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Abstract— Privacy-preserving decision trees (DTs) in vertical
federated learning are one of the most effective tools to facilitate
various privacy-critical applications in reality. However, the main
bottleneck of current solutions is their huge overhead, mainly
due to the adoption of communication-heavy bit decomposition
to realize complex non-linear operations, such as comparison and
division. In this paper, we present PriVDT, an efficient two-party
framework for private vertical DT training and inference in
the offline/online paradigm. Specifically, we customize several
cryptographic building blocks based on an advanced primitive,
Function Secret Sharing (FSS). First, we construct an optimized
comparison protocol to improve the efficiency via reducing the
invocation of FSS evaluations. Second, we devise an efficient and
privacy-enhanced division protocol without revealing the range of
divisors, which utilizes the above comparison protocol and more
importantly new designed FSS-based secure range and digital
decomposition protocols. Besides, we further reduce the overhead
of linear operations by employing lightweight pseudorandom
function-based Beaver’s triple techniques. Building on the above
efficient components, we implement the PriVDT framework
and evaluate it on 5 real-world datasets on both LAN and
WAN. Experimental results show that the end-to-end runtime
of PriVDT outperforms the prior art by 42 ∼ 510× on LAN
and 16 ∼ 70× on WAN. Moreover, PriVDT provides comparable
accuracy to the non-private setting.

Index Terms— Vertical decision trees, secure two-party com-
putation, privacy protection.
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I. INTRODUCTION

AS AN efficient and interpretable machine learning algo-
rithm, decision trees (DTs) have been used in various

real-world applications, e.g., finance risk management [1],
medical diagnosis [2], and stock trading [3]. In reality, the con-
struction and practical application of DTs meet two challenges.
First, the training data are vertically distributed where parties
hold disjoint features of the same samples. Second, the training
data are also privacy-sensitive. For instance, in the financial
risk management task, the judicial and loan information of
individuals are usually held by courts and banks, respectively,
while these private individual information are not allowed to
directly disclose [4], [5] due to current strict policies such
as General Data Protection Regulation (GDPR). Driven by
these challenges, the privacy-preserving vertical DTs has been
proposed as an emerging paradigm [1], [6].

Existing efforts that explore privacy-preserving vertical DTs
can be classified into two categories. (1) Leakage tolerance.
Several methods compromise some privacy guarantees in
exchange for lower cryptographic overhead, e.g., samples’
label [6], [7], the best split of internal nodes [8], [9], evaluation
paths [1], [10] (refer to Section II for details). However, such
leakages run counter to the privacy-preserving requirement.
(2) Zero privacy leakage. Wu et al. recently proposed
Pivot [11], the first privacy-preserving solution for vertical DTs
without disclosing any sensitive information. In constructing
DTs, Pivot exploits the gini impurity gain [12] as the metric to
find the best split of tree nodes. The evaluation consists of lin-
ear operations, division and comparison (refer to Section IV-A
for details). For privacy protection, Pivot technically uses the
Paillier homomorphic encryption (HE) [13] for linear opera-
tions, and the secret sharing (SS) technique (more precisely,
the SPDZ framework [14]) for comparison and division.

Despite such desirable privacy guarantees, an intrinsic prob-
lem in Pivot is its prohibitively expensive overhead, largely
because (1) SS-based protocols for comparison and division
rely on heavy bit decomposition and then bit-wise evaluation,
which introduces high communication over multiple rounds,
and (2) Pivot needs expensive HE operations and conversions
between HE ciphertexts and secret-shared values. For example,
it requires 3k+ 2 homomorphic scalar multiplications in each
tree node and 4k conversions, where k is the number of
classes. In summary, these inappropriate usages cause huge
communication and computation overhead, and reducing the
cryptographic overhead is the main focus of this work.

In this paper, we present PriVDT, an efficient two-
party cryptographic framework for vertical decision trees
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training and inference. The two-party setting is reasonable for
real-world applications [15] and has been widely employed in
privacy-preserving machine learning [16], [17]. Specifically,
PriVDT is built upon the offline/online paradigm similar
as Pivot [11], and employs several new building blocks to
provide improved efficiency especially in the online phase.
First, exploiting an advanced cryptographic primitive, Function
Secret Sharing (FSS) [18], we present an efficient comparison
protocol for the choice of the best split. The main challenge is
that directly using the general FSS scheme [19] leads to a high
evaluation overhead, since it requires two FSS invocations to
handle the wrap around problem illustrated in Section V-A.
We address this by providing a novel theoretical analysis,
which shows that the probability of incurring the wrap around
problem is negligible with appropriate parameter settings even
though we only invoke one FSS evaluation. This achieves
approximately 2× reduction in the online runtime compared to
the most efficient FSS scheme [19], while resulting in a slight
accuracy loss (less than 0.6%) in the training of trees. For
communication, our protocol only requires one communication
round with 2 ring elements.

Second, we devise an efficient and privacy-enhanced divi-
sion protocol building on the iterated Goldschmidt’s para-
digm [20]. Our protocol takes inspiration from [21], but the
protocol in [21] reveals the range of divisors, which could
cause the leakage of split statistics in the construction of DTs.
We solve this privacy leakage issue by integrating the above
comparison protocol and more importantly designing new
FSS-based secure range and digital decomposition protocols.
Our new insight is to decompose the divisor into sub-strings
and hence evaluate the range on values with smaller bitlength
while hiding intermediate values. As a result, our division
protocol achieves an order of magnitude improvement over the
alternative in prior works [11] and [22] while providing rigor-
ous security guarantees. It is worth noting that our comparison
and division protocols can be used in other privacy-critical
applications, which may be of independent interest. Besides,
we adopt lightweight additive secret sharing primitives to
improve the evaluation overhead of linear operations, i.e.,
addition and multiplication, while similar as [17], we utilize
PRFs to generate correlated randomness to further reduce the
communication cost.

We give a formal security proof and concrete complexity
analysis for the designed building blocks, and implement them
to validate the efficiency advantages. We emphasize that our
comparison and division protocols empirically are orders of
magnitude better than the alternatives of Pivot, both in terms
of online runtime and communication. Moreover, we evaluate
the PriVDT framework end-to-end on five real-world datasets
under both the LAN and WAN network setting. Experimental
results show that the secure training of PriVDT achieves
102 ∼ 863× and 62 ∼ 91× online runtime improvements
compared with Pivot on LAN and WAN, respectively. For the
secure inference, 11 ∼ 18× and 14 ∼ 24× improvements are
realized on LAN and WAN, respectively. Besides, PriVDT
can be directly extended to deal with continuous attributes via
an extra discretization process. We evaluate our framework
on three datasets and compare it with the state-of-the-art
work [23] that is customized for continuous data. Despite
directly extending to such a specific setting, we still obtain
up to 3.9× runtime improvement and comparable accuracy
over [23].

In summary, our key contributions are listed as follows:
• We propose PriVDT, an efficient two-party cryptographic

framework for vertical DT training and inference.
• We design several new FSS-based protocols including com-

parison and division as the main building blocks to improve
the online efficiency of PriVDT.

• Extensive experiments show that PriVDT outperforms prior
art by up to orders of magnitude while realizing comparable
accuracy to the non-private setting.
The rest of this paper is organized as follows. In Section II,

we review the latest related works. In Section III, we discuss
the system and threat models, as well as the design goals.
In Section IV, we introduce the background of DTs and
cryptographic preliminaries. Then, we design efficient support-
ing protocols in Section V. Section VI details our complete
PriVDT framework. The performance evaluation is given in
Section VII. We discuss the possible extension in Section VIII
and conclude this paper in Section IX.

II. RELATED WORKS

Privacy-preserving collaborative learning of decision trees
has received much attention in the scenarios where the data
are scarce and distributed among multiple parties. In this
learning mode, the global dataset can be partitioned in two
different ways. (1) Vertical partitioning [24], [25]: parties
hold the same samples with different features. An example
of the financial risk management task is given in Section I.
(2) Horizontal partitioning [26], [27]: different parties possess
their individual samples but sharing the same features. For
example, two regional banks may have different user groups
from their respective regions. However, their business is very
similar, so the feature spaces are the same. In this paper,
we focus on the vertical partitioning setting.

Many prior works have explored the privacy-preserving
vertical DT learning [1], [6], [7], [8], [9], [10], [24], [25],
[28]. However, as shown in Table I, these works cannot guar-
antee strict privacy requirements like PriVDT. Specifically,
Du et al. [6] proposed the first DT training algorithm for
vertically partitioned data, where the secure scalar product
protocol is proposed to compute the information gain of tree
nodes. However, the label column is public to all parties,
which obviously violates the privacy regulations. After that,
Wang et al. [7] improved the above method by using the
secure intersection technology [29] and Yao’s garbled cir-
cuits [30]. Nevertheless, it does not address the critical issue
of label leaks. Vaidya et al. [8], [10] introduced two gener-
alized privacy-preserving variants of the ID3 algorithm [31]
for vertically partitioned data. They allow some statistics in
the training and inference tasks to be revealed in plaintext,
such as the available sample IDs on a tree node, which
could compromise the privacy of the involved parties. Later,
Vaidya et al. [9] utilized a threshold additively homomorphic
cryptosystem [32] to develop protocols to implement secure
random decision trees over two or more parties. However, the
intermediate values are still shared with all parties. Based on
these knowledge, adversaries may infer the sensitive infor-
mation of parties with high probability, including the labels
of samples, or whether they have similar features. Recently,
SecureBoost [1] is designed to build a gradient-tree boosting
model [33] by using the Paillier homomorphic encryption
scheme [13]. Although SecureBoost is responsible for pro-
tecting the privacy of local features and labels from direct
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leakage, it shares the split information for determining the best
split to the label owner, which discloses the data distribution
of another party. In summary, none of above solutions can
achieve the desired privacy guarantee. Recently, Wu et al.
proposed Pivot [11], the first solution for privacy-preserving
vertical trees to ensure that no intermediate information are
leaked. However, as described in Section I, Pivot introduces
expensive cryptographic operations that suffers from heavy
overhead as shown in Section VII-C, which motivates the
design of PriVDT.

