.35)				
RoBERTa-Large (Liu et al., 2019)	92.77	92.81	92.76				
RoBERTa-Large+KNN	92.82	92.99	92.93 (+0.17)				
RoBERTa-Large+GNN	93.00	93.41	93.20 (+0.44)				
ROBERTa-Large+GINN+KINN English Onto	95.02	93.40	93.20 (+0.44)				
M	notes 5.0	D 11	F1				
Model	Precision	Recall	FI				
CVT (Clark et al., 2018)	-	-	88.8				
BERT-MRC (Li et al., 2019)	92.98	89.95	91.11				
BERT-Large (Devlin et al., 2018)	90.01	88.35	89.16				
BERT-Large+KNN	89.93	91.65	90.78 (+1.62)				
BERT-Large+GNN	91.44	91.16	91.30 (+2.14)				
BERT-Large+GNN+KNN	91.47	91.14	91.32 (+2.16)				
RoBERTa-Large (Liu et al., 2019)	89.77	89.27	89.52				
RoBERTa-Large+KNN	90.00	91.26	90.63 (+1.11)				
RoBERTa-Large+GNN	91.38	91.17	91.30 (+1.78)				
RoBERIa-Large+GNN+KNN	91.48	91.29	91.39 (+1.87)				
Chinese Onto							
Model	Precision	Recall	F1				
Model Lattice-LSTM (Zhang and Yang, 2018)	Precision 76.35	Recall 71.56	F1 73.88				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019)	Precision 76.35 81.87	Recall 71.56 81.40	F1 73.88 80.62				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019)	Precision 76.35 81.87 82.98	Recall 71.56 81.40 81.25	F1 73.88 80.62 82.11				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018)	Precision 76.35 81.87 82.98 78.01	Recall 71.56 81.40 81.25 80.35	F1 73.88 80.62 82.11 79.16				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN	Precision 76.35 81.87 82.98 78.01 80.23	Recall 71.56 81.40 81.25 80.35 81.60	F1 73.88 80.62 82.11 79.16 80.91 (+1.75)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 22.27	Recall 71.56 81.40 81.25 80.35 81.60 81.60 81.60	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN BERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07	Recall 71.56 81.40 81.25 80.35 81.60 81.60 81.62	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19)				
ModelLattice-LSTM (Zhang and Yang, 2018)Glyce-BERT (Meng et al., 2019)BERT-MRC (Li et al., 2019)BERT-Large (Devlin et al., 2018)BERT-Large+KNNBERT-Large+GNNBERT-Large+GNN+KNNChineseBERT-Large (Sun et al., 2021)	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77	Recall 71.56 81.40 81.25 80.35 81.60 81.60 81.62 83.65	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68	Recall 71.56 81.40 81.25 80.35 81.60 81.60 81.62 83.65 83.46 83.45	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 82.98	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.02 (+0.92)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 4504	Recall 71.56 81.40 81.25 80.35 81.60 81.60 81.60 81.62 83.65 83.46 84.01 83.98	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 83.02 (+0.84) 83.02 (+0.84) 83.10 (+0.92)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 AISRA Precision	Recall 71.56 81.40 81.25 80.35 81.60 81.60 81.62 83.65 83.46 84.01 83.98 Recall	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 83.02 (+0.84) 83.02 (+0.84) 83.10 (+0.92) F1				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 ASRA Precision 93.57	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 83.02 (+0.84) 83.10 (+0.92) F1 93.18				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 JSRA 93.57 95.57	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79 95.51	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 ASRA Precision 93.57 95.57 96.18	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79 95.51 95.12	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.75				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN BERT-Large (Devlin et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018)	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 ASRA 93.57 95.57 96.18 94.97	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Pecall 92.79 95.51 95.12 94.62	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.75 94.80				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN BERT-Large (Devlin et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large (Devlin et al., 2018) BERT-Large (Devlin et al., 2018)	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 ASRA Precision 93.57 95.57 96.18 94.97 95.34	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79 95.51 95.12 94.62 94.64	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.75 94.80 94.99 (+0.19)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN BERT-Large Chinese PRT Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 ASRA Precision 93.57 95.57 96.18 94.97 95.34 96.29	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79 95.51 95.52 94.62 94.64 95.51	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.55 94.80 94.99 (+0.19) 95.90 (+1.10)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN Chinese P Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 ASRA Precision 93.57 95.57 96.18 94.97 95.34 96.29 96.31	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79 95.51 95.51 94.62 94.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.75 94.80 94.99 (+0.19) 95.90 (+1.10) 95.93 (+1.13)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large +GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2019) BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN+KNN BERT-Large (Devlin et al., 2019)	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 ASRA Precision 93.57 95.57 96.18 94.97 95.34 96.29 96.31 95.61	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.54 95.55 94.80 94.99 (+0.19) 95.90 (+1.10) 95.93 (+1.13) 95.61				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN BERT-Large Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2019) BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 MSRA Precision 93.57 96.18 94.97 95.34 96.29 96.31 95.61 95.83	Recall 71.56 81.40 81.25 80.35 81.60 81.62 83.65 83.46 84.01 83.98 Recall 92.79 95.51 95.51 94.62 94.64 95.51 95.54 95.61 95.61 95.61 95.61	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.75 94.80 94.99 (+0.19) 95.90 (+1.10) 95.93 (+1.13) 95.61 95.76 (+0.15)				
Model Lattice-LSTM (Zhang and Yang, 2018) Glyce-BERT (Meng et al., 2019) BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large (HNN BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT (Large+GNN+KNN BERT-MRC (Li et al., 2019) BERT-Large (Devlin et al., 2019) BERT-Large (Devlin et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN BERT-Large+GNN BERT-Large+GNN+KNN	Precision 76.35 81.87 82.98 78.01 80.23 83.06 83.07 80.77 81.68 82.02 82.21 MSRA 93.57 95.57 96.18 94.97 95.34 96.29 96.31 95.61 95.83 96.28 96.28	Recall 71.56 81.40 81.25 80.35 81.60 81.60 81.60 83.65 83.46 84.01 83.98 Pecall 92.79 95.51 95.62 94.64 95.51 95.54 95.61 95.68 95.73 95.73	F1 73.88 80.62 82.11 79.16 80.91 (+1.75) 82.33 (+3.17) 82.35 (+3.19) 82.18 82.56 (+0.38) 83.02 (+0.84) 83.10 (+0.92) F1 93.18 95.54 95.75 94.80 94.99 (+0.19) 95.90 (+1.10) 95.90 (+1.10) 95.91 (+0.15) 96.01 (+0.40)				

