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Abstract— Autonomous Vehicles (AVs) are closely connected in
the Cooperative Intelligent Transportation System (C-ITS). They
are equipped with various sensors and controlled by Autonomous
Driving Systems (ADSs) to provide high-level autonomy. The
vehicles exchange different types of real-time data with each
other, which can help reduce traffic accidents and congestion,
and improve the efficiency of transportation systems. However,
when interacting with the environment, AVs suffer from a broad
attack surface, and the sensory data are susceptible to anomalies
caused by faults, sensor malfunctions, or attacks, which may
jeopardize traffic safety and result in serious accidents. In this
paper, we propose ADS-Lead, an efficient collaborative anomaly
detection methodology to protect the lane-following mechanism
of ADSs. ADS-Lead is equipped with a novel transformer-based
one-class classification model to identify time series anomalies
(GPS spoofing threat) and adversarial image examples (traffic
sign and lane recognition attacks). Besides, AVs inside the C-ITS
form a cognitive network, enabling us to apply the federated
learning technology to our anomaly detection method, where the
vehicles in the C-ITS jointly update the detection model with
higher model generalization and data privacy. Experiments on
Baidu Apollo and two public data sets (GTSRB and Tumsimple)
indicate that our method can not only detect sensor anomalies
effectively and efficiently but also outperform state-of-the-art
anomaly detection methods.

Index Terms— Federated learning, autonomous driving
systems, intelligent transportation system (ITS), cognitive
networking.

I. INTRODUCTION

OVER the past years, Autonomous Vehicles (AVs) are
experiencing rapid development. Benefiting from the
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advances in the technologies of computing, mechanics and
deep learning [1], modern vehicles become more automated
and intelligent. Many IT and motor companies are attracted
to devote themselves to this promising domain e.g., Baidu
Apollo,1 Google Waymo.2 Hence, in the near future, we expect
to see various types of AVs will be fully commercialized to
significantly impact different aspects of our life.

The essential component of an AV is the Autonomous
Driving System (ADS). It receives information from the exter-
nal environment and then makes driving decisions. A standard
ADS has a pipeline consisting of multiple modules for differ-
ent functionalities, e.g., perception, planning, control. They
cooperate to achieve end-to-end automation. Unfortunately,
the high complexity of the ADS inevitably brings a broad
attack surface. For example, an adversary can launch GPS
spoofing attacks to mislead AVs to navigate to a dangerous
position [2]. The attack cost is only $200 for a low-end “GPS
spoofing” device. By adding malicious patches [3], [4] on the
road or traffic signs, an adversary can make ADSs perceive the
environment mistakenly and make wrong decisions. Attacks
on Lidar can make ADSs ignore the surrounding obstacles,
resulting in collisions [5].

It is important to guarantee the robustness of the ADS
against those cyber attacks and faults. A practical solution
is anomaly detection, which monitors the runtime behaviors
and states of the ADS, as well as the received environ-
mental information, to identify any suspicious events. The
emergence of the Cooperative Intelligent Transport System
(C-ITS) provides new opportunities for reliable and effective
anomaly detection. In a C-ITS, vehicles are connected with
each other, the infrastructures, passengers, and cloud. They
naturally form a cognitive network, and frequently exchange
runtime data for better traffic and mobility management
[6]–[8]. As a result, it is also promising that vehicles in
the C-ITS can perform anomaly detection collaboratively to
mitigate any attacks against the ADS. This can increase the
detection efficiency and accuracy.

Motivated by this feature, this paper proposes ADS-Lead,
a novel methodology for protecting Autonomous Driving
Systems with Lifelong anomaly detection. We consider the
lane following mechanism, which is the most common and
fundamental scenario in not only ADSs but also state-of-the-
art Advanced Driver-Assistance Systems (ADASs) and Lane
Keeping Assist Systems (LKASs). Different types of security
threats have been disclosed in the lane following scenario,

1https://github.com/lgsvl/apollo-5.0
2https://waymo.com/
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i.e., localization attacks, lane detection attacks, and traffic sign
recognition attacks. They can lead to severe consequences and
damages, such as car crashes, human injuries or even deaths.
Hence it is important for vehicles to be immune to them for
secure and safe driving. Although prior works proposed some
solutions to defeat sensor attacks for AVs [5], [9], [10], they
only focus on one specific kind of threats. It is challenging to
design a unified and comprehensive method to cover different
attack vectors, as they have distinct behaviors and techniques.
ADS-Lead introduces two contributions to achieve efficient

and unified protection. The first one is a novel one-class clas-
sification model, dubbed T-GP (Transformer with Gradient
Penalty). It is capable of analyzing and identifying time series
anomalies (localization attacks) and adversarial images (i.e.,
lane detection attacks and traffic sign recognition attacks) in
the lane following scenario. This model needs to be trained
offline only from normal data, and then deployed in the ADS
as an online detector to inspect different sources of sensory
data, and discover the suspicious input. T-GP is built from
an one-layer transformer encoder. It introduces a novel loss
function, which combines the Negative Log Likelihood (NLL)
with the Gradient Penalty (GP). The integration of these
techniques gives very high accuracy for anomaly detection of
various attacks.

The second contribution is the adoption of federated learn-
ing and lifelong learning for anomaly detection in the C-ITS.
Each vehicle in our system not only performs the online
monitoring and detection, but also continuously collects live
data to update the one-class model. They train the model
locally, and then send the model gradient to a parameter
server hosted in the cloud. This parameter server aggregates
the gradients from different vehicles at different zones of the
C-ITS, and releases the final model back to them for update.
The collaboration for anomaly detection based on federated
learning can significantly improve the model generalization
and performance while preserving the vehicle’s privacy.

