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Abstract—In this paper, we address the problem of privacy-preserving federated neural network training withN users. We present

Hercules, an efficient and high-precision training framework that can tolerate collusion of up toN � 1 users. Hercules follows the

POSEIDON framework proposed by Sav et al. (NDSS’21), but makes a qualitative leap in performance with the following contributions:

(i) we design a novel parallel homomorphic computation method for matrix operations, which enables fast Single Instruction and

Multiple Data (SIMD) operations over ciphertexts. For the multiplication of two h� h dimensional matrices, our method reduces the

computation complexity from Oðh3Þ to OðhÞ. This greatly improves the training efficiency of the neural network since the ciphertext

computation is dominated by the convolution operations; (ii) we present an efficient approximation on the sign function based on the

composite polynomial approximation. It is used to approximate non-polynomial functions (i.e., ReLU and max), with the optimal

asymptotic complexity. Extensive experiments on various benchmark datasets (BCW, ESR, CREDIT, MNIST, SVHN, CIFAR-10 and

CIFAR-100) show that compared with POSEIDON, Hercules obtains up to 4% increase in model accuracy, and up to 60� reduction in

the computation and communication cost.

Index Terms—Privacy protection, federated learning, polynomial approximation

Ç

1 INTRODUCTION

AS a promising neural network training mechanism, Fed-
erated Learning (FL) has been highly sought after with

some attractive features including amortized overhead and
mitigation of privacy threats. However, the conventional FL
setup has some inherent privacy issues [1], [2]. Consider a
scenario where a company (referred to as the cloud server)
pays multiple users and requires them to train a target neu-
ral network model collaboratively. Although each user is
only required to upload the intermediate data (e.g., gra-
dients) instead of the original training data to the server
during the training process, a large amount of sensitive
information can still be leaked implicitly from these

intermediate values. Previous works have demonstrated
many powerful attacks to achieve this, such as attribute
inference attacks and gradient reconstruction attacks [3],
[4], [5]. On the other hand, the target model is locally dis-
tributed to each user according to the FL protocol, which
ignores the model privacy and may be impractical in real-
world scenarios. Actually, to protect the model privacy, the
server must keep users ignorant of the details of the model
parameters throughout the training process.

1.1 Related Works

Extensive works have been proposed to mitigate the above
privacy threats. In general, existing privacy-preserving
deep learning solutions mainly rely on the following two
lines of technologies: Differential Privacy (DP) [6], [7] and
crypto-based multiparty secure computing (MPC) [8], [9], [10],
[11], [12]. Each one has merits and demerits depending on
the scenario to which it is applied.

Differential Privacy. DP is usually applied in the training
phase [6], [7]. To ensure the indistinguishability between
individual samples while maintaining high training accu-
racy, each user is required to add noise to the gradient or
local parameters that meets the preset privacy budget.
Abadi et al. [6] propose the first differentially private sto-
chastic gradient descent (SGD) algorithm. They carefully
implement gradient clipping, hyperparameter tuning, and
moment accountant to obtain a tight estimate of overall pri-
vacy loss, both asymptotically and empirically. Yu et al. [7]
design a new DP-SGD, which employs a new primitive
called zero concentrated differential privacy (zCDP) for pri-
vacy accounting, to achieve a rigorous estimation of the pri-
vacy loss. In recent years, many variants of the above works
have been designed and applied to specific scenarios [13],
[14], [15], [16]. Most of them follow the principle that the
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minimum accumulated noise is added to the gradient or
local parameters while meeting the preset privacy budget.

DP is cost-effective because each user is only required to
add noise that obeys a specific distribution during training.
However, it is forced to make a trade-off between training
accuracy and privacy, i.e., a strong privacy protection level
can be reached at the cost of certain model accuracy
drop [17], [18]. This goes against the motivation of this
paper, as our goal is to design a highly secure FL training
framework without compromising the model accuracy.

Crypto-Based Multiparty Secure Computing. The implemen-
tation of this strategy mainly relies on two general techni-
ques, secret sharing [19] and homomorphic encryption
(HE) [11]. MPC enables the calculation of arbitrary functions
collaboratively by multiple parties without revealing the
secret input of each party. To support privacy-preserving
neural network training, most existing works [8], [9], [10],
[19], [20], [21] rely on splitting the training task into two or
more servers, who are usually assumed to be non-colluding.
Then, state-of-the-art secret sharing methods, including
arithmetic sharing [19], boolean sharing [8], and Yao’s gar-
bled circuit [22] are carefully integrated to efficiently imple-
ment various mathematical operations under the ciphertext.
Mohassel et al. [20] propose SecureML, the first privacy-pre-
serving machine learning framework for generalized linear
model regression and neural network training. It lands on
the setting of two non-colluding servers, where users
securely outsource local data to them. Then, several types of
secret sharing methods are mixed and used to complete
complex ciphertext operations. Other works, e.g., ABY3 [8],
QUOTIENT [9], BLAZE [23], Trident [24], are also exclu-
sively based on the MPC protocol between multiple non-
colluding servers (or a minority of malicious servers) to
achieve fast model training and prediction.

It is cost-effective to outsource the training task among
multiple users to several non-colluding servers, avoiding the
high communication overhead across large-scale users. How-
ever, it may be impractical in real scenarios where the setting
of multiple servers is not available. Especially in FL scenarios,
users are more inclined to keep their datasets locally rather
than uploading data to untrusted servers. To alleviate this
problem, several works [2], [11], [12], [25] propose to use
multi-party homomorphic encryption (a.k.a. threshold homo-
morphic encryption, as a variant of the standard HE), as the
underlying technology to support direct interactions among
multiple data owners for distributed learning. For example,
Zheng et al. [11] present Helen, a secure distributed learning
approach for linear models, where the threshold Paillier
scheme [26] is used to protect users’ local data. Froelicher
et al. [25] reduce the computation overhead of Helen by using
the packed plaintext encoding with the SIMD technology [2].
Sav et al. propose POSEIDON [12], the first distributed train-
ing framework with multi-party homomorphic encryption. It
relies on the multiparty version of the CKKS (MCKKS) cryp-
tosystem [27] to encrypt users’ local data. Compared with the
standard CKKS, the secret key of MCKKS is securely shared
with multiple entities. As a result, each entity still performs
the function evaluation under the same public key. However,
the decryption of the result requires the participation of all
entities. Besides, non-polynomial functions are approximated
as polynomial functions to be efficiently executed by CKKS.

1.2 Technical Challenges

In this paper, we follow the specifications of POSEIDON to
design our FL training framework, because such a technical
architecture enables the users’ data to be kept locally without
incurring additional servers. However, there are still several
critical issues that have not been solved well. (1) Computation
overhead is the main obstacle hindering the development of
HE. It usually requires more computing resources to perform
the same machine learning tasks compared to outsourcing-
based solutions [8], [9], [10]. Although there are some optimiza-
tion methods such as parameter quantization and model com-
pression [9], [28], they inevitably degrade the model accuracy.
Recently, Zhang et al. [29] design GALA, which employs a
novel coding technique formatrix-vectormultiplication. In this
way, multiple plaintexts are packed into one ciphertext to per-
form efficient homomorphic SIMD operations without reduc-
ing the calculation accuracy. However, GALA is specifically
designed for the MPC protocol that uses a mixture of HE and
garbled circuits, and its effectiveness is highly dependent on
the assistance of the inherent secret sharing strategy. Therefore,
it is necessary to design a computation optimization method
that is completely suitable forHE,without sacrificing the calcu-
lation accuracy. (2) There is a lack of satisfactory approximation
mechanisms for non-polynomial functions in HE. HE basically
supports homomorphic addition and multiplication. For non-
polynomial functions, especiallyReLU, one of themost popular
activation functions in hidden layers, we need to approximate
them to polynomials for ciphertext evaluation. The common
polynomial approximation method, such as the minimax
method, aims to find the approximate polynomial with the
smallest degree on the objective function under the condition
of a given error bound. However, the computation complexity
of evaluating these polynomials is enormous, making it quite
inefficient to obtain thefitting functionwithhigh-precision [30],
[31]. Recently, Lu et al. [32] propose PEGASUS, which can effi-
ciently switch back and forth between a packed CKKS cipher-
text and FHEWciphertext [33]without decryption, allowing us
to evaluate both polynomial and non-polynomial functions on
encrypted data. However, its performance is still far from
practical.

