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Abstract

Whole-body pose and shape estimation aims to jointly predict different behav-
iors (e.g., pose, hand gesture, facial expression) of the entire human body from a
monocular image. Existing methods often exhibit degraded performance under the
complexity of in-the-wild scenarios. We argue that the accuracy and reliability of
these models are significantly affected by the quality of the predicted bounding
box, e.g., the scale and alignment of body parts. The natural discrepancy between
the ideal bounding box annotations and model detection results is particularly
detrimental to the performance of whole-body pose and shape estimation. In this
paper, we propose a novel framework RoboSMPLX to enhance the robustness of
whole-body pose and shape estimation. RoboSMPLX incorporates three new mod-
ules to address the above challenges from three perspectives: 1) Localization
Module enhances the model’s awareness of the subject’s location and semantics
within the image space. 2) Contrastive Feature Extraction Module encourages
the model to be invariant to robust augmentations by incorporating contrastive loss
with dedicated positive samples. 3) Pixel Alignment Module ensures the repro-
jected mesh from the predicted camera and body model parameters are accurate
and pixel-aligned. We perform comprehensive experiments to demonstrate the
effectiveness of RoboSMPLX on body, hands, face and whole-body benchmarks.
Codebase is available at https://github.com/robosmplx/robosmplx.

1 Introduction

Human pose and shape estimation tries to build human body models from monocular RGB images
or videos. It has gained widespread attention owing to its extensive applications in various fields,
including robotics, computer graphics, and augmented/virtual reality. Early works use various
statistical models (e.g., SMPL [31], MANO [43], FLAME [26]) to individually reconstruct different
parts, including human body [17, 22, 4, 16, 24, 10, 21, 20], face [9, 8, 12], and hand [28, 3, 63].
Recently, there is a growing interest in whole-body estimation [11, 6, 61, 44, 58], which jointly
estimates the pose, hand gestures and facial expressions of the entire human body from the input.
Commonly these methods first employ separate sub-networks to extract the features of body, hands
and face. These features are then used to predict whole-body 3D joint rotations and other parameters
(e.g., body shape, facial expression), which are further combined to generate the whole-body 3D
mesh. This is a crucial step towards modeling human behaviors in an efficient and practical manner.

However, achieving accurate and robust whole-body estimation is particularly challenging as it
requires precise estimation of each body part and the correct connectivity between them. In particular,
due to the smaller sizes of hand and face images, they are typically localized, cropped and resized
to higher resolutions before being processed by the relevant sub-network. To tackle the absence
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of ground-truth bounding boxes in the real-world scenarios, existing whole-body methods utilize
various detection techniques to obtain the crops. The accuracy of the whole-body estimation is highly
sensitive to the quality of input crops. Our experiment results in Section 3 show that even minor
fluctuations in the scale and alignment of input crops can significantly affect the model performance,
indicating a limited ability to localize and extract meaningful features about the subject in the image.

The lack of robustness in existing whole-body pose and shape estimation methods highlights three
critical aspects that can be improved upon: 1) accurate localization of the subject and its parts, 2)
accurate extraction of useful features, and 3) accurate pixel alignment of outputs. Inspired by these
findings, we propose three novel modules, each specifically designed to address a particular goal:

• Localization Module. This module implements sparse and dense prediction branches to ensure
the model is aware of the location and semantics of the subject’s parts in the image. The learned
location of the joint positions are helpful in recovering the relative rotations.

• Contrastive Feature Extraction Module. This module incorporates a pose- and shape-aware
contrastive loss, along with positive samples, to promote better feature extraction under robust
augmentations. By minimizing the contrastive loss, the model can produce consistent representa-
tions for the same subject, even when presented with different augmentations, making it robust to
various transformations and capable of extracting meaningful invariant features.

• Pixel Alignment Module. This module applies differentiable rendering to ensure a more precise
pixel alignment of the projected mesh, and learn more accurate pose, shape and camera parameters.

By integrating these three modules, we build a more robust and reliable whole-body pose and shape
estimation framework, RoboSMPLX. Comprehensive evaluations demonstrate its effectiveness on
body, face, hands and whole-body benchmarks.

2 Related Works

Whole-body Mesh Recovery. Despite significant progress in 3D body-specific [23, 22, 4, 16, 24,
10, 21, 20], hand-specific [28, 3], and face-specific [9] mesh recovery methods, there have been
limited attempts to simultaneously recover all those parts. Early studies on whole-body pose and
shape estimation primarily fit a 3D human model to 2D or 3D evidence [15, 53, 41, 54], which can
be slow and susceptible to noise. Recent studies utilized neural networks to regress the SMPL-X
parameters for a whole-body 3D human mesh. The model is composed of separate sub-networks
to process body, hand and face, respectively. One-stage methods, e.g., OS-X [27], have the benefit
of reduced computational costs and improved communication within part modules for more natural
mesh articulation. However, the omission of hand and face experts makes it difficult for the model to
leverage the widely available part-specific datasets, thus decreasing the hand and face performance.
Multi-stage methods, e.g., ExPose [6], FrankMocap [44], PIXIE [11] and Hand4Whole [35], use
different techniques to localize part crops.

Expose [41] and PIXIE [11] localize hand and part crops from the body mesh, making them dependent
on the accuracy of body poses. Minor rotation errors accumulated along the kinematic chain may
result in deviations in joint locations and thus inaccurate part crops. In contrast, Hand4Whole
[35] predicts hand and face bounding boxes using a network leveraging image features and 3D joint
heatmaps, but the resulting crops have low resolution. PyMAF-X [11] relies on an off-the-shelf whole-
body pose estimation model to obtain crops, which, while more accurate, incurs extra computation.
More detailed comparison with PyMAF-X are in Appendix C.

Robustness in vision tasks. Efforts to tackle robustness in vision tasks have utilized di-
verse strategies such as data augmentation, architectural innovations, and training methodologies
[25, 56, 42, 30, 51, 60, 2]. AdvMix [51] employs adversarial augmentation and knowledge distillation,
challenging models with corrupted images to foster learning from complex samples. Architectural
modifications, such as novel heatmap regression [60], have been introduced to mitigate the impact
of minor perturbations. HuMoR [42] utilizes a conditional variational autoencoder to capture the
dynamics of human movement, thereby achieving generalization across diverse motions and body
shapes. Additionally, PoseExaminer [30] employs a multi-agent reinforcement learning system to
uncover failure modes inherent in human pose estimation models, highlighting model limitations in
real-world scenarios. Complementing these efforts, Robo3D [25] provides a comprehensive bench-
mark for assessing the robustness of 3D detectors and segmentors in out-of-distribution scenarios.
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Figure 1: Wholebody PA-PVE errors under different augmentations (sorted in descending order). The
dashed line indicates baseline performance without augmentation.

Furthermore, [56] utilize a confidence-guided framework to improve the accuracies of propagated
labels. Contrastive learning, as demonstrated by CoKe [2], has also been employed to enhance
robustness in keypoint detection, especially in occlusion-prone scenarios.

Contrastive Learning. Recently contrastive learning has demonstrated state-of-the-art performance
among self-supervised learning (SSL) approaches. This strategy has been applied to 3D hand pose
and shape estimation [46, 63]. Sanyal et al. [45] incorporate a novel shape consistency loss for 3D
face shape and pose estimation that encourages the face shape parameters to be similar when the
identity is the same and different for different people. Choi et al. [5] were the first to apply contrastive
learning for 3D human pose and shape estimation. They found that SSL is not useful for this task, as
the learned representations could be challenging to embed with high-level human-related information.
Khosla et al. [19] proposed supervised contrastive learning for image classification tasks, which
incorporates label information during training. Currently there is not attempt to apply this strategy to
human pose and shape estimation, where the definition of positive samples is unclear, and data lie in
a continuous space. We are the first to overcome these challenges and integrate supervised contrastive
learning with whole-body pose and shape estimation.