In addition, some works have focused on training
classification trees on specific settings, such as contin-
uous attributes [23], [34]. Different from widely used
discrete attributes with finite values in the above works,
continuous attributes come from an infinite set, e.g., tem-
perature and humidity. Specifically, [34] provided a private
adaptation of the C4.5 algorithm based on MP-SPDZ [14].
To efficiently compute the statistic information required in
the training algorithm, [34] utilized the sorting network to
obliviously presort the continuous attributes into sorted order.
Subsequently it considered each attribute value as a candidate
cut-off point, and computed the gini impurity gain for each.
Although providing end-to-end privacy protection, this scheme
imposes expensive computational overhead. Recently, [23]
introduced an alternative strategy to pre-process continuous
data without sorting of attribute values, which achieves better
efficiency compared with [34]. Generally speaking, a dis-
cretization method was designed to discretize the continuous
attributes, and thus, subsequent training can be performed on
discretized values. We also extend PriVDT to the setting
of continuous data, and the experimental results show that
PriVDT significantly outperforms [23], the state-of-the-art
work customized for continuous data.

Another interesting topic is the secure decision tree classifi-
cation [35], [36], [37], [38]. Unlike PriVDT, prior works [35],
[36], and [37] adopt the client-server model, where the server
owns a well-trained tree and the client wants to obtain the
prediction of a query sample. Their goal is to protect the tree
classifier and private samples from being leaked to each other.
Specifically, [35] provided a secure decision tree classification
protocol based on the additively homomorphic encryption.
Instead of representing the tree as a high-degree polynomial,
it proposed a novel path cost mechanism using a linear
function. This solution performs better for sparse trees but the
runtime grows linearly with the number of leaves. Later, [36]
proposed to transform the tree classification task to a secure
search problem with the searchable symmetric key encryption
to provide privacy protection. However, the runtime of this
solution grows exponentially with the number of the nodes.
Recently, to avoid the exponential growth of communication,
a sublinear secure decision tree classification protocol was pro-
posed in [37]. It designed novel oblivious selection protocols
by carefully combining paillier encryption and boolean sharing
primitives, to hide the node being accessed. Benefiting from
the sublinear protocol construction, this method is scalable
when evaluating large trees. In addition, [38] employed two
servers to jointly conduct the inference protocol, which is
similar to PriVDT. During the inference phase, each node
needs to be evaluated via securely comparing the threshold
with the corresponding feature. [38] implements it through
heavy bit decomposition operations and conversions between
different rings. In contrast, PriVDT presents a more efficient
evaluation method based on advanced function secret sharing
(refer to Section VI-C).

TABLE I

COMPARING PriVDT WITH EXISTING WORKS IN TERMS OF PRIVACY
GUARANTEES IN THE TRAINING/INFERENCE PHASE

III. SYSTEM OVERVIEW

A. System Model
We consider both private training and inference of DTs.

In the training phase, two parties P0 and P1 want to build a
DT privately with their personal samples. In our setting, the
training samples are vertically partitioned between the two
parties, namely that they have the ID of the same sample1

but with different features, and the label is owned by one
party (P1) and cannot be directly shared with the other party
(P0) [1], [6], [10]. After the tree is constructed, both parties
collaboratively execute the private inference on the query
samples that are secret shared between the two parties. Such
inference procedure guarantees that both parties learn zero
knowledge about the inputs and results.

B. Threat Model
PriVDT is designed for the two-party semi-honest

model [17], [41] with a third party (STP) in the offline/online
setting, where STP provides correlated randomness in the
offline phase. Given the correlated randomness, the two parties
engage in a secure computation protocol during the online
phase. In this setting, a probabilistic polynomial-time (PPT)
adversary may corrupt one of the parties, meaning that the
parties do not collude with each other. During the protocol
execution, the adversary honestly follows the protocol speci-
fication, but tries to obtain the private information of honest
parties by analyzing the corrupted party’s view. We consider
the static corruption strategy, where the corrupted party is fixed
before starting the protocol and remains unchanged during the
whole protocol execution. We utilize the standard simulation
paradigm for semi-honest security.

C. Design Goals
PriVDT aims to develop efficient and privacy-preserving

protocols tailored for vertical DTs without sacrificing the
inference accuracy. Our design goals can be summarized as
follows.
• Training Privacy. In the training phase, the features and

labels should be protected against the other party. The final
tree (including the best split and available samples of each
node) should not be leaked to any party.

• Inference Privacy. In the inference phase, the private
sample should be protected against the two parties, while
the evaluation path should not be leaked to any party. Both
parties learn zero knowledge about the inference results.

• Efficiency. Cryptographic protocols should incur tolerable
computation and communication overheads, which is crucial
for resource-constrained and real-time scenarios.

1Similar to prior works [39], [40], we assume the parties’ samples have
been matched using the well-studied Private Set Intersection (PSI) technique.
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TABLE II

SUMMARY OF NOTATIONS

• Accuracy. Compared to the non-private setting, the
privacy-preserving training and inference should result in
a negligible loss of the classification accuracy and hence
guarantee the model usability.

IV. PRELIMINARIES

In this section, we first detail the decision tree training
algorithm, and then introduce the underlying cryptographic
preliminaries that PriVDT utilize. Table II summarizes the
frequently used notations.

A. Decision Trees

In this work, we mainly focus on building classification
trees2 recursively with binary structures. Specifically, begin-
ning with the root, the training algorithm first selects the best
split for the current node and then recurses on each of the
resulting sub-trees, until some pruning conditions are satisfied
(e.g., feature set is empty or tree reaches the maximum depth).
The detailed description is given in Algorithm 1.

Similar as Pivot [11], we use gini impurity [12] as the metric
to find the best split. Formally, assuming the available sample
set reaching the current node is D, and F is the set of available
features, given any split feature f j ∈ F and split value s ∈
Domain( f j ), D can be split into two partitions Dl and Dr .
The gini impurity can be represented as follows:

I (D) =
∑

k∈K

pk (1− pk) = 1−
∑

k∈K

p2
k , (1)

where pk = dk/D is the probability of a randomly selected
instance from D belonging to class k. Then the gini impurity
gain of s is g = I (D)− (λl · I (Dl )+ λr · I (Dr )), where λl =
|Dl |/|D| and λr = |Dr |/|D|. The split with the maximum
gain is considered as the best split of the node. Note that we
can further simplify g without affecting the sorting result as
follows:

g̃ =
∑

k∈K

d2
kl

|Dl | +
∑

k∈K

d2
kr

|Dr | , (2)

where dkl and dkr denote the number of samples belonging to
class k ∈ K in Dl and Dr respectively.

Notice that from Eq.2, the evaluation of impurity gains con-
sists of multiplication, addition and division operations. The
comparison operation is also needed to obtain the best split.
Therefore, the main goal of PriVDT is to design lightweight
secure protocols for comparison, division and linear operations
to construct end-to-end DTs training and inference.

2Note that our scheme can be directly extended to regression trees with
minor modifications to the protocols.

Algorithm 1 Plaintext Classification Tree Training
Input: Feature set F , Sample set D0.
Output: A well-trained decision tree T .
1: for each node ni do
2: if prune conditions are satisfied then
3: Set ni as a leaf node of T with majority class.
4: else
5: for each split si ∈ F do
6: Split Di into Dl and Dr according to whether the

corresponding feature value is smaller than si .
7: Compute the gini impurity gain g̃ j using Eq.2.

8: end for
9: Determine the best split s∗i with the maximum impu-

rity gain, where the corresponding sample partitions are
D∗l and D∗r .

10: Assign available sample set D2i+1 = D∗l to the left
child n2i+1 and D2i+2 = D∗r to the right child n2i+2.

11: end for
12: return the well-trained tree T

B. Cryptographic Primitives

1) Secret Sharing: In PriVDT, all private values are
secret-shared between two parties. We adopt lightweight 2-out-
of-2 additive sharing over the ring Z2n [42]. Shr(x) denotes
the sharing algorithm that inputs x in Z2n and outputs two
shares [x]0 and [x]1 satisfying [x]0 + [x]1 = x in Z2n . The
reconstruction algorithm Rec([x]0, [x]1) takes as input the two
shares and outputs x = [x]0+[x]1 in Z2n . When n = 1, we use
[x]B to denote the boolean shares, i.e., x = [x]B0 ⊕ [x]B1 in
Z2. The security guarantees that given [x]0 or [x]1, the value
of x is perfectly hidden.