We implement a prototype of our methodology in a feder-
ated learning system. We apply our proposed model on the
datasets from the real world, and collected from simulations
to comprehensively evaluate its effectiveness. Specifically,
for localization attacks, since there are no public datasets
available, we collect the Inertial Measurement Unit (IMU)
data from Baidu Apollo, running on the San Francisco map
with the LGSVL simulator.3 We follow [2] to implement GPS
attacks, which can cause severe fluctuation of the IMU data
generated by the Multi-Sensor Fusion (MSF) component in
Apollo. For lane attacks, we adopt the Tumsimple datatset,
and implement the attack method in [11] to generate fixed and
variable adversarial patches. For traffic sign attacks, we use the
GTSRB dataset. We reproduce the boundary attacks [12] and
poster attacks [4] to generate adversarial data. We compare
T-GP with existing one-class classification methods. Evalu-
ation results show that T-GP outperforms other methods in
detection of these attacks.

In summary, the main contributions of our work are:

3https://github.com/lgsvl/simulator

• We propose ADS-Lead, a novel collaborative anomaly
detection approach to protect the lane following scenario
of the ADS efficiently and comprehensively.

• We introduce T-GP, a novel one-class classification
model based on the transformer for anomaly detection.
It can effectively detect both time series anomalies and
adversarial images.

• We are the first to adopt federated learning and lifelong
learning to realize collaborative anomaly detection on
AVs, which can enhance the model generalization and
performance without compromising vehicles’ privacy.

• We conduct extensive evaluations of our method over
simulation and real-world datasets. We demonstrate
T-GP outperforms existing state-of-the-art models on the
detection of localization, traffic sign and lane recognition
attacks. And ADS-Lead with T-GP can be made effec-
tiveness and practical for AVs anomaly detection.

The rest of the paper is organized as follows. Section II
gives the literature review of the detection of GPS spoofing
attacks and adversarial examples. Section III illustrates the
preliminaries and the problem to be addressed in this work.
Section IV describes the system overview and details of the
detection model. Section V presents our solutions for model
evolution. Section VI conducts comprehensive experiments
to evaluate the effectiveness and efficiency of the proposed
method. Conclusion is given in Section VII.

II. RELATED WORKS

A. Detection of GPS Spoofing Attacks Against AVs

Although prior works made some attempts to detect GPS
attacks against AVs [13]–[17], how to effectively mitigate
such threat is still a long-standing problem. The MSF algo-
rithms were regarded as the most effective defense method in
ADSs [18]. Unfortunately, Shen et al. [2] found a vulnerability
in the design of MSF-based localization and successfully
implemented a sophisticated attack to invalidate the protection.
Researchers also studied spoofing detection by cross-checking
GPS readings and IMUs data [19]. However, IMU data suffer
from the accumulation of drift errors such that they provide
reliable protection against spoofing attacks if an adversary
causes gradual deviation of the victim vehicles from their
actual positions [20]. Compared with these prior works,
we only use the instantaneous changes of the IMU data to
detect whether the vehicle is being attacked, which achieves
very high detection accuracy.

B. Detection of Adversarial Examples

Some works introduced methods to detect adversarial exam-
ples, especially in the CV domain. Qiu et al. [21] illustrated
adversarial attacks against network intrusion detection in IoT
systems. Xu et al. [22] proposed a method called feature freez-
ing to detect adversarial examples by reducing color bit depth
and spatial smoothing. They set a threshold to judge whether
the original input data is benign or malicious. Lee et al. [23]
designed a method using Gaussian discriminant analysis to
obtain the confidence score based on the Mahalanobis distance
in the feature space of DNN models. Li et al. [24] proposed
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to detect localized adversarial examples by removing and
analyzing critical regions controlled by the adversary. Meng
and Chen [25] used detector networks to identify adversarial
examples by approximating the manifold of normal examples.
Feinman et al. [26] investigated the Bayesian uncertainty
estimates in dropout neural networks, and conducted density
estimation in the subspace of deep features to distinguish
normal and adversarial examples. Ma et al. [27] used the
estimation of Local Intrinsic Dimensionality (LID) to quantify
the distance between the target sample and normal samples.
Katzir and Elovici [28] explored the sample behaviors in the
activation space of different network layers for adversarial
example detection. Li and Qiu et al. [29] proposed a novel
method for intelligent fault diagnosis by fusing domain adver-
sarial training and maximum mean discrepancy via ensemble
learning. Wang et al. [30] randomly mutated the model and
perturbs the decision boundary, which can possibly alter the
prediction of adversarial examples, while maintaining the
prediction of normal samples. Tian et al. [31] utilized input
transformations to process the input samples, to which the
adversarial examples are very sensitive.

In the context of autonomous driving, some works designed
solutions to detect adversarial images captured by the vehicles.
Sun et.al [32] developed a supervised defense method based on
adversarial training with a novel and stereo-based regularizer
to enhance the 3D object detection model. Safavi et al. [33]
adopted two distinct and efficient DNN architectures to detect,
isolate and predict sensor faults. One-class models (e.g. Deep-
SVDD [34], HRN [35]) were designed for anomaly detection
of adversarial examples, and evaluated on the stop sign attacks.
For lane attacks, Sato et al. [3] proposed an attack method
based on image segmentation and deployed a bounded patch
to simulate the road dirt to fool the lane detection algorithms.
Following this work, Xu et al. [11] designed a CNN-based
model with prior knowledge of abnormal data to achieve attack
detection. However, these works need prior knowledge of the
adversarial samples, or can only be applied to specific attacks
but fail to be extended to others. In contrast, our solution
proposed in this paper is unified to cover various types of
attacks with different formats of sensory data in the lane
following scenario.