Pixel Alignment in Pose and Shape Estimation. Many studies have been done to learn the subject’s
location in an image. Some works implicitly supervise the location. They primarily utilize projected
meshes by supervising 2D joints regressed from the mesh [17, 23, 22, 4, 16, 24, 10, 21, 20]. Further
supervision, such as dense body landmarks, silhouettes, and body part segmentation, is also employed
to better align the predictions with the image [55, 37, 40, 49, 59, 57, 10]. Some other works explicitly
learn the subject’s location. Moon et al. [35] explicitly predict the keypoint locations in the image.
Semantic body part segmentation is used as an explicit intermediate representation [41, 37]. PARE
[41] employs a renderer to project the ground-truth mesh to the image space, and supervise the
predicted part silhouette mask. However, dense part segmentation and differentiable rendering
have not been employed in whole-body pose and shape estimation, which will be achieved in our
framework.

3 Motivation

As discussed in Section 1, existing whole-body pose and shape estimation approaches suffer from
the robustness issue, due to the models’ sensitivity to the quality of input crops. To investigate the
reasons and disclose the influence factors, we conduct a comprehensive evaluation of four state-of-
the-art methods: ExPose [6], PIXIE [11], Hand4Whole [35] and OS-X [27]. We opt for a set of ten
commonly encountered augmentations and vary their scales within a realistic range (see Appendix
A for more details). The augmentations can be classed into three categories (1) image-variant
augmentations: they affect the image without altering the objects’ 3D poses or positions, such as color
jittering; (2) location-variant augmentations: they modify the subject’s location without changing
its pose, involving operations like translation and scaling; (3) pose-variant augmentations: they
simultaneously alter both the 3D pose and location, including rotation.

Impact of subject localization. We first reveal that existing models demonstrate high sensitivity to
the subject’s position, indicating potential difficulties in subject localization. Figure 1 reports the
PA-PVE errors of the whole body under different augmentations. We observe that image-variant
augmentations (contrast, sharpness, brightness, hue and grayscale) lead to an acceptable range of
error rates (approximately in the 50s) and minimal fluctuation (around ±2). In contrast, location-
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Figure 3: Sensitivity of existing body and hand models to different alignments (left) and scales (right).

variant augmentations altering the subject’s position within the frame, such as rotation, scaling, and
horizontal or vertical translation, result in substantially higher error magnitudes. This demonstrates
the heightened sensitivity of existing models to changes in the subject’s position. In Appendix,
we provide the results of other metrics and benchmarks in Figures 22 – 23, and visualizations of
whole-body estimation under different settings in Figures 25 – 26.

Figure 2: Crops from (a) ExPose [6] (b) PIXIE
[11], (c) Hand4Whole [35] (d) RoboSMPLX.

Such position-altering augmentations are common
in real-world scenarios, where the subject in the
image is often localized using external detection
models and control over the quality of crops is less
feasible. In practice, to guarantee the visibility of
the subject, crops are often made broader, This
can lead to significant performance degradation,
as errors increase with smaller augmentation scale
factors (<1.0) (Figure 1). Besides, horizontal and
vertical translations, which correspond to scenarios
where the subject is not perfectly centralized or en-
tirely visible within the frame, can further decrease
the performance. Similarly, the alignment and scale of these crops also influence the pose and
shape estimation systems targeting body, face and hands (Figure 3, more quantitative and qualitative
evidence in Appendix M). Whole-body methods bear the additional responsibility of accurately
localizing body parts such as hands and face. Inaccurate part crops (Figure 2) can adversely affect the
performance of part subnetworks, and further the whole-body estimation.

Impact of feature extraction. The deterioration of performance in the face of such variations
suggests that the model struggles to extract meaningful features. Under alterations in translation or
scale, the subject remains within the image frame, though the proportion of background content may
vary. It is difficult for existing methods to effectively disregard irrelevant background elements and
extract relevant features related to the subject of interest. To enhance the model’s robustness, it is
critical to produce consistent features irrespective of various augmentations applied to the image.

Impact of output pixel alignment. Pixel alignment is a critical aspect of high model performance.
In certain instances, despite having precise subject localization, the model fails to produce properly
aligned results (Figure 25 in Appendix). This is often caused by the suboptimal camera parameter
estimation. To address this issue, we need to accurately estimate the camera parameters, ensuring the
projected mesh is precisely aligned with the ground-truth at the pixel level. Such precision would
enhance the effectiveness of the model in producing accurate pose, shape and camera parameter
predictions, improving the overall accuracy and reliability of the estimation process.

4 RoboSMPLX Framework

We design RoboSMPLX to enhance the robustness of whole-body pose and shape estimation. It
provides three specialized modules to address each challenge in Section 3: 1) Localization Module
(Section 4.2): explicitly learning the location information of the subject and incorporating it into
model estimations for pose, shape and camera ; 2) Contrastive Feature Extraction Module (Section
4.3): reliably extracting pertinent features under various augmentations, thereby improving the
model’s generalization ability and robustness to a broader range of real-world scenarios; 3) Pixel
Alignment Module (Section 4.4): ensuring that the outputs are pixel aligned.

We start with the description of RoboSMPLX architecture with Body, Hand and Face subnetworks
(Section 4.1). Each subnetwork is integrated with the Localization Module and Pixel Alignment
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Figure 4: Pipeline of our RoboSMPLX framework consisting of Body, Hand and Face subnetworks.

Figure 5: Examples of keypoint and part segmentation supervision for Body, Hand and Face subnetworks.

Module, and applies the Contrastive Feature Extraction Module for learning more robust features.
Figure 6 shows the Hand subnetwork architecture. The other two subnetworks have the same designs.

4.1 Architecture and Training Details

Figure 4 shows the overall pipeline of RoboSMPLX for whole-body 3D human pose and mesh
estimation. The Body subnetwork outputs 3D body joint rotations ✓b 2 R21⇥3, global orientation ✓bg
2 R3, shape parameters �b 2 R10, camera parameters ⇡b 2 R3, and whole-body joints K 2 R137⇥3.
Joints corresponding to the hand and face are used to derive bounding boxes. Subsequently, hand
and face images are cropped from a high-resolution image to preserve details. The Hand subnetwork
predicts left and right hand 3D finger rotations ✓h 2 R15⇥3. Simultaneously, the Face subnetwork
generates 3D jaw rotation ✓f 2 R3 and expression  f 2 R10. When training Hand and Face
subnetworks with part-specific datasets, additional parameters such as global orientation ✓fg 2 R3,
shape �f 2 R50, and camera ⇡f 2 R3 are estimated. These branches are discarded during whole-
body estimation and training. Additional information concerning each subnetwork can be found in
Appendix B. Further details regarding the training and inference durations are elaborated upon in
Appendix K.