1.3 Our Contributions

As discussed above, the HE-based FL is more in line with
the needs of most real-world applications, compared to
other methods. However, it suffers from computing bottle-
necks and poor compatibility with non-polynomial func-
tions. To mitigate these limitations, we present Hercules, an
efficient, privacy-preserving and high-precision framework
for FL. Hercules follows the tone of the state-of-the-art
work POSEIDON [12], but makes a qualitative leap in per-
formance. Specifically, we first devise a new method for
parallel homomorphic computation of matrix, which sup-
ports fast homomorphic SIMD operations, including addi-
tion, multiplication, and transposition. Then, instead of
fitting the replacement function of ReLU for training in
POSEIDON, we design an efficient method based on the
composite polynomial approximation. In short, the contri-
butions ofHercules are summarized as follows:

� We design a new method to execute matrix opera-
tions in parallel, which can pack multiple plaintexts
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into a ciphertext to achieve fast homomorphic SIMD
operations (Section 3). Our key insight is to minimize
the number of plaintext slots that need to be rotated
in matrix multiplication through customized permu-
tations. Compared with existing works [12], [34], our
solution reduces the computation complexity from
Oðh3Þ to OðhÞ for the multiplication of any two h� h
matrices. It greatly improves the neural network
training efficiency since the ciphertext computation
is dominated by the convolution operations. We
describe the detail of efficiently executing matrix
transposition on packed ciphertexts, and packing
multiple matrices into one ciphertext, yielding bet-
ter-amortized performance.

� We present an efficient approximation on the sign
function based on the composite polynomial approx-
imation, with optimal asymptotic complexity (Sec-
tion 4). The core of our solution is to carefully
construct a polynomial g with a constant degree, and
then make the composite polynomial g � g � g � � � � �
g infinitely close to the sign function, as the number
of g increases. In this way, our new algorithm only
requires Qðlog ð1=dÞÞ þQðlog sÞ computation com-
plexity to obtain an approximate sign function result
of m 2 ½�1;�d� [ ½d; 1� within 2�s error. For example,
for an encrypted 20-bit integer m, we can obtain the
result of the sign function within 2�20 error with an
amortized running time of 20.05 milliseconds, which
is 33� faster than the state-of-the-art work [35].

� We show that Hercules provides semantic security
in the FL scenario consisting ofN users and a param-
eter server, and tolerates collusion among up to N �
1 passive users (Section 5). This is mainly inherited
from the property of the MCKKS.

� We conduct extensive experiments on various
benchmark datasets (BCW, ESR, CREDIT, MNIST,
SVHN, CIFAR-10 and CIFAR-100) to demonstrate
the superiority of Hercules in terms of classification
accuracy, and overhead of computation and commu-
nication (Section 6). Specifically, compared with
POSEIDON, we obtain up to 4% increase in model
accuracy, and up to 60� reduction in the computa-
tion and communication cost.

Roadmap. In Section 2, we review some basic concepts
used in this paper, and introduce the scenarios and threat
models. In Sections 3, 4, and 5, we give the details of Hercu-
les. Performance evaluation is presented in Section 6. Sec-
tion 7 concludes the paper.

2 PRELIMINARIES

2.1 Neural Network Training

A neural network usually consists of an input layer, one or
more hidden layers, and an output layer, where hidden
layers include convolutional layers, pooling layers, activa-
tion function layers, and fully connected layers. The connec-
tions between neurons in adjacent layers are parameterized
by v (i.e., model parameters), and each neuron is associated
with an element-wise activation function ’ (such as sig-
moid, ReLU, and softmax). Given the training sample set
ðx; yÞ 2 D, training a neural network of L layers is generally

divided into two phases: feedforward and backpropagation.
Specifically, at the k-th iteration, the weights between layers
j and jþ 1 are denoted as a matrix vk

j ; matrix Mj represents
the activation of neurons in the j-th layer. Then the input x
is sequentially propagated to each layer with operations of
linear transformation (i.e, Ek

j ¼ vk
j �Mk

j�1) and non-linear
transformation (i.e., Mk

j ¼ ’ðEk
j Þ) to obtain the final classifi-

cation result �y ¼Mk
L. With the loss function L which is usu-

ally set as L=jjy� �yjj2, the mini-batch based Stochastic
Gradient Descent (SGD) algorithm [12] is exploited to opti-
mize the parameter v. The parameter update rule is vkþ1

j ¼
vk
j �

h
B 5 vk

j , where h and B indicate the learning rate and
the random batch size of input samples, and 5vk

j ¼ @L
@vk

j

.
Since the transposition of matrices/vectors is involved in
the backpropagation, we use V T to represent the transposition
of variable V . The feedforward and backpropagation steps are
performed iteratively until the neural network meets the
given convergence constraint. The detailed implementation
is shown in Algorithm 1.

Algorithm 1.Mini-Batch Based SGD Algorithm

Input: vk
1;v

k
2; . . . ;v

k
L.

Output: vkþ1
1 ;vkþ1

2 ; . . . ;vkþ1
L .

1: for t ¼ 1 to B do
2: M0 ¼ X½t� ⊳ feedforward
3: for j ¼ 1 to L do
4: Ek

j ¼ vk
j �Mk

j�1
5: Mk

j ¼ ’ðEk
j Þ

6: end for
7: Lk

L ¼ jjy½t� �Mk
Ljj2 ⊳ backpropagation

8: Lk
L ¼ ’0ðEk

LÞ � Lk
L
1

9: 5vk
Lþ ¼ ðMk

L�1Þ
T � Lk

L
10: for j ¼ L� 1 to 1 do
11: Lk

j ¼ Lk
jþ1 � ðvk

jþ1Þ
T

12: Lk
j ¼ ’0ðEk

j Þ � Lk
j

13: 5vk
jþ ¼ ðMk

j�1Þ
T � Lk

j

14: end for
15: end for
16: for j ¼ 1 to L do
17: vkþ1

j ¼ vk
j �

h
B 5 vk

j

18: end for

2.2 Multiparty Version of CKKS

Hercules relies on the multiparty version of Cheon-Kim-
Kim-Song (MCKKS) [12] fully homomorphic encryption to
protect users’ data as well as the model’s parameter privacy.
Compared with the standard CKKS, the secret key of
MCKKS is securely shared with all entities. As a result, each
entity still performs ciphertext evaluation under the same
public key, while the decryption of the result requires the
participation of all entities. As shown in [12], MCKKS has
several attractive properties: (i) it is naturally suitable for
floating-point arithmetic circuits, which facilitates the
implementation of machine learning; (ii) it flexibly supports
collaborative computing among multiple users without
revealing the respective share of the secret key; (iii) it sup-
ports the function of key-switch, making it possible to con-
vert a ciphertext encrypted under a public key into a

1. ’0ð�Þ and� indicate partial derivative and element-wise product.
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ciphertext under another public key without decryption.
Such a property facilitates the decryption of ciphertexts col-
laboratively. We provide a short description of MCKKS and
list all the functions required by Hercules in Fig. 1. Infor-
mally, given a cyclotomic polynomial ring with a dimension
of N , the plaintext and ciphertext space of MCKKS is
defined as RQL ¼ ZQL ½X�=ðXN þ 1Þ, where QL ¼

QL
0 qi, and

each qi is a unique prime. QL is the ciphertext module under
the initial level L. In CKKS, a plaintext vector with up to
N =2 values can be encoded into a ciphertext. As shown in
Fig. 1, given a plaintext m 2 RQL (or a plaintext vector m ¼
ðm1; . . . ;mnÞ 2 Rn

QL
, with n 	 N =2) with its encoded

(packed) plaintext m̂, the corresponding ciphertext is
denoted as ½c�pk ¼ ðc1; c2Þ 2 R2

QL
. Besides, we use symbols

Lcpk , Dcpk , L, D to indicate the current level of ½c�pk, the cur-
rent scale of c, the initial level, and the initial scale of a fresh

ciphertext, respectively. All functions named starting with
D (except for Dcdð�Þ) in Fig. 1 need to be executed coopera-
tively by all the users, while the rest operations can be exe-
cuted locally by each user with the public key. For more
details about MCKKS, please refer to literature [1], [12], [25].

2.3 Threat Model and Privacy Requirements

We consider a FL scenario composed of a parameter server
and N users for training a neural network model collabora-
tively. Specifically, the server (also the model owner) first
initializes the target modelM and broadcasts the encrypted
model ½M�pk ¼ Encðpk;MÞ (i.e., encrypting all the model
parameters) to all the users.2 Then, each user Pi with a data-
set fx; yg 2 Di trains ½M�pk locally using the mini-batch SGD
algorithm and then sends the encrypted local gradients to
the server. After receiving the gradients from all the users,
the server homomorphically aggregates them and broad-
casts back the global model parameters. All the participants
perform the above process iteratively until the model con-
verges. Since the final trained model is encrypted with the
public key pk, for the accessibility of the server to the plain-
text model, we rely on the function DKeySwitch (Fig. 1),
which enables the conversion of ½M�pk under the public key
pk into ½M�pk0 under the server’s public key pk0 without
decryption (refer to Section 5 for more details). As a result,
the server obtains the plaintext model by decrypting ½M�pk0
with its secret key.