Table 1: NER results for two English datasets: CoNLL 2003 and OntoNotes 5.0, and two Chinese datasets: MSRA and OntoNotes 4.0.

OntoNotes 5.0, Chinese OntoNotes 4.0 and Chinese MSRA dataset, respectively, showing that the proposed GNN model has the ability to filtrate the useful neighbors to augment the vanilla SL model.

(4) There is an inconspicuous improvement brought by interpolating both the kNN probability and GNN probability (vanilla + kNN + GNN) over the proposed GNN-SL (vanilla + GNN), e.g., +2.16 v.s. +2.14 on the BERT-Large for English OntoNotes 5.0, and +1.13 v.s. +1.10 on the BERT-

PKU									
Model	Precision	Recall	F1						
Multitask pretrain (Yang et al., 2017)	-	-	96.3						
CRF-LSTM (Huang et al., 2019)	-	-	96.6						
Glyce-BERT (Meng et al., 2019)	97.1	96.4	96.7						
BERT-Large (Devlin et al., 2018)	96.8	96.3	96.5						
BERT-Large+KNN	97.2	96.1	96.6 (+0.1)						
BERT-Large+GNN	96.9	96.6	96.8 (+0.3)						
BERT-Large+GNN+KNN	96.9	96.7	96.8 (+0.3)						
ChineseBERT-Large (Sun et al., 2021)	97.3	96.0	96.7						
ChineseBERT-Large+KNN	97.3	96.1	96.7 (+0.0)						
ChineseBERT-Large+GNN	97.6	96.2	96.9 (+0.2)						
ChineseBERT-Large+GNN+KNN	97.7	96.2	96.9 (+0.2)						
СІТУЦ	J								
Model	Precision	Recall	F1						
Multitask pretrain (Yang et al., 2017)	-	-	96.9						
CRF-LSTM (Huang et al., 2019)	-	-	97.6						
Glyce-BERT (Meng et al., 2019)	97.9	98.0	97.9						
BERT-Large (Devlin et al., 2018)	97.5	97.7	97.6						
BERT-Large+KNN	97.8	97.8	97.8 (+0.2)						
BERT-Large+GNN	98.0	98.1	98.0 (+0.4)						
BERT-Large+GNN+KNN	98.0	98.1	98.0 (+0.4)						
ChineseBERT-Large (Sun et al., 2021)	97.8	98.2	98.0						
ChineseBERT-Large+KNN	98.1	98.0	98.1 (+0.1)						
ChineseBERT-Large+GNN	98.2	98.4	98.3 (+0.3)						
ChineseBERT-Large+GNN+KNN	98.3	98.4	98.3 (+0.3)						
MSR									
Model	Precision	Recall	F1						
Model Multitask pretrain (Yang et al., 2017)	Precision	Recall	F1 97.5						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019)	Precision - -	Recall - -	F1 97.5 97.9						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019)	Precision - - 98.2	Recall - - 98.3	F1 97.5 97.9 98.3						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018)	Precision - - 98.2 98.1	Recall 98.3 98.2	F1 97.5 97.9 98.3 98.1						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN	Precision 98.2 98.1 98.3	Recall - - 98.3 98.2 98.4	F1 97.5 97.9 98.3 98.1 98.3 (+0.2)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN	Precision 98.2 98.1 98.3 98.4	Recall 98.3 98.2 98.4 98.3	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN BERT-Large+GNN+KNN	Precision - - 98.2 98.1 98.3 98.4 98.4 98.4	Recall - 98.3 98.2 98.4 98.3	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021)	Precision 98.2 98.1 98.3 98.4 98.4 98.4 98.5	Recall - 98.3 98.2 98.4 98.3 98.3 98.3	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+KNN	Precision 98.2 98.1 98.3 98.4 98.4 98.4 98.5 98.5	Recall - 98.3 98.2 98.4 98.3 98.3 98.3 98.3	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 98.3 (+0.0)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+KNN ChineseBERT-Large+GNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.3 98.3 98.3 98.1 97.9	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 98.3 (+0.0) 98.5 (+0.2)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+KNN ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.2 98.4 98.3 98.3 98.3 98.1 97.9 98.0	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN	Precision 98.2 98.1 98.3 98.4 98.4 98.4 98.5 98.5 98.5 98.9 98.9	Recall - - 98.3 98.2 98.4 98.3 98.3 98.3 98.1 98.2 98.3	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.0 98.1 97.9 98.0 98.0 98.0 98.0	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.3) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) F1						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.3 98.0 98.0 98.0 98.0 98.0 98.0 98.0	