Subnetworks are trained separately, then integrated in a multi-stage manner. Initial whole-body
training runs for 20 epochs. The hand and face modules are substituted with the trained Hand and
Face subnetworks, followed by 20 epochs of fine-tuning to better unify the knowledge from the Hand
and Face subnetworks into the whole-body understanding. Each subnetwork is trained by minimizing
the following loss function L:

L = �3DL3D + �2DL2D + �BMLBM + �projLproj + �segmLsegm + �conLcon (1)

Here LBM is the L1 distance between the predicted and ground-truth body model parameters. L3D

denotes the L1 distance between 3D keypoints and joints regressed from the body model. L2D

signifies the L1 distance of the ground-truth 2D keypoints to predicted and projected 2D joints. The
latter are obtained by projecting the regressed 3D coordinates from the 3D mesh to the image space
using the perspective projection [17]. The part segmentation loss Lsegm is the cross-entropy loss
between Ph,w after softmax and Ph,w averaged over H×W elements, following [20]. Lproj refers
to the projected segmentation loss, which is the sigmoid loss between the projected mesh and the
ground-truth segmentation map. Lcon is the contrastive loss described in Section 4.3. For wholebody
training, Lbox is added to measure the L1 distance between the predicted and actual center and scale
of the hands’ and face’s boxes.

4.2 Localization Module

This module focuses on subject localization by explicitly learning both sparse and dense predictions of
the subject within the image. Figure 5 shows an example of the supervision used for each subnetwork.
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Figure 6: Subnetwork Architecture with three modules. We use the Hand subnetwork as an example. z
represents normalized J3D while p corresponds to the ground-truth of z. Green and red dashed lines refers to
contrastive loss for positive and negative samples respectively.

Figure 7: Augmentations for the Body subnetwork. Black, blue and red labels represent image-variant,
location-variant and pose-variant augmentations, respectively.
In contrast to prior methods that directly output pose rotations from backbone features, this module
aims to make the model explicitly conscious of the subject’s location and semantics while predicting
pose, shape and camera parameters. It can reduce the model’s sensitivity to the variations of the
subject’s position, caused by minor shifts in the scale and alignment of the bounding box.

As shown in Figure 6, given an image, a convolutional backbone is utilized to extract its feature map
F 2 R512⇥32⇥32. Following [35], a 1⇥1 convolutional layer is then used to predict 3D feature maps
LF 2 R32J⇥32⇥32 from F, where J represents the number of predicted joints with a feature map
depth of 32. LF contains valuable information about the mesh’s position in the image and semantics
of various parts. It is concatenated with the backbone feature map F to predict pose ✓ 2 RP , shape
� 2 R10 and camera translation ⇡ 2 R3, where P is the number of body parts. Meanwhile, LF is also
used to obtain extra information with two branches: (1) 3D joint coordinates K2 RJ⇥3 are obtained
from LF using the soft-argmax operation [47] in a differentiable manner. (2) 2D part segmentation
maps S 2 RP+1⇥64⇥64 are extracted from LF with several convolution layers, which model P part
segmentation and 1 background mask. Here, 64 represents the height and width of the feature volume,
and each pixel (h,w) stores the likelihood of belonging to a body part P.

Note that learning part segmentation maps and 3D joint coordinates is complementary, as 3D
joint coordinates encode depth information that may inform part ordering in segmentation maps.
Additionally, joints often reside at the boundaries of part segmentation maps, serving as separators
for distinct parts. The Body subnetwork utilizes 24 parts P and 137 joints J, the Hand subnetwork
employs 16 parts P and 21 joints J, while the Face subnetwork employs 15 parts P and 73 joints J.

4.3 Contrastive Feature Extraction Module

This module incorporates a pose- and shape-aware contrastive loss, along with positive samples. By
minimizing this loss, the model can produce consistent representations for the same subject, even
when presented with different augmentations, thus fostering the extraction of meaningful features.

Conventional contrastive learning methods based on SSL (e.g., SimCLR) face challenges in unifying
similar pose embeddings and distancing dissimilar ones in human pose and shape estimation tasks.
Without labels for guidance, images with similar poses could be misidentified as negative samples
and contrasted away, complicating the self-organization of the embeddings in pose space. Figures 9
to 12 in Appendix show their ineffectiveness for the 3D human pose and shape task [5] by visualizing
the retrieved samples from the embeddings. The supervised contrastive learning approach by Khosla
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et al. [19], though effective for image classification, might not extend well to human pose and shape
estimation, which is a high-dimensional regression problem and poses exist in a continuous space
rather than well-defined classes.

Our module overcomes the aforementioned issues with two innovations. First, we experiment with
three human pose representations z and the corresponding distance functions: (1) A concatenated
form of the global orientation and rotational pose; (2) global orientation and rotational pose as
separate entities (3) 3D root-aligned joints regressed from the body model, derived from pose and
shape inputs. For (1) and (2), we explore relative rotations in two forms: 6D vector and rotation
matrix representation. For (3), L1, Smooth L1, and Mean Squared Error (MSE) was used (Table 9).

Second, we investigate ten data augmentations, and classify them into three categories (see Figure
7 for the Body subnetwork, and Figure 29 in Appendix for Hand subnetwork): (1) image-variant
augmentations such as color jittering, blur, occlusion and background swapping; (2) location-variant
augmentations involving translation and scaling; (3) pose-variant augmentations including rotation
and horizontal flipping. Our ablation study in Table 10 shows that augmentations with varied global
orientation are detrimental to the model performance. Consequently, we exclude such modifications
when constructing positive pairs. Instead, each positive sample is constructed utilizing a random
combination of location-variant and color-variant augmentations.

Formally, for a batch of N images, we construct another N images by applying augmentation to each
sample. For each anchor i, let j be the corresponding augmented sample. Then i is contrasted against
2N � 1 terms (1 positive and 2N � 2 negatives). The loss takes the following form:

Lcon =
NX

i=1

 
⌧pos

���d
�
pi,pj

�
� d (zi, zj)

���+ ⌧neg

2NX

k=1

1[k 6=i,j] (|d (pi,pk)� d (zi, zk)|)
!

(2)
where zi, zj and zk denote the predicted pose representations, and pi, pj and pk denote the
ground-truth pose representations for the anchor, positive and negative samples in the batch. The
objective of this loss function is to minimize the distance between the positive pairs and maximize the
distance between the negative pairs, in alignment with the pose similarity. Note that unlike traditional
approaches where the distance is the same for all negative samples, the pairwise distance d(pi, pk)
varies depending on the pose similarity.

4.4 Pixel Alignment Module

This module employs differentiable rendering to ensure that the projected mesh aligns precisely at
the pixel level. The alignment is supervised by the projected mask loss. Attaining a proper alignment
between the ground-truth part segmentation and rendered mesh requires the accurate prediction of
pose, shape, and camera parameters, which subsequently leads to a more precise estimation process.

5 Experiments

Datasets. For whole-body training, we employ Human3.6M (H36M) [13], COCO-Wholebody [14]
(the whole-body version of MSCOCO [29]) and MPII [1]. The 3D pseudo-ground truths for training
are acquired using NeuralAnnot [36]. For hand-specific training, we use FreiHAND [62], Interhand
[34] and COCO-Wholebody Hands [14]. For face-specific training, we use FFHQ [18], BUPT [52]
and AffectNet [32]. For evaluations specific to 3D body, 3D hand, and 3D face, we utilize 3DPW
[50], FreiHAND [62], and Stirling [11], respectively. For the 3D whole-body evaluation, we use EHF
[41] and AGORA [39]. Additionally, we present qualitative results on the MSCOCO validation set.

