
2862 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

A Practical Fog-Based Privacy-Preserving Online
Car-Hailing Service System

Jianfei Sun , Guowen Xu , Member, IEEE, Tianwei Zhang , Member, IEEE,

Mamoun Alazab , Senior Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract— Aiming for minimizing passengers’ waiting time and
vehicles’ vacancy rate, online car-hailing service systems with fog
computing has been deployed in various scenarios. In this paper,
we focus on addressing the security and privacy issues in such a
promising system by customizing a new cryptographic primitive
to provide the following security guarantees: (1) private, fine-
grained and bilateral order matching between passengers and
drivers; (2) authenticity verification of passengers’ orders in the
form of ciphertext, and (3) temporal assurance of passengers’
ciphertext orders. To the best of our knowledge, no previous
system has been designed to meet all three requirements. Existing
cryptographic primitives (including forward/puncturable encryp-
tion (FE/PE) and attribute based matchmaking encryption (AB-
ME)) may be leveraged to partially address some of challenges,
but there lacks a comprehensive solution. Moreover, the integra-
tion of existing works is hampered by the heterogeneity and the
weak coupling between distinct cryptographic primitives. As a
result, it is infeasible to directly exploit them for the online car-
hailing service. To tackle that, we put forward a new crypto-
graphic primitive called Fine-grained Puncturable Matchmaking
Encryption (FP-ME) by modifying AB-ME and incorporating PE
technology. FP-ME can simultaneously implement fine-grained
and bilateral order matching, the authenticity of passengers’
orders, and meeting the time constraint of passengers’ orders.
We formalize the adversarial models for the proposed FP-ME
and then present rigorous security analysis to prove the security
of the proposed system. Additionally, we study performance of
the system via simulations to demonstrate its practicability and
effectiveness in the real-world applications.

Index Terms— Fine-grained and bilateral order matching,
temporal assurance, authenticity.

I. INTRODUCTION

W ITH the advent of the mobile Internet era, mobile appli-
cations have become the first preference for people to

Manuscript received 14 January 2022; revised 9 June 2022 and 12 July 2022;
accepted 20 July 2022. Date of publication 3 August 2022; date of current
version 12 August 2022. This work was supported by Nanyang Technological
University (NTU)-DESAY SV Research Program under Grant 2018-0980. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. George Theodorakopoulos. (Corresponding author:
Guowen Xu.)

Jianfei Sun, Guowen Xu, and Tianwei Zhang are with the School of
Computer Science and Engineering, Nanyang Technological University,
Singapore 639798 (e-mail: jianfei.sun@ntu.edu.sg; guowen.xu@ntu.edu.sg;
tianwei.zhang@ntu.edu.sg).

Mamoun Alazab is with the College of Engineering, IT and Environ-
ment, Charles Darwin University, Casuarina, NT 0810, Australia (e-mail:
alazab.m@ieee.org).

Robert H. Deng is with the School of Computing and Information
Systems, Singapore Management University, Singapore 178902 (e-mail:
robertdeng@smu.edu.sg).

Digital Object Identifier 10.1109/TIFS.2022.3196271

deal with all aspects of life [1]–[3]. As one of frequently and
widely used applications, fog-based online car-hailing apps,
such as Uber, Didi and Lyft, have emerged as among the
most popular platforms to render on-demand transportation
service [4]–[6]. To hire vehicles, passengers simply need to
type in their targeted pickup location and destination in the
app and submit the request to a service platform. In response,
the platform generally uses fog nodes to either forward the
request to some drivers close to the pickup location, or directly
schedule a close-by driver to take the order. Compared to
the traditional “besiege and chase” trip mode, the online
car-hailing mode not only is much more convenient, efficient
and flexible for passengers, but also greatly alleviates the
burdens of drivers about prospecting for customers all the time.

A. Security and Privacy Issues

Despite the great convenience and benefits for both drivers
and passengers brought by online car-hailing service plat-
forms, there exist distinct types of critical security and privacy
challenges to be tackled [7]–[9]. In this paper, we consider
the following three potential problems as well as the corre-
sponding security requirements.

1) Privacy and Authenticity of Passengers’ Orders: In an
online car-hailing system, passengers’ order messages are
often sensitive and should be properly encrypted so that
only legitimate recipients can access them. Moreover, the
authenticity of the order information should be effectively
verified. Obviously, a malicious user may intercept the wireless
communication signal to eavesdrop, delete, edit the order
message of a legitimate user, or disguise himself as a legitimate
user to intentionally send some malicious order requests. Once
the user’s order is completed in the case of malicious manipu-
lation, it easily gives rise to disputes between passengers and
drivers.

2) Private, Fine-Grained and Bilateral Order Matching
Between Passengers and Drivers: Considering that in practice,
passengers sometimes would not like to choose vehicles that
the online car-hailing platform recommends, and they usually
prefer to selectively designate some vehicles which meet
their requirements, such as “ proximity to pickup location”,
“punctuality”, “high-end car model”, “high positive rating”
and “low expense”, to take orders for the better trip experience.
Correspondingly, drivers also hope to specify some require-
ments, such as “close pick up location”, “high praise rating”,

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6944-8378
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0002-1928-3704
https://orcid.org/0000-0003-3491-8146

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2863

“high expense”, “appropriate destination”, and “additional
gratuity”, to filter out some ideal passengers to take trips.
Obviously, such a personalized service is feasible in plaintext.
However, since the personalized settings of passengers and
drivers may contain sensitive information about each other, this
requires us to implement the above requirements in ciphertext.
Unfortunately, the unlinkability between ciphertexts makes it
very difficult to perform matching between messages.

3) The Timeliness of Passengers’ Ciphertext Orders: When
passengers forward the ciphertext requests via the system
platform for finding the suitable drivers, they usually hope
that the order requests can be quickly responded within a
certain time period. Once the time to take orders exceeds
a certain threshold, the order would be invalid. As a result,
the plaintext information of the invalid orders should not be
accessed by anyone except the data sender. In this case, the
passenger needs to regenerate a new order if it still needs to
be served. Of course, delivery of newly generated order also
needs to satisfy the property of timeliness.

B. Challenges

1) Incompleteness of Existing Works: to the best of our
knowledge, there is no existing effort in the literature to
solve the above three problems in the scenario of online car-
hailing. Existing cryptographic primitives, including dual pol-
icy attribute-based encryption (DP-ABE) [10]–[12], attribute
based signcryption (ABSC) [13]–[15], forward/puncturable
encryption (FE/PE) [16]–[19], puncturable attribute based
encryption (PABE) [20], [21] and attribute based matchmaking
encryption (AB-ME) [22], [23] may be utilized to alleviate
the above problems; however, these methods are unilateral in
nature and only applicable to certain problems (see Section II
for detailed discussion). In brief, with the properties of
supporting policy-based data access control between entities,
although DP-ABE can be employed to achieve fine-grained
and bilateral order matching between passengers and drivers,
it does not meet the security requirements (1) and (3) men-
tioned above. Similarly, ABSC can only be used to partially
address the security requirements (1) and (2), as it enables to
verify the authenticity of the data and provide a one-way order
matching. To satisfy the security requirement (3), FE/PE and
PABE are feasible solutions since they are both designed to
ensure the timeliness of data. As a promising primitive, AB-
ME is feasible to address security requirements (1) and (3),
due to its inherent properties of supporting data access control
and verifiability, however, it cannot guarantee the timeliness
of data.

2) Potential Solutions as Well as Challenges: security
requirements (1) to (3) may be settled by the integration
of the above-mentioned primitives. A natural approach is
to incorporate the principles of AB-ME and PE or PABE
and ME to construct fine-grained puncturable matchmaking
encryption (FP-ME). However, realizing this goal seamlessly
and efficiently is non-trivial due to the following challenges:
(a) constructing such an FP-ME scheme is not simply combin-
ing the two primitives together (i.e., PABE and ME or AB-ME
and PE). For the approach of combining PABE and ME, it is

firstly intractable to create a proper encryption key that can
ensure the original structure of the PABE-based ciphertext
would not be destroyed. This is because the encryption key
related to the attributes of a sender (i.e. passenger) commonly
affects the ciphertext associated with the access policy; (b)
another challenge is to guarantee that the access policies built
by a passenger and a driver are simultaneously checked to
avoid any privacy exposures. The reason of privacy leakage
stems from that once an encrypted order is correctly decrypted
(resp. is failed to decrypt), then a driver can infer that his/her
specified policy is matched completely (resp. is unmatched)
by the passenger’s attribute information. For the combination
approach of AB-ME and PE, there is no straightforward
way of integrating the attribute-based decryption key and
punctured key due to the fact that these two types of keys
are separately produced but must be integrated in a coherent
manner depending on the same master secret key. Even though
this approach is feasible, the key size would be the sum of the
sizes of the punctured keys and attributes in an access policy.

Another possibly technical solution is to incorporate the
principles of DP-ABE, ABSC and FE/PE. For the combination
of DP-ABE, ABSC and FE, regardless of whether these
primitives can be perfectly integrated, this solution is actually
impractical. This is because (a) all drivers need to send
online-requests to the key distribution center for updating
their secret keys to decrypt the latest encrypted orders once
the previous order is invalid, which apparently results in
prohibitive costs for drivers and requires a key distribution
center to be always online; (b) for the integration of DP-
ABE, ABSC and PE, it is possible but pretty intractable to
construct such an efficient scheme, which originates from
that in addition to these reasons for heterogeneity and low
coupling, the complexity and inefficiency of these primitives
themselves are also reasons to be considered.

C. Our Contributions

In this paper, we for the first time consider and design a
fog-based privacy-preserving online car-hailing service system
by using our new cryptographic primitive referred to be as
fine-grained puncturable matchmaking encryption (FP-ME),
which is capable of ensuring the order authenticity, supporting
the fine-grained access strategies specified by both participants
in encrypted form and realizing the timeliness of users’ orders.
Specifically, a passenger can encrypt-then-sign his/her order
message containing his/her personal information and designate
a policy that the order can be publicly authenticated and
taken only by his/her ideal drivers. A driver can decrypt the
encrypted order if and only if a passenger can be regarded
as his/her ideal partner as specified through a policy at the
specified time. In brief, the contributions can be summarized
in the following.