2) Oblivious Transfer: In the oblivious transfer (OT) proto-
col, one party (i.e., sender S) inputs two values x0 and x1,
while the other party (i.e., receiver R) inputs a choice bit
b ∈ {0, 1} and want to obtain xb without learning anything
about x1−b or disclosing b to the sender. In the offline protocol
OToff, a semi-honest third party (STP) generates random a0,
a1 to S and r ∈ {0, 1}, ar to R. In the online protocol OTon,
given that S’s inputs m0, m1 and R’s input a choice bit b,
R computes and sends b� = b ⊕ r to S. S generates and
sends a tuple (s0, s1) to R, which equals (a0 ⊕ m0, a1 ⊕ m1)
if b� = 0 and (a0 ⊕ m1, a1 ⊕ m0) otherwise. Finally, R
can obtain mb = sr ⊕ ar . PriVDT utilizes a special OT
flavor, correlated OT (COT) [43], where S inputs a correlation
function f and obtains a random x0 and x1 = f (x0). The
online communication of COTs is n+ 1 bits within 2 rounds.

3) Lookup Table: The lookup table (LUT) protocol [44]
contains a truth-table T : {0, 1}σ ← {0, 1}δ, which maps a
σ -bit shared input [x] to a δ-bit shared output [y] such that

y = T (x). In the offline protocol LUToff, STP generates
(T 0, r) and (T 1, s), and sends them to P0 and P1, respectively,
such that T 0[ j ]⊕T 1[ j ] = T [r⊕s⊕ j ] for all j ∈ [2σ ], where
r and s are random values to permute the table T . In the online
protocol LUTon, P0 and P1 reconstruct z = x⊕r⊕s, and then
learn [y]0 = T 0(z) and [y]1 = T 1(z) such that y = T (x). The
online communication is 2n bits within 1 round.

4) Function Secret Sharing: Function secret sharing
(FSS) [18] works on splitting a function f into two succinct
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Algorithm 2 Secure Comparison Protocol Compare([x], [y])
1: //offline
2: STP and P0 generate [r ]0 using PRFs with the seed seedt0.
3: STP samples r ∈ Z2n and sends [r ]1 = r − [r ]0 to P1.
4: STP evaluates (k0, k1) ← Gen<r,1 and sends ki to Pi , i ∈
{0, 1}.

5: //online
6: Pi sends [y]i−[x]i+[r ]i to P1−i , and reconstructs y−x+r .
7: Pi evaluates [z]i ← Eval<r,1(i, ki , y−x + r).
8: Return [z]

function shares such that each share does not reveal anything
about the function f , but when the evaluations at a given point
x are combined, the result is f (x). Formally, an FSS scheme
is a pair of algorithms Gen(·) and Eval(·) with the following
syntax.
• (k0, k1)← Gen(1κ , f ): Given the security parameter κ and

a function f , it outputs two keys k0 and k1 for P0 and P1,
respectively.

• [ f (x)]i ← Eval(ki , x): Given the key ki and public input
x ∈ Z2n , it outputs [ f (x)]i s.t. [ f (x)]i +[ f (x)]1−i = f (x).
We identify two FSS constructions [19], [45] as a natural fit

for PriVDT: (1) Distributed Point Function (DPF) (Gen•α,β ,
Eval•α,β ) that satisfies fα,β(x) = β is x = α and 0 otherwise,
and (2) Distributed Comparison Function (DCF) (Gen<α,β ,
Eval<α,β ) that satisfies fα,β(x) = β is x < α and 0 otherwise.
Note that the input x of Eval(·) is public, and we show how
to extend FSS for private data in Section V-A.

V. BUILDING BLOCKS

In this section, we detail the building blocks of PriVDT,
which are divided into the offline and online phases, and
maintain the invariant that parties start with secret-shares of
inputs over the ring Z2n and end with secret-shares of outputs
over the same ring. In the offline phase, similar to [17], [19] we
assume an STP to generate correlated randomness. To further
improve the communication efficiency, the PRF seeds, i.e.,
seedt0, seedt1 and seed01, are constructed between STP and
P0, STP and P1, P0 and P1, respectively. Note that STP is not
involved in the online process. In Section VIII, we discuss
how to distribute STP in a secure two-party protocol.

A. Secure Comparison Protocol
In PriVDT, the comparison operation is used to select the

maximum gini impurity gain. Algorithm 2 gives a specific
comparison protocol Compare([x], [y]) based on FSS, which
outputs the shares of z = 1{y>x}. Note that the comparison
protocol is executed over the secret-shared inputs rather than
public values, which should be supported by our designed FSS
scheme. Following [45], the key idea is to construct the FSS
scheme for the offset function f [r](x) = f (x + r), where r is
randomly selected from Z2n and secret-shared between P0 and
P1. In this way, P0 and P1 first reconstruct x + r and then
evaluate f [r](x+ r), which exactly equals to evaluating f (x).
Note that the offset function fails if x + r wraps around.3

3For example, assume x = 10, then {x > 0} = 1. PriVDT executes
protocols over the ring Z264 . Therefore, r is randomly sampled from
Z264 . If r = 264 − 1, then x + r = 10 + 264 − 1 = 9 mod 264. As a
result, {x + r > r} = {9 > 264 − 1} = 0 in Z264 , which is not equal to
{x > 0} = 1. Thus, the offset function fails if x + r wraps around.

TABLE III

ACCURACY (%)

[45] deals with it by invoking 2 DCFs, but we rather prove
that with proper parameters, the probability of wrap around
is negligible in Theorem 1. This probability is quantified as
|x |/2n for example 1 in millions in our setting, and such error
does not affect the model accuracy as shown in Table III.
Thus, our protocol only invokes 1 DCF and introduces 2n
communication bits within 1 round in the online phase.

Theorem 1: For x ∈ Z2n and given that r is picked uni-
formly at random from Z2n , the failure probability denoted as
P{1{x < 2n−1} �= 1{x+r mod 2n ≥ r}} is |x |2n , where |x | = x
if x is non-negative and |x | = 2n−x otherwise. The proof
refers to Appendix C.

Theorem 2: The protocol Compare([x], [y]) securely real-
izes the functionality FCompare in Table IX, assuming the
existence of secure protocols for PRF, FSS and multiplication
procedures. The proof refers to Appendix D.

B. Secure Division Protocol
To securely execute division operations, we design an effi-

cient and privacy-enhanced division protocol in Algorithm 5
building on the iterated Goldschmidt’s paradigm [20]. This
paradigm requires a suitable initial approximation for the
division result, followed by several iterations to improve upon
this approximation. To determine an initial approximation, the
divisor should be normalized to [0.5, 1) [21], [46]. Therefore,
the range of divisor should first be obtained, which is the main
hurdle for secure computation. Existing and the most efficient
protocol [21] suffers from leaking the range of divisors, which
could cause severe privacy leakage about split statistics in the
construction of trees.

We address this issue by proposing a secure range protocol
as shown in Algorithm 4 via properly applying FSS and LUT
techniques, where Range([x]) = [k] if and only if 2k � x <
2k+1. The new insight here is to reduce the range evaluation
into smaller bitlength. Specifically, we first decompose n-
bit integer [x] into d = n/c sub-strings [xd−1], · · · , [x0] of
c-bits. Then, we compute the range of each sub-string [x j ] by
taking into account its position j in x . Then Range([x]) =
Range([x j ]) + j · c if x j �= 0 and xi = 0 for all i > j .
Specifically, in Algorithm 4, for j ∈ [d], we introduce the
LUT T j that takes as input [y j ] and outputs [k j ] such that
2k j− j c ≤ y j <2k j− j c+1. Next the parties compute

[
z j

] =
1{yi = 0} via evaluating the DPF. Then they have e j =
k j ·

(
1⊕ z j

) · ∏m> j zm , where e j = k j if y j �= 0 and
ym = 0 for all m > j and 0 otherwise. Note that at most
one e j is non-zero and Range([x]) = [k] =∑d−1

j=0

[
e j

]
.

To decompose [x] to d sub-strings, we design an FSS-based
digit decomposition protocol as shown in Algorithm 3, which
takes [x] as input and outputs {[x j ]} j∈[d], where x =
x j−1|| · · · ||x0 and the bitwidth of each x j is c = n/d .
To obtain [x j ] for j ∈ [d], the parties need to com-
pute the carry of the lower sub-string into this sub-string.
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Algorithm 3 Digit Decomposition Protocol DigDec([x])
1: //offline
2: P0, P1 and STP generate d − 1 boolean Beaver’s triples

using Alg.6 and d−1 COTs using OToff in Section IV-B.2.
3: for j = 0 to d − 2 do
4: P0, P1 and STP evaluate the offline Compare(·).
5: STP invokes (k j,0, k j,1)← Gen•r,2n+r−1 and sends k j,i

to Pi .
6: end for
7: //online
8: Pi parses [x]i as [xd−1]i || · · · ||[x0]i .
9: for j = 0 to d − 2 do

10: P0 and P1 learn [z]i = Compare([[x j ]0+[x j ]1], [2n]).
11: Pi evaluates [e j ]Bi ← Eval•r,2n+r−1(i, k j,i , x j + r).

12: end for
13: Pi initiates [u0]Bi = 0 and [δ0] = [x0]i .
14: for j = 1 to d − 1 do
15: P0, P1 compute [ω j−1]B = [u j−1]B∧[e j−1]B using the

boolean triple.
16: Pi computes [u j ]B = [ω j−1]Bi ⊕ [z j−1]Bi locally.
17: P0, P1 learn [u j ] using OTon in Section IV-B.2 with

input [u j ]B .
18: Pi computes [x j ]i = [x j ]i + [u j ]i locally.

