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Abstract—Deep learning has shown impressive performance in numerous applications. However, recent studies have found that deep

learningmodels are vulnerable to adversarial attacks, where the attacker adds imperceptible perturbations into benign samples to induce

misclassifications. Adversarial attacks in the digital domain focus on constructing imperceptible perturbations. However, theyare always less

effective in the physical world because the perturbationsmay be destroyedwhen captured by the camera.Most physical adversarial attacks

require adding invisible adversarial features (e.g., a sticker or a laser) to the target object, whichmay be noticed by human eyes. In thiswork, we

propose to employ image transformation to generatemore natural adversarial samples in the physical world. Concretely, we propose two attack

algorithms to satisfy different attack goals:Efficient-AATR employs a greedy strategy to generate adversarial sampleswith fewer queries;

Effective-AATR employs an adaptive particle swarmoptimization algorithm to search for themost effective adversarial sampleswithin the given

the number of queries. Extensive experiments demonstrate the superiority of our attacks comparedwith state-of-the-art adversarial attacks

under mainstreamdefenses.

Index Terms—Black-box attack, deep learning, physical adversarial attack

Ç

1 INTRODUCTION

DEEP neural networks (DNN) have achieved very noticeable
success in various domains and are being deployed in an

increasing number of real-world applications, including but
not limited to image recognition, speech recognition and auton-
omous vehicles. Nevertheless, recent studies have found that
the well-trained models are susceptible to adversarial attacks,
where the attacker adds almost imperceptible perturbations
into a benign sample in order to make the model misclassify
the sample with a high probability. Adversarial attacks pose

serious security threats to deep learning models, especially
those applied in security-critical scenarios [1], [2], [3].

Most adversarial attacks focus on the digital domain [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],where
adversarial examples are generated by changing image pixels
and fed directly to DNN classifiers. However, in physical world
scenarios, since themodel only receives images from the camera
(or other sensors), the perturbations need to be added to the tar-
get object physically (or change the target object physically)
rather than changing image pixels. Due to the variations caused
by the camera, achieving a perturbation-based adversarial
attack in physical scenarios always requiresmuch larger pertur-
bations than that in digital scenarios, making the perturbations
easilydetectable [19]. Someefforts added stickers orpatches [20],
[21], [22] to the target object to generate physical adversarial
samples and someworks employed natural phenomenon (such
as optical phenomenon [23], [24], [25] and shadows [26]) to con-
struct physical adversarial samples. However, these attacks
require adding adversarial features (e.g., a sticker or a laser) to
the original sample,whichmay be noticed by human eyes.

In this work, we propose to employ more common and
stealthy transformations, i.e., translation and rotation, to con-
struct physical adversarial samples in the black-box setting.
There is also a work that generates adversarial samples by
transformations [27]. It proposed three attack methods: First-
Order Method employs PGD to optimize adversarial trans-
formed samples; Grid Search is an exhaustive search method
that searches every possible parameter (rotation of angle and
translations) in the parameter space until it finds the parameter
that induces the model to misclassify the sample; Worst-of-k
searches for the most effective adversarial sample in k random
parameter combinations. However, thesemethods have limita-
tions: First-Order Method employs PGD to optimize adversarial
samples, which is inapplicable to more practical black-box
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scenarios. Grid Search and Worst-of-k are all simple exhaustive
search and random search methods, which have shortcomings
in effectiveness and efficiency (which will be demonstrated by
our experiments in Section 5).

Specifically, we propose two optimization-based physical
black-box adversarial attacks through translation and rotation,
i.e.,Efficient-AATR andEffective-AATR, which aremore efficient
than the exhaustivemethods proposed in [27].Efficient-AATR is
aimed at inducing a misclassification with fewer queries. It
employs a greedy strategy to generate adversarial samples and
stops when the model misclassifies the sample; Effective-AATR
is designed to achieve a higher misclassification probability
within a given number of queries. It employs an APSO (Adap-
tive Particle Warm Optimization) algorithm to search for the
optimal rotation angle and translation. Compared with tradi-
tional adversarial attacks based on additional adversarial per-
turbations, our attacks are easier to perform in the real world
and more robust to defenses. Compared with other physical
adversarial attacks, our attacks do not require adding adversar-
ial features to the target object, making the adversarial sample
more indistinguishable from the original sample. The gener-
ated adversarial samples of our attacks are illustrated in Fig. 1.
In summary, the contributions of ourwork are as follows:

� We explore a way to generate more natural adversar-
ial samples in the physical world, i.e., generating
adversarial samples through translation and rotation.