Metrics. Mean Per Joint Position Error (MPJPE) and Mean Per-Vertex Position Error (MPVPE) are
employed to evaluate the positions of 3D joint and mesh vertices, respectively. Each metric calculates
the average 3D joint distance (in mm) and 3D mesh vertex distance (in mm) between the predicted
and ground-truth values after aligning the root joint translation. The pelvis serves as the root joint
for whole-body and body, whereas the wrists and neck are utilized as root joints for hands and face.
Procrustes Aligned (PA) variants of these metrics, PA-MPJPE and PA-MPVPE, further align with
rotation and scale. We report the average errors for the left and right hands as the 3D hand error.
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Table 1: Evaluation of the Hand subnetwork.
Method PA-PVE # PA-MPJPE # F-Scores "
* Hand-only
FreiHAND [62] 10.7 - 0.529/0.935
Pose2Mesh [4] 7.8 7.7 0.674/0.969
I2L-MeshNet [33] 7.6 7.4 0.681/0.973
METRO (HR64) [28] 6.7 6.8 0.717/0.981

* Whole-body
ExPose [41] 11.8 12.2 0.484/0.918
Zhou et al. [61] - 15.7 -/-
FrankMocap [44] 11.6 9.2 0.553/0.951
PIXIE [11] 12.1 12 0.468/0.919
Hand4Whole † [35] 7.7 7.7 0.664/0.971
HMR (Baseline) [17] 8.6 8.9 0.605/0.963
PyMAF [58] 8.1 8.4 0.638/0.969
PyMAF † [58] 7.5 7.7 0.671/0.974
RoboSMPLX 7.3 7.5 0.683/0.976
RoboSMPLX † 7.1 7.4 0.688/0.978
RoboSMPLX (HR64) 6.7 6.9 0.715/0.981

Table 2: Evaluation of the Body subnetwork.
Method PA-MPJPE # MPJPE # PVE #
HMR (Res50) [17] 76.7 130 -
GraphCMR (Res50) [24] 70.2 - -
SPIN (Res50) [22] 59.2 96.9 116.4
HMR-EFT (Res50) [16] 54.3 - -
ROMP (Res50) 53.5 89.3 105.6
PARE (Res50) [20] 52.3 82.9 99.7
PARE (HR32) [20] 50.9 82 97.9
PyMAF (Res50)[58] 49.0 79.7 94.4
PyMAF (HR48) [58] 47.1 78.0 91.3
Baseline (Res50) 52.4 85.2 103.6
RoboSMPLX (Res50) 49.8 80.8 96.7
Baseline (HR48) 50.3 84.5 101.5
RoboSMPLX (HR48) 48.5 80.1 95.2

Table 3: Evaluation of the Face subnetwork.
Method LQ Mean(mm) # HQ Mean(mm) #
ExPose [6] 2.27 2.42
ExPose † 2.46 2.38
HMR 2.18 2.11
HMR † 2.31 2.27
HMR * 2.02 2.04
PyMAF * 1.97 1.92
RoboSMPLX 2.12 2.08
RoboSMPLX † 2.12 2.10

Table 4: PA-PVE/PVE errors of the Hand subnetwork under different positional augmentations.
Normal Transx +0.2x Transx -0.2x Transy +0.2y Transy -0.2y Scale 1.3x Scale 0.7x

Hand4Whole [35] 7.47/ 15.70 8.51/ 21.58 8.38/ 20.36 8.74/ 22.51 8.48/ 19.85 7.73/ 16.44 7.78/ 17.00
RoboSMPLX 7.24/ 15.23 7.27/ 15.62 7.36/ 15.59 7.28/ 15.50 7.34/ 15.50 7.49/ 15.90 7.45/ 16.51

5.1 Benchmarking Results

Hand Subnetwork. Table 1 compares the performance of the Hand subnetwork with different hand-
only and whole-body methods. Our method outperforms that of our whole-body counterparts when
trained with only the FreiHAND dataset (i.e. PIXIE, Hand4Whole, PyMAF) or under mixed datasets
(i.e. Hand4Whole †, PyMAF †)1 using an identical backbone. Prior research [33, 48] demonstrated
that whole-body methods generally employ a parametric representation of the hand mesh, and are
numerically inferior to the non-parametric representation used in recent hand-only methods [33, 28].
Despite such reported gap, RoboSMPLX manages to outperform mesh-based techniques, and achieve
comparable results as the state-of-the-art METRO when using the same backbone (HRNet-64). Table
4 compares the estimation errors of the Hand subnetwork in Hand4Whole (current whole-body
method with SOTA on hands) and RoboSMPLX under different positional augmentations on the
FreiHAND test set. It is clear that RoboSMPLX exhibits much better robustness than Hand4Whole.
More visualizations are provided in Figure 20 in Appendix.

Body Subnetwork. Table 2 compares the performance of the Body subnetwork across different
methods on the 3DPW test set. We observe the competitiveness of RoboSMPLX in relation to other
SMPL-based approaches. Besides, since the performance of various methods may significantly differ
based on their backbone initialization, datasets and training strategies [38], we establish a baseline
to evaluate the effectiveness of our added modules in Table 12 in Appendix. RoboSMPLX achieves a
substantial improvement compared to the baseline.

Face Subnetwork. Table 3 compares the performance of the Face subnetwork for different methods
on the Stirling3D test set. When training with the same dataset, RoboSMPLX outperforms ExPose.
The performance of ExPose declines when training on multiple datasets, while RoboSMPLX can still
keep low and consistent errors. Figure 8 in Appendix shows some qualitative results for the in-the-
wild scenarios, which demonstrates the high generalization of RoboSMPLX. Table 5 compares the
robustness of ExPose and RoboSMPLX under different positional augmentations. We also observe that
RoboSMPLX has lower errors with different translation and scaling operations. More visualizations
are provided in Figure 21 in Appendix.

Whole-body Network. We further provide results of the whole-body network on two benchmarks:
EHF val set and AGORA test set in Table 6. On EHF, RoboSMPLX outperforms other full-body
approaches, particularly in hand and face performance evaluations, and under different positional
augmentations (Table 7). It gives subpar performance on AGORA as the predominant source of

1† denotes training with extra datasets in the following evaluation and tables.
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Table 5: 3DRMSE errors of the Face subnetwork under different positional augmentations.
Normal Transx +0.2x Transx -0.2x Transy +0.2y Transy -0.2y Scale 1.3x Scale 0.7x

ExPose [6] 2.27 2.38 2.29 2.46 2.30 2.46 2.27
RoboSMPLX 2.12 2.20 2.17 2.13 2.18 2.24 2.10

Table 6: Evaluation of wholebody network on EHF and AGORA test set.

Method
EHF AGORA

PVE # PA-PVE # PVE # N-PVE #
WB H F WB H F WB B F LH/RH WB B

ExPose [6] 77.1 51.6 35 54.5 12.8 5.8 217.3 151.5 51.1 74.9/71.3 265 184.8
PIXIE [11] 89.2 42.8 32.7 55 11.1 4.6 191.8 142.2 50.2 49.5/49.0 233.9 173.4
Hand4Whole [35] 76.8 39.8 26.1 50.3 10.8 5.8 135.5 90.2 41.6 46.3/48.1 144.1 96.0
OSX (ViT-L) 70.8 53.7 26.4 48.7 15.9 6.0 122.8 80.2 36.2 45.4/46.1 130.6 85.3
PyMAF-X (HR48) 64.9 29.7 19.7 50.2 10.2 5.5 125.7 84 35 44.6/45.6 141.2 94.4
Ours 73.7 34.9 17.8 49.7 10.0 4.6 132.3 85 39.4 45.3/46.1 138.2 91.5

error is the misidentification of individuals under intense person-person occlusion. We give detailed
investigation in Appendix D.

5.2 Ablation Studies

Contrastive loss. We validate prior contrastive SSL methods [63, 46, 5] are not particularly adept
at learning useful embeddings for human pose and shape estimation. Figures 9 – 12 in Appendix
visualize the retrieved images based on the top-5 embedding similarity. They show that without labels,
the model primarily extracts features based on background information instead of pose information.
Table 8 shows the estimation errors of top-1 retrieved pose (COCO-train) and query pose (COCO-
test) with different methods and contrastive loss functions. We observe that SimCLR has higher
mean errors than the supervised training method HMR. These results are aligned with [5] that the
representations learned through SSL are not transferable for human pose and shape estimation tasks.
RoboSMPLX incorporates contrastive loss and positive samples ("HMR + Lcon, +ve"), which can
produce similar representations under varied augmentations, enhancing its robustness.