In Hercules, we consider a passive-adversary model
with collusion of up to N � 1 users3. Concretely, the server
and each user abide by the agreement and perform the
training procedure honestly. However, there are two ways
of colluding in Hercules by sharing their own inputs, out-
puts and observations during the training process for differ-
ent purposes: (i) collusion among up to N � 1 users to
derive the training data of other users or the model parame-
ters of the server; (ii) collusion among the server and no
more than N � 1 users to infer the training data of other
users. Given such a threat model, in the training phase, the
privacy requirements ofHercules are defined as below:

� Data privacy: No participant (including the server)
should learn more information about the input data
(e.g., local datasets, intermediate values, local gra-
dients) of other honest users, except for the informa-
tion that can be inferred from its own inputs and
outputs.

� Model privacy: No user should learn more informa-
tion about the parameters of the model, except for
information that can be inferred from its own inputs
and outputs.

In Section 5, we will provide (sketch) proofs of these pri-
vacy requirements with the real/ideal simulation formal-
ism [42], [43], [44].

Fig. 1. Cryptographic operations of MCKKS.

2. Note that the server knows nothing about the secret key sk corre-
sponding to pk. sk is securely shared with N users and can only be
restored with the participation of all the users.

3. See Appendix, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TDSC.2022.3218
793, for more discussion about malicious adversary model [36], [37], [38],
[39], [40], [41]
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3 PARALLELIZED MATRIX HOMOMORPHIC

OPERATIONS

Hercules essentially exploits MCCK as the underlying archi-
tecture to implement privacy-preserving federated neural net-

work training. Since the vast majority of the computation of a

neural network consists of convolutions (equivalent to matrix
operation), Hercules is required to handle this type of opera-
tion homomorphically very frequently. In this section, we
describe our optimization method to perform homomorphic
matrix operations in a parallelized manner, thereby substan-
tially improving the computation performance ofHE.

Fig. 2. Homomorphic multiplication of two 3� 3-dimensional matrices.
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3.1 Overview

At a high level, operations between two matrices, including
multiplication and transposition, can be decomposed into a
series of combinations of linear transformations. To handle
homomorphic matrix operations in an SIMD manner, a
straightforward way is to directly perform the relevant linear
operations under the packed ciphertext (Section 3.2). However,
it is computationally intensive and requiresOðh3Þ computation
complexity for the multiplication of two h� h-dimensional
matrices (Section 3.3). Existing state-of-the-art methods [34]
propose to transform the multiplication of two h� h-dimen-
sionalmatrices into inner products betweenmultiple vectors. It
can reduce the complexity from Oðh3Þ to Oðh2Þ, however,
yielding h ciphertexts to represent a matrix (Section 3.6). Com-
pared to existing efforts, ourmethod only needsOðhÞ complex-
ity and derives one ciphertext. Our key insight is to first
formalize the linear transformations corresponding to matrix
operations, and then tweak them tominimize redundant oper-
ations in the execution process. In the following we present the
technical details of our method. To facilitate understanding,
Fig. 2 also provides an intuitive example, where the detailed
steps of the multiplication of two 3� 3-dimensional matrices
are described for comprehensibility.

3.2 Preliminary Knowledge

We first introduce some useful symbols and concepts. Spe-
cifically, all the vectors in this section refer to row vectors,
and are represented in bold (e.g., a). As shown in Fig. 1,
given a plaintext vector m ¼ ðm1; . . . ;mnÞ 2 Rn

QL
, with n 	

N =2, CKKS enables to encode the plaintext vector m into an
encoded plaintext m̂ 2 RQL , where each mi, i 2 ½n� has a
unique position called a plaintext slot in the encoded m̂.
Then, m̂ is encrypted as a ciphertext ½c�pk. Hence, perform-
ing arithmetic operations (including addition and multipli-
cation) on ½c�pk is equivalent to doing the same operation on
every plaintext slot at once.

The ciphertext packing technology is capable of packing
multiple plaintexts into one ciphertext and realizing the
homomorphic SIMD operation, thereby effectively reducing
the space and time complexity of encryption/calculation of a
single ciphertext. However, it is incapable of handling the
arithmetic circuits when some inputs are in different plaintext
slots. To combat that, CKKS provides a rotation function
Rotð½c�pk; kÞ. Given a ciphertext ½c�pk of a plaintext vectorm ¼
ðm1; . . . ;mnÞ 2 Rn

QL
, Rotð½c�pk; kÞ transforms ½c�pk into an

encryption of Rðm; kÞ :¼ ðmk; . . . ;mn�1;m0; . . . ;mk�1Þ. k can
be either positive or negative and we have a rotation by
Rðm; kÞ ¼ Rðm; n� kÞ.

Based on the above explanation, we adopt a method pro-
posed by Shai et al. [45], which supports arbitrary linear trans-
formations for encrypted vectors. Specifically, an arbitrary
linear transformation T : Rn ! Rn on the plaintext vector can
be expressed as T : m! U �m using some matrix U 2 Rn�n.
This process can be implemented in ciphertext by the rotation
function Rot and constant multiplication operation Mulpt.
Concretely, for 0 	 k < n, a k-th diagonal vector U is defined
as uk ¼ ðU0;k; U1;kþ1; . . . ; Un�k�1;n�1; Un�k;0; . . . ; Un�1;k�1Þ 2
Rn. Consequently, we have

U �m ¼
P

0	k<n uk � Rðm; kÞ: (1)

Hence, given the matrix U , and a ciphertext ½c�pk of the vec-
torm, Algorithm 2 shows the details of computing encrypted
U �m. We observe that Algorithm 2 requires n additions,
constant multiplications and rotations. Because the rotation
operation is much more intensive than the other two opera-
tions, the computation complexity of Algorithm 2 is usually
regarded as asymptotically OðnÞ rotations.

Algorithm 2.Homomorphic Linear Transformation

procedure HE-LinTrans ð½c�pk; UÞ
1: ½c0�pk  Mulptð½c�pk;u0Þ
2: for k ¼ 1 to n� 1 do
3: ½c0�pk  Addð½c0�pk;MulptðRotð½c�pk; kÞ;ukÞÞ
4: end for
5: return ½c0�pk

In the following, we first describe how to express the
multiplication between two matrices by permutation. Then,
we introduce an encoding method that converts a matrix
into a vector. Based on this, we describe the details of matrix
multiplication on packed ciphertexts.

3.3 Permutation for Matrix Multiplication

Given a ðh� hÞ-dimensional matrix A ¼ ðAi;jÞ0	i;j <h, we
describe four permutation operations (m, z, f, p) on it. For
simplicity, we use Z \ ½0; hÞ to denote the representative of
Zh, ½i�h indicates the reduction of an integer i modulo h into
that interval. Below all indexes are integers modulo h.

We first define four permutation operations as below.

mðAÞi;j ¼ Ai;iþj; zðAÞi;j ¼ Aiþj;j;

fðAÞi;j ¼ Ai;jþ1;pðAÞi;j ¼ Aiþ1;j:

We can see that f and p are actually shifts of the columns
and rows of the matrix, respectively. Given two ðh�
hÞ-dimensional square matrices A and B, the multiplication
of A and B can be parsed as

A �B ¼
Ph�1

k¼0ðfk � mðAÞÞ � ðpk � zðBÞÞ: (2)

The correctness of Eq. (2) is shown as follows by calculating
the components of the matrix index ði; jÞ.

Xh�1
k¼0
ðfk � mðAÞÞi;j � ðpk � zðBÞÞi;j ¼

Xh�1
k¼0

mðAÞi;jþk � zðBÞiþk;j

¼
Xh�1
k¼0

Ai;iþjþk � Biþjþk;j

¼
Xh�1
k¼0

Ai;k �Bk;j ¼ ðA �BÞi;j:

(3)
Note that while a single mðAÞi;jþk � zðBÞiþk;j ¼ Ai;iþjþk �

Biþjþk;j is not equal to Ai;k � Bk;j, it is easy to deduce thatPh�1
k¼0 Ai;iþjþk �Biþjþk;j ¼

Ph�1
k¼0 Ai;k � Bk;j ¼ ðA �BÞi;j. To be

precise, given i and j,
Ph�1

k¼0 Ai;iþjþk � Biþjþk;j ¼Ph�1þiþj
t¼ðiþjÞ Ai;t �Bt;j, where we set t ¼ iþ jþ k. Then, we

have
Ph�1þiþj

t¼ðiþjÞ Ai;t � Bt;j ¼
Ph�1

t¼0 Ai;t �Bt;j since all the

indexes are considered as integers modulo h. Therefore,Ph�1
t¼0 Ai;t �Bt;j ¼

Ph�1
k¼0 Ai;k �Bk;j.
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We observe that Eq. (2) consists of permutation and multi-
plication of element components betweenmatrix entries. Intu-
itively, we can evaluate it using the operations (shown in
Algorithm 2) provided by CKKS for packed ciphertexts. How-
ever, since the matrix representation U usually has n ¼ h2

nonzero diagonal vectors, if we directly use Algorithm 2 to
evaluate A 7! fk � mðAÞ and B 7! pk � zðBÞ for 1 	 k < h,
each of them requires rotations with the complexity of Oðh2Þ.
As a result, the total complexity isOðh3Þ. To alleviate this, we
design a newmethod to substantively improve its efficiency.