• Order source authenticity. To ensure the authenticity
of the order to be transmitted, the proposed FP-ME
scheme permits a driver to embed a signature associated
with a set of attributes into a ciphertext order, such
that both the generated order and the designated access

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

2864 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

policies retrieved and derived by the drivers would not
be tampered with, forged or replaced.

• Fine-grained and bilateral order matching. To provide
fine-grained and bilateral order matching strategy for
both participants, the proposed FP-ME scheme allows
both participants (i.e., senders and recipients) to specify
fine-grained access policies for the encrypted order, such
that the encrypted order can be revealed in case that both
strategies are only matched by the respective counterpart.

• Timeliness of passengers’ ciphertext orders. To enable
the timeliness and confidentiality of the orders, the pro-
posed FP-ME scheme empowers a passenger to embed
a timestamp to specify the timeliness of his/her order.
Furthermore, once the order expires, it also permits a
passenger to regenerate a new order if it still needs to
be served. During the whole order implementation, the
newly generated instructions can still satisfy the property
of timeliness.

• Security and efficiency. To realize stronger security,
the FP-ME scheme reduces the security assumptions
(e.g., both participants are assumed to be malicious),
thereby making the security model stronger. Additionally,
to achieve higher efficiency, the heavy workload (e.g.,
signature verification) is migrated to a semi-trusted third
party (i.e., fog node) to complete. Both considerations
can make FP-ME more practical and feasible in this
applied scenario. We give rigorous security proofs to
indicate that the FP-ME scheme is secure against cho-
sen plaintext attacks and forgery attacks. Moreover, the
simulation results exhibit the security-performance trade-
off of the FP-ME scheme to be applicable in real-world
applications.

II. RELATED WORKS

In summary, existing approaches used in the scenario of
online car-hailing could be roughly divided into three cat-
egories: Fine-grained access control, PE/FE-based and ME-
based techniques. In this section, we show them separately
and compare their strengths and weaknesses.

A. Fine-Grained Access Control

To alleviate the existing limitations in the conventional
coarse access strategy, the notion of attribute based encryp-
tion (ABE) as a versatile and fine-grained cryptographic tool
was first formulated by Goal et al. [25]. There are two primary
variants of ABE: ciphertext-Policy ABE (CP-ABE) [26]–[28]
and key-policy ABE (KP-ABE) [29], [30]. In a CP-ABE/KP-
ABE, an access strategy is attached to ciphertexts/keys and
keys/ciphertexts are associated with a set of attributes. A key
is capable of recovering the message hidden in ciphertexts on
condition that the set of attributes satisfy the access policy.
Though the use of ABE can solve fine-grained access control
to the encrypted order for either of two participants in the
scenario of online car-hailing, it cannot realize a bilateral
order matching strategy with fine-granularity. To handle the
one-way fine-grained access control limitation, dual-policy
ABE (DP-ABE) [10]–[12] as an aggregation of CP-ABE and

KP-ABE was proposed, which enables a sender to choose
both an access strategy and an attribute set to encrypt the
message, such that the encrypted message can be revealed
with the matched recipient’s decryption key describing his/her
policy and attributes. Correspondingly in the online car-hailing
application, the encrypted order can be recovered and taken
if both strategies of passengers and drivers are satisfied by
the respective counterpart. Indeed, DP-ABE could realize
fine-grained and bilateral order matching between passengers
and drivers. It however cannot guarantee the order authentic-
ity. Generally speaking, the data source authenticity can be
ensured with digital signatures. Attribute-based signcryption
(ABSC) [13]–[15] as a potential and state-of-the-art primitive
can simultaneously support fine-grained access control as well
as data authenticity, which of course can ensure the order
authenticity. But the fly in the ointment is that it can nei-
ther support fine-grained bilateral access strategy nor provide
lightweight decryption operations for mobile users.

B. Forward Security

Forward security is a desirable property that can perfectly
ensure the confidentiality of past messages even if someone
has the current compromised decryption keys. This feature can
realize the timeliness of user orders in the scenario of online
car-hailing. Currently, most cryptographic primitives to feature
this property can be categorized into two flavors: forward
encryption and puncturable encryption. Forward encryption
(FE) [16], [17] can achieve that the user’s key is invalid after
a time period t to revoke the decryption capability of any
ciphertext encrypted prior to t . Following FE, many FE-related
works were proposed, such as forward secure identity-based
encryption [31], forward secure ABE [32] and forward-secure
predicate encryption [33], etc. However, all of these public
key cryptosystems based on FE have a common defect:
they either depend on producing many keys or frequently
utilizing interactive forward secure protocols. Puncturable
encryption (PE) [18], [19] as a remarkable technique enables
the non-interactive forward secure property. Specifically, the
secret keys in PE are puncturable to revoke the decryption
capability for selected messages, receivers and time periods,
thus achieving the privacy-protection of the past messages
even though the compromise of the current secret key occurs.
Distinct from the conventionally interactive FE technology,
with the PE technique, authorized users can update their keys
by themselves in case of no assistance from a third party.
To date, PE-related proposals have also been enriched, such as
puncturable identity-based encryption [34], puncturable ABE
(PABE) [20], [21], etc. Although parts of PE-related works like
PABE to be deployed in online car-hailing can realize one-way
fine-grained access policy and the timeliness over encrypted
order, the order source authenticity and bilateral access order
matching cannot be ensured.

C. Matchmaking Encryption

Matchmaking encryption (ME) [22], [24] as a novel promis-
ing paradigm was proposed to solve the problem that both par-
ticipants in the secret handshake protocol (SH) need to interact

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2865

TABLE I

FUNCTIONALITY COMPARISONS OF OUR FP-ME AND OTHER RELATED WORKS

online at all times. In this scenario, both senders and recipients
can designate strategies the other participant must meet in
order for the encrypted plaintext to be recovered. Besides,
a signature is attached to a ciphertext and the sender’s access
strategy such that the data authenticity can be guaranteed.
During the whole process, both participants do not require
to interact with their respective counterpart. To be applied
to the online car-hailing scenario, these nice characteristics
enable the authenticity of the order and realize the bilateral
access order matching simultaneously. To further enrich ME,
a fine-grained ME named attribute-based ME (ABME) [23]
was recently proposed. In addition to inheriting the advantages
of the original ME primitive, it can implement fine-grained
bilateral access strategies to the encrypted message. However,
all of the existing ME-related proposals cannot ensure forward
secure messaging. Namely, if they are deployed in the appli-
cation of online car-hailing, the timeliness of user order will
fail to achieve.

TABLE I summarizes the characteristic comparisons among
existing related solutions and ours. Specifically, only our
FP-ME can support fine-grained bilateral order matching,
order authenticity as well as timeliness of the encrypted
order while the other proposals just achieve partial features.
Compared to other solutions, the CP-ABE proposals [26]–
[28] only support fine-grained access control; the DP-ABE
works [10]–[12] simply realize both fine-grained access con-
trol and bilateral matching; the ABSC proposals [13]–[15]
exclusively achieve fine-grained access control and outsourced
verification; the FS-ABE primitive [32] gains fine-grained
access control and forward security but fails to implement
key self-updating; the ME primitive [22] realizes bilateral
matching, data authenticity, outsourced verification but is inca-
pable of supporting fine-grained access strategy; the MABE
scheme [23] enables all listed functionalities but fails to
ensure forward security; the PABE proposals [20], [21] support
fine-grained access control and forward security.

III. PROBLEM STATEMENTS

In this section, the system & threat models of our proposed
fog-based privacy-preserving online car-hailing service system
are introduced. Besides, we also present the design require-
ments and goals of the proposed system.

Fig. 1. System model.

A. System and Threat Models

We consider a fog-based privacy-preserving online
car-hailing service system that allows the passengers to
request for rides from the drivers through the edge server.
As presented in Fig. 1, five different roles are included in the
designed system: Passengers (Data senders), a cloud server
(CS), fog nodes (FNs), a trusted authority (TA) and drivers
(Data Recipient). The detailed descriptions for these types of
entities are given below:

• TA takes charge of performing certificate verification for
system users, initializing the system public keys and
then distributing them to other entities (see step. 1�).
Additionally, it can not only produce the encryption keys
for passengers to sign their order information (see step.
2�), but also create the decryption keys and punctured

keys for drivers for recovering the encrypted target data
(see steps. 3� and 4�).

• Passengers are deemed as data senders with mobile
devices, who encrypt and sign their order information
associated with the specified attribute sets with their
encryption keys, and then outsource the generated cipher-
text to FNs (see step. 5�).

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

2866 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

• FNs are edge servers acting as caches to store encrypted
order information or working as intermediaries to com-
municate with other data recipients. In our model, after
making the request for rides from drivers (see step. 6�),
FNs first retrieve their own local storage or interact with
other neighbor FNs to assist data senders to find ideal
drivers (see step. 7�). If no responses to the requests are
found, FNs forwards the queries to CS.

• Drivers are regarded as data recipients who take orders
and provide target passengers with ride services, where
the target passengers can be selected by the designated
attribute set requirements (see step. 8�).

• CS is considered as a remote server, which owns enough
long-term storage resources to accommodate the data and
forwards the shared encrypted data to FNs.

Under the above described models, we assume that the KGC
is an entirely trusted entity due to the responsibility of cre-
ating the public keys, private keys and punctured keys for
corresponding system users. FNs and CS are considered as
semi-reliable entities in the sense that they honestly follow
system operations but are curious about the information of
passengers and drivers, such as pick-up location, destination
location, etc. Passengers are deem to be untrustworthy who
may pretend to be any other authorized passengers from
tampering with, forging, modifying and even generating illegal
order messages. Drivers are assumed to be dishonest, who
can also pretend to be authorized drivers or collude with the
other entities, such as CS or FNs, to obtain the orders from
legitimate passengers.