Table 9 shows the estimation errors when applying contrastive loss with different representations in
Section 4.3: "pose" (a concatenated form of global orientation and rotational pose), "go+pose" (global
orientation and rotational pose as separate entities), "keypoint" (3D joints regressed from the body
model). We observe that regressed 3D joints are the most effective representation, as they encode
both shape and pose information in a normalized space. In contrast, the representation of pose as
relative rotation has a detrimental impact on the model performance. Incorporating positive samples
("pose, +ve" and "keypoint, +ve") bolsters contrastive learning, encouraging the model to generate
similar representations under varied augmentations. Table 10 compares the model performance with
different augmentations. Prior methods [63, 46] employed pose-variant augmentations (e.g., rotation
and flipping), which can adversely affect the learning by altering the global orientation, and lead to
increased errors ("pose") compared to "baseline". Conversely, color-variant, location-variant and their
combination provide an improvement over the baseline, showing these augmentations are helpful.

Table 11: Ablation of different modules on Hand subnet-
work. Results are trained and evaluated on FreiHAND.

Supervision PA-# MPJPE# PA-# PVE#
Base (R50) 8.06 16.78 7.85 16.71
Base (R50) + Strongaug 8.47 17.01 8.11 16.17
Base (DR54) 7.8 15.57 7.67 15.72
Base (DR54) LKS 7.68 15.8 7.62 16.29
PPP [35] LKS 7.65 15.93 7.56 16.37
LF LKS 7.52 15.84 7.56 16.15
joints LKS 7.86 15.92 7.75 16.24

LF (all) LKS 7.49 15.51 7.46 15.59

LF (all) + Lcon LKS 7.48 15.01 7.32 15.29
LF (all) + Lcon, +ve LKS 7.42 14.88 7.16 14.57

LF (all) LKS , Lsegm 7.44 14.92 7.58 15.30
LF (all) LKS , Lsegm, Lproj 7.36 14.38 7.53 15.05
LF (all)+ Lcon, +ve LKS , Lsegm, Lproj 7.33 14.59 7.02 14.11

Location features. Table 11 shows the
ablation of different modules on the Hand
subnetwork (ablation for the Body sub-
network is in Table 12 in Appendix). The
baseline model is trained that randomly
augments images with a scale factor of
0.2 and bounding box jitter of 0.2. We ob-
serve that training using strongaug with
a larger scale and jitter factor harms the
baseline performance. This is likely due
to a domain shift. Hand4Whole [35] em-
ploys sampled features from positional
pose-guided pooling (PPP) to predict
pose parameters while shape and camera parameters only utilize backbone features. Our method
focuses on explicitly learning the location and part silhouettes, utilizing sparse and dense supervision
methods. This proves advantageous as the location information ("LF") improve the performance of
pose and shape estimations, with the reduced joint and vertex errors of the regressed mesh. Moreover,
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Table 7: Wholebody, Hand and Face PA-PVE errors under different positional augmentations.
Method Normal Transx +0.2x Transx -0.2x Transy +0.2y Transy -0.2y Scale 1.3x Scale 0.7x

Hands

ExPose [6] 14.39 17.36 17.86 14.93 17.21 14.15 14.56
PIXIE [11] 14.68 15.05 16.11 15.32 15.85 14.52 14.79
Hand4Whole [35] 10.83 11.15 11.34 10.50 13.70 10.77 11.25
OSX [27] 15.97 16.42 16.55 16.94 17.86 15.91 17.24
RoboSMPLX 10.00 10.37 10.21 10.16 12.49 9.98 10.19

Face

ExPose [6] 6.34 10.28 6.71 8.17 6.43 6.24 6.24
PIXIE [11] 5.63 6.67 6.94 6.53 6.94 5.84 5.84
Hand4Whole [35] 5.81 5.88 5.91 5.74 5.93 5.76 5.76
OSX [27] 6.09 6.03 6.09 5.83 5.96 5.92 5.92
RoboSMPLX 4.65 5.10 5.38 4.75 5.30 4.77 5.22

Wholebody

ExPose [6] 54.82 61.64 65.98 65.03 65.98 54.03 59.23
PIXIE [11] 54.85 66.16 69.26 64.83 69.26 56.28 60.31
Hand4Whole [35] 50.37 59.10 67.85 64.64 67.85 48.10 55.28
OSX [27] 48.79 51.09 55.96 95.97 55.96 47.35 50.89
RoboSMPLX 49.79 52.46 53.62 61.65 63.99 47.90 51.39

Table 8: Ablation of contrastive
learning methods and loss.
Scale factor Mean # Std #
SimCLR 0.227 0.0915
SimCLR (+ pose-variant aug.) 0.230 0.0911
SimCLR (+ background aug.) 0.222 0.0959
SimCLR (+ Lcon) 0.164 0.0772
HMR 0.140 0.0823
HMR (+ Lcon) 0.124 0.0624
HMR (+ Lcon, +ve samples) 0.119 0.0679

Table 9: Ablation of different repre-
sentation for contrastive loss.
Representation PA-# MPJPE# PA # PVE#
baseline 7.49 15.51 7.46 15.59
pose 8.11 15.81 7.67 16.08
go + pose 7.71 14.98 7.54 14.91
keypoint 7.48 15.01 7.32 15.29
pose, +ve 7.45 14.94 7.20 14.77
keypoint, +ve 7.31 14.62 7.18 15.01

Table 10: Ablation of augmenta-
tion +ve samples, using pose rota-
tion as representation.
Augmentation PA-# MPJPE# PA- # PVE#
baseline (no +ve) 8.11 15.81 7.67 16.08
color 7.42 15.01 7.18 14.94
pose 8.59 16.96 8.15 17.21
location 7.80 15.98 7.46 15.56
color + location 7.45 14.94 7.20 14.77

we find that using location features "LF (all)" for predicting shape and camera parameters is also
beneficial.

Pixel alignment. Tables 11 also shows that incorporating differential rendering and using projected
segmentation loss (Lproj) for the mesh in RoboSMPLX helps to achieve lower PVE and MPJPE errors.
It facilitates the learning of more precise body model and camera parameters to improve the alignment
between the rendered 3D model and 2D image. Notably, metrics such as PVE and MPJPE errors is
calculated after root alignment and may not sufficiently reflect the quality of mesh projection onto the
image space. To offer a more precise analysis, we evaluate the discrepancies between the projected
2D vertices of the ground-truth and projected meshes. More quantitative and qualitative comparisons
can be found in Appendix F.

6 Conclusion

In this paper, we introduce a new framework RoboSMPLX to advance the field of whole-body pose and
shape estimation. It enhances the whole-body pipeline by learning more precise localization for part
crops while ensuring that part subnetworks are robust enough to handle suboptimal part crops and
produce reliable outputs. It achieves this goal with three innovations: accurate subject localization by
explicitly learning both sparse and dense predictions of the subject, robust feature extraction with
supervised contrastive learning, and accurate pixel alignment of outputs with differentiable rendering.
Nevertheless, it is important to acknowledge that there are instances in which our framework exhibits
limitations, such as (1) inaccurate beta estimation due to out-of-distribution data (children), (2)
challenges posed by severe object-occlusion, (3) difficulties arising from person-person occlusion,
and (4) the potential for prediction errors in multi-person scenarios, as exemplified by the cases
detailed in Appendix G. These challenges represent important avenues for future refinement of our
approach.