19: end for
20: Return [xd−1]|| · · · ||[x0]

Let [X] j,i = [x j ]i || · · · ||[x0]i for party Pi , we have x j =
[x j ]0 + [x j ]1 + c j where c j = [X] j−1,0 + [X] j−1,1 ≥ 2 j c.

With the above design, our division protocol communicates
(8n + 15)(d − 1) + n(2d + 2n + 35) + 2 bits in the online
phase. Another variant to securely compute division is the
fixed-point division evaluation such as [22]. With specific
modifications, [22] can be extended to the offline/online setting
with 6n2 online communication. In our implementation with
n = 64 and d = 8, the division protocol in PriVDT is 2.3×
communication improvement compared with [22].

Theorem 3: The protocol DigDec([x]) securely realizes the
functionality FDigDec defined in Table IX, assuming the exis-
tence of secure protocols for comparison, FSS, multiplication
and OT procedures. The proof refers to Appendix E.

Theorem 4: The protocol Range([x]) securely realizes the
functionality FRange defined in Table IX, assuming the
existence of secure protocols for digit decomposition, OT,
LUT, multiplication and FSS procedures. The proof refers to
Appendix F.

Theorem 5: The protocol Div([x], [y]) securely realizes the
functionality FDIV defined in Table IX, assuming the existence
of secure protocols for range, LUT, OT and multiplication
procedures. The proof refers to Appendix G

C. Secure Multiplication Protocol
Similar as Chameleon [17], we evaluate multiplication

operations using the Beaver triple technique [42], and further
reduce the communication cost using PRFs. In PriVDT,
we consider two variants to compute z = xy. The first one
is that [x] and [y] are secret-shared between P0 and P1,
i.e., SMul([x], [y]) described in Algorithm 6. Compared to
prior alternatives in the private decision tree works [11], [16],

Algorithm 4 Secure Range Protocol Range([x])
1: //offline
2: P0, P1 and STP invoke the offline DigDec([x]) in Alg.3.
3: P0, P1 and STP generate 2(d−1) boolean Beaver’s triples

using Alg.6 and 2d COTs using OToff in Section IV-B.2.
4: for j = 0 to d − 1 do
5: STP calls (k j,0, k j,1)← Gen•r,1 and sends k j,i to Pi .
6: Both Pi , i ∈ {0, 1} generate the LUT Tj

i using LUToff

in Section IV-B.3 to map c-bit input a to log n-bit output
b such that 2b− j c ≤ a<2b− j c+1.

7: end for
8: //online
9: P0, P1 invoke the online DigDec([x]) and learn [x j ], j ∈
[d], s.t., x = x0�x1� · · · �xd−1.

10: for j = 0 to d − 1 do
11: Pi evaluates Tj

i with [x j ] using LUTon in
Section IV-B.3 and learns [k j ]i such that 2k j− j c ≤
x<2k j− j c+1.

12: Pi evaluates [z j ]Bi ← Eval•r,1(i, k j,i , x j + r).
13: Pi computes [z�j ]Bi = i ⊕ [z j ]Bi .

14: end for
15: P0, P1 compute [ed−1] = [kd−1][z�d−1]B with 2 COTs

using OTon in Section IV-B.2, and sets [ωd−1]B = [1].
16: for j = d − 2 to 0 do
17: P0, P1 compute [ω j ]B = [ω j+1]B ∧ [z j+1]B and
[ω�j ]B = [ω j ]B ∧ [z�j ]B using the boolean Beaver’s triples.

18: P0, P1 learn [e j ] = [k j ][ω�j ]B with 2 COTs using OTon.

19: end for
20: Return [k] =∑d−1

j=0[e j ]

our STP-based multiplication protocol with PRFs just needs
to communicate [c]1 from STP to P1 in the offline phase,
achieving a 5× reduction in communication. The second
variant is that x and y are owned by P0 and P1 respectively,
i.e., Mul(x, y) described in Algorithm 7. In the online phase,
Mul(x, y) requires one communication round in which each
party sends just n bits.

Remark. In our fixed-point representations, to prevent values
from overflowing due to the multiplication operations, we use
the truncation technique from [16], in line with several existing
methods [17], [47], [48]. This technique simply truncates the
extra LSBs of fixed-point values, theoretically albeit at the
cost of a 1-bit error. However, as shown in Table III, this
error empirically introduces only a slight accuracy loss (less
than 0.6%) in secure decision tree training. For completeness,
we present the detailed truncation operation in Appendix B.

Theorem 6: The protocol SMul([x], [y]) securely realizes
FSMul in Table IX, assuming the existence of PRFs. The proof
refers to Appendix H.

Theorem 7: The protocol Mul(x, y) securely realizes FMul
in Table IX, assuming the existence of PRFs. The proof refers
to Appendix I.

VI. PriVDT
A. Overview

The model setting in PriVDT is similar as recent works
such as [11], [34], [48], and [23]. Specifically, during the
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Algorithm 5 Secure Division Protocol Div([x], [y])
1: //offline
2: P0, P1 and STP invoke the offline Range([y]).
3: P0, P1 and STP generates 2t + 2 Beaver’s triples using

Alg.6 and n COTs using OToff in Section IV-B.2.
4: Both Pi , i ∈ {0, 1} generate the LUT Ti using LUToff in

Section IV-B.3 to map log n-bit input a to n-bit output {b j },
j ∈ [n] such that b j = 1 if j = a and 0 otherwise.

5: //online
6: P0, P1 invoke the online Range([y]) and obtain [k].
7: Pi evaluates Ti with [k] using LUTon in Section IV-B.3

and learns {[k j ]B}, j ∈ [n].
8: P0, P1 invoke OTon with [k j ]B , j ∈ [n], and learn [k j ].
9: Pi sets d j = 2n−1− j for j ∈ [n] and computes [k] =∑n−1

j=0 d j · [k j ]i .
10: P0, P1 compute [ỹ] = [y][k] using Beaver’s triples.
11: Pi computes [ω0]i = 2.9142− 2[ỹ]i .
12: P0, P1 compute [	0] = 1 − [ỹ][ω0], [	1] = [ω0][ω0] and
[z] = [	0](1+ [	0])(1+ [	1]) using Beaver’s triples.

13: Pi sets d �j = 2 j−n+1 for j ∈ [n] and computes [k �] =∑n−1
j=0 d �j · [k j ]i .

14: P0, P1 compute [y �] = [ỹ][k �] and obtain [z] = [x][y �]
using Beaver’s triples.

15: Return [z]

Algorithm 6 Secure Sharing Multiplication SMul([x], [y])
1: //offline
2: STP and P0 generate [a]0, [b]0 and [c]0 using PRFs with

the seed seedt0.
3: STP and P1 generate [a]1 and [b]1 using PRFs with the

seed seedt1.
4: STP computes [c]1 = ([a]0+[a]1)([b]0+[b]1)−[c]0, and

then sends [c]1 to P1.
5: //online
6: For i ∈ {0, 1}, Pi computes [e]i = [x]i − [a]i and [d]i =
[y]i − [b]i , and then sends them to P1−i .

7: P0 and P1 reconstruct e = Rec([e]0, [e]1) and d =
Rec([d]0, [d]1).

8: For i ∈ {0, 1}, Pi computes [z]i = i · e · d + d · [a]i + e ·
[b]i + [c]i .

9: Return [z].

secure training process, the inputs are the training samples ver-
tically distributed between the two parties. After this process
completes, the split threshold of each node is secret-shared
between the two parties, namely that none of the parties
can obtain the well-trained tree in plaintext, which effectively
guarantees the privacy of training samples and labels that may
be inferred from the tree. During the secure inference process,
the two parties jointly and privately perform the prediction
on a secret-shared sample from a query party, such that they
can not obtain the input and output information. Finally, the
plaintext result can be reconstructed to the target query party.
Before the secure training, the parties reach consensus on some
hyper-parameters, such as security parameters k and pruning
conditions. Also, the parties and STP construct the PRF seeds
for the generation of correlated randomness.

Algorithm 7 Secure Multiplication Protocol Mul(x, y)
1: //offline
2: STP and P0 generate a and [c]0 using PRFs with the seed

seedt0.
3: STP and P1 generate b using PRFs with the seed seedt1.
4: STP computes [c]1 = ab−[c]0, and then sends [c]1 to P1.
5: //online
6: P0 computes e = x − a and sends e to P1.
7: P1 computes d = y + b and sends d to P0.
8: P0 computes [z]0 = da − [c]0 and P1 computes [z]1 =

ye− [c]1.
9: Return [z].

1) Secure Tree Training: Let [γ ] = ([γ1], · · · , [γm]) to
indicate which sample is available on the tree node. Starting
from the root with [γ ] = ([1], · · · , [1]), the parties jointly
compute impurity gain of all splits and then select the best
split with the maximum gain. Based on the best split, they
can split the node to the left and right children with vectors
[γl ] and [γr ] respectively. This process recurses on each node
until pruning conditions are satisfied.

2) Secure Tree Inference: The parties can perform secure
inference given a sample x on the well-trained tree. Briefly,
starting from the root with the marker [mk] = [1], the parties
recursively compute the markers of its children by comparing
the corresponding feature value of x with the split threshold,
until all leaves are reached. The markers of leaves are assigned
to a vector [μ]. After the inference, only one element in [μ] is
1, specifying the real inference path on x. Then the inference
result [y] can be computed via [y] = [L][μ], where L includes
the labels of all leaves.