III. BACKGROUND AND PROBLEM STATEMENT

A. Overview of ADSs

The main responsibility of an ADS is to recognize the sur-
rounding environment and generate proper motion commands
to the vehicle [36], [37]. Hence, a typical ADS usually consists
of the following modules: localization, perception, planning
and control. The localization module uses the information from
different sensors (e.g., GPS, IMU, Lidar) to localize the AV
on the map based on the Real Time Kinematic (RTK) method
and Multi-Sensor Fusion (MSF) algorithms. The perception
module is an AI-based subsystem, which receives input data
of different formats (e.g., image, point cloud) from various
sensors and leverages Deep Learning models to identify the
surrounding traffic conditions (e.g., the status of traffic light,
stop sign and speed limit sign) and obstacles (e.g., object types,

Fig. 1. Illustration of GPS-based localization attacks. Stage 1: Vulnerability
profiling; Stage 2: Aggressive spoofing.

the speeds of other vehicles on the road). The planning module
performs offline path planning to generate a feasible path
from the initial position to the destination based on the map
information. It also conducts real-time trajectory planning,
which utilizes the results from the localization module and
perception module to generate a collision-free trajectory in a
short time duration. The control module finally generates low-
level commands, such as steering, throttle and brake, to the
chassis to track the generated collision-free trajectory.

B. Security Threats in the Lane Following Scenario

Lane following is the most common scenario during the
AV operations, where the vehicle moves along the central
lines of lanes. In this scenario, the execution of an ADS
highly depends on the accuracy of localization, lane boundary
detection and traffic signs. Hence, the following three kinds of
attacks were proposed to compromise the execution of ADSs
in lane following.

1) Localization Attack: This attack uses counterfeit GPS
signals to inference with the legitimate ones. Then the ADS
cannot localize the AV correctly, resulting in positioning
errors. Consequently, the ADS will mislead the vehicle to
deviate from the expected lane and even cause serious acci-
dents. Although the MSF algorithms in ADSs are designed
to mitigate GSP spoofing, researchers find that they are still
vulnerable to the take-over attack [2] where the spoofed
GPS signals can dominate the inputs of the MSF process
and fool MSF to ignore other inputs. Figure 1 illustrates
the mechanism of such an attack. A victim vehicle (blue) is
moving along the straight lane. The attacker vehicle, following
the victim, launches a two-stage GPS spoofing attack. The
first stage is vulnerability profiling: the attacker collects and
analyzes the behaviors of the victim vehicle and determines
the time duration to perform GPS attacks. The second stage
is aggressive spoofing: the attacker sends wrong GPS signals
to the victim vehicle, whose MSF algorithms compute wrong
localization of the AV (the shaded blue one). To make the
vehicle stay in the center of the lane, the ADS asks the vehicles
to move right, which actually makes it cross the lane and
collide with the oncoming vehicle.

2) Lane Detection Attack: In lane following, an ADS should
also need to detect the boundaries of a lane to localize the
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Fig. 2. Lane detection attack. First row: the original input image (left) and
the adversarial image with a fixed patch. Second row: the corresponding lane
segmentation results from the ADS. Red boxes show the patch localization;
induced lanes are marked with green.

Fig. 3. Poster attacks on the traffic sign.

central line of the lane. Currently, DNNs are the most popular
method for lane detection in ADSs. Hence, due to the inherent
vulnerability of DNNs, the adversary can also fool the DNN
model to cause wrong recognition of lane boundaries, resulting
in wrong motion controls to drive along the center of the lane.
For example, the adversary can add visual perturbations on the
real-world road to make the vehicle deviate the central line
and hit a surrounding object [3]. Figure 2 shows an attack
example [11]: the adversary carefully identifies the optimal
location for the patch and then manipulates the subset of pixels
of the input images to achieve the goal, i.e., making the lane
detection system recognize a wrong lane boundary around the
patch.

3) Traffic Sign Recognition Attack: Recognition of traffic
signs can also affect the lane following as an AV must obey the
traffic rules described by those signs. Since the ADS leverages
CNN models to detect and classify traffic signs, an adversary
can leverage the adversarial attack techniques to compromise
the model so the ADS will miss or misclassify the traffic signs,
and generate wrong motion decisions. Figure 3 shows a poster
attack on a stop sign [4]. The adversary adopts the Robust
Physical Perturbations (RP2) algorithm [4] to generate visual
adversarial perturbations and attach them to the stop sign.
Then the perception module in the ADS will identify it as
a speed limit sign. Alternatively, the adversary can also adopt
generative adversarial networks to craft malicious patches to
compromise the traffic sign recognition model [38].

C. Problem Statement

We aim to address the following problem: How to develop
and design a unified and efficient method to detect anomalies
of the ADS caused by different kinds of attacks at real time?
We want to have an attack-agnostic approach, i.e., the detector

is built from normal data and conditions, but general and
effective for various known and unknown threats.

Without loss of generality, we consider the following six
attacks from three categories when designing our approach.
They represent state-of-the-art security threats against the
lane-following mechanism in modern ADSs.

1) Localization Attacks: We consider the GPS spoofing
attack [2] in our method design and evaluation. We assume
a malicious vehicle follows the victim AV and interfere with
its GPS signals. The faked signals can fool the MSF algorithms
based on the take-over vulnerability. We further assume there
are no other obstacles on the road, so the motion change of the
victim AV only depends on the localization. We focus on two
specific attack goals: (1) an off-road attack tries to lead the
victim to hit the curb; (2) a wrong-way attack tries to deviate
the victim AV to the opposite pavement.

2) Traffic Sign Recognition Attacks: We consider two types
of attacks in this category: (3) a boundary attack is a
decision-based adversarial attack [12]. The adversary does not
need any information about the target model in the ADS.
He generates the adversarial perturbations on the traffic sign
only from the prediction results of the model corresponding
to given input images. (4) In a poster attack, the adversary
generates malicious posters for traffic signs using a novel
Robust Physical Perturbations algorithm [4]. In these two
attacks, the adversary is able to physically alter the traffic
signs (e.g., adding posters or patches) without changing their
visual semantics.

3) Lane Detection Attacks: We assume the adversary is able
to add carefully-crafted patches on the road to deceive the
lane detection model in the target ADS. We adopt the Pro-
jected Gradient Descent to generate two types of adversarial
patches [11]: (5) a fixed-size patch with the size of 100×100 is
injected to the images of 512 × 288; (6) a varied-size patch
has the size scaled based on the distance from the camera to
the destination lane segments.

IV. ADS-Lead

In this section, we describe ADS-Lead, our anomaly detec-
tion system for the lane-following scenario.