Remark: The passenger picks an access strategy indicating
the passenger’s driver preference and embeds it into the order
ciphertext along with his/her own attribute set reflecting the
driver’s passenger preference. The produced ciphertext order
is stored in the clouds or fogs for locally searching and
matching. When a driver intends to take orders via an online
car-hailing service platform, he/she also chooses and sends an
access strategy indicating his/her requirement preference to the
clouds/fogs for order matching. After receiving the request,
the clouds/fogs proceed with the order matching operation
between ciphertext orders and a requested access strategy of
a driver by performing the verification algorithm. Since the
ciphertext order embeds the attributes of a passenger and a
driver sends his/her preference strategy to the clouds/fogs, the
ciphertext order is matched successfully if the attributes of
a passenger meet the strategy of the driver (i.e., the equality
shown in the verification algorithm holds).

B. Design Requirements and Goals

Under aforementioned system and threat models, a fog-
based privacy-preserving online car-hailing service system
should meet the following requirements and goals:

• Order confidentiality: Due to the sensitive information
(e.g., location, identity, phone number) involved in an
order, the order sent and outsourced to edge clouds or
clouds should be in the form of ciphertext and can only
be revealed by authorized recipients. Furthermore, the

confidentiality of the past order should also be kept once
the time to access the order is beyond its timeliness.

• Privacy-preserving of attributes: In consideration of the
attributes embedded in the ciphertext commonly indicat-
ing the special requirements of data senders or recipients,
the leakage of attributes give adversaries more clues to
snoop the users’ privacy as well as more chances to
forge a valid ciphertext. Hence, the privacy preserving of
attributes should be protected to hinder malicious users
from snooping the privacy or forging valid ciphertexts.

• Efficiency: In view of the commonly equipped mobile
devices with limited resources, the system should be
efficient for practical use and support ride-matching in
the real-time fashion.

• Security: Various attacks can be launched by the cloud
server or other authorized users to lead to the system
impracticability or even system crashes, such as eaves-
dropping attacks, impersonate attacks, collusion attacks,
etc. The system should be resistant against those threats
such that it can prevent malicious adversaries from learn-
ing information they shouldn’t know. For instance, the CS
and FNs should know nothing about the pick-up locations
or destinations of the riders or drivers except the final
order-matching results.

Remark: It is noting that dynamic attributes are unsuitable
for producing attribute-based secret keys. As we all know, the
attributes used for private key generation in all attribute-based
cryptographic solutions are static attributes. The reason orig-
inates from that the attributes used for secret key generation
must be certified in advance by a key generation center (i.e.,
trusted authority), which determines that the attributes are
often static attributes. For the real-time dynamic attributes, it is
really hard and even impractical for the trusted authority to
simultaneously certify all the dynamic attributes of thousands
of passengers and drivers. Besides, for a driver who may
take orders from various geographically dispersed passengers,
it is also inappropriate for a driver to always update his/her
private key for taking distinct orders. In our fog-based privacy-
preserving online car-hailing service system, the dynamic
attributes (e.g., location, waiting time, etc.) along with some
necessary information are encrypted to produce the ciphertext
order, such that the drivers who satisfy the strategy specified
by a passenger can decode the encrypted order.

We also highlight that the privacy-preserving of attributes
can be protected by our FP-ME. As described in [22], [23],
matchmaking encryption can be thought of as a non-interactive
secret handshake (SH) approach, which protects the privacy
of both participants’ identities/attributes. This means that if
the handshake successfully occurs between two participants,
they can only derive that they both belong to the same group
(yet, their identities/attributes are still anonymous to each
other), whereas nothing will be leaked if the handshake fails.
In our FP-ME, by designating fine-grained access policies to
the encrypted data by both participants, a non-interactive SH
function before data revealing can be realized to protect the
attribute privacy of both participants.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2867

TABLE II

NOTATIONS USED IN FP-ME

IV. PRELIMINARIES

This section briefly states the basic knowledge that is
used for the whole manuscript, which contains the notation
description, introduction of complexity assumptions, ABE,
PE and the linear secret sharing structure (LSSS), and the
outline of FP-ME.

A. Notation

Our FP-ME involves the following notations, which are
summarized in TABLE II.

B. Complexity Assumptions

Definition 1 (Complexity Assumptions): FP-ME is reliance
on the following complexity assumptions:

• DBDH Assumption: Given the tuple (g, gλ, gμ, gν,U),
where λ,μ, ν, ωinZp , for the decisional bilinear Diffie-
Hellman (DBDH) problem, it is difficult to discern
whether the tuple is (g, gλ, gμ, gν,U = e(g, g)λμν) or
(g, gλ, gμ, gν,U = R), where R is a random of G1.

• CDH Assumption: Given the tuple (g, gλ, gμ,V), where
λ,μ are also randomly selected from Zp , for the com-
putational Diffie-Hellman (CDH) problem, calculating
V = gλμ is hard.

C. MABE and PE Descriptions

A matchmaking attribute-based encryption (MABE) [23]
scheme is a tuple with the following syntax: (ABE.Setup,
ABE.KeyGen, ABE.EKGen, ABE.Encrypt, ABE.Decrypt):

• ABE.Setup(1λ) → (PK, MSK): On input a security
parameter 1λ, output a public key PK and a master secret
key MSK.

• ABE.KeyGen(MSK,R) → DK: On input the MSK, the
attributes R of a receiver, output a decryption key DK.

• ABE.EKGen(MSK,S) → EK: On input the MSK, the
attributes S of a sender, output a encryption key EK.

• ABE.Encrypt(PK, EK, R, M) → CT: On input PK,
EK, an access strategy R and a plaintext M , output a
cipheretxt CT.

• ABE.Decrypt(PK, CT, DK) → M/⊥: On input the PK,
CT, and DK, output the plaintext M or ⊥ if decryption
fails.

A standard puncturable encryption (PE) scheme [22] is
also a tuple with the following algorithms: (PE.KeyGen,
PE.Encrypt, PE.Puncture, PE.Decrypt):

• PE.KeyGen(1λ, �) → (PK, DK): On input a security
parameter 1λ, and a maximum number of tags per cipher-
text �, output a public key PK and an initial decryption
key DK.

• PE.Encrypt(PK, {t1, . . . , t�}, M) → CT: On input PK,
a list of tags {t1, . . . , t�} and a plaintext M , output a
cipheretxt CT.

• PE.Puncture(PK, DK, t) → CT: On input PK, DK and
a tag t, output a punctured key KP.

• PE.Decrypt(PK, CT, {t1, . . . , t�}, KP, DK) → M/⊥):
On input the PK, CT, KP and DK, output the plaintext
M or ⊥ if decryption fails.

D. Linear Secret Sharing Scheme (LSSS)

Definition 2 (LSSS): A secret sharing scheme � over a set
of parties S is regarded to be linear if the following properties
hold:

• A vector over Zp is formed by the shares for each party;
• There is a secret sharing-generation matrix {M}m×n for

� and a mapping function ρ is set and used to label row
i as ρ(i), where i ∈ [1, m]. In the LSSS structure, when
the secret ς in the column vector �v = (ς, t2, t3, . . . , tn)
is shared, where t2, . . . , tn ∈ Zp , then the vector of m
shares of the secret ς can be denoted as M�v , where the
party ρ(i) includes the share (M�v)i .

E. Outline of FP-ME Scheme

Definition 3 (FP-ME scheme): Our FP-ME scheme is con-
stituted by the following algorithms:

• Setup(1λ, �) → (PK,MSK): TA accepts the maximum
number of tags per ciphertext �, the security parameter λ
and returns a system public key PK and a master secret
key MSK.

• EKGen(MSK,S) → EK: TA generates an encryption
key EK based on the sender’s attribute set S and MSK.

• DKGen(MSK, R) → (DK, KP0): TA accepts the
receiver’s access control R, MSK and returns a decryption
key DK and an initially punctured key KP0.

• Puncture(KPi−1, PK, t) → KPi : Data receiver outputs
a new punctured key KPi according to the existing key
KPi−1, PK and a tag t .

• Encrypt(EK,R,S �, {t1, . . . , t�}, M) → CT: Data sender
generates a ciphertext CT based on his/her own encryp-
tion key EK, the receiver’s attribute set R, the sender’s
attribute set S �, a list of tags {t1, . . . , t�}, and a message
M .

• Verify(S, CT) → 0 or 1: Edge/cloud server returns 1 if
and only if S |� S; otherwise it returns 0 based on a
sender’s policy S and a ciphertext CT associated with
the sender’s attribute set S.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

2868 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

• Decrypt(DK, CT’, KPi) → (M,⊥): Data receiver
retrieves the original message M or returns a symbol ⊥
indicating a decryption failure according to DK, CT’ and
the current punctured key KPi .

F. Security Models

This section formalizes two security games to prove that
FP-ME can not only achieve the indistinguishability under
chosen-plaintext attacks (IND-CPA), but also be existentially
unforgeable under chosen message attacks (EUF-CMA) in the
random oracle model.

Definition 4: If all polynomial time adversaries have negli-
gible advantages in winning the following IND-CPA game,
then FP-ME is secure in the oracle random model. A’s
advantage is defined as Adv = | Pr[ζ = ζ �] − 1

2 |.
• Init: A challenge attribute set R∗ and a set of tags

t∗1 , . . . , t∗� are picked and declared by adversary A.
• Setup: Two empty sets P , C and a counter (n = 0) are

initialized by the challenger B. Then, B runs Setup to
generate the public parameter PK and the master secret
key MSK. Finally, B returns PK to A.

• Phases 1 & 2: A is allowed to make secret key and
current punctured key queries repeatedly. As a response,
B replies to the following queries:

– A makes the queries of secret key for an
access policy R, where R
|� R∗. B conducts
DKGen(MSK, PK, R) → (DK, KP0).

– A makes current punctured key queries for a tag
t where t /∈ {t∗1 , . . . , t∗� }. B first increments n,
conducts Puncture(KP0, PK, t) → KPn and adds
t to the set P .