� We propose two optimization-based attack algo-
rithms to search for the optimal translation and rota-
tion to construct adversarial samples.

� We conduct extensive evaluations to show our
attacks are more effective and query-efficient than
state-of-the-art adversarial attacks under mainstream
defense mechanisms.

The remainder of this paper proceeds as follow. Section 2
overviews the preliminaries. Section 3 depicts our adver-
sary model and Section 4 describes the details of our attack
methodologies. Experimental evaluation will be carried out
in Section 5. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

In this section, we first review previous work on adversarial
attacks and defenses. Then, we introduce the technique of
Particle Warm Optimization (PSO).

2.1 Adversarial Attacks

2.1.1 Digital Adversarial Attacks

Adversarial attacks in the digital world have been inten-
sively investigated. Early studies of adversarial attacks con-
centrated on gradient-based attacks in white-box scenarios
(such as Fast Gradient Sign Method (FGSM) [4] and Project
Gradient Descent (PGD) [5]). Recent research efforts have
concentrated on more realistic black-box adversarial scenar-
ios, where the attacker has no knowledge of the target
model. There are mainly two approaches to achieve black-
box adversarial attacks: Transfer-based black-box attacks [6],
[7], [8], [9], [10], [11] reconstruct a substitute model which is
similar to the target model and employ the transferability of
adversarial samples to attack the target model; Query-based
black-box attacks [12], [13], [14], [15], [16], [17], [18] optimize
adversarial samples based on the corresponding output
(label or probability) by querying the target model.

Nevertheless, the effectiveness of transfer-based black-
box attacks depends largely on the transferability of the
adversarial sample and cannot achieve a high attack success
rate. The query-based black-box attacks often require a
huge number of queries to achieve a high attack success
rate. In addition, the small perturbation in the digital
domain is always less effective in the physical world [19].

2.1.2 Physical Adversarial Attacks

Achieving an adversarial attack in the physical domain is
more challenging and has received more attention recently.
Kurakin et al. [19] proposed to generate physical world adver-
sarial samples using iterative FGSM, which first generates per-
turbed digital adversarial samples and later prints digital
adversarial samples as physical adversarial samples. How-
ever, it requires much larger perturbations than that in digital
scenarios, making the perturbations detectable. Several works
have proposed to add stickers or patches to images to generate
physical adversarial samples [20], [21], [22]. For example,
Brown et al. [20] proposed an adversarial patch method,
which generated an adversarial patch and constructed physi-
cal adversarial samples by adding this patch to clean samples.
Rather than adding visible adversarial patterns to the image,
some recent works employed natural phenomenons (such as
optical phenomena [23], [24], [25] and shadows [26]) to
perform physical adversarial attacks. For example, Sayles
et al. [23] crafted a maliciously modulated light signal and

Fig. 1. Adversarial samples generated by our proposed attacks (from CIFAR-10 and ImageNet): the first column provides the benign samples and the
column presents the adversarial samples generated by our proposed attacks. Their prediction results are all changed after our adversarial
transformations.
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illuminated an image in such light signal. Then, this image
will be misclassified by the deep learning model; Duan et al.
[24] achieved an adversarial attack by producing an adversar-
ial laser beam in front of the target object. Gnanasambandam
et al. [25] utilized structured illumination to modify the
appearance of the target objects and caused misclassification.
Zhong et al. [26] used natural shadows to construct physical
adversarial samples.

However, these attacks require adding adversarial fea-
tures (e.g., a sticker or a laser) to the original sample, which
are invisible to human eyes.