3.4 Matrix Encoding

We introduce an encoding method that converts a matrix
into a vector. Given a vector a ¼ ðakÞ0	k<n, where n ¼ h2,
the encoding map i : Rn ! Rh�h is shown as below.

i : a 7! A ¼ ðah�iþjÞ0	i;j < h: (4)

This encoding method makes the vector a essentially an
ordered concatenation of the rows of thematrixA. As a result,
ið�Þ is isomorphic of addition, which means that matrix addi-
tion operations are equivalent to the same operations between
the corresponding original vectors. Therefore, the matrix
addition can be calculated homomorphically in the SIMD
environment. The constant multiplication operations can also
be performed homomorphically. In this paper, we use ið�Þ to
identify two spaces Rn and Rh�h. For example, we say that a
ciphertext is the encryption ofA if a ¼ i�1ðAÞ.

3.5 Tweaks of Permutation

From the definition of matrix encoding, permutation on an
ðh� hÞ-dimensional matrix can be regarded as a linear trans-
formation T : Rn ! Rn, where n ¼ h2. In general, its matrix
representation U 2 f0; 1gn�n 
 Rn�n has n nonzero diagonal
vectors. Therefore, as presented in Sections 3.2 and 3.3, if we
directly use Algorithm 2 to evaluate A 7! fk � mðAÞ and
B 7! pk � zðBÞ for 1 	 k < h, each of them requires rotations
with the complexity of Oðh2Þ. The total complexity will be
Oðh3Þ. To alleviate this, based on Eq. (2) and our matrix encod-
ing map, we provide a tweak method for matrix permutation
to reduce the complexity from Oðh3Þ to OðhÞ. Specifically, for
four permutation operations (m, z, f, and p) on the matrix, we
use Um, Uz, V and P to indicate thematrix representations cor-
responding to these permutations, respectively.Um, Uz for per-
mutations m and z can be parsed as below (readers can refer to
the example in Fig. 2 for ease of understanding).

Um
h�iþj;t ¼

1 if t ¼ h � iþ ½iþ j�h;
0 otherwise;

�
(5)

Uz
h�iþj;t ¼

1 if t ¼ h � ½iþ j�h þ j;

0 otherwise;

�
(6)

where 0 	 i; j < h and 0 	 t < h2. Similarly, for 1 	 k < h,
the matrix representations of fk and pk (i.e., V k and Pk) can
be denoted as below.

V k
h�iþj;t ¼

1 if t ¼ h � iþ ½jþ k�h;
0 otherwise;

�
(7)

Pk
h�iþj;t ¼

1 if t ¼ h � ½iþ k�h þ j;

0 otherwise;

�
(8)

where 0 	 i; j < h and 0 	 t < h2. Reviewing Eq. (1), we use
the diagonal decomposition of matrix representation to per-
form multiplication with encrypted vectors. Hence, we can
count the number of nonzero diagonal vectors in Um, Uz, V ,
and P to evaluate the complexity. For simplicity, we use ut to
represent the t-th diagonal vector of a matrix U , and identify
uh2�t with u�t. For matrix Um, we can observe that it has
exactly ð2h� 1Þ nonzero diagonal vectors, denoted by um

k for
k 2 Z \ ð�h; hÞ. There are h nonzero diagonal vectors in Uz,
because each t-th diagonal vector in Uz is nonzero if and only
if t is divisible by the integer h. For each matrix V k, 1 	 k <
h, it has only two nonzero diagonal vectors vk and vk�h. Simi-
larly, for eachmatrixPk, it has only one nonzero diagonal vec-
tor ph�k. Therefore, we only need rotation operations of OðhÞ
complexity to perform permutation m and z, and Oð1Þ com-
plexity for both fk and pk where 1 	 k < h.

3.6 Homomorphic Matrix Multiplication

Given two ciphertexts ½A�pk and ½B�pk that are the encryption
forms of two ðh� hÞ-dimensional matrix matrices A and B,
respectively, we now describe how to efficiently evaluate
homomorphic matrix multiplication between them.

Step 1-1. We perform a linear transformation on the
ciphertext ½A�pk under the guidance of permutation Um (Step
1-1 in Fig. 2). As described above, Um has exactly ð2h� 1Þ
nonzero diagonal vectors, denoted by um

k for k 2 Z \
ð�h; hÞ. Then such a linear transformation can be denoted as

Um � a ¼
P
�h<k<hðu

m
k � Rða; kÞÞ; (9)

where a ¼ i�1ðAÞ 2 Rn is the vector representation of A. If
k � 0, the k-th diagonal vector can be computed as

um
k ½t� ¼

1 if 0 	 t� h � k < ðh� kÞ;
0 otherwise;

�
(10)

where um
k ½t� represents the t-th component of um

k . Similarly,
if k < 0, um

k is computed as

um
k ½t� ¼

1 if � k 	 t� ðhþ kÞ � h < h;
0 otherwise;

�
(11)

As a result, Eq. (9) can be securely computed as

P
�h<k<h MulptðRotð½A�pk; kÞ;u

m
k Þ; (12)

where we get the ciphertext of Um � a, denoted as ½Að0Þ�pk. We
observe that the computation cost is about 2 h rotations,
constant multiplications and additions.

Step 1-2. This step is to perform the linear transformation
on the ciphertext ½B�pk under the guidance of permutation
Uz (Step 1-2 in Fig. 2). Since Uz has h nonzero diagonal vec-
tors, this process can be denoted as

Uz � b ¼
P

0	k<hðu
z
h�k � Rðb; h � kÞÞ; (13)

where b ¼ i�1ðBÞ 2 Rn, uz
h�k is the ðh � kÞ-th diagonal vector

of the matrix Uz. We observe that for any 0 	 k < h, uz
h�k is

a non-zero vector because its ðkþ h � iÞ-th element is non-
zero for 0 	 i < h, and zero for all other entries. Therefore,
Eq. (13) can be securely computed as

P
0	k<h MulptðRotð½B�pk; h � kÞ;u

z
h�kÞ; (14)
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where we get the ciphertext of Uz � b, denoted as ½Bð0Þ�pk. We
observe that the computation cost is about h rotations, con-
stant multiplications and additions.

Step 2. This step is used to securely perform column and
row shifting operations on mðAÞ and zðBÞ respectively (Step
2 in Fig. 2). Specifically, for each column shifting matrix V k,
1 	 k < h, it has only two nonzero diagonal vectors vk and
vk�h, which are computed as

vk½t� ¼
1 if 0 	 ½t�h < ðh� kÞ;
0 otherwise;

�
(15)

vk�h½t� ¼
1 if ðh� kÞ 	 ½t�h < h;

0 otherwise:

�
(16)

By adding two ciphertexts MulptðRotð½Að0Þ�pk; kÞ; vkÞ and
MulptðRotð½Að0Þ�pk; k� hÞ; vk�hÞ, we can obtain the cipher-
text ½AðkÞ�pk of the matrix fk � mðAÞ. Similarly, for each row
shifting matrix Pk, it has only one nonzero diagonal vector
ph�k. Then the encryption of pk � zðBÞ can be computed as
½BðkÞ�pk  Rotð½Bð0Þ�pk; h � kÞ. The computation cost of this
process is about 3 h rotations, 2 h constant multiplications
and d additions.

Step 3. For 0 	 k < h, we now compute the element-wise
multiplication of ½AðkÞ�pk and ½BðkÞ�pk (Step 3 in Fig. 2). Then,
the ciphertext ½AB�pk of the product of A and B is finally
obtained. The computation cost of this process is h homo-
morphic multiplications and additions. In summary, the
entire process of performing homomorphic matrix multipli-
cation is described in Algorithm 3.