There are several potential avenues for future research. First, the current approach does not de-
liberately select negative samples during training. Future work could explore if hard mining by
intentionally selecting similar poses in a batch could enhance learning. Second, the careful selection
of augmentations is essential. While augmentations that modify the global orientation, such as
flipping and rotation, have proven detrimental and are not employed, the effects of individual aug-
mentations and their combinations are not examined. Future research could explore the potential for
automatically determining the optimal selection of augmentations to achieve improved performance.
Additionally, simplifying the complex framework without sacrificing performance is a beneficial di-
rection for future work. Lastly, considering that videos are a prevalent input format, the integration of
video-based estimation can contribute to bolstering model robustness can enhance model robustness,
alleviate depth ambiguity, and improve temporal consistency.
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Overview

This supplementary material presents more details and additional results not included in the main
paper due to the page limitation. The list of items included are:

• Description of augmentation settings for robustness benchmarking in Section A
• More experiment setup and details in Section B
• Comparison with PyMAF-X in Section C
• Analysis of the subpar performance on AGORA test set in Section D
• Ablation of different modules on the Body subnetwork in Section E
• Quantitative and qualitative and comparisons for pixel alignment in Section F
• Examples of failure cases in Section G
• Analysis of embedding similarity in Section H
• Discussion on pose (rotation) versus keypoint representation in Section I
• Extra comparisons against SOTA body networks in Section J
• Training and inference time in Section K
• Accuracy of derived part bounding boxes in Section L
• Qualitative comparisons of RoboSMPLX’s Hand, Face and Body subnetworks under augmentations

in Section M
• Quantitative and qualitative comparisons of RoboSMPLX’s wholebody model in Section N

A Augmentation Settings for Robustness Benchmarking

In the selection of augmentations, we opted for a set of ten commonly encountered augmentations that
could be benchmarked in a controlled setting. We also ensure that the selected values for manipulation
fall within a realistic range. We used the following augmentations:

1. Vertical translation: We shifted the image by factors relative to the image size. For instance, a
+0.1 shift corresponds to a 10% upward movement, while a -0.1 shift represents a 10% downward
movement. Our boundaries were set at ±0.3 to ensure that majority of the subject remains visible
within the image frame.

2. Horizontal translation: We manipulated the image by factors relative to the image size. A shift of
+0.1 denotes a 10% move to the right, while -0.1 indicates a 10% shift to the left. We imposed a
±0.3 limit to keep the majority of the subject within the image.

3. Scale: We adjusted the person’s crop using factors relative to the bounding box size. For example,
a factor of +0.1 leads to a 10% size reduction, resulting in a tighter crop, while a -0.1 factor
enlarges the crop size by 10%. A ±0.5 boundary was set to maintain visibility of the majority of
the person within the image.

4. Low Resolution: The resolution of the cropped image was modified by factors related to the image
size. A 2.0 factor signifies that the image was downsampled to half its original size before being
upsampled back, reducing the resolution by a factor of 2.0.

5. Rotation: The image was manipulated by various rotations up to degrees of ±60.
6. Hue: The image hue was altered by converting the image to HSV format, cyclically shifting

intensities in the hue channel (H), and converting back to the original image mode. Hue adjustments
were limited to ±0.5.

7. Sharpness: Sharpness was controlled by introducing an enhancement factor. A factor of -1.0 leads
to a blurred image, while +1.0 results in a sharpened image, with 0.0 leaving the image unaltered.
This effect is achieved by blending the source image with the degraded mean image.

8. Grayness: The degree of grayness was adjusted by introducing an enhancement factor. A factor of
-1.0 results in a completely grayed image, while +1.0 leads to a whitened image, with 0.0 leaving
the image unaltered. This effect is achieved by blending the source image with its gray counterpart.
The limit was set to ±0.5, as the subject becomes unidentifiable at extremes of ±1.0.
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9. Contrast: This was controlled by introducing an enhancement factor. A factor of -1.0 leads to
a completely grayed image, while +1.0 results in a whitened image, with 0.0 leaving the image
unaltered. This effect is achieved by blending the source image with the degraded mean image.
The limit was set to ±0.5, as the subject becomes unidentifiable at extremes of ±1.0.

10. Brightness: The brightness of the image was adjusted by introducing an enhancement factor. A
factor of -1.0 results in a black image, while +1.0 leads to a white image, with 0.0 leaving the
image unaltered. This effect is achieved by blending the source image with the degraded black
image. The limit was set to ±0.5, as the subject becomes unidentifiable at extremes of ±1.0.

B More Experiment Setup

This section includes extra description of each submodule and implementation details.

Body subnetwork. The body image is downsampled from the original image to reduce the computa-
tional cost, resulting in Ib 2 R3⇥256⇥256. The Body subnetwork outputs 3D body joint rotations ✓b
2 R21⇥3, global orientation ✓bg 2 R3, shape parameters �b 2 R10, camera parameters ⇡b 2 R3, and
whole-body joints K 2 R137⇥3. Hand and face bounding boxes are then derived from the face and
hand keypoints. Width and height are determined from the x-y range of the keypoints, and the center
is the aggregated mean of the keypoints. High resolution crops are used for hand and face inputs
following ExPose and PIXIE. In line with ExPose [6] and PIXIE [11], hand and face input images
are obtained from high resolution crops to utilize the information available from the original image
instead of the downsampled image.

Hand subnetwork. After obtaining the cropped hand images Ih 2 R3⇥256⇥256, the left hand images
are flipped to match the orientation of the right hands before being input to the Hand subnetwork.
After predicting the 3D finger rotations ✓h 2 R15⇥3, the outputs of the flipped left hands are reverted
to their original orientation. The 3D finger rotations of the left and right hands are denoted as ✓rh and
✓lh respectively. When training the full version on hand datasets, we also output the global orientation
✓hg 2 R3, shape �h 2 R10 and camera ⇡h 2 R3. However, these branches are discarded during
whole-body estimation and training.

Face subnetwork. This subnetwork generates the 3D jaw rotation ✓f 2 R3 and expression  f 2 R10

from the cropped face image If 2 R3⇥256⇥256. When training the full version on face datasets,
additional outputs include the global orientation ✓fg 2 R3, shape �f 2 R50, expression  f 2 R50

and camera ⇡f 2 R3. These branches are also discarded during whole-body estimation and training.

Implementation details. The training and evaluation of our model builds upon the MMHuman3D
framework [7]. For model initialization, we pre-train the ResNet backbone on the MSCOCO 2D
whole-body human pose dataset. During training, we use the Adam optimizer with a mini-batch
size of 32 and apply data augmentations, e.g., scaling, rotation, random horizontal flip, and color
jittering. The initial learning rate is set to 10e�4, decayed by a factor of 10 at the later epoch. We
use the SMPL, MANO, FLAME and SMPL-X body models for the training of body, hand, face and
wholebody respectively. Further details will be provided in our code.

C Comparison with PyMAF-X

Below we provide detailed discussions and comparisons with PyMAF-X [58].

1. Acquisition of part bounding boxes: PyMAF-X relies on an off-the-shelf whole-body pose
estimation model (OpenPifpaf) to obtain whole body 2D keypoints of the person in the
image, from which part crops are derived. During the EHF evaluation, PyMAF-X employs
hand and face bounding boxes derived from OpenPose keypoints. In contrast, our method
and other works (ExPose [6], PIXIE [11], Hand4Whole [35] and OS-X [27].) encompass a
self-integrated module designed to extract hand and face bounding boxes directly from the
image.