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.3 98.0 98.1 97.9 98.0 98.1 97.9 98.0	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 95.7 96.6						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN ChineseBERT-Large+GN	Precision	Recall - 98.3 98.4 98.3 98.3 98.3 98.0 98.1 97.9 98.0 98.0 - - 96.8	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 95.7 (+0.2) 95.7 96.6 (+0.2) 96.7 (+0.2) 96.7 (+0.2) 96.7 (+0.2) 95.7 (+0.2						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.0 98.1 97.9 98.0 98.1 97.9 98.0 98.0 98.0 98.0 98.0 99.0 90.0 90.0 90.0 90.0 90.0	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 95.7 96.6 96.7 96.5						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large (Sun et al., 2018) BERT-Large+GNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.3 98.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 90.0 90.0 90.0 <	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 95.7 96.6 (96.7) 96.5 96.6 (+0.1)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large +KNN BERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN BERT-Large +GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.3 98.0 98.1 97.9 98.0 98.0 98.1 97.9 98.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 96.5 96.6 (+0.1) 96.8 (+0.3)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN BERT-Large (Devlin et al., 2019) Glyce-BERT (Meng et al., 2018) BERT-Large (Devlin et al., 2018) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.0 98.1 97.9 98.0 98.1 97.9 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 99.0 90.1 90.2 90.3 90.4 90.5 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4	F1 97.5 97.9 98.1 98.3 (+0.2) 98.4 (+0.3) 98.3 (+0.4) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 95.7 96.6 96.7 96.6 (+0.1) 96.8 (+0.3) 96.8 (+0.3) 96.8 (+0.3)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN BERT-Large (Devlin et al., 2017) CRF-LSTM (Huang et al., 2018) BERT-Large (Devlin et al., 2018) BERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large (Devlin et al., 2018) BERT-Large+GNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.0 98.1 97.9 98.0 98.1 97.9 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 97.9 98.0 97.9 96.8 96.4 96.9 97.0 97.0 97.2	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.4 (+0.3) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 98.5 (+0.1) 96.5 96.6 (+0.1) 96.8 (+0.3) 96.8 (+0.3) 96.7						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN BERT-Large (Devlin et al., 2017) CRF-LSTM (Huang et al., 2017) Glyce-BERT (Meng et al., 2018) BERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+KNN ChineseBERT-Large+KNN BERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN ChineseBERT-Large+GNN+KNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.0 98.1 97.9 98.0 98.1 97.9 98.0 98.0 98.1 97.9 98.0 98.0 98.0 97.9 90.4 96.4 96.9 97.0 97.2 97.2 97.2	F1 97.5 97.9 98.1 98.3 (+0.2) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.0) 98.5 (+0.2) 98.5 (+0.2) 95.7 (+0.0) 96.5 96.6 (+0.1) 96.8 (+0.3) 96.7 (+0.0)						
Model Multitask pretrain (Yang et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) BERT-Large (Devlin et al., 2018) BERT-Large +GNN BERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN BERT-Large (Devlin et al., 2017) CRF-LSTM (Huang et al., 2019) Glyce-BERT (Meng et al., 2019) Glyce-BERT (Meng et al., 2018) BERT-Large +GNN BERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large +GNN+KNN ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large (Sun et al., 2021) ChineseBERT-Large +KNN ChineseBERT-Large +KNN ChineseBERT-Large +GNN	Precision	Recall - 98.3 98.4 98.3 98.3 98.0 98.1 97.9 98.0 98.1 97.9 98.0 98.1 97.9 98.0 96.4 96.9 97.0 97.0 97.2 97.7 97.7	F1 97.5 97.9 98.3 98.1 98.3 (+0.2) 98.4 (+0.3) 98.3 (+0.0) 98.3 (+0.2) 98.5 (+0.2) 98.5 (+0.2) 95.7 (+0.2) 96.5 96.6 (+0.1) 96.8 (+0.3) 96.7 (+0.0) 96.7 (+0.0) 96.9 (+0.2)						