B. Secure Tree Training

In the following, we first give an example of the training
phase in plaintext, followed by the cryptographic evaluation.
Consider an example in Figure 1, where P1 owns labels
with two classes 1, 2 and each party holds one feature,
i.e., age or income. The parties aim to split a node with
[γ ] = ([1], [1], [1], [0]), i.e., samples 1, 2, 3 are available
on this node. First, P1 generates C1 = (1, 1, 0, 0) to indicate
whether the sample belongs to class 1 (resp. C2). Then they
compute [δ1] = C1  [γ ] = ([1], [1], [0], [0]) to obtain the
available samples belonging to class 1 (resp. [δ2]). Suppose
that P0 considers a split “age = 30”. P0 first divides the
samples into two partitions based on whether the age is larger
than 30, obtaining tl = (1, 0, 0, 1) for the left child and
tr = (0, 1, 1, 0) for the right child. On the left child, both
parties compute [dl1] = tl · [δ1] = [1] that equals the number
of available samples belonging to class 1 (resp. [dl2]), and
[|Dl |] = tl · [γ ] = [1], i.e., the total number of available
samples. The same operations are performed on the right child.
After that, they can compute the impurity gain shown in Eq.2
based on the above statistics and obtain the best split [s∗], and
next update [γl ] (resp. [γr ]) on the left (resp. right) child.

Algorithm 8 gives the specific operations of one node with
[γ ]. If pruning conditions are satisfied, this node will be
returned as a leaf. Otherwise, it will derive left and right chil-
dren based on the gini impurity gain. Specifically, (1) Leave
label computation (line 1-10): For each class k ∈ K , the label
owner P1 can generate Ck locally. Then the parties jointly
learn [δk] = Ck ([γ ]0+[γ ]1) = Mul(Ck, [γ ]0)+Ck[γ ]1,
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Fig. 1. Secure tree training. Given [γ ] of the node, the training phase
includes three step: 1) compute the impurity gain of each split, 2) obtain the
best split, 3) update [γ l ] and [γ r ] for the left and right children.

followed by summing all elements in [δk] to obtain the number
of samples belonging to each class k. Next, the parties compute
the label [k∗] of this node, which has the largest mk , via
comparing them one by one. If pruning conditions are not
met, the following steps will be performed. (2) Gini Impurity
Evaluation (line 12-21): Given a split s j of feature fb, the
feature owner can construct tl and tr locally. Based on such
information, the parties can jointly evaluate [|Dl |], [|Dr |], [d2

kl ]
and [d2

kr ], by invoking our multiplication protocol. To the end,
with the above secret-shared statistics, the parties can obtain
the impurity gain [g̃ j ] shown in Eq.2 by invoking our division
protocol. (3) Best Split Selection (line 22-35): After obtaining
the impurity gain of all splits, the parties attempt to select
the best split with the maximum impurity gain. To reduce
multiplication invocations, our strategy is to first select the
best split of each feature as a candidate split, e.g., [s∗b ] for
feature fb. Subsequently, we obtain the best split [s∗] of the
current node, as well as the feature [ f ∗] to which that this split
belongs. (4) Model Update (line 36-38): By now, the parties
can update [γl ] and [γr ] for the current node’s children. They
first learn [�r ] indicating the sample index that the feature
value belonging to f ∗ is smaller than [s∗]. Next they jointly
invoke our multiplication protocol to obtain [γ r ] for the right
child, and compute [γ l ] = [γ ] − [γ r ] for the left child.

Remark: Note that like Pivot [11], the feature f ∗ is public
in PriVDT. Also, the parties can choose to hide f ∗ with
minor modifications to the protocols. Specifically, let T m×ns =
(t1, · · · , tns ) (ns is the total number of splits) be the split
indicator matrix, where t j indicates the j -th split. Given T
and [V ] = ([v1], · · · , [vns ]) such that [v j ] = [1] if j = s∗ and
0 otherwise,4 then [ts∗] = T · [V ]. After that we can update
[γ l ] = SMul([ts∗ ], [γ ]). The same manner applies to [γ l ].
This way can eliminate the leakage of features, but damage
the interpretability. In fact, there is a trade-off between privacy
and interpretability for the tree-based models.

C. Secure Tree Inference

Given a secret-shared well-trained tree, the parties can
perform secure inference on a sample x. Consider an example

4It can be obtained via the well-studied Private Information Retrieval (PIR)
technique [19], [49].

Algorithm 8 Secure Tree Training
1: [δk] ← Mul(Ck, [γ ]0)+ Ck  [γ ]1 for k ∈ K
2: if pruning conditions are satisfied then
3: [mk] =∑

i [δk][i ] for each k ∈ K
4: [k∗] = [1], [m∗] = [m1]
5: for i = 2 to |K | do
6: [�] = Compare([m∗], [mi ])
7: [k∗] = SMul([�], i − [k∗])+ [k∗]
8: [m∗] = SMul([�], [mi ] − [m∗])+ [m∗]
9: end for

10: Return [l∗] // the label with majority class

11: for fb ∈ F do
12: for s j ∈ fb do
13: tl = (1{t1 ≤ s j }, · · · , 1{tm ≤ s j }), tr = 1− tl
14: [|Dl |] ← Mul(tl , [γ ]0)+ tl · [γ ]1 (resp. [|Dr |])
15: for k ∈ K do
16: [dkl ] ← Mul(tl , [δk]0)+ tl · [δk]1 (resp. [dkr ])
17: [d2

kl ] ← SMul([dkl ], [dkl]) (resp. [d2
kr ])

18: [ρlk] ← Div([d2
lk], [|Dl |]) (resp. [ρrk])

19: end for
20: [g̃ j ] =∑

k∈K ([ρlk ] + [ρrk ]) //gini impurity gain

21: end for
22: [s∗b ] = [s0], [g∗b] = [g̃0] //s∗b is the best split of fb

23: for s j ∈ fb do
24: [�] = Compare([g̃ j ], [g∗b])
25: [g∗b] = SMul([�], [g̃ j ] − [g∗b])+ [g∗b]
26: [s∗b ] = SMul([�], [s j ] − [s∗b ])+ [s∗b ]
27: end for
28: end for
29: [g∗] = [g∗0], [s∗] = [s∗0 ], [ f ∗] = [ f0] //s∗ is the best split
30: for b = 1, · · · , |F | − 1 do
31: [�] = Compare([g∗b], [g∗])
32: [g∗] = SMul([�], [g∗i ] − [g∗])+ [g∗]
33: [s∗] = SMul([�], [s∗i ] − [s∗])+ [s∗]
34: [ f ∗] = SMul([�], [ fi ] − [ f ∗])+ [ f ∗]
35: end for
36: f ∗ = Rec([ f ∗]0, [ f ∗]1)
37: [�r [ j ]] = Compare([ f v j ], [s∗]) for each f v j ∈ f ∗
38: [γ r ] = SMul([�r ], [γ ]), [γ l ] = [γ ] − [γ r ]

in Figure 2, where the label vector of the tree is [L] =
([1], [2], [2], [1], [2]). The split threshold of the root with
[mk] = [1] is “age = [30]”, and the age of x is [25].
Thus [mk1] = [1{25 < 30}] · [mk] = [1] is assigned to
the right child nB and [1{25 > 30}] · [mk] = [0] to its left
child nD . The parties can recursively compute the marker of
each node in the same way, i.e., comparing the corresponding
feature value of x with the split threshold of current node,
and then invoking multiplication to obtain the marker. To the
end, the parties learn [μ] = ([μ1], [μ2], [μ3], [μ4], [μ5]) =
([0], [1], [0], [0], [0]), and the secret-shared inference result is
[μ] · [L] = [2].

Formally, the secure inference scheme is given in
algorithm 9. Given that each internal node n j is associated
with one feature f j with the best split [s j ], this protocol is

described as follows. For n j with the marker [mk j ], the parties
jointly compare [s j ] with the corresponding feature value [x j ]
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Fig. 2. Secure tree inference. The key insight is to recursively compute the
marker of each node until leaves are reached.

Algorithm 9 Secure Tree Inference
1: for j = 1, · · · , z − 1 do
2: If j == 1, then [mk j ] = [1].
3: [� j ] = Compare([s j ], [x j ])
4: [mk2∗ j+2] = SMul([mk j ], [� j ])
5: [mk2∗ j+1] = SMul([mk j ], 1− [� j ])
6: end for
7: if nk is a leaf with the marker [μk] = [mkk] then
8: Put [μk] in the correct position in [μ]
9: [y] = SMul([μ], [L])

of the sample x to obtain [� j ]. Then, the parties jointly
compute the marker [mk2∗ j+2] = [mk j ][� j ] of its right child,
and [mk2∗ j+1] for its left child via invoking our multiplication
protocol. To the end, the parties obtain [μ] ∈ {0, 1}z where
each element denotes the marker of a leaf and only one
element is 1. Finally, the inference result is computed via
[y] = [L][μ].

D. Security Analysis

Theorem 8: The scheme in Algorithm 8 is a secure tree
training scheme against semi-honest adversaries, assuming the
existence of secure multiplication, comparison and division
procedures. The proof refers to Appendix J.

Theorem 9: The scheme in Algorithm 9 is a secure tree
inference scheme against semi-honest adversaries, assuming
the existence of secure multiplication and comparison proce-
dures. The proof refers to Appendix J.

E. Extend PriVDT to Continuous Attributes

Utilizing the discretization method in [23], called
equal-width binning (EWB), PriVDT can be extended to
evaluate continuous data. The main idea of EWB is to divide
the range of attributes into a pre-defined number of bins
with the same width. However, as shown in Section VII-D,
directly utilizing this method cannot yield desirable accuracy
in PriVDT.