2. Operational efficiency: Openpifpaf imposes extra computation during inference, making
PyMAF-X less efficient than our method. Please refer to Section K in Appendix.

3. Network architecture: Due to the diverse backbone and dataset combinations utilized, it
is challenging for us to make whole-body network comparisons. In Table 1, we focus
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on contrasting RoboSMPLX’s Hand subnetwork with PyMAF’s Hand subnetwork. Both
networks are trained and evaluated on the same backbone and dataset, FreiHAND. In this
context, our method surpasses PyMAF.

4. Performance: On the EHF metrics, our performance lags behind PyMAF-X. This could
potentially arise from variations in the training datasets employed. While the training
pipeline of the body network for PyMAF-X has been disclosed, the training specifics for
hands and face and the methodology to integrate hand, face, and body module PyMAF-X,
remains undisclosed. We intend to replicate with similar training datasets in the future.

D Analysis of performance on AGORA test set

Figure 13 visualise samples with significant errors during training. AGORA contains extensive
person-to-person occlusion, frequently leading to substantial overlap between the target individual
(marked with red vertices) and another person. In cases that experienced large errors, the model often
incorrectly identified the target individual as the person situated in the forefront (model predictions
marked with green vertices), thereby introducing instability throughout the training process due to
the model’s challenge in accurately discerning the intended subject.

We also added qualitative comparisons of RoboSMPLX under varying scales and alignments as shown
in Figures 14. We demonstrate that RoboSMPLX produces better pixel alignment of the body, and
more accurate hand and face predictions where the target person has been accurately identified.

Figure 13: Visualisation of samples with high errors at train time. Red vertices indicates the target person
while green vertices are the model’s predictions.

Figure 14: Visualisation of Expose [41], PIXIE [11], Hand4Whole [35], OS-X [27] and RoboSMPLX under
different scales and alignment on AGORA validation set.
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Figure 14: Visualisation of Expose [41], PIXIE [11], Hand4Whole [35], OS-X [27] and RoboSMPLX under
different scales and alignment on AGORA validation set (cont.).
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E Ablation on Body Subnetwork

Table 12 shows the ablation of different modules on the Body subnetwork. The conclusions derived
from the Hand ablation study (Table 11) extends to the Body subnetwork as well.

Table 12: Ablation of different modules on Body subnetwork. Results are trained on EFT-COCO and
tested on 3DPW test set.

loss representation PA- MPJPE

Baseline (HMR) - - 60.8 96.2
LF (all) - - 56.7 105.7
LF (all), Lcon L1 pose 55.9 90.9
LF (all), Lcon MSE pose 58.5 93.9
LF (all), Lcon SmoothL1 pose 56.6 92.5
LF (all), Lcon L1 pose(rot6d) 58.9 95.0
LF (all), Lcon L1 pose + go 76.8 118.9
LF (all), Lcon , +ve L1 keypoints 55.4 90.56

F Qualitative and quantitative comparisons for pixel alignment

Figure 15: (C) Visualisation from training with and without Lproj .

Prevailing metrics such as Per Vertex Error (PVE) and Mean Per Joint Position Error (MPJPE) do
not incorporate alignment measurement in their evaluation. Before these metrics are computed, the
mesh undergoes root alignment, but this process does not necessarily reflect the level of alignment
accuracy when the mesh is reprojected back into the image space.

Moreover, for pose and shape estimation methods, the absence of ground-truth camera parameters
implies that there is no direct supervision for these parameters. Camera parameters are, instead,
often weakly supervised through the supervision of projected keypoints (derived from regressed
joints of the mesh and predicted camera parameters) and the ground-truth 2D joints by ensuring their
alignment. This only provides a sparse supervision. To enhance better learning of camera, pose and
shape parameters, pixel alignment strategy is introduced, which ensures denser supervision.
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Presently, there’s an absence of a metric tailored to gauge the degree of pixel alignment of a mesh in
this context. We included qualitative examples of training with and without Lproj , and demonstrate
that the projection of vertices results in better pixel alignment (Figure 15).

Figure 16: Projected Vertex Errors is measured as
distance between projected ground-truth (red) and
predicted (blue) vertices in image space.

Method Projected Vertex Errors #

HMR (no PA) 11.796
HMR + PA (vertex) 11.211
HMR + PA (part-seg) 10.298

Table 13: Results of Projected Vertex Errors under
different Part Alignment (PA)

To provide quantitative analysis, we measure errors between the projected 2D vertices of ground-truth
and projected meshes (Figure 16). From Table 13, it is evident that omitting the pixel alignment
module leads to suboptimal outcomes. In contrast, our pixel alignment strategy, leveraging rendered
segmentation maps, showcases better performance than using vertex loss as supervision.

G Failure cases

Figure 17: Examples of failure cases. (1) Inaccurate beta estimation due to out-of-distribution data
(children) (2) Severe object-occlusion (3) Person-person occlusion (4) Prediction for wrong person in
multi-person scenarios.

H Embedding similarity

Our use of the contrastive module is motivated by the need to constrain/maintain the same pose
feature for different augmentations, to avoid domain shift caused by strong augmentation alone. The
experiments show that the use of strong augmentation alone for training can lead to performance
deterioration, while combining it with the contrastive loss consistently results in minimal errors
(Table 11).
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Table 14: Ablation of CFE module on Hand Subnetwork. (This excludes Localization and Pixel Alignment
Module). Results are trained and evaluated on FreiHAND.

Method PA-MPJPE # MPJPE # PA-PVE # PVE # Pose embedding distance #

Model 0: HMR 8.06 16.78 7.85 16.71 0.132
Model 1: HMR + Strongaug 8.47 17.01 8.11 16.17 0.138
Model 2: HMR + Strongaug + CL 7.79 15.68 7.41 15.27 0.101

To illustrate this further, we delved into a visualization of the pose similarity for augmented samples.
The findings reveal that augmented samples are perceived as dissimilar in both Model 0 and Model
1 (Table 14). Yet, when examining Model 2, a marked increase in embedding similarity is evident,
underscoring the advantage of the contrastive approach.

I Discussion of pose versus keypoint representation

Figure 18: Comparison of keypoints and pose representations.

Figure 18 compares two distinct methods for image retrieval: one based on pose similarity (rot6d
representation) and the other based on keypoint similarity. Samples with high keypoint similarity
tends to have comparatively high pose similarity. On the contrary, similar pose representation might
have considerably lower joint representation. This could occur due to the accumulation of minor
discrepancies in joint rotations which, over time, may result in significant disparities in the keypoints.
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This results in instances where the overall pose of the retrieved sample is very high to the query
sample, but the keypoints may not coincide as accurately. Meanwhile, using keypoint representation
would result in samples that have demonstrate improved alignment with the query image, presenting
a more accurate correspondence.

This could explain why using regressed keypoints as representation have better performance (Table 9).
Clustering based on keypoint similarity is more effective than pose similarity, as pose representation
might be susceptible to minor shifts in joint rotations.

J Extra comparisons against SOTA body networks

There are many factors affecting training,including, but not limited to, the choice of backbone,
datasets employed, and specific protocols executed during evaluation. Specifically, with regards
to 3DPW, various protocols—ranging from fine-tuning (3DPW Protocol 1), collective training,
to omission during training (3DPW Protocol 2)—have a large influence on 3DPW results in the
evaluation process.

In Table 15, we outperform HybrIK when using the same backbone (HRNet-W48) and not fine-tuning
on 3DPW (3DPW Protocol 2). Notably, CLIFF incorporated 3DPW within its training datasets. Given
that our approach and that of both HybrIK and CLIFF do not utilize identical dataset combinations, a
direct comparison becomes inherently challenging.