– Corrupt() is called for the first time when A makes
requests for the punctured key query. After that, as a
response, B gives the latest punctured key KPn to
it and sets P → C . Note that all the subsequent
queries give ⊥. Here one restrictive condition is that
Corrupt() outputs ⊥ if (t∗1 , . . . , t∗�) ∪ P = ∅.

• Challenge: Two equal-length plaintext messages M0 and
M1 are picked and submitted to B. A coin ζ is then
flipped by B to choose a random message used for
producing the challenge ciphertext. After that, B conducts
Encrypt(R∗,S �, {t∗1 , . . . t∗� }, Mζ) → CT∗.

• Guess: A guess ζ � ∈ {0, 1} is responded by A. If ζ = ζ �,
B will return“1” as its response. Otherwise, B returns “0”.

Definition 5: A polynomial time forger F in FP-ME
scheme can break the proposed FP-ME scheme if the advan-
tage in winning the following EUF-CMA game is non-
negligible.

• Init: A challenge attribute set S �∗ picked by a forger F
is sent to the challenger C. It is worth noting that the
forgery signature contains the embedded S �∗.

• Setup: The Setup algorithm is then performed by C to
produce PK and MSK after receiving S �∗. After that, F
obtains the PK sent by C.

• Query Phase: F makes encryption queries on (m,S �)
and S. For these queries, the encryption key EK is
produced and given to F .

• Forgery: A signature σ ∗ for the m∗ and S �∗ is created.
The forger F wins the EUF-CMA game if the signature

σ ∗ is a valid signature. Noting that in this game, the queries
(m∗,S �∗) have not been made and no attribute set S∗ satisfying
S∗ |� S �∗ has been sent to C.

V. OUR FP-ME-BASED ONLINE CAR-HAILING SERVICE

SYSTEM

In this section, we first propose a novel practical primi-
tive named fine-grained puncturable matchmaking encryption
(FP-ME), which enables data source authenticity, bilateral
strategy matching and forward secure messaging. Then, we use
our proposed FP-ME as a building block to construct a fog-
based privacy-preserving online car-hailing service system.

A. Concrete Construction of FP-ME

• Setup: It chooses a bilinear group B = (G0, G1, p, e, g).
Then, it selects α, β, τ ∈ Zp at random, and chooses
four different hash functions H1, H2, H3, H4, where H1 :
�S → G0, H2 : �R → G0, H3 : {0, 1}∗ → G0 and
H4 : {0, 1}∗ → Zp . Next, it selects τ ∈ Zp , h1, . . . , h� ∈
G0 and samples, computes a degree-� Lagrange polyno-
mial q(i), where i ∈ [1, �] and subject to the constraint
that q(0) = τ . Finally, it defines U (x) = gq(x) and
t0 denotes a distinguish tag not used during normal
operations, returns PK and MSK as below:

PK = (B, {Hi}i∈[1,4], {U(i), hi }i∈[1,�], {e(g, g) j } j∈{α,β}),
MSK = (gα, gβ, τ).

• EKGen: It parses the attribute set of the sender as
S = �

attS,1, attS,2, . . . , attS,d
�

and selects si ∈ Zp

at random. Then, it produces the encryption key EK =�
ek1,i , ek2,i

�
as below: ek1,i = {gα H1

�
attS,i

�si }i∈d ,
ek2,i = {gsi }i∈d .

• DKGen: It parses the access control of the receiver
as R = (M, π), where M ∈ Z

nM×mM

p is a matrix
and π : [nM] → �R is a mapping function. Next,
it selects r, rσ , r1, . . . , rnM

∈ Zp at random such that−→x = �
β + τrσ , x2, . . . , xmM

�⊥ ∈ Z
mM×1
p , and calculates−→

λ = �
λ1, λ2, . . . , λnM

� = M
−→x . Finally, it returns DK =

((M, π), {dk1,i , dk2,i }i∈nM
) and an initial punctured key

KP0 = (KP0,1, KP0,2, KP0,3, KP0,4):

dk1,i = gλi H2(π (i))ri , dk2,i = gri , KP0,1 = (gτ)r+rσ ,

KP0,2 = U(H4(t0))
r , KP0,3 = gr , KP0,4 = t0.

• Puncture: On input an existing key KPi−1 as
{KP0, KP1, . . . , KPi−1}, it randomly chooses λ�

1, . . . , λ
�
i ,

λ�, v0, v1 from Zp , such that λ� = (λ�
1 +λ�

2 + . . .+λ�
i)/ i .

Then, it outputs a new punctured key KP = (KP�
0,

KP1, . . . , KPi−1, KPi) as follows:
KP�

01 = KP0,1 · gτ(v0−λ�) = �
gτ

�r+rσ +v0−λ�
,

KPi,1 = �
gτ

�(v1+λ�
i)/ i

,

KP�
0,2 = KP0,2 · U(H4 (t0))

v0 = U(H4 (t0))
r+v0 ,

KPi,2 = V (H4 (t))v1/ i , KP�
0,3 = KP0,3 · gv0 = gr+v0,

KPi,3 = gv1/ i , KP�
0,4 = t0, KPi,4 = t .

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2869

• Encrypt: It first parses the attribute set of the receiver
as R = �

attR,1, attR,2, . . . , attR, f
�

and the attribute
set of the sender as S � = �

attS,1, attS,2, . . . , attS,d �
�
,

where S � ⊆ S. Then, it selects s, s�
i , r �� ∈ Zp , a collection

of tags t1, . . . , t� ∈ {0, 1}∗\{t0} at random and computes
as follows, where these tags t1, . . . , t� are public infor-
mation and their spaces can be considered as the unique
identifier or timestamps supplementing the identity of the
sender [18], [20]:

c0 = m · e (g, g)βs, c1 = gs, c2,i = H2
�
attR,i

�s
, c3, j

= U(H4(t j)), c4,i = ek2,i · gs �
i = gsi+s �

i , c5 = gr ��
.

A binary string c1−5 is denoted as c1−5 =
c0||c1||c2,i ||c3, j ||c4,i ||c5. For i � ∈ [1, d �], j exits
due to S � ⊆ S and attS,i � = attS, j , then it calculates
c6,i � as follows:
ek1,i � = ek1, j · H1

�
attS,i �

�s �
i = gα H1

�
attS,i �

�si+s �
i , c6,i �

= ek1,i � · H3(c1−5)
r ��

= gα H1
�
attS,i �

�si+s �
i H3(c1−5)

r ��
.

Finally, it generates a ciphertext CT = ((S,R�), c0, c1,
{c2,i }i∈[1, f], {c3, j } j∈[1,�], c5, {c4,i , c6,i }i∈[1,d �]).

• Verify: It first parses the access control of the sender
as S = (W, ω), where W ∈ Z

nW×mW

p is a matrix
and ω : [nW] → �S is a mapping function. Next,
it selects −→z = �

1, z2, . . . , zmW

�⊥ ∈ Z
mW×1
p at random

and then calculates
−→
ξ = �

ξ1, ξ2, . . . , ξnW

� = W
−→z .

At last, it picks {ρi }i∈I , where I represents the sender’s
attribute set as I = {i |i ∈ [nW], ω(i) = S} and calculates�

i∈I Wρi = (1, 0, . . . , 0).�
i∈I

�
e(c6,i ,g)

e(H1(at tS,i),c4,i)·e(H3(c1−5),c5)

�ξiρi = e(g, g)α.

If the above equality holds, it returns 1. Otherwise,
it aborts and returns 0.

• Decrypt: It takes DK associated with a policy of the
receiver, R ∈ PR, KP, CT and tags {t1, . . . t�} as input.
Next, let L represent the receiver’s attribute, where L =
{i |i ∈ [nM], π(i) = R}. It next calculates the corre-
sponding set of reconstruction constants {i, vi }i∈L which
satisfies the linear reconstruction property: �i∈Lviλi =
β + τrσ and it then performs the calculation as below:

A =
L�

i=1

	
e
�
dk1,i , c1

�
e
�
dk2,i , c2,i

�

vi

=
L�

i=1

	
e(gλi H2(π (i))ri , gs)

e(gri , H2
�
attR,i

�s
)

vi

=
L�

i=1

e(g, g)λivi = e(g, g)(β+τrσ)s .

For j = 0, . . . , i , it parses KPi as�
KPi,1, KPi,2, KPi,3, KPi,4

�
. It next computes a set

of coefficients w1, . . . , w�,w
∗ as below:

w∗ · q
�
H4

�
KPi,4

�� +
��

k=1

(wk · q (H4 (tk))) = q (0) = τ.

Then, it calculates:

B

=
i�

j=0

⎛
⎜⎜⎜⎜⎝

e
�
KP j,1, c1

�
e

	
KP j,3,

��
k=1

cwk
3,k

· e

�
KP j,2, c1

�w∗

⎞
⎟⎟⎟⎟⎠

=
e
�
(gτ)r+rσ +v0−λ�

, gs
�

e

	
gr+v0 ,

��
k=1

U(H4 (tk))wk

e
�
U(H4 (t0))r+v0 , gswk

�

. . .
e
�
(gτ)(v1+λ�

i)/ i , gs
�

e

	
gv1/ i ,

��
k=1

U(H4 (tk))wk

· e

�
U(H4 (t0))v1/ i ,gs

�wk

=
e
�

gτ(r+rσ +v0−λ�), gs
�

e
�
gr+v0 , gτ s

� . . .
e
�

gτ(λ�
i+v1)/ i , gs

�
e
�
gv1/ i , gτ s

�
= e(g, g)τ(rσ −λ�)s · e(g, g)τλ�

1s/ i · . . . · e(g, g)τλ�
i s/ i

= e(g, g)τrσ s .

Finally, it recovers the plaintext by computing M = c0 · B
A .