A. System Overview

Figure 4 shows the overview of our ADS-Lead system. The
essential component is a powerful anomaly detector deployed
in an ADS for attack detection. The workflow contains two
stages, as described below.

The first stage is offline training. We train a one-class model
to describe the normal behaviors of the ADS. Since we aim
to have an attack-agnostic approach, we cannot include any
attack-specific data samples when training the detection model,
which are hard to obtain and not general for other unknown
attacks. Instead, we just collect normal data during the vehicle
operations. Note that the normal data can be collected by
making the AV run automatically without launching any
attack. The collection is not related to any specific road or
road condition. Then this model is able to predict whether the
incoming data samples belong to the same distribution as the
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Fig. 4. Overview of our anomaly detection methodology.

training data (labeled as benign), or deviate a lot from the
normal ones (labeled as malicious).

Since our model is designed to be general for different
attacks, it should be able to handle different formats of sensory
data in the ADS. Specifically, we consider two types of sensory
data that are vulnerable to be manipulated by the adversary
to compromise the vehicle operation. The first one is IMU
messages, which are time series data. The second one is
images captured from the cameras. These are used to mitigate
attacks against the lane detection and traffic sign recognition.
We introduce approaches to preprocess those types of data
before feeding them into the model for training and inference.

The second stage is online prediction. The model is imple-
mented as a module in the ADS to monitor the outputs of the
perception and localization modules during the AV operation.
When the AV receives malicious sensory data crafted by
the adversary (e.g., traffic sign with the adversarial patch,
spoofed GPS signals), the anomaly detector is able to identify
such suspicious events from these two monitor modules, and
then send notifications to the control module. The control
module will perform some mitigation actions, e.g., stopping
the vehicle, warning and asking the driver in the vehicle to
take control of it.

B. T-GP: One-Class Model for Anomaly Detection

We design T-GP, a novel one-class classification model
based on the transformer structure, for each vehicle to
achieve anomaly detection. A transformer [39] is a deep
neural network structure using the self-attention mechanism.
It replaces the Recurrent Neural Network (RNN) structure
with an encoder and decoder. It can significantly improve
the model accuracy for Natural Language Processing (NLP)
tasks. Besides, it is also highly interpretable and supports fully
parallel computing. Recently, researchers extended the trans-
former structure to the domain of Computer Vision (CV) [40],
which also demonstrates remarkable performance for image
classification.

Inspired by the successful applications of the transformer
in the NLP and CV domains, we aim to apply it to build a
one-class model for anomaly detection. Figure 5 shows the
network structure of our proposed model, T-GP. It adopts an
input embedding component (i.e., Input Embedding Matrix) to
map each original input data into a vector with a fixed length
and an encoder (i.e., Transformer Encoder) as the feature

Fig. 5. T-GP model structure.

extractor to learn the hidden patterns of normal data and detect
abnormal data (i.e., malicious sensory input in ADSs).

Specifically, the input X = (xT
1 , . . . , x T

t )T ∈ R
t×P of the

model is a two-dimensional matrix, where t is the length of the
input sequence, P is the dimension of each input data xi , i.e.,
xi ∈ R

1×P , for i = 1, 2, . . . , t , and (·)T denotes the transpose
operator. Note that our model is unified and can accept both
the image data and IMU time series data. Each image is
reshaped into a sequence of flattened 2D patches by dividing
the original image into t patches [40]. For the IMU data,
each single sample xi is recorded at a time instant. Since the
transformer encoder requires a constant latent vector size, each
input sequence is first mapped to a fixed-length sequence of
patch embeddings using a learnable embedding vector xclass ,
a trainable linear projection E , and a standard learnable 1D
position embeddings Epos [40], as given in Equation 1:

z0 = (x T
class, ET X T )T + Epos (1)

where xclass ∈ R
1×D and its output can be used for classi-

fication, E ∈ R
P×D is a fully connected layer, and Epos ∈

R
(t+1)×D is introduced to add the positional information of

the input sequence to the patch embeddings.
The patch embeddings z0 are sent to the transformer

encoder, which is used to extract the feature representation of
the input data and consists of a Multi-headed Self-Attention
(MSA) network and a two-layer Perceptron (MLP) with
GELU. Note that the inputs of MSA and MLP are first
normalized via layer normalization (LN) [41]. Hence, the
operation of the transformer encoder can be formulated as:

z�
1 = M S A(L N(z0)) + z0 (2)

z1 = M L P(L N(z�
1)) + z�

1 (3)

We design a novel loss function in T-GP to achieve one-
class classification. Negative Log Likelihood Loss (NLLLoss)
is widely used in multi-class classification tasks. However,
in our one-class model, the output has only one class, so we
use the sigmoid function in NLLloss to calculate the proba-
bility that an input x belongs to the class. It generally requires
regularizaion due to the sigmoid saturation and feature bias
in NLLLoss [35]. It means that an unimportant feature with a
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Fig. 6. Lifelong learning for one-class model update.

larger value may have larger effects on the computation of the
probability. Hence, inspired by [42], which adds 1-Lipschitz
constraints to the discriminator of WGAN by gradient penalty
(GP), we apply the gradient penalty in T-GP to mitigate such
biases and obtain the following loss function:

loss = Ex∼Px [−log(Sigmoid( f (x)))]
+ λEx∼Px [(��x f (x))�2 − 1)2] (4)

The first term is NLLLoss and the second one is gradient
penalty. Px denotes the data distribution of the given positive
class, and λ is a hyper-parameter to balance the penalty.
Sigmoid( f (x)) ∈ (0, 1) is the probability that x belongs to
the positive class. The advantage of the gradient penalty will
be demonstrated in our evaluations by comparing with the H-
regularization [35].

V. MODEL EVOLUTION

It is possible that the AV behaviors can drift over a long
period of time, possibly caused by the varied environment and
road conditions. Hence, frequent model update is necessary to
maintain the high anomaly detection performance. The vehicle
can periodically collect the runtime data when it is at the
normal state. Then it fine-tunes the detection model based on
such data. This process is lightweight compared with model
training from scratch, and thus computationally feasible using
the on-board computer. We further leverage two technologies
to enhance the efficiency of model update.