2.2 Defenses Against Adversarial Attacks

2.2.1 Detection-Based Defenses

This type of defenses aims on defending against adversarial
attacks through detecting adversarial samples [28], [29], [30],
[31], [32]. For example, Ma et al. [28] found that Local Intrinsic
Dimension (LID) [33] of adversarial samples are obviously
higher than that of clean samples. Thus, they proposed a
detection method which identifies adversarial sample
through LID. Ma et al. [29] proposed an another detection
method, which detects adversarial samples through Neural-
network Invariant Checking (NIC).

2.2.2 Input Preprocessing

Input preprocessing transforms the input image before feed-
ing it to the network in order to reduce the model sensitivity
to adversarial perturbations [34], [35], [36]. For instance, Tian
et al. [37] explored image transformation (such as rotation
and shifting) to detect adversarial attacks. Aydemir et al. [35]
and Dziugaite et al. [36] focused on employing image com-
pression to decrease the effectiveness of adversarial attacks.

2.2.3 Model Robustness Enhancement

This type of methods modifies the model to improve robust-
ness against adversarial samples. The most representative
technique is adversarial training [38], [39], [40], [41], [42],
which enhances the robustness by training the model with
some adversarial samples (with correct labels). For example,
Jin et al. [39] enhanced the adversarial training through sec-
ond-order statistics optimizationwith respect to the weights.

In addition to adversarial training, several approaches
alter the model architecture to enhance robustness [43], [44],
[45]. For instance, neural architecture search (NAS) [46] is
also employed as a method to search for network architec-
tures that are robust to adversarial attacks.

2.3 Particle Swarm Optimization (PSO)

PSO [47] regards the process of finding the optimal solution
as the process of birds foraging. Specifically, individuals in
the whole swarm search for the optimal solution coopera-
tively. Each individual in the swarm continuously changes
its search direction by learning from its own experience and
the experience of the whole swarm. The process of the PSO
algorithm can be roughly divided into four steps:

1) Initialization. The PSO algorithm first sets the maxi-
mum number of iterations, the number of particles
in the swarm and the maximum velocity of particles.
Then, it randomly initializes the velocity of each

particle in the velocity range and randomly initial-
izes the position of each particle in the search space.
The velocity vi and position pi of the ith particle can
be expressed as (in an N-dimensional space):

pi ¼ ðpi1; pi2; . . .; piNÞ; vi ¼ ðvi1; vi2; . . .; viNÞ (1)

2) Evaluation. The PSO algorithm defines a fitness value
to evaluate the goodness of the position of a particle,
where the fitness value is determined by the optimiza-
tion problem. pbesti represents the best position of the
ith particle has experienced and gbest represents the
best position of thewhole group have experienced.

3) Iteratively updating. The position and velocity of each
particle are updated according to the Formula (2)
and (3):

v
ðkþ1Þ
i ¼ vv

ðkÞ
i þ c1r1ðpbestðkÞi � p

ðkÞ
i Þ

þc2r2ðgbestðkÞ � p
ðkÞ
i Þ

(2)

p
ðkþ1Þ
i ¼ p

ðkÞ
i þ v

ðkþ1Þ
i (3)

where v
ðkÞ
i and p

ðkÞ
i represent the velocity and posi-

tion of the ith particle in the kth iteration. pbest
ðkÞ
i

represents the pbest of the ith particle in the kth itera-
tion. gbestðkÞ represents the gbest in the kth iteration.
r1 and r2 are two random numbers in (0,1), c1 and c2
are the acceleration factors, v is the inertia weight.
After that, pbest and gbest are also updated. The
update process will be repeated until the termination
condition is reached.

4) Output. gbest at the current iteration is outputted as
the optimal solution.

Due to the gradient-free feature of the PSO algorithm, it
is suitable to be used in black-box scenarios. In this work,
the PSO algorithm is employed in Effective-AATR to search
for the most effective adversarial samples within the given
the number of queries.

3 ADVERSARY MODEL

3.1 Adversary’s Knowledge and Capability

We consider the probability-based black-box attack in this
work, where the attacker knows nothing of the target
model, but he is able to query the model with samples and
obtain the classification probabilities of these query sam-
ples. The adversary is capable of generating adversarial
samples through rotating and translating the benign sam-
ples, but the size of translation and rotation angle is limited
(see Section 5 for more details).