B. FP-ME Deployed in Online Car-Hailing Service Systems

In this section, the novel primitive FP-ME is exploited as
the main building block to construct an online car-hailing
service system, which involves five various entities shown in
Fig. 2: trusted authority, passengers, drivers, fog node and
cloud. In our designed system, trusted authority is mainly
responsible to establish system public parameters for the other
entities, create encryption keys for passengers, and produce
decryption keys and punctured keys for drivers. Passengers
are considered as data senders who encrypt their orders and
deliver the requests to the fog nodes to find the suitable
vehicles. After obtaining the order requests, fog nodes either
forward the requests to some drivers close to the pick up
location, or directly schedule close-by drivers to take the
orders after order verification passes. Besides, fog nodes
commonly transmit all received orders to clouds for the long-
term storage. After getting the ciphertext order matched or
assigned by fog nodes, drivers take the order and recover some
information related to the passengers such as pick up location,
destination and phone number. Here the fine-grained punc-
turable matchmaking encryption is denoted as FP-ME=(FP-
ME.Setup, FP-ME.EKGen, FP-ME.DKGen, FP-ME.Puncture,
FP-ME.Encrypt, FP-ME.Verify, FP-ME.Decrypt). Below we
introduce how to integrate FP-ME into an online car-hailing
service system within the following four modules:

1) System initialization: Before system initialization, sys-
tem users (i.e., passengers and drivers) require to
send their attribute sets to the trusted authority. As a
response, trusted authority performs certificate verifi-
cation to ensure the system users’ legitimacy. It first
conducts the FP-ME.Setup algorithm to produce public

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

2870 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 2. The whole interaction process of protocol modules in the online car-hailing service system.

parameter PK for all system participants (see step. 1�),
invokes the FP-ME.EKGen algorithm to generate an
encryption key EK for a passenger (see step. 2�), and
runs the FP-ME.DKGen & FP-ME.Puncture algorithms
to correspondingly create a decryption key EK and a
punctured key KP for a driver (see step. 3�).

2) Order generation and uploading: A passenger picks
an access strategy and a set of time tags indicating
his/her requirements and timeliness for drivers and then
encrypts his/her order information (such as phone num-
ber, the pick-up location and destination) by running
the FP-ME.Encrypt to generate the ciphertext order (see
step. 4�). Subsequently, the generated CT is delivered to
fog nodes for sharing and matching with suitable drivers.
Here, we need to illustrate that the order needs to be
taken by a driver within a stipulated time. Once the
order is not taken when the time is exceeded, it will be
invalid. The system supports a passenger to create a new
one, which is pretty fitting for the actual applications.
In practice, to confirm that the transmitted ciphertext
order has been indeed captured, the fog node often
gives an acknowledge message to the passenger as its
response. Note that with the passenger’s transport layer
security (TLS) handshake [36], the mutual authentica-
tion can be realized, which guarantees that the order
delivered by the passenger has been forwarded to the
target fog node.

3) Order matching and forwarding: The fog node con-
ducts the authenticity verification task by running FP-
ME.Verify, finds the suitable driver who matches with

the order’s requirements specified by the access strat-
egy and sends the resulting cipheretext order CT’ =
(c0, c1, c2,i , c3,i) to the driver (see step. 5�). Note that
during the matching process, the driver enables specify-
ing his/her access strategy to filter out his/her desirable
passengers. Besides, to realize long-term storage of the
orders, fog nodes commonly send them to the cloud
server for long-time backups. In our FP-ME, the cloud
server can theoretically run the FP-ME.Verify algorithm
for the cross-fog nodes service. The reason is that the
verification algorithm only requires the ciphertext and
the sender’ policy as input, and can complete the cipher-
text verification, where the ciphertext can be extracted
from the fog node and the sender’s policy is sent by
a sender. For the cloud server, which stores all the
ciphertexts in each fog node, it is also able to perform the
FP-ME.Verify algorithm for the cross-fog nodes service
after getting the sender’s policy.

4) Order recovering and taking: Once receiving the order
ciphertext from the fog node, the driver first recovers
the encrypted order to obtain the raw order information
(see step. 6�) and then sends an acknowledge message to
the fog node to confirm the order distributed has been
taken. Here, TLS handshake protocol is also required
to be implemented between drivers and fog nodes for
ease of ensuring that the message has been given to the
counterpart.

Discussion: Note that if the geographical information is
encrypted, the driver could get lots of encrypted orders which
may policy-fine but not appropriate because of the distance

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2871

issue. In our car-hailing service system, the geographical
information is naturally sensitive and should be encrypted
prior to sending to fog/cloud server. We acknowledge that our
solution could lead to additional encrypted orders which may
be policy-fine but not appropriate for a driver. However, it is
inevitable since our solution aims to realize semantic security
for passenger’s geographical information. Moreover, this issue
is somewhat independent of our motivation in this paper, since
our approach primarily focuses on how to ensure the authen-
ticity, bilateral matching and timeliness of the passenger’s
order rather than solving the redundant order issue for drivers.
To address the problem of filtering out the redundant orders
from various passengers, a potential solution is to employ the
privacy-preserving computation approach, such as multi-party
computation (MPC) [37], [38], garbled circuits (GC) [39],
[40] and homomorphic encryption (HE) [41], [42], to securely
compute the distance of potential passengers without leaking
the geographical information of the participants, thus filtering
out the order of the passengers who are far from the driver’s
distance.

VI. SECURITY PROOFS AND ANALYSIS

In this section, we present the security proofs to indicate the
CPA & EU-CMA security of our proposed FP-ME scheme.
Next, we also give the security analysis of our constructed
online car-hailing service system to prove its resistance to
various attacks, which states its practicality and feasibility.

A. Security Proofs of Our FP-ME Primitive

Theorem 1: If the CDH assumption holds, then there does
not exist a probabilistic polynomial time forger F that can
break the EU-CMA security of the FP-ME.

Proof: Assuming that an adversary F attacks our FP-ME
successfully with non-negligible advantage, then an algorithm
A could be established to utilize F to solve the CDH problem.
A is delivered (A = ga, B = gb) and asked to return gab.

Suppose that F makes queries at most qH1 times to H1-
oracle and qH3 times to H3-oracle. A preserves the lists L1 and
L3 to retain the answers of the oracles H1 and H3. Besides,
A picks a random σ ∈ [1, qH3]. If i is delivered for the query
of H1, A checks the L1 list and does the following actions
below:

• If an entry for the query is checked in L1, then the same
answer is returned to F .

• Otherwise, A simulates as follows:
– If i ∈ S∗, it picks a random βi ∈ Zp and responds

the answer H1(i) = gβi .
– If i /∈ S∗, a random βi ∈ Zp is chosen and the

answer H1(i) = A−βi = g−aβi is responded.

If mi is delivered for the query of H3, where mi denotes the
content of signing, A checks the L3 list and does the following
actions below below:

• If an entry for the query is checked in L3, then the same
answer is returned to F .

• Otherwise, A simulates as follows:

– If i
= σ , it picks random values αi , β
�
i ∈ Zp and

responds the answer H3(i) = Aαi gβ �
i = (ga)αi gβ �

i .
– If i = σ , a random β �

i ∈ Zp is chosen and the answer
H3(i) = gβ �

i is responded.
Suppose that F makes queries at most qe encryption key
extraction requests. The encryption key on attribute set S can
be queried in this phase. In the following, how to simulate an
encryption key on S is presented. Here, two sets T and T � are
formalized, where T = S ∩ S � and T ⊆ T �. Next, it simulates
the encryption key components EK = (ek1,i , ek2,i) as below.

• For i ∈ T �, EK = (ek1,i = Bτ (H1(i))si , ek2,i = gsi),
where τ, si are randomly chosen from Zp .

• For i /∈ T �, EK can be simulated as EK =
(gab(A−βi)

s �
i+ 1

βi
b
, g

1
βi

b+s �
i). The key is correctly simu-

lated because si = 1
βi

b + s�
i and gα H1(i)si = g−aβi s �

i =
gab(g−aβi)

s �
i+ 1

βi
b

hold, where gα = gab.
F also makes requests for the signature query on the

context m for an attribute set S. If H3(m)
= gβi ,
the signature could be simulated by A in the following,
where m is the content of signing. In order to simu-
late (c6,i , c5, c4,i) = (gα H1

�
attS,i �

�si+s �
i H3(m)r ��

, gr ��
, gsi+s �

i),
it chooses s�

i , r � ∈ Zp and lets r �� = − 1
αid

b + r �. Then, it is

easy to set gα H1
�
attS,i �

�si+s �
i H3(m)r �� = H1(i)s �

i+si · B
− βi

αid ·
(Aαid gβi)

r ��+ 1
αid

b = H1(i)s �
i+si · (gb)

− βi
αid · ((ga)αid gβi)

r ��+ 1
αid

b
,

gr �� = (B
− 1

αid gr �
) = g

− 1
αid

b+r �
when H3(m) = Aαid gβi .

Eventually, A outputs a forged signature σ ∗ on message
m∗ for attribute sets S∗. If H3(m)
= gβσ , then A aborts.
Otherwise, it meets the verification equation, which indi-
cates that σ ∗ = (σ ∗

6,i , σ
∗
5 , σ ∗

4,i)i∈S∗ = (c∗
6,i , c∗

5, c∗
4,i)i∈S∗ =

(gα H1
�
attS,i �

�si+s �
i (H3(m))r ��

, gr ��
, gsi+s �

i)i∈S∗ .
Thus, A can then perform the calculation

gab = �
i∈S∗((σ ∗

6,i/((σ
∗
5)β

�
σ (σ ∗

4,i)
βi))ξiρi =

(gab �
i∈S∗ H1(i)si+s �

i (H3(m))r ��
/(

�
i∈S∗(gsi+s �

i)βi (gr ��
)β

�
σ)

because H1(i) = gβi and H3(m∗) = gβ �
σ . For A’s success,

we need to ensure the forgery signature on content m∗ such
that H3(m∗) = gβ �

σ .
Theorem 2: If the DBDH assumption satisfies, then there

does not exist an adversary A that breaks the CPA security of
the FP-ME with a negligible advantage.
Proof: Assuming that an existing adversary A can successfully
breach our CPA security game with non-negligible advantage,
it is easy to build another algorithm B that can solve the
DBDH via the assistance of adversary A. For the tuple (g, A =
gx , B = gy, C = gz) given to B, it is asked to determine
whether � = e(g, g)xyz or � is a random of G1.