A. Lifelong Learning

ADS-Lead applies lifelong learning for model evolution
with runtime data. Lifelong learning is defined as an adaptive
machine learning algorithm, which is able to progressively
learn from a continuous stream of information over a long time
span [43]. A good lifelong learning algorithm can produce a
machine learning model with great accommodation of the new
information. lifelong learning has become more important in
autonomous agents and systems, which need to interact with
the dynamic real world.

A variety of strategies have been designed to achieve
lifelong learning. In ADS-Lead, we use the method proposed
in [35], which is a continuous learning process and shows
better performance than other strategies. Its idea is to train a
new sub-classifier for each new task, and the prediction is done
by selecting the result of one of the existing sub-classifiers.
The detailed process of lifelong learning in ADS-Lead is
shown in Figure 6. As described in Section IV-B, the T-
GP model consists of two main parts: a transformer encoder,
which extracts feature vectors of different formats of sensor
data, and an MLP head, which classifies the extracted features
to make decisions. During lifelong learning, the transformer
encoder is fixed. Every time a new dataset is collected,
ADS-Lead trains a new MLP head to memorize the new
data distributions. Then new MLP heads will be integrated
with the old ones in the updated model for decision making.
Note that to guarantee the scale of the model, we may set
the maximal number of MLP head classifiers and forget the
very old classifiers. In this way, we can guarantee to not
only remember the historic knowledge but also learn new
information from the newly acquired data.

B. Model Update With Federated Learning

Since there may be multiple AVs on the roads, and different
vehicles have different private data, they can collaborate to
train and update a more robust model. Hence, we further
propose to use federated learning [44], [45] to optimize the
model training process, which enables different vehicles to
collaborate on the model training without releasing their data.
Hence, the data privacy of the vehicles (e.g., location) is
preserved compared to the case where the data are offloaded to
the cloud for model training. Figure 7 shows the process of the
detection model update with federated learning. A centralized
Parameter Server (PS) is introduced in the remote cloud.
Each AV in the C-ITS is able to talk with the PS via the
V2C communication technology [46]. During the training
process, each vehicle trains the model gradient gi from its
local collected data, and uploads the results to the PS. Then
the PS will receive multiple gradients from different vehicles.
It aggregates them into one gradient vector g∗ by calculating
the average value, and releases the new model to each vehicle
in the C-ITS. So each vehicle can use the latest model
for online anomaly detection with better generalization and
performance.

It is worth noting that we adopt the asynchronous training
instead of synchronous training. The PS does not need to wait
for the gradients from all the vehicles in the network, since
some vehicles may not participate in the model update process.
It performs the gradient aggregation and model release at a
fixed frequency, to guarantee the model update service is
always available. It is possible that some vehicles are malicious
or compromised, trying to send the PS wrong updates to com-
promise the detection model. We can adopt some sophisticated
aggregation rules [47] to filter out such malicious gradients.
Besides, we can also follow the works [48] to further mitigate
the indirect leakage from the gradients. Implementation of
these advanced solutions into ADS-Lead is our future work.
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Fig. 7. Model training and update with federated learning in ADS-Lead.

Fig. 8. GPS spoofing attacks in LGSVL simulator.

VI. EVALUATIONS

In this section, we evaluate the effectiveness and robustness
of the proposed ADS-Lead system and T-GP model against
the three kinds of attacks described in Section III-C.

A. Evaluation of T-GP

We first evaluate the performance of T-GP on GPS attacks,
traffic sign attacks, and lane detection attacks.

1) Defeating Localization Attacks:
a) Data sets: Since there are no public datasets for

GPS spoofing attacks, we deploy the attacks in Baidu Apollo
5.0 running with the LGSVL simulator on the San Francisco
map, and collect data for normal and malicious cases. We con-
sider the attack scenario where an adversarial vehicle tailgates
the victim AV while launching GPS spoofing. Following the
attack settings in [2], we consider two concrete adversarial
goals as shown in Figure 8: off-road attack aims to deviate
the AV to hit the curb; wrong-way attack aims to deviate the
AV to the opposite lane and hit the oncoming vehicle.

GPS spoofing will cause a sudden change of the AV’s
localization computation, resulting in the change of AV’s
motion. Hence, we monitor the IMU messages, whose channel

TABLE I

NUMBER OF DATA SAMPLES IN EACH TESTING SEQUENCE

name is /apollo/sensor/gnss/corrected_imu in the Apollo ADS.
There are three kinds of motion data in the IMU messages
and each one is a 3D vector: linear acceleration (ax, ay, az),
augular velocity (avx, avy, avz), and Euler angles (α, β, γ ).
Since the current HD map for Apollo does not contain the
altitude information, only the linear accelerations ax and ay,
angular velocity avz, and Euler angle γ are affected by the
motion of the AV. Moreover, based on our observation of
the real-time IMU data, these four values exhibit distinct
behaviors when the AV deviates from the predetermined path,
compared to the scenarios of lane change or turn. Hence,
at each time instant, we collect these four types of data as
the model features. Figure 9 shows two data sequences of
the four selected data types during the AV motion under GPS
spoofing attacks, where the message sampling frequency is
around 85 FPS (Frame-Per-Second) in our experiments.

Since our task is one-class anomaly detection, only benign
data are available for model training. The road in the map of
LGSVL simulator is flat and we set random NPCs (vehicles
and passengers) in the map. We randomly set the destination
for the vehicle and collect the four types of IMU data from
Apollo when the vehicle is in normal and secure states. A total
of 32,115 raw data samples are generated for model training.
The testing set should contain both the normal and attack
samples. We run Apollo ten times under the two types of GPS
spoofing attacks, and collect the related IMU data. We label the
data before the attack occurrence as ”normal”. We also assign
the “abnormal” label to the data collected in a short period
right after the GPS spoofing is launched (around 20 new IMU
messages). Table I summarizes the ten testing data sequences.