3.2 Adversary’s Goal

We consider two different attack goals in this work:

� Query-efficiency goal aims on achieving an adversarial
attack (i.e., inducing a misclassification) with as few
queries as possible, where Efficient-AATR is devel-
oped to achieve this goal.

� Effectiveness goal aims on achieving a higher mis-
classification probability within a given query bud-
get, where Effective-AATR is proposed to achieve
this goal.
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4 ATTACK METHODOLOGIES

4.1 Overview

Recent studies [27], [48] have discovered that small transfor-
mations (e.g., rotation and translation) of the input image
can greatly affect the output of the CNN.1 This vulnerability
gives the adversary an opportunity to generate physical
adversarial samples through image transformations instead
of adding perturbations.

We propose two new physical adversarial attacks to sat-
isfy the two goals described in Section 3. For an adversary
whose goal is to achieve the attack with fewer queries, we
propose Efficient-AATR to achieve the goal; For an adver-
sary whose goal is to achieve a higher misclassification
probability within a given number of queries, we propose
Effective-AATR to achieve the goal. The details of the two
attacks are described below.

4.2 Efficient-AATR: Efficient Adversarial Attack
Through Translation and Rotation

We first propose Efficient-AATR to achieve the query-effi-
ciency goal. The process of Efficient-AATR is presented in
Algorithm 1.

To be more specific, we denote the update step of the
angle of rotation as s1 and denote the update step of hori-
zontal (or vertical) translation as s2. Then, the total update
step for each iteration can be ð�s1;�s2;�s2Þ, i.e., there are 6
possible directions to update the adversarial sample. As
presented in steps 3-8 of Algorithm 1, during each iteration,
Efficient-AATR generates 6 samples along the 6 update
directions and calculates the probabilities of them being
classified correctly. The sample with the minimum proba-
bility of correct classification will be chosen as the desired
updated sample.2 The update process is carried out repeat-
edly until the generated adversarial sample finally crosses

the decision boundary (i.e., the generated adversarial sam-
ple is misclassified by the target model.) or the algorithm
reaches the maximum number of iterations T1.

Algorithm 1. The Process of Efficient-AATR

Input: the benign sample and its label ðx; yÞ; the target model f ;
the step size s (includes the step size of rotation s1 and the
step size of translation s2); the maximum number of itera-
tions T1

Output: the adversarial sample xadv

1: Initialize the iteration counter: t 0
2: while fðxÞ ¼ y and t < T1 do
3: for j ¼ 1 to 6 do
4: xj  xþ s � dj /*where dj represents the direction vec-

tor of the 6 update directions*/
5: Calculate proðxjÞ /*where proðxjÞ represents the proba-

bility of xj being classified correctly*/
6: end for
7: x xmin /*where xmin denotes the sample with the mini-

mum probability of correct classification in xj*/
8: t tþ 1
9: end while
10: xadv  x
11: return xadv

Efficient-AATR utilizes a greedy strategy to generate
adversarial samples and stops when the generated sample
causes misclassification. This allows it to achieve the attack
with fewer queries and smaller transformations.

4.3 Effective-AATR: Effective Adversarial Attack
Through Translation and Rotation

4.3.1 The Process of Effective-AATR

Different from Efficient-AATR that stops when the gener-
ated sample is misclassified by the model, we further
propose Effective-AATR, which aims at generating more
effective adversarial samples within a given query bud-
get. Specifically, Effective-AATR utilizes an adaptive par-
ticle swarm optimization (APSO) algorithm to search for
better rotation angle and translation that make the target
model misclassify the adversarial sample with higher
confidence. The workflow of Effective-AATR is illustrated
in Fig. 2.