We address this problem by proposing a simple but effective
discretization method. In detail, we first sort the training
samples D based on the continuous attribute. Subsequently,
given a pre-defined number of bins P , we place the sorted

samples into these P bins, each containing D
P samples (except

for the last bin). Finally the split threshold of each bin can
be obtained as the maximum continuous attribute value in
the corresponding bin. Notice that in our vertical setting, the
discretization process can be performed locally by the parties,
since the attributes are owned by either party in plaintext.
The experimental results in Section VII-D show that our
discretization method can achieve better accuracy in PriVDT.

VII. EVALUATION

A. Experimental Setup

We implement PriVDT in C++ using the communication
backend of the Porthos framework in EzPC [50]. PRF is built
on the block cipher AES using the OpenSSL-AES library [51].
Besides, the FSS schemes are implemented based on the
LibFSS library [52]. PriVDT is executed on three desktops
with Intel(R) 562 Xeon(R) CPU E5-2620v4 (2.10 GHz) and
16 GB of RAM running the Ubuntu 18.4 system, each of
which is the instantiation of one party (P0, P1 and STP). The
communication overhead reported in the following contains
the communication between STP and the other two parties,
as well as between the two parties. The runtime comes from
the computational costs of the local computation of these three
entities, and the communication latency among them. For the
experiments on LAN, the bandwidth is 2GBps and the echo
latency is 0.3ms. On WAN, the bandwidth is 40MBps and
the network delay is 40ms. We set secret-sharing protocols
over the ring Z264 following existing works [22] and [16],
and encode inputs using a fixed-point representation with the
20-bit precision.

Datasets: We evaluate PriVDT on five real-world datasets
taken from the UCI machine learning repository [53].
• Iris dataset is used for the pattern recognition of iris flowers,

which contains 150 samples within 3 classes. Each sample
has 4 features and each class refers to a type of iris plant.

• Heart Disease dataset aims to infer the presence or absence
of heart diseases in patients, which contains 303 samples
with 75 features, and the label is 0 (no presence) to 4.

• Bank Marketing dataset aims to predict if a client will
subscribe a term deposit, which contains 4,521 samples with
17 features.

• Credit Card dataset is to predict if a client is credible or
not, which contains 30,000 samples with 23 features.

• Handwritten Digits dataset contains 5,620 images of
hand-written digits with 63 features. All input attributes are
integers in the range [0, 16] and the class label is from [0, 9].

B. Model Accuracy

To validate the accuracy goal of our cryptographic frame-
work, Table III compares the accuracy in PriVDT with the
non-private baseline under different datasets. We observe that
PriVDT achieves comparable accuracy performance with the
non-private setting. The slight accuracy loss is possibly cause
by the fixed-point presentation and the approximate division
operation. These issues are unavoidable in secure multi-party
computation techniques [11], [21].

C. Comparison With Pivot [11]

In this section, we give the performance comparison
between PriVDT and Pivot [11]. We run the Pivot system with
the same experimental setup using their provided reference
implementation [54].
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Fig. 3. Comparing the online runtime and communication overhead of comparison and division operations with Pivot.

TABLE IV

COMPARING THE ONLINE RUNTIME AND COMMUNICATION OVERHEAD OF

ADDITION AND MULTIPLICATION OPERATIONS WITH PIVOT

1) Microbenchmark Comparison: Table IV gives the online
performance comparison of the addition and multiplica-
tion protocols in PriVDT with Pivot on LAN. Note that
in PriVDT, the addition can be evaluated locally in the
secret-shared values without any cryptographic computation.
In contrast, in Pivot the addition is evaluated on the homo-
morphic ciphertext. Thus the communication of both schemes
are 0 but the runtime of Pivot is more expensive. For the
multiplication, although Pivot introduces zero communica-
tion, it additionally requires the communication-heavy domain
conversion to be compatible with secret-shared values. Our
computation overhead is more lightweight than Pivot since we
just involve non-cryptographic operations. Fig.3 compares the
online performance of comparison and division protocols in
PriVDT with Pivot on LAN. We observe that both protocols
in PriVDT are orders of magnitude better than those of Pivot.

2) End-to-End Comparison: Table V gives the end-to-end
comparison on runtime with Pivot, where the tree depth is
3, and the maximum number of splits is 5, 3, 5, 14 for the
four datasets respectively. Note that we only report the online
runtime of Pivot since the offline benchmark and the commu-
nication cost cannot be measured in Pivot. Besides, we give
a theoretical comparison of the communication complexity
analysis in Appendix K. The online training of PriVDT over
four datasets are < 4.3s on LAN. Compared to Pivot, for
example, PriVDT realizes a speedup of 130× on the Bank
Marking dataset. Besides, PriVDT is still practical on WAN
and takes < 86s online runtime over four datasets, achieving at
least 85× boost over Credit Card dataset compared with Pivot.
Note that PriVDT remains superior on the total cost, since
Pivot requires communication-heavy bit decomposition and
computation-expensive homomorphic operations. In addition,
PriVDT can perform online inference on single sample in
2ms, which is at least 11× faster on LAN and 15× faster on
WAN compared with Pivot.

Fig. 4. Comparing the accuracy and runtime of PriVDT with [23] on
continuous datasets. Ours uses the discretization method in [23], and Ours∗
uses our proposed discretization method in Section VI-E.

D. Comparison With [23] on Continuous Data
As described in Section VI-E, PriVDT can be extended

to deal with continuous attributes via an extra discretization
process. In Figure 4, we show the performance of PriVDT on
three continuous datasets (Breast Cancer dataset (BC), ECG
Heartbeat dataset (ECG), and Lower Back Pain Symptoms
dataset (BACK)) and give the comparison with [23], the most
advanced private DTs training over continuous data. For a fair
evaluation, we use the same experimental settings as [23],
where entities are connected via Gigabit Ethernet network.
The tree depth is 4 for BC and BACK and 1 for ECG, and the
number of bins is 5 for BC/BACK and 3 for ECG. We observe
that from Figure 4(a), directly utilizing the discretization
method of [23] cannot yield satisfactory accuracy in PriVDT,
e.g., 86.84% and 70.96% on BC and BACK, respectively. The
accuracy of ECG is up to 1 due to its simple classification task.
In contrast, our discretization method detailed in Section VI-E
can achieve better accuracy, e.g., 93.86% on BC and 78.91%
on BACK, which is generally consistent with the results
in [23]. Figure 4(b) shows the online runtime of PriVDT
under different discretization methods, and the comparison
with [23]. Under the similar accuracy, PriVDT achieves 2.1 ∼
3.9× runtime boost compared with [23].

In addition, we report the detailed secure training and
inference overheads of PriVDT under LAN and WAN on these
three continuous datasets. As shown in Table VI, we observe
that PriVDT introduces low runtime cost under LAN since
our underlying protocols only contains efficient symmetric
cryptographic operations. However, under WAN, the runtime
increases significantly, due to high network latency from mul-
tiple rounds of communication. In addition, PriVDT offloads
most of the communication to the offline phase. For example,
the offline communication of secure training on BACK is
62.52 MB, but the online phase only introduces 5.12 MB
communication.
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TABLE V

COMPARING THE RUNTIME OF PriVDT WITH PIVOT [11]. NOTE THAT THE OFFLINE BENCHMARK CANNOT BE MEASURED IN PIVOT

TABLE VI

SECURE TRAINING AND INFERENCE PERFORMANCE ON CONTINUOUS

DATASETS UNDER LAN/WAN

TABLE VII

SECURE TRAINING PERFORMANCE ON LAN/WAN

TABLE VIII

SECURE INFERENCE PERFORMANCE ON LAN/WAN

E. Detailed Performance of PriVDT

Table VII gives the secure training performance of PriVDT
under LAN and WAN, where the tree depth is 3, the maximum
number of splits is 14, and the number of pruning samples is
5. On LAN, PriVDT takes < 48s to train trees on all datasets.
On WAN, our scheme is still efficient, which takes about
21 minutes on the complex Handwritten Digits dataset and <
9 minutes on others. Longer runtime is required on WAN since
the training of trees requires multiple communication rounds.
For the communication, the cost of the online phase is much
less than that of the offline phase. This is because the designed
protocols are communication-efficient and we further move the
costly cryptographic operations into the offline phase.

Table VIII shows the performance of the secure inference
under LAN and WAN, where the online phase takes about
1.5ms and 120ms respectively with 0.8KB communication
on all datasets. The inference overhead on these datasets is
similar, since complete binary trees with a depth of 3 are
built for these datasets (except Iris), and hence the number

of cryptographic operations is roughly equal. Besides, the
online communication is much lower than that in the offline
phase, whereas the online runtime is the opposite. The main
reason is that in the offline phase, PriVDT just needs
one communication round to generate correlated randomness.
However, the online evaluation is carried out layer-by-layer,
where communication cannot be parallelized, resulting in the
increased round-trip latency.

F. Performance Over Varied Parameters
We explore the performance of PriVDT over varied para-

meters based on the Credit Card dataset. By default, the num-
ber of training data and features are 5, 000 and 23 respectively.
The maximum number of splits is 14 and the tree depth is 3.