Once we obtain the training and testing data sequences,
we generate the corresponding training and testing datasets by
dividing each data sequence into a set of sub-sequences with
the length of 10. We use the sliding window method with a
stride of 1 to generate the sub-sequences. Hence, a sequence
with n samples can generate (n − 9) sub-sequences. Note that
we employ the same data preprocessing method to all the
models for fair comparison.

b) Model configurations: According to the format of the
generated data samples, the input dimension of T-GP is set
as 10 × 4, i.e., each input sequence has 10 consecutive data
samples and each sample is a 4D vector. In terms of the model
hyper-parameters, we use an embedding dimension of 4 units,
4 transformer heads, and 128 units in the hidden layer of
the output MLP head. We use the AdamW optimizer with
a learning rate of 1e-4. λ is set as 0.1.

c) Baseline methods: We compare our T-GP model with
the following baselines.
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Fig. 9. Data sequences of ax , ay, avz, and γ when the AV is under the
off-road and wrong-way attacks, respectively. The black line represents the
moment the spoofing attack starts. The red box is the sliding window with
the length of n = 10 data samples. nt represents that the attack is detected
after nth samples of the attack occurrence.

• OC-SVM [49]: this is a traditional one-class classifier
based on kernel SVM. In our implementation, the RBF
kernel is applied and the hyper-parameter is selected from
a set of discretized values in the interval [0, 1].

• iForest [50]: this is another popular one-class classifier.
It isolates anomaly points by building decision trees.
We use the default values of the hyper-parameters.

• Deep-SVDD [34]: this is a deep one-class model. It classi-
fies anomaly data by penalizing the distance between the
extracted feature vector, from the network and the center
of the initial hypersphere. Since it only supports non-
trivial high-dimensional images, we use the transformer
encoder in T-GP to extract features for Deep-SVDD.

• HRN [35]: this is a state-of-the-art one-class models
based on holistic regularization. We use the default struc-
ture with a three-layer perception, whose input, hidden
and output dimensions are 40, 100, and 1, respectively.

• T-L2: this is a variant of our T-GP model. We replace
the gradient penalty-based regularization with
L2-regularization.

d) Evaluation results: We use the standard metrics (preci-
sion, recall and F1-measure) to quantify and compare the per-
formance of our model with others baselines. Figure 10 shows
the results on the testing datasets of off-road and wrong-way
attacks. Note that in anomaly detection tasks, anomaly data are
considered as positive. From Figures 10(a) and 10(b), we can
find that for both kinds of attacks, the transformer-based
models (i.e., T-L2 and T-GP) have higher average precision
and lower variance than other models. Hence, the adoption
of the transformer exhibits better robustness. They can detect
anomalies more precisely with fewer false alarms. As shown
in Figures 10(c) and 10(d), the two transformer-based models
also have higher average recall than others, indicating that
they have smaller false negative rates, i.e., missing fewer
anomaly data. Moreover, compared to T-L2, T-GP can provide

Fig. 10. Results of precision, recall and F1-measure on the two GPS spoofing
attack datasets.

more fine-grained control over the penalty function and a
higher recall with smaller fluctuations. The F1-measure results
are shown in Figures 10(e) and 10(f). We also find that
T-GP has the highest F1-measure. It means T-GP not only
has high precision and recall values, but also can balance
these two measures. Hence, we conclude that the proposed
T-GP outperforms other one-class models on the 20 testing
sequences.

To analyze the statistical significance of these models,
we perform Levene’s test and two-sample t-test for equal
variance testing and equal mean testing in terms of the
F1-measure. The results are shown in Table II. We can
observe that given the 95% confidence interval, our T-GP
has significant differences for the mean of F1-measure, from
other non-transformer models. Hence, T-GP demonstrates
higher performance statistically. Moreover, we can find that
there are no significant differences between T-GP and T-L2,
indicating the two loss functions in T-GP and T-L2 have
similar performance in balancing the precision and recall.

During the online anomaly detection, another important
requirement is to detect attacks promptly so that we can
prevent accidents as soon as possible. Hence, we also compute
the detection time of different models in Apollo. We find
that T-GP can detect an attack within 6 data samples after
launching the attack (∼ 0.07s), while other models need more
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TABLE II

LEVENE’S TEST AND T-TEST ON F1-VALUE BETWEEN OUR T-GP AND
EACH OF OTHER MODELS. A HIGHER VALUE INDICATES THE MODEL

IS MORE SIMILAR AS T-GP IN DETECTION PERFORMANCE

Fig. 11. Clean (first row) and adversarial (second row) traffic signs.
(a) Boundary attack (b) Poster attack.

time to identify anomalous events, which is relatively less
practical in reality.

In conclusion, our transformer-based model can accurately
disclose the underlying dependency in the time series data dur-
ing the AV’s motion, whilst other models cannot describe such
temporal relations, even using the sliding window technique.
Moreover, the results also show that the transformer with GP
is better than with L2 regularization.

2) Defeating Traffic Sign Recognition Attacks: We examine
the effectiveness of our model on detecting adversarial traffic
signs.

a) Datasets: We conduct our experiments on the GTSRB
(German Traffic Sign Recognition Benchmark) dataset, which
only contains clean traffic sign images. We select four repre-
sentative categories of traffic signs, i.e., stop, speed limit, keep
right and traffic signals, from this dataset for training. The
numbers of these categories are 780, 2220, 2070, and 600,
respectively. For testing, we adopt the boundary attack [12]
and poster attack [4] to generate adversarial example from the
normal testing images. Specifically, we perform the boundary
attack on the stop sign category to generate 20 adversarial
samples, and the poster attack on the four categories to
generate the same numbers of adversarial images as the
testing samples. Figure 11 visualizes the adversarial samples
of different attacks and traffic signs.