Concretely, the initialization of Effective-AATR (see Algo-
rithm 2) randomly initializes numerous particles, including
the initialization of position and velocity. The position of
each particle pi (i ¼ 1; . . .;M) represents the transformation
applied to the benign sample, which is three-dimensional
(including the angle of rotation, horizontal translation and
vertical translation). Besides, pbest (denoted as p�i ) and gbest
(denoted as pgb) are also initialized through measuring fit-
ness values, where the fitness value is defined as the proba-
bility of x with the transformation pi being classified
correctly. Then, Effective-AATR performs the search process
in Algorithm 3 to update the position and velocity of each
particle iteratively according to the Eqs. (2) and (3). After T2

rounds of iteration, the final pgb is obtained as the optimal
transformation applied to the benign sample. The benign
sample with the transformation pgb is the optimal adversar-
ial sample.

Fig. 2. The workflow of Effective-AATR.

1. The vulnerability may be attributed to two reasons: the ignorance
of the Shannon-Nyquist sampling theorem [49], [50] and the photo-
grapher’s biases on the datasets [51].

2. As a special case, if all the updated samples have higher probabil-
ities than the current sample, the current samples will be updated with
some random transformations to prevent the update process from
sticking in an infinite loop.
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4.3.2 Adaptive Inertia Weight Strategy

The inertia weight v in the Effective-AATR is critical to the
convergence of the algorithm. When the search space
dimension is large and the optimization problem is compli-
cated, the algorithm often converges too early and falls into
the local optimum. To mitigate this problem, we utilize an
adaptive inertia weight strategy [52] in Effective-AATR, i.e.,
assigning different v to different particles based on the fit-
ness value of the particle:

vi ¼ vmin þ ðvmax � vminÞ �Ranki
M

; (4)

where Ranki refers to the ranking of the position of ith par-
ticle. Essentially, this method assigns smaller v to the parti-
cle with a high fitness value, which is helpful to perform an
accurate local search of the current search area. Besides, it
assigns larger v to the particle with a low fitness value,
which is helpful to get rid of the local minimum and facili-
tates the global search.

Algorithm 2. The Initialization of Effective-AATR

Input: the number of particles in the whole swarm M; the
benign sample and its label ðx; yÞ

1: for each particle i ¼ 1 toM do
2: Randomly initialize the position of the particle pi
3: Randomly initialize the velocity of the particle vi
4: Initialize pbest: p�i  pi
5: end for
6: Calculate proðx; piÞ /*where proðx; piÞ represents the proba-

bility of the sample (x with transformation pi) being classi-
fied correctly*/

7: Initialize gbest: pgb  proðx; pminÞ /*where proðx; pminÞ is the
minimum value from proðx; p1Þ to proðx; pMÞ*/

Algorithm 3. The Search Process of Effective-AATR

Input: the acceleration factors c1, c2; random numbers r1, r2; the
inertia weight v; the number of iteration T2; the number of
particles in the swarmM

Output: the optimal adversarial sample xadv

1: Initialize pi employing the initialization algorithm of Effec-
tive-AATR

2: for t ¼ 1 to T2 do
3: for each particle i ¼ 1 toM do
4: vi  vvi þ c1r1ðp�i � piÞ þ c2r2ðpgb � piÞ
5: pi  pi þ vi
6: if proðx; piÞ < proðx; p�i Þ then
7: p�i  pi
8: end if
9: if proðx; piÞ < proðx; pgbÞ then
10: pgb  pi
11: end if
12: end for
13: end for
14: xadv  xwith the adversarial transformation pgb.
15: return xadv

4.3.3 The Convergence of the Effective-AATR

In order to facilitate the analysis of the convergence of
the Effective-AATR, we first simplify the algorithm to an

one-dimensional, single particle setting. After that, we
denote c1r1, c2r2, c1r1pbest

ðkÞ þ c2r2gbest
ðkÞ as ’1, ’2, ’pg

and fix them as constants. The update process of the
adversarial transformation (denoted as particle p) in the
Effective-AATR is simplified as:

vðkþ1Þ ¼ vvðkÞ � ð’1 þ ’2ÞpðkÞ þ ’pg (5)

pðkþ1Þ ¼ ð1� ’1 � ’2ÞpðkÞ þ vvðkÞ þ ’pg (6)