Algorithm 3.Homomorphic Matrix Multiplication

procedure HE-MatMult ð½A�pk; ½B�pkÞ
1: ½Að0Þ�pk  HE-LinTrans ð½A�pk; UmÞ
2: ½Bð0Þ�pk  HE-LinTrans ð½B�pk; UzÞ
3: for k ¼ 1 to h� 1 do
4: ½AðkÞ�pk  HE-LinTrans ð½Að0Þ�pk; V kÞ
5: ½BðkÞ�pk  HE-LinTrans ð½Bð0Þ�pk; PkÞ
6: end for
7: ½AB�pk  Mulctð½Að0Þ�pk; ½Bð0Þ�pkÞ
8: for k ¼ 1 to h� 1 do
9: ½AB�pk  Addð½AB�pk;Mulctð½AðkÞ�pk; ½BðkÞ�pkÞÞ
10: end for
11: return ½AB�pk

Remark 3.1: In general, the above homomorphic matrix
multiplication requires a total of 5 h additions, 5 h constant
multiplications and 6 h rotations. We can further reduce the
computation complexity by using the baby-step/giant-step
algorithm [46], [47] (See Appendix, available in the online
supplemental material, for technical details). This algorithm
can be exploited to reduce the complexity of Steps 1-1 and
1-2. As a result, Table 1 summarizes the computation com-
plexity required for each step in Algorithm 3.

Remark 3.2: As described before, the multiplication of A
and B is parsed as A � B ¼

Ph�1
k¼0ðfk � mðAÞÞ � ðpk � zðBÞÞ. A

simple way to calculate the product is to directly use Algo-
rithm 2: we can evaluate A 7! fk � mðAÞ and B 7! pk � zðBÞ
for 1 	 k < h. However, each of them requires Oðh2Þ homo-
morphic rotation operations, which results in a total complex-
ity ofOðh3Þ [48]. Halevi et al. [34] introduce amatrix encoding

method based on diagonal decomposition. Thismethodmaps
each diagonal vector into a separate ciphertext by arranging
the matrix diagonally. As a result, it requires h ciphertexts to
represent a matrix, and each ciphertext is required to perform
matrix-vectormultiplicationwith the complexity ofOðhÞ rota-
tions, resulting in a total computation complexity of Oðh2Þ.
Comparedwith these schemes, our strategy only needs a total
computation complexity of OðhÞ rotations to complete the
homomorphic multiplication for two ðh� hÞ-dimensional
matrices. We note that POSEIDON [12] also proposes an
“alternating packing (AP) approach” to achieve matrix multi-
plication with a complexity approximated as maxi2½L�ðvi �
log ðh� viÞÞ, where vi denotes the number of weights
between layers i and iþ 1. However, the implementation of
this method requires to generate a large number of copies of
each element in the matrix (depending on the number of neu-
rons in the neural network layer where the matrix is located),
resulting in poor parallel computing performance (see Sec-
tion 6 formore experimental comparison).

Remark 3.3: We also give the methods of how to perform
matrix transposition, rectangular matrix multiplication (i.e.,
calculating general matrix forms such as Rt�h �Rh�h ! Rt�h

or Rh�h �Rh�t ! Rh�t) and parallel matrix operations (using
the idleness of the plaintext slots) under packed ciphertext.
They follow the similar idea of the above homomorphic matrix
multiplication. Readers can refer to Appendix, available in the
online supplementalmaterial, formore technical details.

4 APPROXIMATION FOR SIGN FUNCTION

In this section, we describe how to efficiently estimate the
sign function, and then use the estimated function to
approximate the formulas commonly used in neural net-
work training, including ReLU and max functions.

4.1 Notations

We first introduce some useful symbols. Specifically, all log-
arithms are base 2 unless otherwise stated. Z and R repre-
sent the integer and real number fields, respectively. For a
finite setM, we use UðMÞ to represent the uniform distribu-
tion on M. Given a function g defined in the real number
field R, and a compact set I 
 R, we say that the infinity
norm of g on the set I is defined as jjgjj1;I :¼ maxm2I jgðmÞj,
where jgðmÞj means the absolute value of gðmÞ. we use gðkÞ :
¼ g � g � g � � � � � g to indicate the k-times composition of g.
Besides, the sign function is defined as below.

sgnðmÞ ¼
1 if m > 0;
0 if m ¼ 0;
�1 if m < 0:

8<
:

TABLE 1
Complexity of Algorithm 3

Step Add mulpt Rot mulct

1-1 2h 2h 3
ffiffiffi
h
p

-
1-2 h h 2

ffiffiffi
h
p

-
2 2h h 3h -
3 h - � h
Total 6h 4h 3hþ 5

ffiffiffi
h
p

h
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Note that sgnðmÞ is a discontinuous function at the zero
point, so the closeness of gðmÞ and sgnðmÞ should be care-
fully considered in the interval near the zero point. That is,
we do not consider the small interval ð�d; dÞ near the zero
point when measuring the difference between gðmÞ and
sgnðmÞ. We will prove that for some kd > 0, the infinity
norm of g

ðkÞ
d ðmÞ � sgnðmÞ is small than 2�s over ½�1;�d� [

½d; 1� if k > kd, where the definition of gdðmÞ will be
explained later.

Given s > 0 and 0 < d < 1, we define a function g
ðkÞ
d ðmÞ

that is ðs; dÞ-close to sgnðmÞ on ½�1; 1� if it satisfies

jjgðkÞd ðmÞ � sgnðmÞjj1;½�1;�d�[½d;1� 	 2�s : (17)

Similar to the previous work [35], we assume that the input
is limited to a bounded interval ½0; 1�, since for any m 2
½a1; a2�, where a2 > a1, we can scale it down to ½0; 1� by map-
ping m 7! ðm� a1Þ=ða2 � a1Þ. Hence, for simplicity, the
domain of sgnðmÞwe consider in this part is ½�1; 1�.

4.2 Composite Polynomial Approximation

As mentioned before, we use a composite function to
approximate the sign function. This is advantageous,
because a composite polynomial functionG, namelyG ¼ g �
g � � � � g, can be calculated with the complexity of
Oðlog ðdegðGÞÞÞ, while the computation complexity of calcu-

lating any polynomial G is at least Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
degðGÞ

p
Þ [49], where

degðGÞ indicates the degree of G. To achieve this, our goal is
to find such a k that gðkÞ is close enough to sgnðxÞ in the
interval ½�1;�d� [ ½d; 1�.

Our construction of such a function g comes from the fol-
lowing key observations: for any m0 2 ½�1; 1�, let mi be the
i-th composite value of gðiÞðm0Þ. Then, we can easily esti-
mate the behavior of mi through the graph of g. Based on
this, we ensure that as i increases, mi should be close to 1
when m0 2 ð0; 1�, and close to �1 when m0 2 ½�1; 0Þ.
Besides, we formally identify three properties of g as follow.
First, g should be an odd function so as to be consistent with
the sign function. Second, gð1Þ ¼ 1 and gð�1Þ ¼ �1. This set-
ting makes gðkÞðmÞ point-wise converge to sgnðmÞ, whose
value is �1 for all x 6¼ 0. In other words, for some m 2
½�1; 1�, gðkÞðmÞ converges to a value y when increasing with
the value of k, which means gðyÞ ¼ gðlimk!1 gðkÞðmÞÞ ¼
limk!1 gðkÞðmÞ ¼ y. Last, to accelerate the convergence of
gðkÞ to the sign function, a satisfactory g should be more con-
cave in the interval ½0; 1� and more convex in the interval
½�1; 0�. Moreover, the derivative g0 of g should have multiple
roots at 1 and �1 so as to increase the convexity. These
properties are summarized as follows:

Core Properties of g:
Prop. I gð�mÞ ¼ �gðmÞ (Origin Symmetry)
Prop. II gð1Þ ¼ 1; gð�1Þ ¼ �1 (Convergence to �1)
Prop. III g0ðmÞ ¼ pð1�mÞdð1þmÞd for some p > 0

(Fast convergence)
Given a fixed d � 1, a polynomial g of degree ð2dþ 1Þ

that satisfies the above three properties can be uniquely
determined. We denote this polynomial as gd, where the
constant p is indicated as pd. Then, based on Prop. I and III,
we have gdðmÞ ¼ pd

Rm
0 ð1� t2Þddt, where the constant pd is

also determined by Prop. II. To solve this integral formula

gdðmÞ, a common method is to transform the ð1� t2Þ part of
the integral formula with Trigonometric Substitutions, a
typical technique which can convert formula

R
ð1� t2Þddt toR

ð cos tÞ3 ddt. As a result, given the following identity

Rm
0 cos ntdt ¼ 1

n cos n�1m � sinmþ n�1
n

Rm
0 cos n�2tdt:

which holds for any n � 1, we have

gdðmÞ ¼
Xi¼d
i¼0

1

4i
� 2i

i

� �
�mð1�m2Þi:

Therefore, we can compute gn as follows

� g1ðmÞ ¼ � 1
2m

3 þ 3
2m.