Table III gives the details of the training and testing datasets.
We remove 10% border of each category and resize the images
to 32 × 32 as presented in [34]. In addition, global contrast
normalization using L1-norm is applied.

b) Model configurations: For T-GP, we use the same
structure described in Section IV-B, where each input image is
divided into 64 patches with an equal size of 4×4. According
to the scale of the datasets, λ is set as around 1.5 (similar
results for [0.1, 3]) and the initial learning rate is 3e-4.

TABLE III

NUMBER OF IMAGES IN EACH DATASET

TABLE IV

AVERAGE AUCS FOR DIFFERENT MODELS IN DETECTING DIFFERENT
ATTACKS

c) Baseline methods: We compare our model with
Deep-SVDD and HRN in detecting adversarial traffic signs.
Specifically, for Deep-SVDD, we apply a CNN structure with
three filters of sizes 32 × (5 × 5 × 3), 64 × (5 × 5 × 3) and
128 × (5 × 5 × 3), followed by a fully connected layer with
128 units. We get the maximum accuracy with the AdamW
optimizer whose learning rate is set as 1e − 3. For HRN,
a three-layer MLP is adopted with the size of 3×[1024-300]-
[900-300]-[300-1]. The first layer contains three sub-modules
(each one has a size of [1024-300]) to deal with 3 channels,
and the outputs are concatenated as the input of the second
layer; the second and third layers have the sizes of [900-300]
and [300-1], respectively. The optimizer is set as SGD with
momentum and the learning rate is 5e − 4.

d) Evaluation results: Table IV shows the AUC (Area
Under the ROC) values of different models for detecting the
boundary and poster attacks on different traffic signs. The
results show that our model outperforms Deep-SVDD and
HRN for both kinds of attacks.

We also compare the performance of the transformer-based
one-class model with three kinds of loss functions: NLLLoss,
L2 penalty and GP (gradient penalty). Table V shows the
detection results of the loss functions on the poster attack.
We can observe that the model with gradient penalty intro-
duced from WGAN has higher AUC values than the other
two loss functions. A possible reason is that, since the output
has just one class, we use sigmoid(·) function in NLLloss
to calculate the probability of input x labeling y(x). When
minimizing the NLLloss function, we need to include a penalty
function to reduce the possibility of feature bias. Such feature
bias exists as we do not have any other classes to compare, and
do not know which feature is essential for class differentiation.
Some features and their related parameters with high values
may not be important, thus leading a low accuracy.

3) Defeating Lane Detection Attacks:
a) Datasets: To evaluate the effectiveness of our method

on detecting lane attacks, we adopt the widely-used Tusimple
traffic lane dataset. This dataset consists of 6,408 annotated
images, which are the latest frames from video clips recorded
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TABLE V

AVERAGE AUCS FOR DIFFERENT TRANSFORMERS AND LOSS FUNCTIONS
IN DETECTING POSTER ATTACKS

Fig. 12. Samples of fixed-size patch and varied-size patch.

by a high-resolution (720 × 1280) forward-view camera under
various traffic and weather conditions on highways of United
States in the daytime. It is spilt into a training set (3268),
a validation set (358), and a testing set (2782). We generate
two types of adversarial examples from the validation set
following the Patch Attack [11], including fixed-size patch and
varied-size patch (Figure 2). The size of the former patch is
100 × 100, and the later patch is scaled according to the lane
width and lane marker height. After adding the adversarial
patches, all the images are scaled to the size of 320 × 320.
For each type of patches, we obtain 3268 normal images used
for training, 358 normal images and 358 abnormal images for
testing. Figure 12 shows two adversarial samples under the
fixed- and varied-size patch attacks, respectively.

b) Model configurations: Different with the configura-
tions in adversarial traffic sign detection, we add a split
layer before the model input, thus the images are spilt into
fixed-size patches first in order to capture the anomalies more
carefully. Specifically, we split each image of 320 × 320 ×
3 to 100 patches of 32 × 32 × 3. This gives us 3268 ×
100 training samples, 358 × 100 normal testing samples and
358 × 100 abnormal testing samples. During testing, if any
one of the 100 patches is flagged as abnormal, then the entire
image is regarded as anomaly. We use the same preprocessing
method for all the models to achieve fair comparison.

c) Baseline methods: We compare our transformer-based
method with Deep-SVDD and HRN. The two models follow
the same settings in Section VI-A.2.

d) Evaluation results: Table VI shows the average AUC
values for different models. We observe that T-GP shows
better performance than the other two baseline models. Par-
ticularly, all these models have relatively low accuracy in
detecting the varied patch attacks. One possible reason is that
some patches are too small to be recognized as adversarial
samples, causing higher false negative rates. But T-GP still
outperforms prior solutions. We will explore new models to
further enhance the detection accuracy as future work.

B. Evaluation of ADS-Lead

We evaluate the effectiveness of ADS-Lead with lifelong
and federated learning on the attack detection. As we discov-

TABLE VI

AVERAGE AUCS OF DIFFERENT MODELS IN DETECTING THE PATCH
ATTACKS

TABLE VII

NUMBER OF IMAGES IN EACH TRAFFIC SIGN DATASETS. NOTE THE

ABNORMAL DATA ARE GENERATED BY THE POSTER ATTACK

ered in the GPS spoofing detection experiments, the pattern
of IMU data shows no divergence in different scenarios when
the AV is running in normal and secure states. Hence, the
redundant IMU samples from different vehicles cannot further
improve the performance of the proposed detector. Therefore,
we mainly focus on the detection of traffic sign attacks and
lane attacks in this section.

1) Datasets: In federated learning, each vehicle participates
in gradient update during the training process. Therefore,
assigning sufficient training data for each vehicle is crucial for
the convergence of the model. To amend this, data argumen-
tation is performed over the training datasets on each vehicle.

For the traffic sign data sets, we first rotate the images
clockwise and counterclockwise by 5, 10 and 15 degrees,
respectively; second, we divide the data into two subsets to
represent tasks at two different time instants. Considering
the impact of environmental factors (e.g., light, whether and
camera resolution), we randomly synthesize the latter subset
with the effects of rain by adding controlled random noise. The
statistics of the traffic sign datasets are reported in Table VII.
Note that for in each testing set, the abnormal samples are
generated by the poster attack.