Then, Eq. (7) can be obtained by eliminating the velocity-
related terms in Eq. (5) and Eq. (6):

pðkþ1Þ ¼ ð1þ v� ’1 � ’2ÞpðkÞ � vpðk�1Þ þ ’pg (7)

and matrix form of Eq. (7) is:

pðkþ1Þ

pðkÞ

1

2
64

3
75 ¼ A

pðkÞ

pðk�1Þ

1

2
64

3
75 (8)

where

A ¼
1þ v� ’1 � ’2 �v ’pg

1 0 0
0 0 1

2
4

3
5 (9)

the characteristic equation of matrix A is:

ð1� �Þð�2 � ðvþ 1� ’1 � ’2Þ�þ vÞ ¼ 0 (10)

and the three roots of Eq. (10) can be solved:

e1 ¼ 1 (11)

e2;3 ¼
vþ 1� ’1 � ’2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ 1� ’1 � ’2Þ2 � 4v

q

2
(12)

Hence, pðkÞ and vðkÞ can be denoted as:

pðkÞ ¼ m1 þm2e
k
2 þm3e

k
3; v
ðkÞ ¼ n1e

k
2 þ n2e

k
3 (13)

where m1;2;3 and n1;2 are constants. The limit of pðkÞ and vðkÞ

can be calculated:

lim
k!1

pðkÞ ¼ m1 þm2 lim
k!1

ek2 þm3 lim
k!1

ek3 (14)

lim
k!1

vðkÞ ¼ n1 lim
k!1

ek2 þ n2 lim
k!1

ek3 (15)

� when k e2 k> 1 or k e3 k> 1, limk!1 pðkÞ and
limk!1 vðkÞ do not exist, the trajectory and velocity of
the particle are divergent.

� when k e2 k< 1 and k e3 k< 1, limk!1 pðkÞ ¼ m1 and
limk!1 vðkÞ ¼ 0, the trajectory and velocity of the par-
ticle are convergent.

� when maxðk e2 k; k e3 kÞ ¼ 1, limk!1 pðkÞ ¼ m1 þm2

þm3 or m1 þm2 or m1 þm3, limk!1 vðkÞ ¼ n1 or n2

or n1 þ n2, the trajectory and velocity of the particle
are convergent.

In conclusion, when the parameters (’1, ’2 and v) are set
to meet the condition of maxðk e2 k; k e3 kÞ � 1, the update
process of the adversarial transformation is convergent.

Remark. We consider translation and rotation as the
method to construct physical adversarial samples in this
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work. Other transformation methods (such as zooming and
scaling) may also be capable of producing adversarial sam-
ples, we did not consider these methods because translation
and rotation are the most common transformations in the
physical world and they are already able to achieve the
attack goal of the adversary.

5 EXPERIMENTAL EVALUATION

We first evaluate the attack performance of our attacks with
different hyperparameters. After that, we compare the attack
performance of our attacks with state-of-the-art black-box
adversarial attacks undermainstream defensemethods.

5.1 Experimental Setup

Datasets and Target Models. We use the LeNet-5, AlexNet,
ResNet18 and ResNet50 as the target models on MNIST,
Fashion-MNIST (F-MNIST), CIFAR-10 and ImageNet.

Hyperparameter Settings. Each model is trained with 50
epochs.3 The learning rate is set to 0.01 and the batch size is
set to 128. The maximum value of rotation angle and trans-
lation "1 and "2 are limited to ð�30	;þ30	Þ and ð�3;þ3Þ
pixel, respectively. For each attack, we randomly draw
1,000 samples from the test dataset and construct adversar-
ial samples for them.

All experiments are implemented in Python and run on a
16-core Intel(R) Xeon(R) CPU E5-2620v4 @ 2.10 GHz 16 G
machine.

5.2 Attack Performance Evaluation
and Hyperparameters Analysis

5.2.1 Attack Performance of Efficient-AATRWith

Different Hyperparameters

Efficient-AATR aims on generating adversarial samples with
fewer queries and smaller transformations. Similar to the
state-of-the-art black-box adversarial attacks, we consider
the following three metrics to evaluate Efficient-AATR:

� Attack success rate (ASR): the proportion of adversar-
ial samples that lead to the misclassifications of the
model to the total number of adversarial samples.