Table 15: Evaluation of HybrIK, CLIFF and our network on 3DPW. Our results are also available in Table 2.
Method Backbone F-T on 3DPW PA-MPJPE (3DPW) MPJPE (3DPW)

HybrIK HRNet-W48 No 48.6 88.0
HybrIK HRNet-W48 Yes 41.8 71.3
CLIFF Res-50 Trained with 3DPW 45.7 72.0
CLIFF HRNet-W48 Trained with 3DPW 43.0 69.0
Ours Resnet-50 No 49.8 80.8
Ours HRNet-W48 No 48.5 80.1

We have provided qualitative comparisons of body-only methods under different scale and alignment
in Figure 21. Below, we provide quantitative evaluations of our method with HMR, SPIN and PARE
(Table 16). Our method is able to achieve better performance under different scales and alignment.

Table 16: Evaluated on 3DPW (PA-MPJPE/MPJPE) under different scales and alignment. * denote the same
dataset combination

Normal Transx +0.2x Transx -0.2x Transy +0.2y Transy -0.2y Scale 1.3x Scale 0.7x

HMR 67.53/112.34 77.31/141.70 77.06/ 138.51 86.57/ 151.15 77.26/148.33 68.46/ 117.1 75.38/ 124.79
SPIN 57.54/94.11 70.14/122.56 68.67/ 120.04 73.08/ 111.33 70.64/133.2 61.08/ 103.60 61.63/ 99.6
PARE (HR32) * 49.3/81.8 74.9/139.2 77.1/ 141.7 59.1/92.3 64.2/ 109.7 54.7/86.9 50.5/ 83.9
Ours (R50) * 49.8/80.8 67.2/117.2 67.72/111.5 56.4/90.0 62.8/105.6 50.2/84.6 50.8/ 82.4

K Training and inference time

Our model was trained utilizing a cluster of 8xTesla V100-SXM2-32GB GPUs. Specific to the
training duration, the hand models required approximately one day, whereas the body and face
models necessitated two days. The joint training process was completed within a day.

We measure the model size, computation complexity and inference time for different models including
ours, as shown in Table 17. Although our framework has sophisticated design, it has comparable
inference speed as others, validating its efficacy.

L Quantitative evaluation of predicted bounding box accuracy

To assess the precision of predicted part bounding boxes on the EHF test set, we utilized Intersection
over Union (IoU) as our evaluation metric (see Figure 19). Our method achieved the highest IoU
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Table 17: These results are tested on RTX3090. FLOP refers to the total number of floating point operations
required for a single forward pass. The higher the FLOPs, the slower the model and hence low throughput.
Inference Time is obtained by averaging across 100 runs.

Total parameters (M) GFLOPs Inference time (s)

ExPose 26.06 21.04 0.1330 ± 0.0050
PIXIE 109.67 24.23 0.1670 ± 0.0065
Hand4Whole 77.84 17.98 0.0709 ± 0.0022
OSX 422.52 83.77 0.1998 ± 0.0028
PyMAF-X (gt H/F bbox) 205.93 33.41 0.2194 ± 0.0027
PyMAF-X + OpenPipaf 205.93 + 115.0 33.41 + 120.52 0.2727 ± 0.0136
RoboSMPLX 120.68 29.66 0.2008 ± 0.0220

scores, as demonstrated in Table 18. It is important to note that in the OSX implementation, the hand
and face features are cropped from the body features rather than directly from the image.

Figure 19: Calculation for the Face, LHand and
RHand IoU scores for ground-truth (green) and
predicted (red) part bounding boxes.

Method Face IoU LHand IoU RHand IoU

ExPose 0.61 0.23 0.31
PIXIE 0.66 0.34 0.36
Hand4Whole 0.75 0.41 0.45
OSX 0.70 0.38 0.41
RoboSMPLX 0.86 0.52 0.55

Table 18: Results for IoU of the predicted part
bounding boxes on the EHF test set.
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Figure 8: Inference on AffectNet validation images using Expose [6] and RoboSMPLX’s Face subnetwork.
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Figure 9: Left: Query image from the EFT-COCO-Test set, Right: Retrieved image from the EFT-COCO-
Train set ordered in descending embedding similarity.
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Figure 10: Left: Query image from the EFT-COCO-Test set, Right: Retrieved image from the EFT-
COCO-Train set ordered in descending embedding similarity.
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Figure 11: Left: Query image from the EFT-COCO-Test set, Right: Retrieved image from the EFT-
COCO-Train set ordered in descending embedding similarity.
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Figure 12: Left: Query image from the EFT-COCO-Test set, Right: Retrieved image from the EFT-
COCO-Train set ordered in descending embedding similarity.
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M Qualitative comparisons for different models under augmentation

We show qualitative comparisons of RoboSMPLX’s Hand (Figure 20), Face (Figure 21) and Body
(Figure 21) subnetwork to existing models under different positional augmentations.

In general, RoboSMPLX s’ subnetworks demonstrate better pixel alignment and are less sensitive to
changes in scale and alignment.

Figure 20: Comparison of ExPose [6], Hand4Whole [35] and RoboSMPLX’s Hand subnetwork under
various augmentations on FreiHAND test set.
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Figure 20: Comparison of of ExPose [6], Hand4Whole [35] and RoboSMPLX’s Hand subnetwork under
various augmentations on FreiHAND test set (cont.)
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Figure 21: Comparison of ExPose [6] and RoboSMPLX’s Face subnetwork under various augmentations
on AffectNet val set.
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Figure 21: Comparison of HMR [17], SPIN [22], PARE[20] and RoboSMPLX’s Body subnetwork under
various augmentations on COCO validation set.
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Figure 21: Comparison of HMR [17], SPIN [22], PARE[20] and RoboSMPLX’s Body subnetwork under
various augmentations on COCO validation set (cont.)
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N Quantitative and qualitative comparisons for wholebody models

We provide quantitative comparisons of wholebody models under different augmentations on EHF
test set in Figures 22 and 23. We also added qualitative comparisons under different scale and
alignment on EHF test set in Figures 24 to 26. We demonstrate that RoboSMPLX produces better pixel
alignment of the body, and more accurate hand and face predictions. In addition, we inference on
in-the-wild examples on COCO-validation set in Figures 27 and 28.

Figure 22: Wholebody errors under different amounts of augmentation on EHF test set. The gray line
indicates baseline performance without augmentation.
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Figure 23: Wholebody errors under different amounts of augmentation on EHF test set (cont.) The gray
line indicates baseline performance without augmentation.
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Figure 24: Visualisation of Expose [41], PIXIE [11], Hand4Whole [35], OS-X [27] and RoboSMPLX under
different scales on EHF test set.
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Figure 25: Visualisation of Expose [41], PIXIE [11], Hand4Whole [35], OS-X [27] and RoboSMPLX under
different levels of horizontal translation on EHF test set.
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Figure 26: Visualisation of Expose [41], PIXIE [11], Hand4Whole [35], OS-X [27] and RoboSMPLX under
different levels of vertical translation on EHF test set.
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Figure 27: Visualisation of Expose [41], PIXIE [11], Hand4Whole [35], OS-X [27] and RoboSMPLX under
different scales and alignment on COCO validation set.
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Figure 28: Visualisation of Expose [41], PIXIE [11], Hand4Whole [35], OS-X [27] and RoboSMPLX under
different scales and alignment on COCO validation set.
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Figure 29: Augmentations for Hand sub-networks. Blue and red labels represent location-variant and
pose-variant augmentations respectively.
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