� g2ðmÞ ¼ 3
8m

5 � 10
8 m

3 þ 15
8 m.

� g3ðmÞ ¼ � 5
16m

7 þ 21
16m

5 � 35
16m

3 þ 35
16m.

� g4ðmÞ ¼ 35
128m

9 � 180
128m

7 þ 378
128m

5 � 420
128m

3 þ 315
128m.

Since
2i
i

� �
¼ 2 � 2i� 1

i� 1

� �
is divisible by 2 for i � 1,

each coefficient of gd can be represented as n=22d�1 for n 2
Z, which can be inferred by simply using Binomial Theorem
for the coefficients in gdðmÞ.

Size of Constant pd. The constant pd is crucial for g
ðkÞ
d to

converge to the sign function. Informally, since the coeffi-
cient term ofm is exactly pd, we can regard gdðmÞ as gdðmÞ ’
pd �m for smallm. Further we have 1� gdðmÞ ’ 1� pd �m ’
ð1�mÞpd . For simplicity, we can obtain pd as follows:

Xi¼d
i¼0

1

4i
� 2i

i

� �
;

which can be simplified with Lemma 4.1.

Lemma 4.1. It holds that pd ¼
Pi¼d

i¼0
1
4i
� 2i

i

� �
¼ 2dþ1

4d
2d
d

� �
.

Proof. Please refer to Appendix, available in the online sup-
plemental material. tu

4.3 Analysis on the Convergence of g
ðkÞ
d

We now analyze the convergence of g
ðkÞ
d to the sign function

as k increases. To be precise, we provide a lower bound on
k, under which g

ðkÞ
d is ðs; dÞ-close to the sign function. To

accomplish this, we first give two lower bounds about 1�
gdðmÞ as shown below.

Lemma 4.2. It holds that 0 	 1� gdðmÞ 	 ð1�mÞpd for
m 2 ½0; 1�.

Lemma 4.3. It holds that 0 	 1� gdðmÞ 	 2d � ð1�mÞdþ1 for
m 2 ½0; 1�, where the value ofm is close to 1.

Proof. Please refer to Appendix, available in the online sup-
plemental material. tu

Theorem 4.4. If k � 1
log pd
� log ð1=dÞ þ 1

log ðdþ1Þ � log ðs � 1Þ þ
Oð1Þ, then g

ðkÞ
d ðmÞ is an ðs; dÞ-close polynomial to sgnðxÞ over

½�1; 1�.

Proof. Here we only consider the case where the input of
g
ðkÞ
d is non-negative, since g

ðkÞ
d is an odd function. We use

Lemmas 4.2 and 4.3 to analyze the lower bound of k
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when g
ðkÞ
d converges to ðs; dÞ-close polynomial to sgnðxÞ.

Note that when the value of m is close to 0, Lemma 4.2 is
tighter than Lemma 4.3 but vice verse when the value of
x is close to 1. To obtain a tight lower bound on k, we
decompose the proof into the following two steps, each of
which applies Lemmas 4.2 and 4.3, separately.

Step 1. We consider the case m 2 ½d; 1� instead of
½�1;�d� [ ½d; 1�, since g

ðkÞ
d is an odd function. Let kd ¼

d 1
log ðpdÞ

� log ðlog ð1
g
Þ=dÞe for some constant 0 < g < 1.

Then, with Lemma 4.2, we have the following inequality
form 2 ½d; 1�.

1� g
kd
d ðmÞ 	 ð1�mÞp

kd
d 	 ð1� dÞlog ð

1
g=dÞ < ð1eÞ

log ð1gÞ < g;

where e indicates the Euler’s constant.
Step 2. Let ks ¼ d 1

log ðdþ1Þ � log ððs � 1=log ð 12gÞÞÞe. With
Lemma 4.3, we have the following inequality for m 2
½d; 1�.

2 � ð1� g
ðkdþksÞ
d ðmÞÞ 	 ð2 � ð1� g

kd
d ðmÞÞÞ

ðdþ1Þks

	 ð2gÞðdþ1Þ
ks 	 ð2gÞs�1=log ð

1
2gÞ

¼ 2�sþ1:

Therefore, 1� g
ðkÞ
d ðmÞ 	 2�s form 2 ½d; 1�,

if k � kd þ ks . tu

Comparisons With Existing Works. We compare the com-
putation complexity of our method with existing approxi-
mation methods for the sign function, including the
traditional Minmax based polynomial approximation
method [50] and the latest work [35]. The results are shown
in Table 2. Paterson et al. [49] have proven that when the
input is within the interval ½�1; 1�, the minimum degree of a
ðs; dÞ-polynomial function to approximate a sign function is
Qðs=dÞ. Thismeans at leastmultiplicationswith the complexity
ofQðlog ð1=dÞÞ þQðlog sÞ are required to complete the approx-
imation of the sign function. Hence, our method achieves an
optimality in asymptotic computation complexity. Other
works, like [35] as one of the most advanced solutions for
approximating the sign function, only achieve quasi-optimal
computation complexity (see Appendix, available in the online
supplementalmaterial, formore experimental comparisons).

4.4 Application to Max and Relu Functions

Given two variables a and b, the max function can be
expressed as maxða; bÞ ¼ aþb

2 þ
ja�bj
2 . The ReLu function

fðxÞ ¼ maxð0; xÞ can be considered as a special case of the
max function. Specifically, since jmj ¼ m � sgnðmÞ, as long as
we give the approximate polynomial about jmj, we can
directly get the approximate max function. Therefore,
maxða; bÞ can be evaluated by computing aþb

2 þ a�b
2 � g

ðkÞ
d ða� bÞ.

The detailed algorithm is shown in Algorithm 4. We also pro-
vide the convergence rate to approximate the absolute function
jmjwithm � gðkÞd ðmÞ (See Theorem 4.5).

Algorithm 4. Approximation of the Maximum Function

procedure AppMax ða; b; d; kÞ
1: m a� b, y aþb

2

2: for k ¼ 1 to k ¼ n� 1 do
3: m gdðmÞ
4: end for
5: y yþ a�b

2 �m
6: return y

Algorithm 5. High-Level of Federated Neural Network
Training

Input: fx; yg 2 Di 
 D, for i 2 f1; . . . ; Ng
Output: Encrypted vH

1 ;v
H
2 ; . . . ;v

H
L

Prepare:
1: The cloud server C and every user Pi agree on the parame-

ters L, h1; . . . ; hL, h, ’ð�Þ, H and B. The cloud server C gen-
erates its secret key and public key
fsk0; pk0g  SecKeyGenð1�Þ.

2: Each user Pi generates ski  SecKeyGenð1�Þ.
3: All users collectively generate pk DKeyGenðfskigÞ.
4: Each user encodes its input as X̂i, Ŷi.

4

5: The cloud server C initializes ½vvvvvvv0
1�pk; ½v0

2�pk; . . . ; ½v0
L�pk. Then,

C broadcasts them to all users.
Local Training:

6: for k ¼ 0 to k ¼ H � 1 do
7: Each user Pi computes ½5vk

1;i�pk; . . . ; ½5vk
L;i�pk and sends

them to the cloud server.
Aggregation:

8: for j ¼ 1 to j ¼ L do
9: C computes ½5vk

j �pk ¼ ½
PN

i¼15vk
j;i�pk.

10: C computes ½vkþ1
j �pk ¼ ½vk

j �
h
B�N5vk

j �pk and broadcasts
them to all users.

11: end for
12: end for

Theorem 4.5. If k � 1
log pd
� log ðs � 1Þ, then the error of m �

g
ðkÞ
d ðmÞ compared with jmj over ½�1; 1� is bounded by 2s .

Proof. This proof can be easily evolved from Theorem 4.4.
We omit it for brevity. tu

5 IMPLEMENTATION OF HERCULES

We now describe the technical details of implementingHer-
cules, which provides privacy-preserving federated neural
network training. In particular, model parameters and
users’ data are encrypted throughout the execution process.
To achieve this, Hercules exploits the MCKKS as the under-
lying framework and relies on the packed ciphertext tech-
nology to accelerate calculations. Besides, approximation
methods based on composite polynomials are used to

TABLE 2
Complexity of Each Approximation Method

Parameter MinMax Approx. [50] [35] Ours

log ð1
d
Þ ¼ Qð1Þ Qð

ffiffiffi
s
p
Þ Qðlog 2sÞ Qðlog sÞ

log ð1
d
Þ ¼ QðsÞ Qð

ffiffiffi
s
p
� 2s2Þ Qðs � log sÞ QðsÞ

log ð1
d
Þ ¼ 2s Qð

ffiffiffi
s
p
� 22s�1Þ Qðs � 2sÞ Qð2sÞ

4. X̂i and Ŷi can be vectors composed of a single training sample, or
a matrix composed of multiple samples. This depends on the size of a
single sample and the value of the degree N of the cyclotomic polyno-
mial ring.
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approximate ReLU and max functions, which facilitate the
compatibility of HE with complex operations.