• Init: A sends to B the challenge attribute set R∗ =
(attr∗

R,1,. . . , attr∗
R, f). A also gives B the target tag set

(t1, t2, . . . , t�) that it plans to attack.
• Setup: B randomly picks β � ∈ Zp and implicitly lets

β = xy + β � by setting e(g, g)β = e(g, g)β
�
e(A, B). B

also randomly chooses θt0, θt1, . . . , θt� ∈ Zp , in which θt0
is a special value that will not be used for the normal
simulations. Then, B implicitly lets q(0) = x while
U(ti) = gθti . Next, random values z1, z2, . . . , z� ∈ Zp

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

2872 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

are picked and B sets {hi = gzi }i∈[1,�]. Finally, the public
parameter is set as PK = (g, g, Ui , hi , t0, e(g, g)β).

• Phases 1 & 2: Case 1: R � R∗: A makes queries for the
LSSS access controls and tags. Assuming that the access
control R = (M,�) and tag t are added to the empty set
P , there must exist a vector �x = (x1, . . . , xmM

) such that
x1 = β + τrσ , where r �

σ ∈ Zp , τ = x . For all �∗(i) ∈ �x ,
it meets that R�x = �0.
B chooses r �

1, . . . , r �
� ∈ Zp and calculates dk2, j =

gr �
j Bx j = g(r �

j+yx j), which implicitly sets r j =
r �

j + y · x j . Then, B simulates dk1, j as dk1, j =
gβ �

(gx)r �
σ (gr �

j +yx j)z j = gxy+β �+x(r �
σ −y)(gr �

j +yx j)z j =
gβ(gx)rσ H2(�(j))r j , which also implicitly sets τ = x .
Then, the punctured key is set as KP0 =
(KP0,1, KP0,2, KP0,3, KP0,4):
KP0,1 = (gx)y+r �

σ −y = (gτ)r+rσ , KP0,2 = (gy)θt0 ,
KP0,3 = gy , KP0,4 = t0. Next, B increments n and
calculates KPn = Puncture(KPn−1, t), and adds t to set
P . In the case R |� R, the following is considered:

– For Corrupt() query and (t∗1 , . . . , t∗d) ∩ C = ∅,
where C is initialized as an empty set, B picks
v �

0, v
�
1, λ

�
1, . . . , λ

�
i ∈ Zp such that λ� = (λ�

1 + . . . +
λ�

i)/ i and sets v0 = λ�+v �
0 and v1 = −λ�+v �

1 implic-
itly. Thus, it works as follows:

KP�
0,1 = KP0,1 · gx(v0−λ�) = (gτ)r+rσ +v0−λ�

,

KP�
i,1 = (gx)(v1+λ�

i)/ i = (gτ)(v1+λ�
i)/ i ,

KP�
0,2 = KP0,2 · (U(H4(t0)))

v0 = gθt0 (v0+r),

KP�
i,2 = (U(H4(t j)))

v1/ i = (U(H4(t j)))
(−λ�+v �

1)/ i ,

KP�
0,3 = KP0,3 · gv0 = gr+v0,

KP�
i,3 = gv1/ i , KP�

0,4 = t0, KP�
i,4 = t .

– Corrupt() is called for the first time when A makes
this query. After that, B gives the latest punctured
key KPn as its response and sets P → C . Note that
all the subsequent queries give ⊥.

Case 2: R
|� R∗: Similarly, DK = (dk1,i , dk2,i) can be
simulated as that in case 1. Besides, the punctured key
is set as KP0 = (KP0,1, KP0,2, KP0,3, KP0,4):
KP0,1 = (gx)y+r �

σ −y = (gτ)r+rσ , KP0,2 = (gy)θt0 ,
KP0,3 = gy , KP0,4 = t0. Next, B also increments n and
calculates KPn = Puncture(KPn−1, t), and adds t to set
P . In the case R
|� R, the following is considered:

– Corrupt() is called in the first time as that in case
1 when A makes requests for the query. After that,
as a response, B gives the latest punctured key KPn

to it and sets P → C . Note that all the subsequent
queries give ⊥.

– Corrupt() does not query or (t∗1 , . . . , t∗d) ∩ C
= ∅,
where C is initialized as an empty set. B picks
v0, v1, λ

�
1, . . . , λ

�
i ∈ Zp such that λ� = λ�

1 + . . .+ λ�
i .

Thus, it works as follows:
KP�

0,1 = KP0,1 · gx(v0−λ�) = (gτ)r+rσ +v0−λ�
,

KP�
i,1 = (gx)(v1+λ�

i)/ i = (gτ)(v1+λ�
i)/ i ,

KP�
0,2 = KP02 · (U(H4(t0)))

v0 = gθt0 (v0+r),

KP�
i,2 = (U(H4(t j)))

v1/ i ,

KP�
0,3 = KP0,3 · gv0 = gr+v0,

KP�
i,3 = gv1/ i , KP�

0,4 = t0, KP�
i,4 = t .

• Challenge: Two messages M0 and M1 with the equal
length picked by A are delivered to B. A coin ζ is flipped
by B to choose a random message used for producing
the challenge ciphertext, where ζ ∈ {0, 1}. After that, B
produces the challenge ciphertext by setting c0 = Mζ ·
�, c1 = gz, c2, j = gzz j , where s = z is set implicitly.

• Guess: ζ � ∈ {0, 1} is outputted by A. If ζ = ζ �, B will
return“1” as its response. Otherwise, B returns “0”.

B. Security Analysis of Our Online Car-Hailing Service
System

In this part, we analyze the possible attacks in our online
car-hailing service system. We mainly consider the following
kinds of common attacks: collusion attacks, eavesdropping
attacks and impersonation attack, which may undermine the
constructed system or lead to the privacy leakage of order
ciphertext.

• Collusion attacks. Collusion attacks refer to that several
malicious parties can intentionally collaborate with each
other to derive some clear-text privacy from ciphertext or
to breach the system. In our system, there are two types
of collusion attacks: one is that malicious passengers
may conspire with other passengers to build valid orders
without legal encryption keys. Another is that different
malicious drivers without decryption keys collude with
other drivers to recover the encrypted orders. Since every
encryption key is created with a unique randomness, the
combination of multiple encryption keys cannot produce
a new valid encryption key. Hence, the collusion attacks
cannot lead to valid ciphertext generation. Also, since the
decryption key is also generated with a unique random-
ness, any combination of multiple decryption keys cannot
create a legal decryption key. Therefore, the collusion
attacks lead to the failure of decrypting non-authorized
ciphertext order.

• Eavesdropping attacks. Eavesdropping attacks refer to
that any malicious entities except the order owner (pas-
senger) and legitimate order recipients (drivers) attempt
to snoop private data from ciphertext order. In our system,
there are also two types of attacks: one is outsider attacks
and another is insider attacks. For outsiders who do not
own valid decryption keys, they can get the ciphertext
order but learn nothing from it. For insiders who are
considered as fog nodes, cloud or drivers with invalid
decryption key, since fog nodes and cloud also do not
have the decryption key, they cannot snoop any private
data from the ciphertext order. Besides, although mali-
cious drivers have invalid decryption keys, they attempt to

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2873

use them to produce a new legitimate decryption key. As a
result of the fact that each decryption key is generated
with a unique randomness, any combination of multiple
decryption keys cannot create a legal decryption key.
Hence, the privacy of ciphertext order cannot be leaked
resulting by this type of eavesdropping attack.

• Impersonation attacks. Impersonation attacks refer to that
any malicious entities who have strong motivations to
act as legitimate passengers produce valid encryption
keys for forging valid ciphertext orders. Similar to the
reasons given in the eavesdropping attacks, since the
entities including the outsiders, cloud, and fog nodes,
have no valid encryption keys in their hands, hence they
cannot forge valid encryption keys, thus producing invalid
ciphertext order. Besides, malicious drivers also cannot
forge valid encryption keys since each encryption key is
produced with a unique randomness and an encryption
key with at least two random seeds cannot pass the
signature verification.

VII. PERFORMANCE ANALYSIS AND EVALUATION

In this section, we present comprehensive comparisons
between our FP-ME and other related works. We first consider
the functionality comparisons. Then we theoretically conclude
the computation and space complexity. Finally, we give the
empirical evaluations.

A. Theoretical Performance Analysis

TABLE III presents the comparisons of computation and
space complexity among related proposals [10]–[15], [20]–
[22], [26]–[28], [32] and our FP-ME. Here, we separate the
comparisons into two parts: one part is the computation and
space complexity comparison among the solutions related to
the bilateral strategy matching, another part is the computa-
tion and space complexity comparison among the schemes
related to the data authenticity and forward security. For the
comparisons related to the bilateral strategy matching, it’s
easy to learn that our FP-ME is almost comparable to the
proposals [22], [23] in terms of the computation complex-
ity of the EKGen, DKGen, Encrypt, Verify and Decryption
algorithms. Besides, our FP-ME has a lower computation
complexity in the DKGen algorithm than the works [10]–
[12] and has a higher computation complexity in the Setup
algorithm than [12], [22], [23]. We can also conclude that our
FP-ME requires almost the same space complexity as [12],
[22], [23] in terms of storing EK, DK, CT.

Besides, our FP-ME needs a lower space complexity
than [10]–[12] in terms of storing DK and CT and requires a
higher space complexity than [12], [22], [23] for storing PK.
For computation and space complexity comparisons among the
works related to the data authenticity and forward security,
our FP-ME has the same computation complexity of the
EKGen, DKGen and Verify algorithms as those in [13]–
[15], a lower computation complexity in the Setup phase
than [13]–[15], and a higher computation complexity in
the Encrypt and Decrypt phases than [13]–[15], [20], [21],
[32]. We also observe that our FP-ME almost has the same

space complexity for storing EK and DK as those in [13]–
[15], a higher space complexity for storing CT than that
in [13]–[15], [20], [21], [32].