Table 2: CWS results for four datasets: PKU, CITYU, MSR, and AS.

Large for Chinese MSRA. This demonstrates that as the evidence of retrieved nearest neighbors (and their labels) has been assimilated through GNNs in the representation learning stage, the extra benefits brought by interpolating p_{knn} in the final prediction stage is significantly narrowed.

Task NER												
	Engl	lish CoNI	LL 2003	003 English OntoNotes 5.0		Notes 5.0	Chinese OntoNotes 4.0			Chinese MSRA		
Model	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
BERT+GNN	92.97	93.37	93.17	91.40	91.15	91.27	83.04	81.56	82.30	96.69	95.51	95.90
BERT+GNN-without Label nodes	92.99	93.29	93.14 (-0.03)	91.66	90.70	91.18 (-0.09)	83.23	81.06	82.13 (-0.17)	95.86	95.31	95.58 (-0.32)
					Task C	WS						
		PKU			CITY	U	MSR		AS			
Model	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
BERT+GNN	96.9	96.6	96.8	98.0	98.1	98.0	98.4	98.3	98.4	96.6	97.0	96.8
BERT+GNN-without Label nodes	97.1	96.2	96.7 (-0.1)	97.9	97.8	97.9 (-0.1)	98.4	98.2	98.3 (-0.1)	96.3	97.1	96.7 (-0.1)
					Task P	OS						
	0	Chinese C	TB5	Chinese CTB6		Chinese UD1.4			English WSJ			
Model	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
BERT+GNN	96.87	96.69	96.78	96.44	94.82	95.63	96.15	96.47	96.31	98.85	98.99	98.95
BERT+GNN-without Label nodes	96.36	96.58	96.46 (-0.32)	95.69	94.69	95.19 (-0.42)	95.99	96.05	96.02 (-0.29)	98.97	98.87	98.92 (-0.003)

Table 3: Experiments without label nodes on three tasks: NER, CWS, and POS.

	Chinese CTB5			Chinese CTB6			Chinese UD1.4		
Model	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Joint-POS(Sig) (Shao et al., 2017)	93.68	94.47	94.07	-	-	90.81	89.28	89.54	89.41
Joint-POS(Ens) (Shao et al., 2017)	93.95	94.81	94.38	-	-	-	89.67	89.86	89.75
Lattice-LSTM (Zhang and Yang, 2018)	94.77	95.51	95.14	92.00	90.86	91.43	90.47	89.70	90.09
Glyce-BERT (Meng et al., 2019)	96.50	96.74	96.61	95.56	95.26	95.41	96.19	96.10	96.14
BERT-Large (Devlin et al., 2018)	95.86	96.26	96.06	94.91	94.63	94.77	95.42	94.17	94.79
BERT-Large+KNN	96.36	96.60	96.48 (+0.42)	95.14	94.77	94.95 (+0.18)	95.85	95.67	95.76 (+0.97)
BERT-Large+GNN	96.86	96.66	96.76 (+0.70)	96.46	94.82	95.64 (+0.85)	96.14	96.46	96.30 (+1.51)
BERT-Large+GNN+KNN	96.77	96.69	96.79 (+0.73)	96.44	94.84	95.64 (+0.85)	96.20	96.47	96.34 (+1.55)
ChineseBERT (Sun et al., 2021)	96.35	96.54	96.44	95.47	95.00	95.23	96.02	95.92	95.97
ChineseBERT+KNN	96.41	96.15	96.52 (+0.08)	95.48	95.09	95.29 (+0.06)	96.11	96.11	96.11 (+0.14)
ChineseBERT+GNN	96.46	97.41	96.94 (+0.50)	96.08	95.50	95.79 (+0.77)	96.18	96.54	96.36 (+0.39)
ChineseBERT+GNN+KNN	96.46	97.44	96.96 (+0.52)	96.13	95.58	95.85 (+0.82)	96.25	96.57	96.40 (+0.43)

Table 4: POS results for three Chinese datasets: CTB5, CTB6 and UD1.4.