From a high-level view, the implementation of Hercules
is composed of three phases: Prepare, Local Training,
and Aggregation. As shown in Algorithm 5, we use ½��pk to
denote the encrypted value and vk

j;i to represent the weight
matrix of the j-th layer generated by Pi at the k-th iteration.
The global weight matrix is denoted as vk

j without index i.
Similarly, the local gradients computed by user Pi for each
layer j at the k-th iteration is denoted as5vk

j;i.
1. Prepare: The cloud server C needs to agree with all

users on the training hyperparameters, including the num-
ber L of layers in the model, the number hj of neurons in
each hidden layer j, j 2 ½L�, the learning rate h, the number
H of global iterations, the number B of local batches, the
activation function ’ð�Þ and its approximation. Then, C gen-
erates its own key pair fsk;0 pk0g, and each user Pi generates
ski for i 2 ½N �. Besides, all users collectively generate pk.
Finally, C initializes ½vvvvvvv0

1�pk; ½v0
2�pk; . . . ; ½v0

L�pk, and broadcasts
them to all users.

2. Local Training: Each user Pi executes the
mini-batch based SGD algorithm locally and obtains the
encrypted local gradients ½5vk

1;i�pk; . . . ; ½5vk
L;i�pk, where Pi is

required to execute the forward and backward passes for B
times to compute and aggregate the local gradients. Then,
Pi sends these local gradients to the cloud server C.

3. Aggregation: After receiving all the local gradients
from users, C updates the global model parameters by com-
puting the averaged aggregated gradients. In our system,
training is stopped once the number of iterations reaches H.
Therefore, after the last iteration, all users need to perform
an additional ciphertext conversion operation, i.e., the
DKeySwitch function (shown in Fig. 1), which enables to
convert model M encrypted under the public key pk into
½M�pk0 under the cloud server’s public key pk0 without
decryption, so that C can access the final model parameters.

Appendix, available in the online supplemental material,
presents the details of Hercules implementation, which
essentially executes Algorithm 1 under the ciphertext. This
helps readers understand how the functions in MCKKS as
well as our new matrix parallel multiplication technology
are used in FL.

Security of Hercules: We demonstrate that Hercules real-
izes the data and model privacy protection defined in Sec-
tion 2.3, even under the collusion of up toN � 1 users. This is
inherited from the property of MCKKS [1]. We give the fol-
lowing Theorem 5.1 and provide the security proof (sketch).
The core of our proof is that for any adversary, when only the
input and output of passive malicious users in Hercules are
provided, there exists a simulator with Probabilistic Polyno-
mial Time computation ability, which can simulate the view
of the adversary and make the adversary unable to distin-
guish the real view from the simulated one.

Theorem 5.1. Hercules realizes the privacy protection of data
and model parameters during the FL process, as long as its
underlying MCKKS cryptosystem is secure.

Proof. Hercules inherits the security attributes of the
MCKKS cryptosystem proposed byMouchet et al. [1]. Com-
pared with the standard CKKS, the multiparty version
constructs additional distributed cryptographic functions

including DKeyGenð�Þ, DDecð�Þ, DKeySwitchð�Þ and
DBootstrapð�Þ. All of themhave been proven secure against
a passive-adversary model with up toN � 1 colluding par-
ties, under the assumption of the underlyingNPhard prob-
lem (i.e., RLWE problem [51]). Here we give a sketch of the
proof with the simulation paradigm of the real/ideal
world. Let us assume that a real-world simulator S simu-
lates a computationally bounded adversary composed of
N � 1 users colluding with each other. Therefore, S can
access all the inputs and outputs of these N � 1 users. As
mentioned earlier, the MCKKS guarantees the indistin-
guishability of plaintext under chosen plaintext attacks (i.e.,
CPA-Secure) even if collusion of N � 1 users. This stems
from the fact that the secret key used for encryption must
be recovered with the participation of all users. Therefore,
S can simulate the data sent by honest users by replacing
the original plaintext with random messages. Then these
random messages are encrypted and sent to the corre-
sponding adversary. Due to the security of CKKS, the simu-
lated view is indistinguishable from the real view to the
adversary. Analogously, the same argument proves that
Hercules protects the privacy of the training model,
because all model parameters are encrypted with CKKS,
and the intermediate and final weights are always in
ciphertext during the training process. tu

6 PERFORMANCE EVALUATION

We experimentally evaluate the performance of Hercules in
terms of classification accuracy, computation communica-
tion and storage overhead. We compare Hercules with
POSEIDON [12], which is consistent with our scenario and
is also bulit on MCCKS.

6.1 Experimental Configurations

We implement the multi-party cryptography operations on
the Lattigo lattice-based library [52], which provides an
optimized version of the MCKKS cryptosystem. All the
experiments are performed on 10 Linux servers, each of
which is equipped with Intel Xeon E5-2699v3 CPUs, 36
threads on 18 cores and 189 GB RAM. We make use of
Onet [53] and build a distributed system where the parties
communicate over TCP with secure channels (TLS). We
instantiate Hercules with the number of users as N ¼ 10
and N ¼ 50, respectively. For parameter settings, the
dimension of the cyclotomic polynomial ring in CKKS is set
as N ¼ 213 for the datasets with the dimension of input h <
32 or 32� 32 images, and 214 for those with inputs h > 32.
The number of initial levels L ¼ 6. We exploit g4ðmÞ
described in Section 4.2 as the basic of compound polyno-
mial to approximate the ReLU and max functions, where we
require s ¼ 20, d ¼ 2�20. For other continuous activation
functions, such as sigmoid, we use the traditional MinMax
strategy to approximate it, since it has been proven that a
small degree polynomial can fit a non-polynomial continu-
ous function well within a small bounded error.

Consistent with POSEIDON [12], we choose 7 public
datasets (i.e., BCW [54], MNIST [55], ESR [56], CREDIT [57],
SVHN [58], CIFAR-10, and CIFAR-100 [59]) in our experi-
ments, and design 5 different neural network architectures
trained on the corresponding datasets (See Appendices,
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available in the online supplemental material, for more
details of the datasets and models used in our experiments.
Note that we train two models, CIFAR-10-N1 and CIFAR-
10-N2, over the CIFAR-10 dataset for comparison).

6.2 Model Accuracy

We first discuss the model accuracy on different datasets
when the number of users is 10 and 50 respectively. We
choose the following three baselines for comparison. (1) Dis-
tributed: distributed training in plaintext, which is in the
plaintext form corresponding to Hercules. The datasets are
evenly distributed to all users to perform FL in a plaintext
environment. (2) Local: local training in plaintext, i.e., each
user only trains the model on the local dataset. (3) POSEI-
DON [12]. We reproduce the exact algorithm designed
in [12].

All the baselines are trained on the same network archi-
tecture and learning hyperparameters. The learning rate is
adaptive to different schemes to obtain the best training
accuracy.5

As shown in Tables 3 and 4, we can obtain the following
two observations. (1) Compared with local training, FL
improves the accuracy of model training, especially with
the participation of large-scale users. This is drawn from the
comparison between the second and fourth columns of
Table 4. The reason is obvious: the participation of large-
scale users has enriched the volume of training samples,
and a more accurate model can be derived from such a fer-
tile composite dataset. (2) Compared with distributed train-
ing, Hercules has negligible loss in accuracy (less than
0.3%) and is obviously better than POSEIDON (1% to 4%
improvement). In POSEIDON, the non-continuous activa-
tion function (i.e, ReLU) is converted into a low-degree poly-
nomial using a traditional approximation method based on
the least square method. This is computationally efficient
but inevitably brings a non-negligible precision loss. How-
ever, given a small error bound, our approximation based
on the composite polynomial can approximate non-continu-
ous functions with high-degree polynomials, but only
requires the computation complexity of Oðlog ðdegGÞÞ,
where degG is the degree of the composite polynomial.
Therefore, the accuracy loss caused by the conversion of the
activation function is very slight inHercules.

Note that the model accuracy can be further improved by
increasing the number of iterations, but we use the same

number of iterations for the convenience of comparison. To
achieve the expected training accuracy, model training over
CIFAR-100 usually requires a special network architecture
(such as ResNet) and layers (batch normalization) due to
the diversity of its labels. For the training simplicity, we
choose a relatively simple network architecture, which is
also the main reason for the relatively low training accuracy
under CIFAR-10 and CIFAR-100 [60], [61]. We leave the
model training of more complex architectures [62], [63], [64]
and tasks as future work (See Appendix, available in the
online supplemental material).