B. Experimental Results

In our experimental simulations, the works [10], [12], [22],
[23] are chosen to make comparisons with our FP-ME since
these experimental works are all based on bilateral access
control and aim to realize the most similar functionalities
as our FP-ME. We utilize the version of Intellij IDEA-
2018.2.5 and Java 8 to evaluate our approach. Besides, we also
install the latest JPBC library [35] for the underlying cryp-
tographic operations. In our experiment, a ”fog node” is
simulated with a Lenovo server, which has a 512SSD, 1TB
storage space of hard disk and is deployed on Windows
10 operating system under Intel (R) 8 Core(TM) i7-7820HK
CPU @2.9 GHz and 16GB RAM. We replace a user (acting
as a passenger or driver) with a Huawei nova3 phone with
6GB RAM, a four-core 2.36GHz Cortex A73 processor and
four-core Cortex A53 1.8GHz processor. It is worth noting that
fog computing is a special distributed cloud paradigm that
extends computation, communication, and storage facilities
toward the edge of a network. Compared to traditional clouds,
fog nodes can support delay-sensitive service requests from
end-users with reduced energy consumption and low traffic
congestion. For each fog node in fog-cloud architectures, it is
also recognized to have almost the same computing power
and enough resources as the cloud. Hence, to better simulate
the order encryption and decryption process for end-users
(i.e., passengers and drivers), we try our best to allocate
all the computing and storage resources of the cloud server
to one fog node in our experimental evaluations. For the
accuracy simulation, there are two extreme cases with these
cryptographic solutions: 1) for the driver who meets all the
requirements of a passenger, he/she can take the passenger’s
order with 100% accuracy if he/she is willing to take the order;
2) for the driver who does not match the requirements of a
passenger, it is completely impossible to take the order of the
passenger (i.e., 0% accuracy). The basic reason leading to the
extreme cases is that only the driver matching the requirements
of the passenger’s order can decode-then-take the ciphertext
order while the driver who does not satisfy those requirements
is filtered out.

For ease of the comparisons of experimental simulations
about computation and storage costs, we let the number of
attributes (or in policy) vary from 5 to 25. Since only our
FP-ME can provide the forward security among the bilateral
matching works, here we only simulate the comparisons of all
common algorithms except the Puncture algorithm. Besides,
due to the fact that the computation and storage cost of our
FP-ME proposal is associated with the number of timestamps
and attributes (or in policy) while that of other proposals
are only related to the number of attributes (or in policy),
we set the number of timestamp as 5. In our simulations,
Fig. 3 depicts the comparisons of experimental simulations for
the running time of each algorithm. Specifically, Fig.3(a)-3(f)
successively present the running time comparisons of Setup,

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

2874 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE III

COMPUTATION AND SPACE COMPLEXITY COMPARISONS AMONG EXISTING APPROACHES

Fig. 3. Experimental simulations for algorithm running time.

DKGen, Encrypt, EKGen, Verify and Decrypt algorithms.
Fig. 4 depicts the comparisons of experimental simulations
about storage cost. Specifically, Fig.4(a)-4(d) correspondingly
show the storage cost comparisons for storing PK,
EK, DK and CT.

For the running time comparisons, from Fig.3(a), we can
clearly observe that for the Setup algorithm only the running
time of the AI [10] is incrementally linear with the number
of the attributes while that of other proposals almost remains
stable. Besides, we can learn that the running time in FP-ME
is much less than that in [10] and slightly more than that
in [12], [22], [23]. From Fig.3(b), we easily conclude that

except the work AFN+ [10], the running time for decryption
key generation in other works including AI [10], XLD+ [12],
XNL+ [23] and FP-ME is incrementally linear with the
number of attributes of the access policy. We also depict
that the running time in FP-ME is a bit higher than that
in XNL+ [23] and AFN+ [22] and is much lower than
that in AI [10], XLD+ [12]. Besides, as seen from Fig.3(c),
it is easy to observe that the running time for ciphertext
generation in AI [10], XLD+ [12], XNL+ [23] and FP-ME
is linearly incremental to the number of attributes. Besides,
we can learn that the running time in FP-ME is higher
than that in XNL+ [23], AFN+ [22] and is lower than that

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2875

Fig. 4. Experimental simulations about the storage cost with the number of
attributes n.

in AI [10], XLD+ [12]. For the running time comparison
of encryption key generation for signing, we only make
comparisons of the time-cost in XNL+ [23], AFN+ [22]
and FP-ME since AI [10] and XLD+ [12] are incapable
of supporting signing function. From Fig.3(d), It is easy to
obtain that the running time for encryption key generation in
these three proposals grows linearly with the incremental of
the amount of attributes, and the running time of encryption
key generation algorithm in FP-ME is indeed higher than
that in XNL+ [23], AFN+ [22]. Since only XNL+ [23]
and FP-ME can provide outsourced verification, here we only
compare the running time of these proposals. From Fig.3(e),
we can obviously find that the running time in these two works
basically follows an incrementally-linear relationship with the
number of attributes of the access policy. We also find that
the running time in our FP-ME is slightly lower than that in
XNL+ [23]. From Fig.3(f), it is straightforward to see that
only AFN+ [22] has a stable running time for conducting
the decryption algorithm while the running time in the rest
works is all linear with the number of attributes. In addition,
FP-ME requires lower running time to implement decryption
algorithm than AI [10], XLD+ [12] and needs higher running
time to conduct it than XNL+ [23], AFN+ [22].

For the storage cost comparisons, from Fig.4(a), we can
clearly see that the storage cost for storing PK in the setup
phase in [10] increases with the number of attributes while that
in others [12], [22], [23] and our FP-ME basically remains
stable. Besides, we can find that our FP-ME has a higher
storage cost than [12], [22], [23]. From Fig.4(b), we can
conclude that the storage cost for EK generated in the EKGen
phase in XNL+ [23] and our FP-ME is incremental to the
number of attributes while that in AFN+ [22] keeps stable.
We also see that our storage cost is higher than the other
schemes [12], [23]. From Fig.4(c), we can find that the storage
cost for DK generated in DKGen phase in works [10], [12],
[23] and FP-ME increases with the number of attributes in

policy while that in AFN+ [22] is always stable. We also
see that our storage cost for DK is much lower than [10],
[12], [23]. From Fig.4(d), we can also derive that the storage
cost for storing CT in the Encrypt phase in works [10], [12],
[23] and FP-ME follows an incrementally linear relationship
with the number of attributes in the access policy while that in
AFN+ [22] almost keeps stable. In addition, we can find that
our storage cost is slightly higher than [10], [23] and much
lower than [12].

In summary, our FP-ME has a relatively lower running time
than AI [10], XLD+ [12] and a slightly higher running time
than XNL+ [23] and AFN+ [22]. We also summarize that
our FP-ME has a lower storage cost for storing decryption
key than [10], [12], [23] and has a slightly higher storage cost
for storing ciphertext than [10], [23].

VIII. CONCLUSION

In this paper, we devised a fog-based privacy-preserving
online car-hailing service system via our designed primitive
referred as a fine-grained puncturable matchmaking encryption
(FP-ME), which elegantly handles several security and privacy
issues in this practical use, such as the fine-grained bilateral
order matching between passengers and drivers, the authen-
ticity of passengers’ orders in ciphertext and the timeliness
of passengers’ ciphertext orders. The elaborated strict security
proofs and analysis indicated that the FP-ME primitive can be
applied to construct a practical fog-based privacy-preserving
online car-hailing service system. We also studied performance
of the system via simulations to demonstrate the practicability
and effectiveness of the online car-hailing service system.
In the future, we would utilize the bloom filter and the
privacy-preserving policy technologies on the basis of our
FP-ME to achieve the privacy of the attribute label with its
content.

REFERENCES

[1] T. Alexander, W. Mazurczyk, A. Mishra, and A. Perotti, “Mobile
communications and networks,” IEEE Commun. Mag., vol. 58, no. 3,
p. 94, Apr. 2020.

[2] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-based
approximate constrained shortest distance queries over encrypted graphs
with privacy protection,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 4, pp. 940–953, Apr. 2018.

[3] J. Sun, H. Xiong, S. Zhang, X. Liu, J. Yuan, and R. H. Deng, “A secure
flexible and tampering-resistant data sharing system for vehicular social
networks,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12938–12950,
Nov. 2020.

[4] D. Wang, W. Cao, J. Li, and J. Ye, “DeepSD: Supply-demand prediction
for online car-hailing services using deep neural networks,” in Proc.
IEEE 33rd Int. Conf. Data Eng. (ICDE), Apr. 2017, pp. 243–254.

[5] T. Wu, M. Zhang, X. Tian, S. Wang, and G. Hua, “Spatial differentiation
and network externality in pricing mechanism of online car hailing
platform,” Int. J. Prod. Econ., vol. 219, pp. 275–283, Jan. 2020.

[6] J. Sun, G. Xu, T. Zhang, X. Cheng, X. Han, and M. Tang, “Secure data
sharing with flexible cross-domain authorization in autonomous vehicle
systems,” IEEE Trans. Intell. Transp. Syst., early access, Mar. 16, 2022,
doi: 10.1109/TITS.2022.3157309.

[7] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, “Enabling identity-based
integrity auditing and data sharing with sensitive information hiding for
secure cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 2,
pp. 331–346, Feb. 2018.

[8] J. Sun, G. Xu, T. Zhang, H. Xiong, H. Li, and R. Deng, “Share your
data carefree: An efficient, scalable and privacy-preserving data sharing
service in cloud computing,” IEEE Trans. Cloud Comput., early access,
Oct. 6, 2021, doi: 10.1109/TCC.2021.3117998.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2022.3157309
http://dx.doi.org/10.1109/TCC.2021.3117998

2876 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

[9] X. Han et al., “ADS-lead: Lifelong anomaly detection in autonomous
driving systems,” IEEE Trans. Intell. Transp. Syst., early access,
Jan. 25, 2022, doi: 10.1109/TITS.2021.3122906.

[10] N. Attrapadung and H. Imai, “Dual-policy attribute based encryption,”
in Proc. ACNS in Lecture Notes in Computer Science, vol. 5536. Berlin,
Germany: Springer, 2009, pp. 168–185.