1) Training: Figures 5 and 6 give the performance of the
secure training phase under various parameters.

a) Varying the number of training data: The runtime and
communication cost grows roughly linearly as the number of
training samples increases as shown in Figures 5(a) and 6(a),
because PriVDT needs more multiplication operations to
compute the impurity gain. In Figure 5(a), the runtime on
WAN is more expensive than that on LAN due to the band-
width and latency constraints. In the same network setting, the
offline overhead is much heavier than that in the online phase.
The same phenomenon also appears in Figure 6(a). Note that
the communication cost is independent of the network setting.

b) Varying the number of features: As shown in
Figure 5(b), the runtime grows with the increased features.
On WAN the online runtime varies more widely because
the secure computations need more communication rounds,
which introduces larger latency. In contrast, no matter how
the parameters are changed, only one communication round is
required in the offline phase. In Figure 6(b), the communica-
tion overhead of offline and online phases roughly increases
linearly with the similar trend.

c) Varying the maximum tree depth: The well-trained tree
tends to a complete binary tree, where about 2h − 1 internal
nodes are constructed given the depth h. Therefore, as shown
in Figures 5(c) and 6(c), the runtime and communication
overhead tends to increase logarithmically with the tree depth.

2) Inference: Figures 5(d) and 6(d) give the performance of
the secure inference phase under different tree depths.

a) Varying the maximum tree depth: Results in
Figure 5(d) show that the online runtime increases logarith-
mically with the tree depth. In other words, the runtime grows
linearly with the increased intermediate nodes. This is because
the communication latency is relatively low on LAN and local
cryptographic operations dominate the runtime. On WAN,
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Fig. 5. The runtime of the secure training (s) and inference (ms) process in PriVDT under various parameters.

Fig. 6. The communication cost of the secure training (MB) and inference (KB) process in PriVDT under various parameters.

the communication latency becomes the main performance
bottleneck. Thus the online runtime grows roughly linearly as
the tree depth increases. Since the communication overhead is
directly related to the number of intermediate nodes, it grows
logarithmically with the tree depth in Figure 6(d).

Other parameters such as the numbers of features have
no direct effect on the inference performance. As shown in
Section VI-C, the inference phase in PriVDT only contains
secure comparison and multiplication operations, where the
number of comparisons is equal to the number of tree nodes,
and the number of multiplication rounds is equal to the
maximum tree depth.

VIII. DISCUSSION

A. Distribute STP in a 2PC Protocol
Similar as most privacy-preserving works based on

FSS [19], [45], [55], PriVDT generates correlated randomness
(especially for FSS) via a third party. However, the role of
the third party can be jointly emulated by the two parties via
generic two-party secure protocols such as Garbled Circuits
(GCs) [30] and GMW [56] or specific techniques [57], [58].
Specifically, (1) one can use generic GCs or GMW-style pro-
tocols to generate the required correlated randomness during
the offline phase. Despite desirable versatility, these protocols
require to privately evaluate underlying pseudorandom gener-
ators (PRGs) during the key generation step of FSS. (2) As a
customized case, [57] proposed a novel solution that offers the
significant efficiency advantage since the evaluation of PRGs
only takes place locally, and does not need to be securely
emulated. However, it’s restricted to moderate domain size
and hence hard to extend to general and large cases. Thus,
it’s an interesting future work to design efficient and general
techniques for distributing the third party in FSS techniques,
and then extend our PriVDT framework into a full two-party
setting without the third party.

B. Extend PriVDT to the Multi-Party Setting

We explore the possibility of extending PriVDT to the
multi-party setting, and provide technical ideas. The required

building blocks and existing techniques are illustrated as
follows. (1) Multi-party secret sharing: This is a trivial require-
ment in n-out-of-n additive secret sharing, which supports
addition and multiplication operations like the 2-out-of-2 vari-
ant we used. (2) Multi-party truncation protocol: In multi-party
settings where our two-party truncation protocol from [16]
does not work, we can use the truncation protocol of [59] for
scaling down the output after each fixed-point multiplication.
This protocol slightly increases the communication complexity
and requires 1 communication round. (3) Multi-party FSS:
Dodis et al. [60] proposed a multi-party FSS scheme for
general functions (more precisely, fixed-depth circuits) under
the Learning with Errors assumption, which can be imple-
mented by making use of multi-key FHE [61], [62]. This is
sufficient for constructing the FSS protocols of comparison
and division. With these building blocks, the multi-party
protocol extension can be easily obtained by replacing the
cryptographic operations in Algorithms 8 and 9 with multi-
party protocols.

IX. CONCLUSION

In this paper, we propose PriVDT, an efficient two-party
cryptographic framework for vertical decision trees. Specif-
ically, we develop new building blocks, including private
comparison and division, based on function secret sharing.
We further reduce the overhead of linear operations via
employing lightweight PRF-based Beaver’s triple technique.
Extensive experiments show that PriVDT outperforms prior
art by up to orders of magnitude with a slight accuracy
loss. In the future, we will extend PriVDT to malicious
settings [14], [63].

APPENDIX

A. Function Secret Sharing

We first consider the DCF with a general comparison
function f (x) that equals 1 if the input x < 0 and 0 oth-
erwise. Following the construction of [19], our FSS solution
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Algorithm 10 Gen<α,β of Secure Comparison Protocol

1: //offline
2: Let α = α1, · · · , αn ∈ {0, 1}n and s0

0 , s0
1 ∈ {0, 1}k .

3: Let � = 0 and for i ∈ {0, 1}, t0
i = i .

4: for j = 1 to n do
5: sL

i �ψ L
i �t L

i �s R
i �ψR

i �t R
i ← PRG(s( j−1)

i ), i ∈ {0, 1}.
6: let Keep = L, Lose = R if α j = 0, reverse otherwise.
7: Scw = sLose

0 ⊕ sLose
1

8: �cw = (−1)t
j−1

1 · [ψLose
1 −ψLose

0 −� + 1{Lose = L}]
9: � = � − ψKeep

1 + ψKeep
0 + (−1)t

j−1
1 ·�cw

10: T L
cw = t L

0 ⊕ t L
1 ⊕ α j ⊕ 1 and T R

cw = t R
0 ⊕ t R

1 ⊕ α j

11: CW j = Scw��cw�T L
cw�T R

cw

12: s j
i = sKeep

i ⊕ t j−1
i · Scw for i ∈ {0, 1}

13: t j
i = tKeep

i ⊕ t j−1
i · Tcw for i ∈ {0, 1}

14: end for
15: CW n+1 = (−1)t

n
1 · [sn

1 − sn
0 −�]

16: ki = s0
i �CW 1� · · · �CW n+1 for i ∈ {0, 1}

for comparison is shown in Algorithms 10 and 11. At the
high level, k0 and k1 respectively define a GGM-style binary
tree [56] with 2n leaves, where each leaf is uniquely labeled
by an element x ∈ Z2n . We denote a path from the root
to the leaf labeled by x = 0 as the special evaluation
path, and as the evaluation path otherwise. Each tree node
is associated with a triple (s, ψ, t) of length 2k + 1, where
the k-bit s is the seed of PRGs,5 k-bit ψ is the output
element and 1-bit t is the control bit. The key insight of
the FSS-based comparison is to maintain the invariant that
1) for each node on the special evaluation path, the two
seeds s0 and s1 corresponding respectively to k0 and k1 are
computationally indistinguishable, and the control bits t0 and
t1 are opposite; 2) for each node on the evaluation path, the two

seeds are identical, as are the two control bits; 3)
∑n

j=0ψ0 and∑n
j=0ψ1 over all evaluation nodes of two trees are exactly

the secret-shares of f (x). Note that the triple of each node is
fully determined by that of its parent. Since the root satisfies
s0

0 �= s0
1 and t0

0 ⊕ t0
1 = 1, the invariant is auto-maintained in

the special evaluation path. On the other hand, for the first
node j outside the special evaluation path, if both seeds are
corrected to s j

0 = s j
1 , and the two control bits meet t j

0⊕t j
1 = 0,

then the invariant will be auto-maintained on the evaluation
path. Besides, ψ0 + ψ1 along the evaluation path is 1 if the
departure is to the left of the special evaluation path (x<0) and
0 otherwise (x>0). Thus, the task of Gen<α,β where α = 0 and
β = 1 is to generate ki , i ∈ {0, 1}, which consists of s0

i of the
root and the correct words CW to guarantee the invariant of
the first node departure the special evaluation path.

The construction of DPF also follows the above ideas.
Readers can refer to [19] for more details.

B. Secure Truncation Protocol

We recap the truncation method of [16]. We denote by
Trs(x) truncating the last s bits of x , where s is the fractional
length. The protocol in [16] is executed as follows: given
shares [x]0, [x]1 of x , P0 and P1 compute [y]0 = Trs([x]0)

5A Pseudo-Random Generator (PRG) takes a uniformly random seed and
a security parameter κ as inputs, and outputs a long pseudorandom string.

Algorithm 11 Eval<α,β(i, ki , x) of Secure Comparison
Protocol
1: //online
2: Parse ki = s0�CW 1� · · · �CW n+1, x = x1, · · · xn

3: Let � = 0 and t0 = i
4: for j = 1 to n do
5: Parse CW j = Scw��cw�T L

cw�T R
cw

6: s̃ L�ψ̃ L�t̃ L�s̃ R�ψ̃R�t̃ R ← PRG(s( j−1))
7: sL�t L � s R�t R = (s̃ L�t̃ L � s̃ R�t̃ R) ⊕ [t j−1 ·
(Scw�T L

cw � Scw�T R
cw)]

8: if x j = 0 then
9: � = � + (−1)i · [ψ̃ L + t j−1 ·�cw]

10: s j = sL , t j = t L

11: else
12: � = � + (−1)i · [ψ̃R + t j−1 ·�cw]
13: s j = s R, t j = t R

14: end for
15: � = � + (−1)i · [sn + tn · CW n+1]
and [y]1 = 2n − Trs(2n − [x]1), respectively. From Theorem
1 of [16], with probability 1 − 1

2n−nx−1 , y ∈ {Trs(x) −
1,Trs(x),Trs(x)+ 1}, where x ∈ [

0, 2nx
] ∪ [

2n − 2nx , 2n).