5.3 Chinese Word Segmentation

The task of CWS is normally treated as a charlevel tagging problem: assigning *seg* or *not seg* for each input word. We put the details of the chosen baselines and datasets in Appendix B, and below are the results.

Results Results for the CWS task are shown in Table 2. From the results, same as the former Section 5.2, with different vanilla models as the backbone, we can observe obvious improvements by applying the *k*NN probability (vanilla + *k*NN) or the GNN model (vanilla + GNN), while keeping the same results between vanilla + GNN and vanilla + GNN + *k*NN, e.g., for PKU dataset +0.1 on BERT + *k*NN, +0.3 both on BERT + GNN and BERT + GNN + *k*NN. Notablely we achieve SOTA for all four datasets with the ChineseBERT: 96.9 (+0.2) on PKU, 98.3 (+0.3) on CITYU, 98.5 (+0.2) on MSR and 96.9 (+0.2) on AS.

5.4 Part of Speech Tagging

The task of POS is normally formalized as a character-level sequence labeling task, assigning labels to each of the input word. The details of the

English WSJ							
Model	Precision	Recall	F1				
Meta BiLSTM (Bohnet et al., 2018)	-	-	98.23				
BERT-Large (Devlin et al., 2018)	99.21	98.36	98.86				
BERT-Large+KNN	98.98	98.85	98.92 (+0.06)				
BERT-Large+GNN	98.84	98.98	98.94 (+0.08)				
BERT-Large+GNN+KNN	98.88	98.99	98.96 (+0.10)				
RoBERTa-Large (Liu et al., 2019)	99.22	98.44	98.90				
RoBERTa-Large+KNN	99.21	98.52	98.94 (+0.04)				
RoBERTa-Large+GNN	98.90	99.06	99.00 (+0.10)				
RoBERTa-Large+GNN+KNN	98.90	99.06	99.00 (+0.10)				
English	Tweets						
Model	Precision	Recall	F1				
FastText+CNN+CRF	-	-	91.78				
BERT-Large (Devlin et al., 2018)	92.33	91.98	92.34				
BERT-Large+KNN	92.77	92.02	92.39 (+0.05)				
BERT-Large+GNN	92.38	92.52	92.45 (+0.11)				
BERT-Large+GNN+KNN	92.42	92.53	92.48 (+0.14)				
RoBERTa-Large (Liu et al., 2019)	92.40	91.99	92.38				
RoBERTa-Large+KNN	92.44	92.11	92.46 (+0.08)				
RoBERTa-Large+GNN	92.49	92.53	92.51 (+0.13)				
RoBERTa-Large+GNN+KNN	92.49	92.54	92.52 (+0.14)				

Table 5: POS results for two English datasets: WSJ and Tweets.

chosen baselines and datasets are in Appendix B, and below are the results.

Results Results for the POS task are shown in Table 4 for Chinese datasets and Table 5 for English

Figure 3: Experiments on English OntoNotes 5.0 datasets by varying the number of neighbors k.

F1-score on English OntoNotes 5.0						
Context (l+r+1) / Model	F1-score					
The Vanilla SL Model	89.16					
GNN-SL + by setting context=3 + by setting context=5 + by setting context=7 + by setting context=9 + by setting context=11	91.16 (+2.00) 91.24 (+2.08) 91.27 (+2.11) 91.27 (+2.11) 91.27 (+2.11)					

Table 6: F1-score on English OntoNotes 5.0 by varying the context size of the retrieved neighbors

datasets. As shown, with different vanilla models and datasets, the phenomenons are the same as the former Section 5.2 that improves largely based on the *k*NN probability and further on the GNN model. For the results of Chinese CTB5 as the example, +0.42 on BERT + *k*NN, further +0.70 on BERT + GNN, and +0.73 on BERT + GNN + *k*NN.

To forward visualize the phenomenon that some retrieved neighbors are close to the original input sentence while others are just noise, we sample examples from the NER English OntoNotes5.0 dataset in Appendix C.

5.5 Ablation Study

The Number of Retrieved Neighbors To evaluate the influence of the amount of retrieved neighbors, we conduct experiments on English OntoNotes 5.0 for the NER task by varying the number of neighbors k. The results are shown in Figure 3. As can be seen, as k increases, the F1 score of GNN-SL first increases and then decreases. The explanation is as follows, as more examples are, more noise is introduced and relevance to the query decreases, which makes performance worse. **Effectiveness of Label Nodes** In Section 4.2, labels are used as nodes in the graph construction process. To evaluate the effectiveness of that strategy, we conducted contrast experiments by removing the label nodes. The experiments are based on the BERT-Large model and adjusted to the best parameters, and the results are shown in Table 3. All the results show a decrease after removing the label nodes, especially -0.42 for the POS Chinese CTB6 dataset and -0.32 for the NER Chinese MSRA dataset, which proves the necessity of incorporating label information of neighbors.