For lane detection attacks, we expand the data set by adding
rain effects to the original images. Specifically, we first divide
the original training data set equally into two subsets: Task
1 for the first phase of training and Task 2 for model update;
moreover, we synthesize the images in Task 2 with the same
rainy effects as in the traffic sign data set. Second, for either
testing data set of Task 1 or Task 2, we apply both the fixed-
and varied-size patch attacks to generate adversarial samples,
and the testing data set in Task 2 is also added with the rain
effects. Table VIII shows the statistics of the two data sets.
Figure 13 shows some samples with rainy effects in traffic
sign and lane detection data sets.

2) Baseline Models and Model Configurations: We com-
pare the following algorithms for model update:

a) BaseModel: This is for federated learning only. In our
experiments, we consider a system of 5 vehicles, partition the
training data sets equally into 5 sets, and assign each to one
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TABLE VIII

NUMBER OF IMAGES IN LANE DETECTION DATASETS. NOTE THE ABNOR-
MAL DATA IN TASK 1 AND TASK 2 INCLUDE BOTH VARIED AND FIXED

PATCH ATTACKS

Fig. 13. The synthesized images with rain.

Fig. 14. Evaluation results on traffic sign dataset. BaseModel: the federated
learning model is trained on Task 1, and tested on Task 1 and Task 2. Fed-
Finetune: the federated learning model trained on Task 1, and finetuned on
Task 2. Our ADS-Lead: the model is trained on Task 1 and lifelone learned
on Task 2.

vehicle. For each round, we randomly select 4 vehicles to
update the gradients for aggregation, to simulate the asyn-
chronous mechanism. We set the batch size as 32 and run
50 epochs with the same hyper-parameters of T-GP as shown
in Section IV.

b) Fed-finetune: In addition to training the model with
federated learning, we further finetune the aggregated model
using the dataset from Task 2.

c) ADS-Lead : This is our solution in ADS-Lead.
In addition to training the model with federated learning,
we further perform lifelong learning on Task 2 to obtain the
updated model. We adopt the same federated learning settings,
i.e., batch size of 32 and 50 running epochs.

3) Evaluation Results: Figure 14 presents the AUC values
of the three algorithms for the two tasks of traffic sign attack
detection, respectively. We can find that BaseModel performs

Fig. 15. Evaluation results on the lane detection dataset.

well on Task 1 (e.g., 91.48% for stop sign) but not well on
Task 2 (e.g., 77.17% for stop sign), as the model is trained
only from Task 1. Fed-Finetune improves the performance
over BaseModel on Task 2 (e.g., from 77.17% to 80.66% for
stop sign) due to the fine-tuning operation with the dataset of
Task 2. However, its performance on Task 1 is degraded (e.g.,
from 91.48% to 86.28% for stop sign). This indicates that
simply finetuning the model can make it learn new knowledge
but forget some prior knowledge. Our ADS-Lead model can
balance the performance on both Task 1 and Task 2. In detail,
we observe that the model performance on Task 1 and Task
2 is similar as BaseModel and Fed-Finetune, respectively.
Hence, with lifelong learning, our model can not only learn
new knowledge of new tasks (e.g., Task 2) but also remember
the learned knowledge from previous tasks (e.g., Task 1).

Similarly, Figure 15 demonstrates the effectiveness of
ADS-Lead on lane attack detection. For Fed-Finetune, after
model fine-tuning on Task 2, the prediction accuracy of Task
2 rises from 68.60% to 73.32%, whereas the accuracy of Task
1 drops from 68.60% to 64.14%. Fortunately, with lifelong
learning, our ADS-Lead balance the model performance on
Task 1 and Task 2 significantly.

Even though the results are encouraging, the improvement
brought by lifelong learning for Speed Limit 30 and Keep
Right signs is limited. This is because the data in Task 2 are
synthesized by only adding normal noise to simulate the rainy
effects, and the pattern difference between Task 1 and Task 2 is
not very significant. Despite that, the experimental results still
show that our proposed ADS-Lead is practical for anomaly
detection in ADSs, achieved by the globally-trained high-
quality model with lifelong learning.

C. Discussion on the Robustness of ADS-Lead

Finally, we discuss the robustness of our system against
possible adaptive attacks. Even though the adversary knows
the defense mechanism, it is hard for him to attack our
detector. On one hand, federated learning can mitigate the
attacks on a single vehicle, as the server will aggregate the
local models to generate a global one. On the other hand, with
lifelong learning, the server will update the model over time,
so each vehicle will update its model such that the adversary
cannot use the previous knowledge on the model to launch
attacks. We also point out that it is possible for the adversary
to launch attacks during two successive update time instants.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on January 27,2023 at 07:43:21 UTC from IEEE Xplore.  Restrictions apply. 



1050 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 1, JANUARY 2023

However, these attacks can be mitigated by setting specific
update frequency such that there is no enough time for the
adversary to retrieve the model information and then launch
proper attacks. How to design more advanced attacks as well
as enhancing the system will be our future work.

VII. CONCLUSION

In this paper, we propose ADS-Lead, a novel system based
on federated learning and lifelong learning to detect anom-
alies in the lane following scenario of ADSs. We introduce
T-GP, a novel one-class classification model with a trans-
former encoder for feature extraction and new loss function
with gradient penalty. It is able to detect GPS spoofing, traffic
sign recognition and lane detection attacks with high accuracy.
We extensively evaluate our model on the mainstream Baidu
Apollo ADS with the LGSVL simulator, and two public
traffic datasets: GTSRB and Tusimple. The results show that
T-GP significantly outperforms existing state-of-the-art one-
class models. We also show the practicality and effectiveness
of attack detection with advanced model evolution solutions.
In the future, we aim to incorporate our system into real-world
AVs and study the anomaly detection of other sensor attacks
(e.g., Lidar attacks) and scenarios (e.g., lane changing and
overtaking).
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