C. Proof of Theorem 1

Proof: The reformulated comparison incurs error when
1{x < 2n−1} �= 1{x + r mod 2n ≥ r}. We analyze in the
following two cases. 1) Consider the case where x is positive,
i.e., x < 2n−1. The wrong result is assigned if x+r mod 2n <
r . This is true when adding x and r incurs an overflow, i.e.,
x+r ≥ 2n . Since r is drawn at random in Z2n , the probability
of error P = x

2n . 2) For the case where x is negative, the
result can be obtained with similar analysis. In this case, the
wrong result is assigned if x + r mod 2n ≥ r . This is true
when x + r does not overflow, i.e., x + r < 2n . Since r is
drawn at random in Z2n , it results in an error probability of
P = |x |2n , where x ≥ 2n−1 and |x | = 2n − x .

D. Proof of Theorem 2

Proof:
We prove the security of Compare([x], [y]). STP receives

no private information, hence this protocol is trivially secure
against semi-honest corruption of STP. Now, we prove the
security against corruption of either P0 or P1. Pi , i ∈ {0, 1},
receives [b]1−i = [y]1−i − [x]1−i + [r ]1−i and ki . Given
the security of PRFs, [r ]1−i is a random value unknown to
Pi . Thus the distribution of [b]1−i is uniformly random from
Pi ’s view. Then given the security of FSS, the information
learned by Pi can be perfectly simulated. Hence our protocol
is trivially secure against semi-honest corruption of Pi .

E. Proof of Theorem 3

Proof: DigDec([x]) is sequential combination of local
computations and invocations of FCompare, FLUT, FFSS,
FSMul and FOT. Simulation follows directly from composing
the corresponding simulators.
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TABLE IX

THE IDEAL FUNCTIONALITY

F. Proof of Theorem 4

Proof: We prove the security of Range([x]). Range([x])
is sequential combinations of local computations and invoca-
tions of FDigDec, FLUT, FFSS, FOT and FSMul. Simulation
follows directly from composing the corresponding simulators.

G. Proof of Theorem 5

Proof: We first prove the correctness of Div([x], [y]). The
initial approximation ω0 = 2.9142 − 2ỹ of 1/ỹ introduces
an error of 	0 < 0.08578 [46]. Then we iterate twice to
get the approximation of [x]/[y], where the final error is
	22

0 = 0.54×10−4. This error is negligible in the ring Z264 [64].
Now we prove security of this protocol. Div([x], [y]) is
sequential combination of local computations and invocations
of FRange, FLUT, FOT and FSMul. Simulation follows directly
from composing the corresponding simulators.

H. Proof of Theorem 6

Proof:
We prove the security of SMul([x], [y]). STP receives

no private information, hence this protocol is trivially
secure against semi-honest corruption of STP. The messages
P0 received are [e]1 = [x]1−[a]1 and [d]1 = [y]1−[b]1. Given
the security of PRFs, [a]1 and [b]1 are random values unknown
to P0. Thus, the distribution of [e]1 and [d]1 are uniformly
random from P0’s view and the information learned by P0 can
be perfectly simulated. P1 receives [c]1, [e]0 = [x]0−[a]0 and
[d]0 = [y]0−[b]0. Given the security of PRFs, the distribution
of [c]1, [e]1 and [d]1 are uniformly random from P1’s view,
hence our protocol is trivially secure against semi-honest
corruption of P1.

I. Proof of Theorem 7

Proof:
We prove the security of Mul(x, y). STP receives no private

information, hence this protocol is trivially secure against
semi-honest corruption of STP. The message P0 received is
e = x − a. Given the security of PRFs, a is a random value
unknown to P0. Thus, the distribution of e is uniformly random
from P0’s view and the information learned by P0 can be
perfectly simulated. P1 receives [c]1 and d = y+b. Given the
security of PRFs, the distribution of [c]1 and d are uniformly
random from P1’s view, hence our protocol is trivially secure
against semi-honest corruption of P1.

J. Proof of Theorem 8 and Theorem 9

We provide proofs of semi-honest simulation based security
for the training and inference protocols in Algorithm 8 and 9.
We focus on one tree node because each node performs the
same operation separately. To proof the security, we describe
a simulator Sim to simulate the view of corrupt party Pi by
simulating the sequence of hybrid transcripts Hyb j , where
Hyb0 is the real-world distribution. The view consists of its
input/output and received messages. Given the functionality F ,
SimF simulates the operations in F and appends its output to
the general view. Now, we should prove the indistinguishabil-
ity of the produced transcript from the real execution against
corrupted P0. The simulator for P1 is similar.

Proof of indistinguishability during the training phase.
• Hyb1: Hyb1 is same as Hyb0, except FSMul is replaced

with SimSMul that runs the simulator for the PRF-assisted
multiplication procedure. Since SimSMul is guaranteed
to produce output indistinguishable from the real-world,
Hyb1 is distributed identically to Hyb0.

• Hyb2: Hyb2 is same as Hyb1, except FMul is replaced
with SimMul. FMul takes the inputs (Ck , tl ) owned by
P1 and ([γ ]0, [δk]0) owned by P0, which does not leak
any information to each other. Therefore, the output of
SimMul is indistinguishable from the real-world. Hyb2 is
distributed identically to Hyb1.

• Hyb3: Hyb3 is same as Hyb2, except FCompare is
replaced with SimCompare that runs the simulator for
FSS generation and evaluation. Besides, P1 sends [x1]1−
[x2]1+ [r ]1 for a uniformly chosen value, where r is the
mask to hide the secret x1−x2. According to the security
of FSS, Hyb3 is distributed identically to Hyb2.

• Hyb4: Hyb4 is same as Hyb3, except FDIV is replaced
with SimDIV. According to the security of division pro-
cedure, Hyb4 is distributed identically to Hyb3. This
concludes the proof.

Proof of indistinguishability during the inference phase.
• Hyb1: Hyb1 is same as Hyb0, except FSMul is replaced

with SimSMul that runs the simulator for the PRF-assisted
multiplication procedure. Since SimSMul is guaranteed
to produce output indistinguishable from the real-world,
Hyb1 is distributed identically to Hyb0.

• Hyb2: Hyb2 is same as Hyb1, except FCompare is
replaced with SimCompare that runs the simulator for FSS
generation and evaluation procedures. Besides, P1 sends
[x j ]1−[s j ]1+[r j ]1, j ∈ [2, z] and [y]1 for two uniformly
chosen values. According to the security of FSS, Hyb2 is
distributed identically to Hyb1. This concludes the proof.
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TABLE X

COMMUNICATION COMPLEXITY (BIT) OF PriVDT AND PIVOT [11] ON THE SECURE TRAINING PROCESS. GIVEN A TRAINING DATASET, d , k , f ARE

THE NUMBERS OF SAMPLES, CLASSIFICATIONS, AND FEATURES, RESPECTIVELY. s� AND s DENOTE THE NUMBERS OF SPLITS OF EACH FEATURE

AND OVERALL SPLITS, RESPECTIVELY. AN EXAMPLE IS GIVEN (SHADED ENTRIES), WHERE d = 4, k = 2, f = 2, s� = 2, AND s = 4

TABLE XI

COMMUNICATION COMPLEXITY (BIT) OF PriVDT AND PIVOT [11] ON

THE SECURE INFERENCE PROCESS. f � AND z DENOTES THE NUMBER
OF FEATURES OF THE INFERENCE SAMPLE AND THE NUMBER

OF LEAVES OF THE WELL-TRAINED TREE, RESPECTIVELY.
AN EXAMPLE IS GIVEN (SHADED ENTRIES)

WHERE f � = 2 AND z = 3

K. Communication Complexity Analysis

We analyze the theoretical communication complexity of
PriVDT, and give the comparison with Pivot [11], where the
security parameter λ = 128 and ring size n = 64 in PriVDT,
and the length of an HE ciphertext in Pivot is l = 4096.

1) Secure Training Phase: As detailed in Section VI-B,
the training phase in PriVDT can be divided into 4 steps:
leave label computation, gini impurity evaluation, best split
selection, and model update. In Table X, we report the
communication overhead for each step, where we only give the
overhead of one recursion. For ease of understanding, we also
give a concrete example. We can observe that for the online
communication, PriVDT always outperforms Pivot, achieving
a significant communication boost of about 20×. Although
the offline communication of PriVDT is higher than that of
Pivot, the overall communication cost of PriVDT still has a
significant advantage.

2) Secure Inference Phase: Table XI provides the communi-
cation analysis for the inference phase of PriVDT and Pivot.
Given an inference sample with 2 features and a well-trained
tree with 3 leaves, PriVDT improves the communication
overhead of Pivot by 46× during the online phase. The
communication bottleneck of Pivot mainly comes from the
expensive HE-to-MPC conversion, and costly comparison and
division protocols.
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