6.3 Computation Overhead

We further discuss the performance of Hercules in terms of
computation overhead. As shown in Tables 3 and 4, when
the number of users is 10, the training time ofHercules over
BCW, ESR and CREDIT is less than 3 minutes, and the train-
ing time over MNIST is also less than 30 minutes. For N ¼
50, to train specific model architectures over SVHN, CIFAR-
10-N1, CIFAR-10-N2 and CIFAR-100, the total cost of Her-
cules is 8.78 hours, 40.73 hours, 33.3 hours and 126.52 hours,
respectively. We also give the running time of one global
iteration (One-GI), which can be used to estimate the time
required to train these architectures under a larger number
of global iterations. Obviously, for the same model architec-
ture and number of iterations, the execution time of Hercu-
les is far less than that of POSEIDON. This stems from the
fast SIMD operation under our new matrix multiplication
coding method (See Appendix, available in the online sup-
plemental material) for the comparison of the microbe-
nchmark costs of Hercules and POSEIDON under various
functionalities). Specifically, POSEIDON designs AP to
achieve fast SIMD calculations. AP combines row-based
and column-based packing, which means that the rows or
columns of the matrix are vectorized and packed into a
ciphertext. For the multiplication of two ðh� hÞ-dimen-
sional matrices, the complexity of the homomorphic rota-
tion operations required by AP ismaxi2½L�ðvi � log ðh� viÞÞ,
where vi denotes the number of weights between layers i
and iþ 1. For example, given h ¼ 64, maxi2½L�vi ¼ 64, AP
roughly needs 768 homomorphic rotation operations to real-
ize the multiplication calculation of two ð64� 64Þ-dimen-
sional matrices. For Hercules, as shown in Table 1, the
complexity required for the matrix multiplication is only
3� 64þ 5

ffiffiffiffiffi
64
p

¼ 232, which is roughly one third of the over-
head required by POSEIDON. Moreover, by comparing the
complexity, we can infer that the homomorphic multiplica-
tion of the matrices in Hercules is only linearly related to

TABLE 3
Model Accuracy and Training Cost With N ¼ 10 Users

Dataset

Accuracy Training time (s) Communication cost
(GB)

Distributed Local POSEIDON Hercules POSEIDON Hercules POSEIDON Hercules

One-GI Total One-GI Total

BCW 97.9% 93.7% 96.2% 97.7% 0.40 39.92 0.11 11.09 0.59 0.59
ESR 93.8% 90.2% 90.3% 93.5% 0.92 553.44 0.29 172.95 562.51 3.52
CREDIT 81.7% 79.8% 80.3% 81.4% 0.33 163.07 0.13 62.73 7.32 2.93
MNIST 92.3% 87.7% 88.4% 91.9% 44.67 4467.25 1.54 1540.43 703.13 17.58

5. For example, approximating the activation function at a small
interval usually requires a small learning rate to avoid divergence.

XU ETAL.: HERCULES: BOOSTING THE PERFORMANCE OF PRIVACY-PRESERVING FEDERATED LEARNING 4429

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 06,2023 at 19:53:34 UTC from IEEE Xplore.  Restrictions apply. 



the dimension of the matrix, and is independent of the num-
ber of neurons in each layer of the model. On the contrary,
the complexity of AP increases linearly with maxi2½L�vi.
This implies that Hercules is more suitable for complex net-
work architectures than POSEIDON.

We further analyze the scalability of Hercules and
POSEIDON in terms of the number of users N , the number
of samples jDj, and the number of dimensions h for one
sample. Here we use a two-layer architecture with 64 neu-
rons in each layer. The local batch size for each user is 10.
Fig. 3 shows the experimental results, where we record the
execution time of one training epoch, i.e., all the data of
each user are processed once. Specifically, Fig. 3a shows the
execution time as the number of users grows, where we fix
the number of samples held by each user as 200, and the
dimension of each sample as 64. We can observe that the
execution time of Hercules and POSEIDON shows a slight
linear increase with the increase of the number of users.
This stems from the fact that most of the operations per-
formed by each user are concentrated locally except for the
distributed bootstrapping procedure. Obviously, the per-
centage of DBootstrap operations over the total operations
under ciphertext training is relatively small. We further fix
the total number of samples in the system as 2000, and cal-
culate the execution time of each user as the number of
users increases. As shown in Fig. 3b, this causes a linear
decrease in execution time since the increase in user data
reduces the sample volume held by each user. Given the
fixed number of usersN ¼ 10 and h ¼ 64, Fig. 3c shows that
the execution time of each user increases linearly as jDj
increases. It is obvious that the increase in jDj implies an
increase in the number of samples in each user. Fig. 3d also
shows similar results under different sample dimensions.

In general, Hercules and POSEIDON show similar rela-
tionships in terms of computation cost under different hyper-
parameters. However, we can observe that the running time
of Hercules is far less than that of POSEIDON, due to the
superiority of our newmatrixmultiplicationmethod.

6.4 Communication Overhead

Tables 3 and 4 show the total communication overhead
required by Hercules and POSEIDON over different data-
sets. We can observe that during the training process, the
ciphertext data that each user needs to exchange with other
parties in Hercules are much smaller than that of POSEI-
DON. This also stems from the superiority of the new
matrix multiplication method we design. Specifically, In
POSEIDON, AP is used for matrix multiplication to achieve
fast SIMD operations. However, as shown in the fourth row
of Protocol 3 in [12], this method requires multiple copies
and zero padding operations for each row or column of the
input matrix, depending on the number of neurons in each
hidden layer, the absolute value of the difference between
the row or column dimension of the matrix and the number
of neurons in the corresponding hidden layer. In fact, AP is
an encoding method that trades redundancy in storage for
computation acceleration. On the contrary, our method
does not require additional element copy except for a small
amount of zero padding in the initial stage to facilitate cal-
culations. Therefore, Hercules obviously exhibits smaller
communication overhead. For example, given the MNIST
dataset, a 3-layer fully connected model with 64 neurons
per layer, the communication overhead of each user in
POSEIDON is about 703(GB) to complete 1000 global itera-
tions, whileHercules only needs 17.58(GB) per user.

TABLE 4
Model Accuracy and Training Cost With N ¼ 50 Users

Dataset

Accuracy Training time (hrs) Communication cost
(GB)

Distributed Local POSEIDON Hercules POSEIDON Hercules POSEIDON Hercules

One-GI Total One-GI Total

SVHN 68.5% 35.7% 67.7% 68.4% 0.0013 24.15 0.0005 8.78 12656.25 474.61
CIFAR-10-N1 54.9% 26.7% 51.9% 54.4% 0.005 126.26 0.0016 40.73 61523.44 2050.78
CIFAR-10-N2 63.5% 28.4% 60.4% 63.3% 0.0059 98.32 0.002 33.33 59062.5 1968.75
CIFAR-100 45.6% 28.2% 41.1% 44.2% 0.0069 363.11 0.0024 126.52 246796.88 8226.56

Note that Hercules and POSEIDON produce a relatively high total communication overhead compared to Table 3, which stems from the use of a larger number
of global iterations over the above datasets (See Appendix, available in the online supplemental material, for hyperparameter settings).

Fig. 3. Running time of one training epoch. (a) Increase the number of usersN when the number of samples for each user is jDij ¼ 200. (b) Increase
the number of users N when the total sample size is jDj ¼ 2000. (c) Increase the total sample size jDj when N ¼ 10. (d) Increase the sample dimen-
sion whenN ¼ 10 and jDj ¼ 200�N.
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We also analyze the scalability of Hercules and POSEI-
DON in terms of the number of usersN , the number of sam-
ples jDj, and the sample dimension h. Here we use a two-
layer model architecture with 64 neurons in each layer. The
local batch size for each user is 10. Fig. 4 shows the experi-
mental results. Similar to the results for computation cost
comparison, we can observe that Hercules exhibits better
scalability compared to POSEIDON under different hyper-
parameters. In addition, we also show the storage overhead
advantage of Hercules compared to POSEIDON, and dis-
cuss the performance of Hercules compared with other
advanced MPC-based solutions. More details can be found
in Appendix, available in the online supplemental material.

7 CONCLUSION

In this paper, we propose Hercules for privacy-preserving
FL. We design a novel matrix coding technique to accelerate
the training performance under ciphertext. Then, we use a
novel approximation strategy to improve the compatibility
of Hercules for processing non-polynomial functions.
Experiments on benchmark datasets demonstrate the supe-
riority of Hercules compared with existing works. In the
future, we will focus on designing more efficient optimiza-
tion strategies to further reduce the computation overhead
of Hercules, to make it more suitable for practical
applications.
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