� Average queries: the average number of queries
required to generate an adversarial sample.

� Average transformation: the average transformation
required to construct an adversarial sample.

Specifically, we choose s1 uniformly from 1 to 10 and s2
uniformly from 0.1 to 1, T1 is set according to Eq. (16). Then
we perform Efficient-AATR with different combinations of
these hyperparameters.

T1 ¼ "1
s1
þ 2

"2
s2

(16)

The attack performance of Efficient-AATR with different
hyperparameters is shown in Figs. 3 and 4. It indicates that
the number of queries required decreases and the attack
success rate increases with lager step sizes (s1 and s2). How-
ever, lager step sizes also cause larger average transforma-
tions as presented in Table 1, which decrease the
stealthiness of the attack. There is a trade-off between the
effectiveness and stealthiness of the attack.

5.2.2 Attack Performance of Effective-AATR

With Different Hyperparameters

The goal of Effective-AATR is to generate more effective
adversarial samples within a given query budget. Thus, the
average probability that the adversarial sample being classi-
fied correctly is used as the metric to evaluate the effective-
ness of the attack. Concretely, we choose M uniformly from
10 to 100 and T2 uniformly from 10 to 20, and perform Effec-
tive-AATRwith different combinations of hyperparameters.

The results in Fig. 5 indicate that Effective-AATR per-
forms well on the four models by reducing the average
probabilities to almost zero.4 Besides, there is a trade-off

Fig. 3. Average required query of Efficient-AATR with different combina-
tions of hyperparameters.

Fig. 4. Attack success rate (ASR) of Efficient-AATR with different combi-
nations of hyperparameters.

3. We adopt the pre-trained ResNet50 model from Pytorch.

4. The average probability that the benign samples are classified cor-
rectly for MNIST, F-MNIST, CIFAR-10 and ImageNet are 0.9896, 0.9997,
0.8781 and 0.7767, respectively.
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between the attack effect and the number of queries
required: the increase of the number of queries required Q
(where Q equals to M � T2) is conducive to improving the
effectiveness of Effective-AATR.

In order to balance the trade-off between the effective-
ness and stealthiness of the attack, in the following experi-
ments, the hyperparameters of Efficient-AATR and Effective-
AATR are set as follows: for Efficient-AATR, we set the step
size of rotation s1 to 5	, the step size of translation s2 (hori-
zontal and vertical) to 0.5 pixel, the maximum number of
iterations T1 is set according to Eq. (16). For Effective-AATR,
c1 and c2 are set to 2 and v is set according to Eq. (4). T2 is
fixed to 10 andM is set to Q=T2.

5.3 Attack Performance Under Defense

In this subsection, we compare the attack performance of
our proposed attacks with the state-of-the-art black-box
adversarial attacks under mainstream defense methods.

5.3.1 Baseline Attacks

� Meta Attack [16] is a representative perturbation-
based black-box adversarial attack. It employed
meta-learning to train a meta attacker, which is used
to estimate the gradient of the victim model.

� Grid Search [27] and Worst-of-k [27] are also methods
to search for rotation and translation to construct
physical adversarial samples. Grid Search exhaus-
tively searches every possible parameter (rotation of
angle and translations) in the parameter space until
it finds the parameter that induces the model to

misclassify the sample; Worst-of-k searches for the
most effective adversarial sample in k random
parameter combinations.

5.3.2 Attack Performance on Robust Models

Adversarial training is the most commonly used method to
enhance the robustness of the model against adversarial
attacks, which includes some adversarial samples into the
training dataset and trains the model with these samples. In
the context of our transformation-based adversarial attacks,
an intuitive way to improve the robustness of the model is
data augmentation, which augments the training process
with some randomly transformed data.