The Size of the Context Window In Section 4.2, to acquire the context information of each retrieved nearest word we expand the retrieved nearest word to the nearest context. We experiment with varying context sizes to show the influence. Results on NER English OntoNotes 5.0 are shown in Table 6. We can observe that, as the context size increases, performance first goes up and then plateaus. That is because a decent size of context is sufficient to provide enough information for predictions.

*k***NN search without Fine-tuning** In section 4, we use the representations obtained by the fine-tuned pre-trained model on the labeled training set to perform *k*NN search. To validate its necessity, we also conduct an experiment that directly uses the BERT model without fine-tuning to extract representation. We evaluate its influence on NER CoNLL 2003 and observe a sharp decrease when switching the fine-tuned SL model to a non-fine-tuned BERT model, i.e., 93.17 v.s. 92.83. That is due to the gap between the LM task and the SL task, and that nearest neighbors retrieved by a vanilla pre-trained language model might not be the NEAREST neighbor for the SL task.

6 Conclusion

In this work, we propose GNN-SL, which augments the vanilla SL model output with similar tagging examples retrieved from the whole training set. Since not all the retrieved tagging examples benefit the model prediction, we construct a heterogeneous graph, and leverage graph neural networks (GNNs) to transfer information from the retrieved nearest examples to the input word. This strategy enables the model to directly acquire similar tagging examples and improves the effectiveness in handling long-tail cases. We conduct multi experiments and analyses on three sequence labeling tasks: NER, POS, and CWS. Notably, GNN-SL achieves SOTA 96.9 (+0.2) on PKU, 98.3 (+0.4) on CITYU, 98.5 (+0.2) on MSR, and 96.9 (+0.2) on AS for the CWS task.

7 Limitation

Admittedly, the main limitation of this work is the selection of k nearest neighbors. Intuitively, high-quality nearest neighbors can make GNN learn the representation more easily. Thus, in future work, we will focus on the process of kNN selection including that attempt more measures rather than space cosine similarity distance and more representations extracted with different strategies.

References

- Bernd Bohnet, Ryan McDonald, Goncalo Simoes, Daniel Andor, Emily Pitler, and Joshua Maynez. 2018. Morphosyntactic tagging with a meta-bilstm model over context sensitive token encodings. *arXiv preprint arXiv:1805.08237*.
- Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V Le. 2018. Semi-supervised sequence modeling with cross-view training. *arXiv preprint arXiv:1809.08370*.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.
- Angela Fan, Claire Gardent, Chloe Braud, and Antoine Bordes. 2020. Augmenting transformers with knn-based composite memory for dialogue. *arXiv preprint arXiv:2004.12744*.
- Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020. Realm: Retrievalaugmented language model pre-training. *arXiv preprint arXiv:2002.08909*.
- Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30.
- Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous graph transformer. pages 2704–2710.
- Weipeng Huang, Xingyi Cheng, Kunlong Chen, Taifeng Wang, and Wei Chu. 2019. Toward fast and accurate neural chinese word segmentation with multi-criteria learning. *arXiv preprint arXiv:1903.04190*.
- Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-domain question answering. *arXiv preprint arXiv:2004.04906*.

- Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2020. Nearest neighbor machine translation. *arXiv preprint arXiv:2010.00710*.
- Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2019. Generalization through memorization: Nearest neighbor language models. *arXiv preprint arXiv:1911.00172*.
- Gina-Anne Levow. 2006. The third international Chinese language processing bakeoff: Word segmentation and named entity recognition. In *Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing*, pages 108–117, Sydney, Australia. Association for Computational Linguistics.
- Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang, and Luke Zettlemoyer. 2020. Pre-training via paraphrasing. *arXiv preprint arXiv:2006.15020*.
- Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong Han, Fei Wu, and Jiwei Li. 2019. A unified mrc framework for named entity recognition. *arXiv* preprint arXiv:1910.11476.
- Jerry Chun-Wei Lin, Yinan Shao, Ji Zhang, and Unil Yun. 2020. Enhanced sequence labeling based on latent variable conditional random fields. *Neurocomputing*, 403:431–440.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
- Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song. 2018. Heterogeneous graph neural networks for malicious account detection. pages 2077–2085.
- Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xiaofei Sun, Tianwei Zhang, and Jiwei Li. 2021a. Fast nearest neighbor machine translation. *arXiv preprint arXiv:2105.14528*.
- Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, and Jiwei Li. 2019. Glyce: Glyph-vectors for chinese character representations. Advances in Neural Information Processing Systems, 32.
- Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tianwei Zhang, Fei Wu, and Jiwei Li. 2021b. Gnn-lm: Language modeling based on global contexts via gnn. *arXiv preprint arXiv:2110.08743*.
- Sameer Pradhan. 2011. Proceedings of the fifteenth conference on computational natural language learning: Shared task. In *Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task.*

- Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Björkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. 2013. Towards robust linguistic analysis using ontonotes. In *Proceedings* of the Seventeenth Conference on Computational Natural Language Learning, pages 143–152.
- Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. 2011. Named entity recognition in tweets: An experimental study. pages 1524–1534.
- Erik F Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Language-independent named entity recognition. *arXiv preprint cs/0306050*.
- Yan Shao, Christian Hardmeier, Jörg Tiedemann, and Joakim Nivre. 2017. Character-based joint segmentation and pos tagging for chinese using bidirectional rnn-crf. *arXiv preprint arXiv:1704.01314*.
- Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu, and Jiwei Li. 2021. Chinesebert: Chinese pretraining enhanced by glyph and pinyin information. *arXiv preprint arXiv:2106.16038*.
- David Thulke, Nico Daheim, Christian Dugast, and Hermann Ney. 2021. Efficient retrieval augmented generation from unstructured knowledge for taskoriented dialog. *arXiv preprint arXiv:2102.04643*.
- Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. *arXiv preprint arXiv:1710.10903*.
- Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. 2004. A primer on kernel methods. *Kernel methods in computational biology*, 47:35–70.
- Jiuniu Wang, Wenjia Xu, Xingyu Fu, Guangluan Xu, and Yirong Wu. 2020. Astral: adversarial trained lstm-cnn for named entity recognition. *Knowledge-Based Systems*.
- Shuhe Wang, Jiwei Li, Yuxian Meng, Rongbin Ouyang, Guoyin Wang, Xiaoya Li, Tianwei Zhang, and Shi Zong. 2021. Faster nearest neighbor machine translation. *arXiv preprint arXiv:2112.08152*.
- Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor negative contrastive learning for dense text retrieval. *arXiv preprint arXiv:2007.00808.*
- Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer. 2005. The penn chinese treebank: Phrase structure annotation of a large corpus. *Natural language engineering*, 11(2):207–238.
- Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural word segmentation with rich pretraining. *arXiv preprint arXiv:1704.08960*.

- Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional networks for text classification. 33(01):7370–7377.
- Scott Yih. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
- Yue Zhang and Jie Yang. 2018. Chinese ner using lattice lstm. *arXiv preprint arXiv:1805.02023*.

A Trainng Details

The Vanilla SL Model As described in Section 4, we need the pre-trained vanilla SL model to extract features to initial the nodes of the constructed graph. For all our experiments, we choose the standard BERT-large (Devlin et al., 2018) and RoBERTalarge (Liu et al., 2019) for English tasks, as well as the standard BERT-large and ChineseBERT-large (Sun et al., 2021) for Chinese tasks.

kNN Retrieval In the process of kNN retrieval, the number of nearest neighbors k is set to 32, and the size of the nearest context window is set to 7 (setting both the left and right side of the window to 3). The two numbers are chosen according to the evaluation in Section 5.5 and perform best in our experiments. For the k nearest search, we use the last layer output of the pre-trained vanilla SL model as the representation and the L^2 distance as the metric of similarity comparison.

B Baselines and Datasets

NER For the datasets, we conduct experiments on CoNLL2003 (Sang and De Meulder, 2003) and OntoNotes5.0 (Pradhan et al., 2013) for the English task, and MSRA (Levow, 2006), OntoNotes4.0 (Pradhan, 2011) for the Chinese task.

For the chosen baselines, we make a comparison with Cross-View Training CVT (Clark et al., 2018), BERT-MRC (Li et al., 2019) for English datasets and Lattice-LSTM (Zhang and Yang, 2018), Glyce-BERT (Meng et al., 2019), BERT-MRC (Li et al., 2019) for Chinese datasets.

CWS Four Chinese datasets retrieved from SIGHAN 2005³ are used: PKU, MSR, CITYU, and AS, and benchmarks Multitask pretrain (Yang et al., 2017), CRF-LSTM (Huang et al., 2019) and Glyce+BERT (Meng et al., 2019) are chosen for the comparison.

POS We use Wall Street Journal (WSJ) and Tweets (Ritter et al., 2011) for English datasets, Chinese Treebank 5.0, Chinese Treebank 6.0, and UD1.4 (Xue et al., 2005) for Chinese datasets.

For the comparisons, we choose Meta-BiLSTM (Bohnet et al., 2018) for English datasets and Joint-POS (Shao et al., 2017), Lattice-LSTM (Zhang and Yang, 2018) and Glyce-BERT (Meng et al., 2019) for Chinese datasets.