[11] J. Chen, R. Gay, and H. Wee, “Improved dual system ABE in prime-
order groups via predicate encodings,” in Advances in Cryptology—
EUROCRYPT 2015 (Lecture Notes in Computer Science), vol. 9057.
Berlin, Germany: Springer, 2015, pp. 595–624.

[12] S. Xu, Y. Li, R. H. Deng, Y. Zhang, X. Luo, and X. Liu, “Lightweight
and expressive fine-grained access control for healthcare Internet-of-
Things,” IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 474–490,
Jan. 2022, doi: 10.1109/TCC.2019.2936481.

[13] M. Gagne, S. Naraya, and R. Safavi-Naini, “Threshold attribute-based
signcryption,” in Proc. Int. Conf. Secur. Cryptogr. Netw. Berlin, Ger-
many: Springer, 2010, pp. 154–171.

[14] J. Yu et al., “LH-ABSC: A lightweight hybrid attribute-based signcryp-
tion scheme for cloud-fog assisted IoT,” IEEE Internet Things J., vol. 7,
no. 9, pp. 7949–7966, Sep. 2020, doi: 10.1109/JIOT.2020.2992288.

[15] C. Hu, N. Zhang, H. Li, X. Cheng, and X. Liao, “Body area network
security: A fuzzy attribute-based signcryption scheme,” IEEE J. Sel.
Areas Commun., vol. 31, no. 9, pp. 37–46, Sep. 2013.

[16] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryp-
tion scheme,” J. Cryptol., vol. 20, no. 3, pp. 265–294, Jul. 2007.

[17] K. Kasamatsu et al., “Time-specific encryption from forward-secure
encryption,” in Proc. SCN. Cham, Switzerland: Springer, 2012,
pp. 184–204.

[18] M. D. Green and I. Miers, “Forward secure asynchronous messaging
from puncturable encryption,” in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 305–320.

[19] T. V. Phuong et al., “Puncturable proxy re-encryption supporting to
group messaging service,” in Computer Security ESORICS 2019 (Lec-
ture Notes in Computer Science), vol. 11735. Cham, Switzerland:
Springer, 2019, pp. 215–233.

[20] T. V. Xuan Phuong, R. Ning, C. Xin, and H. Wu, “Puncturable attribute-
based encryption for secure data delivery in Internet of Things,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Apr. 2018, pp. 1511–1519.

[21] L. Xue, J. Ni, C. Huang, X. Lin, and X. Shen, “Forward secure and
fine-grained data sharing for mobile crowdsensing,” in Proc. 17th Int.
Conf. Privacy, Secur. Trust (PST), Aug. 2019, pp. 1–9.

[22] G. Ateniese et al., “Match me if you can: Matchmaking encryption and
its applications,” in Advances in Cryptology CRYPTO 2019 (Lecture
Notes in Computer Science), vol. 11693. Cham, Switzerland: Springer,
2019, pp. 701–731.

[23] S. Xu et al., “Match in my way: Fine-grained bilateral access
control for secure cloud-fog computing,” IEEE Trans. Depend.
Secure Comput., vol. 19, no. 2, pp. 1064–1077, Mar. 2020, doi:
10.1109/TDSC.2020.3001557.

[24] B. Chen, T. Xiang, M. Ma, D. He, and X. Liao, “CL-ME: Efficient
certificateless matchmaking encryption for Internet of Things,” IEEE
Internet Things J., vol. 8, no. 19, pp. 15010–15023, Oct. 2021.

[25] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. 13th
ACM Conf. Comput. Commun. Secur. (CCS), 2006, pp. 89–98.

[26] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321–334.

[27] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with
non-monotonic access structures,” in Proc. 14th ACM Conf. Comput.
Commun. Secur. (CCS), 2007, pp. 195–203.

[28] S. Agrawal and M. Chase, “FAME: Fast attribute-based message encryp-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 665–682.

[29] J. Li, Q. Yu, Y. Zhang, and J. Shen, “Key-policy attribute-based
encryption against continual auxiliary input leakage,” Inf. Sci., vol. 470,
pp. 175–188, Jan. 2019.

[30] J. Lai, R. H. Deng, Y. Li, and J. Weng, “Fully secure key-policy attribute-
based encryption with constant-size ciphertexts and fast decryption,”
in Proc. 9th ACM Symp. Inf., Comput. Commun. Secur., Jun. 2014,
pp. 239–248.

[31] J. Yu, F. Kong, X. Cheng, R. Hao, and J. Fan, “Forward-secure identity-
based public-key encryption without random oracles,” Fundamenta
Informaticae, vol. 111, no. 2, pp. 241–256, 2011.

[32] T. Kitagawa et al., “Efficient and fully secure forward secure ciphertext-
policy attribute-based encryption,” in Information Security. Cham,
Switzerland: Springer, 2015, pp. 87–99.

[33] J. Nieto, M. Manulis, and D. D. Sun, “Forward-secure hierarchical
predicate encryption,” in Pairing-Based Cryptography Pairing 2012.
Cham, Switzerland: Springer, 2012, pp. 83–101.

[34] J. Wei et al., “Forward-secure puncturable identity-based encryption for
securing cloud emails,” in Computer Security ESORICS 2019. Cham,
Switzerland: Springer, 2019, pp. 134–150.

[35] B. Lynn. The Stanford Pairing Based Crypto Library. Accessed:
Feb. 2021. [Online]. Available: http://crypto.stanford.edu/pbc/

[36] P. Li, J. Su, and X. Wang, “ITLS: Lightweight transport-layer security
protocol for IoT with minimal latency and perfect forward secrecy,”
IEEE Internet Things J., vol. 7, no. 8, pp. 6828–6841, Aug. 2020.

[37] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 1575–1590.

[38] C. Zhao et al., “Secure multi-party computation: Theory, practice and
applications,” Inf. Sci., vol. 476, pp. 357–372, Feb. 2019.

[39] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proc. ACM Conf. Comput. Commun. Secur. (CCS), 2012,
pp. 784–796.

[40] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly compressed and scalable sequential
garbled circuits,” in Proc. IEEE Symp. Secur. Privacy, May 2015,
pp. 411–428.

[41] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Comput. Surv., vol. 51, no. 4, pp. 1–35, 2018.

[42] W.-J. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “PEGASUS:
Bridging polynomial and non-polynomial evaluations in homomorphic
encryption,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 1057–1073.

Jianfei Sun received the Ph.D. degree from the
University of Electronic Science and Technology of
China (UESTC). He is currently a Research Fellow
at the School of Computer Science and Engineer-
ing, Nanyang Technological University. He has pub-
lished many papers with IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING (TDSC),
IEEE TRANSACTIONS ON INDUSTRIAL INFOR-
MATICS (TII), IEEE TRANSACTIONS ON CLOUD

COMPUTING (TCC), IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY (TVT), IEEE TRANS-

ACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (TITS), IEEE
INTERNET OF THINGS JOURNAL (IoTJ), Information Sciences, and IEEE
SYSTEMS JOURNAL. His research interests include network security and the
IoT security.

Guowen Xu (Member, IEEE) is currently a
Research Fellow at the School of Computer
Science and Engineering, Nanyang Technologi-
cal University, Singapore. He has published many
papers with IEEE TRANSACTIONS ON DEPEND-
ABLE AND SECURE COMPUTING (TDSC), IEEE
TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY (TIFS), IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS (TII), IEEE TRANS-
ACTIONS ON VEHICULAR TECHNOLOGY (TVT),
ACM ACSAC, and ACM AsiaCCS. His research

interests include AI security and privacy-preserving issues in deep learning.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2021.3122906
http://dx.doi.org/10.1109/TCC.2019.2936481
http://dx.doi.org/10.1109/JIOT.2020.2992288
http://dx.doi.org/10.1109/TDSC.2020.3001557

SUN et al.: PRACTICAL FOG-BASED PRIVACY-PRESERVING ONLINE CAR-HAILING SERVICE SYSTEM 2877

Tianwei Zhang (Member, IEEE) received the bach-
elor’s degree from Peking University in 2011 and
the Ph.D. degree from Princeton University in
2017. He is currently an Assistant Professor
with the School of Computer Science and Engi-
neering, Nanyang Technological University. His
research interest includes computer system security.
He is particularly interested in security threats and
defenses in machine learning systems, autonomous
systems, computer architecture, and distributed sys-
tems.

Mamoun Alazab (Senior Member, IEEE) is cur-
rently an Associate Professor with the College of
Engineering, IT and Environment, Charles Darwin
University, Australia. He works closely with gov-
ernment, industry, and some top scientists including
Prof. Mauro Conti and Prof. Dusit Niyato. His
research is multidisciplinary that focuses on cyber
security and digital forensics of computer systems.
He served on the editorial boards of many inter-
national journals, such as IEEE TRANSACTIONS

ON COMPUTATIONAL SOCIAL SYSTEMS, Journal
of Information Security, and Journal of Cybersecurity and Privacy.

Robert H. Deng (Fellow, IEEE) is currently the
AXA Chair Professor of cybersecurity, the Director
of the Secure Mobile Centre, and the Deputy Dean
of Faculty Research at the School of Computing
and Information Systems, Singapore Management
University (SMU). His research interests include
data security and privacy, network security, and
applied cryptography. He received the Outstand-
ing University Researcher Award from the National
University of Singapore, the Lee Kuan Yew Fel-
lowship for Research Excellence from SMU, and

the Asia-Pacific Information Security Leadership Achievements Community
Service Star from International Information Systems Security Certification
Consortium. He serves/served on the editorial boards of ACM Transactions
on Privacy and Security, IEEE SECURITY AND PRIVACY, IEEE TRANSAC-
TIONS ON DEPENDABLE AND SECURE COMPUTING, IEEE TRANSACTIONS

ON INFORMATION FORENSICS AND SECURITY, and Journal of Computer
Science and Technology, and the Steering Committee Chair of the ACM Asia
Conference on Computer and Communications Security. He is a fellow of the
Academy of Engineering Singapore.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 18,2022 at 06:30:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