C Examples

To illustrate the augment of our proposed GNN-SL, we visualize the retrieved kNN examples as well as the input sentence in Table 7. For the first example the long-tail case "Phoenix", which is assigned with "LOCATION" by the vanilla SL model, is amended to "ORGANIZATION" by the nearest neighbors. Especially, we can observe that both 1th and 8-th retrieved labels are "ORGANIZATION" while the 16-th retrieved label is "LOCATION" which is against the ground truth. That phenomenon proves that retrieved neighbors do relate to the input sentence in different ways: some are close to the original input sentence while others are just noise, and our proposed GNN-SL has the ability to better model the relationships between the retrieved nearest examples and the input word. For the second example, with the augment of the retrieved nearest neighbors, our proposed GNN-SL outputs the correct label "PERSON" for the word "Tom Moody".

³The website of the 4-th Second International Chinese Word Segmentation Bakeoff (SIGHAN 2005) is: http://sighan.cs.uchicago.edu/bakeoff2005/

Input Sentence #1	
Hornak moved on from Tigers to <u>Phoenix</u> for studies and work. Ground Truth: ORGANIZATION, Vanilla SL Output: LOCATION, GNN-SL Output: ORGANIZATION	
Retrieved Nearest Neighbors	Retrieved Label
 1-th: Hornak signed accomplished performance in a Tigers display against <u>Phoenix</u>. 8-th: Blinker was fined 75,000 Swiss francs (\$57,600) for failing to inform the English club of his previous commitment to <u>Udinese</u>. 16-th: Since we have friends in <u>Phoenix</u>, we pop in there for a brief visit. Input Sentence #2 Australian <u>Tom Moody</u> took six for 82 but Tim O'Gorman, 109, took Derbyshire to 471. 	ORGANIZATION ORGANIZATION LOCATION
Ground Truth: PERSON, Vanilla SL Output: - (Not an Entity), GNN-SL Output: PERSON Retrieved Nearest Neighbors	Retrieved Label
 1-th: At California, <i>Troy O'Leary</i> hit solo home runs in the second inning as the surging Boston Red Sox. 8-th: Britain's <i>Chris Boardman</i> broke the world 4,000 meters cycling record by more than six seconds. 16-th: Japan coach <i>Shu Kamo</i> said: The Syrian own goal proved lucky for us. 	PERSON PERSON PERSON

Table 7: Retrieved nearest examples from English OntoNotes 5.0 dataset, where the labeled words are underlined.

ACL 2023 Responsible NLP Checklist

A For every submission:

- A1. Did you describe the limitations of your work? *Section 7*
- □ A2. Did you discuss any potential risks of your work? *Not applicable. Left blank.*
- ✓ A3. Do the abstract and introduction summarize the paper's main claims? In Abstract and Introduction (section 1).
- A4. Have you used AI writing assistants when working on this paper? *Left blank.*

B Z Did you use or create scientific artifacts?

Left blank.

- □ B1. Did you cite the creators of artifacts you used? *No response.*
- □ B2. Did you discuss the license or terms for use and / or distribution of any artifacts? *No response.*
- □ B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided that it was specified? For the artifacts you create, do you specify intended use and whether that is compatible with the original access conditions (in particular, derivatives of data accessed for research purposes should not be used outside of research contexts)? *No response.*
- □ B4. Did you discuss the steps taken to check whether the data that was collected / used contains any information that names or uniquely identifies individual people or offensive content, and the steps taken to protect / anonymize it? *No response.*
- □ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and linguistic phenomena, demographic groups represented, etc.?
 No response.
- □ B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits, etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the number of examples in train / validation / test splits, as these provide necessary context for a reader to understand experimental results. For example, small differences in accuracy on large test sets may be significant, while on small test sets they may not be. *No response*.

C ☑ Did you run computational experiments?

Section 5

C1. Did you report the number of parameters in the models used, the total computational budget (e.g., GPU hours), and computing infrastructure used? *Appendix*

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing assistance.

- ✓ C2. Did you discuss the experimental setup, including hyperparameter search and best-found hyperparameter values? Appendix
- C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary statistics from sets of experiments), and is it transparent whether you are reporting the max, mean, etc. or just a single run? *Section 5*
- C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE, etc.)? Section 4

D Z Did you use human annotators (e.g., crowdworkers) or research with human participants? *Left blank.*

- □ D1. Did you report the full text of instructions given to participants, including e.g., screenshots, disclaimers of any risks to participants or annotators, etc.? *No response.*
- □ D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students) and paid participants, and discuss if such payment is adequate given the participants' demographic (e.g., country of residence)?
 No response.
- □ D3. Did you discuss whether and how consent was obtained from people whose data you're using/curating? For example, if you collected data via crowdsourcing, did your instructions to crowdworkers explain how the data would be used? No response.
- □ D4. Was the data collection protocol approved (or determined exempt) by an ethics review board? *No response.*
- D5. Did you report the basic demographic and geographic characteristics of the annotator population that is the source of the data?
 No response.