Thus, for transformation-based adversarial attacks
(including Efficient-AATR, Effective-AATR, Worst-of-k and
Grid Search), we implement a data augmentation strategy
during the training phase to obtain robust models. Each
sample in the training dataset is augmented with a random
transformed sample, where the maximum value of transla-
tion and rotation angle are the same as the settings men-
tioned in Section 5.1. For perturbation-based adversarial
attack (Meta Attack), we employ a PGD adversarial training
strategy during the training phase to obtain robust models.
The PGD step is fixed to 10, the maximum perturbation is
set to 0.3 for MNIST, 0.2 for F-MNIST, 0.03 for CIFAR-10
and ImageNet. After that, we evaluate the attack perfor-
mance on these robust models.

For the attacker from a query-efficiency perspective, we evalu-
ate the attack performance of Efficient-AATR, Grid Search and
Meta Attack on robust models. Specifically, in order to unify
the step size of Grid Search with Efficient-AATR, we consider
12 values for translations (horizontal and vertical) and 12 val-
ues for rotations, equally spaced by 5	 and 0.5 pixel. The
hyperparameters ofMeta Attack are set as default in [16].

As presented in Table 2, compared with Meta Attack and
Grid Search, Efficient-AATR achieves the same (or higher)
ASR as the baseline attack with much fewer queries. It dem-
onstrates that Efficient-AATR shows a significant improve-
ment in the query-efficiency over the baseline attack. This is
mainly because the greedy strategy used in Efficient-AATR
makes it achieve the attack with fewer queries. Besides, the
result also demonstrates that data augmentation is less
effective in defending against Efficient-AATR.

For the attacker from an attack effectiveness perspective,
because most perturbation-based adversarial attacks are
considered from a query-efficiency perspective, we only
compare Effective-AATR with Worst-of-k. The value of k in
Worst-of-k is fixed to Q to ensure that the number of queries
ofWorst-of-k is the same as Effective-AATR.

As can be seen from Fig. 6, both of the two attacks can
reduce the probability a lot: the probabilities of the four

TABLE 1
Average Transformation of Efficient-AATR

Dataset\Step size s1 ¼ 2 s2 ¼ 0:2 s1 ¼ 4 s2 ¼ 0:4 s1 ¼ 6 s2 ¼ 0:6 s1 ¼ 8 s2 ¼ 0:8 s1 ¼ 10 s2 ¼ 1:0

MNIST ð9:97	; 1:03; 1:11Þ ð11:39	; 1:16; 1:35Þ ð12:10	; 1:57; 1:66Þ ð12:79	; 1:88; 1:87Þ ð13:46	; 2:01; 1:94Þ
F-MNIST ð11:57	; 0:37; 0:35Þ ð12:11	; 0:32; 0:47Þ ð14:43	; 0:48; 0:49Þ ð17:07	; 0:41; 0:50Þ ð18:44	; 0:38; 0:49Þ
CIFAR-10 ð8:67	; 0:31; 0:33Þ ð13:58	; 0:32; 0:59Þ ð19:01	; 0:62; 0:67Þ ð23:32	; 0:71; 0:77Þ ð25:31	; 0:88; 0:75Þ
ImageNet ð5:05	; 0:61; 0:48Þ ð10:65	; 0:58; 0:91Þ ð15:55	; 0:81; 1:06Þ ð18:70	; 0:78; 1:21Þ ð21:10	; 1:51; 1:45Þ

Fig. 5. Attack performance of Effective-AATR with different combina-
tions of hyperparameters.
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models decrease to below 0.20, below 0.15, below 0.30 and
below 0.10 after 1000 queries. In comparison, within the
same query budget, adversarial samples generated by Effec-
tive-AATR always have lower probabilities of correct classi-
fication than that generated by Worst-of-k. It is mainly
because the PSO method used in Effective-AATR is more
effective than the random search method used inWorst-of-k.

5.3.3 Evaluation on Detection-Based Defense

For detection-based defenses, we evaluate our attacks against
the detection of Local Intrinsic Dimensionality (LID) [28], which
is one of the most representative of detection-based defenses
against adversarial attacks. The intuition of LID is that the LID
features of adversarial samples are always different from nor-
mal samples. Therefore, clean and adversarial samples can be
distinguished by calculating and analyzing the distribution of
their LID features.

Without loss of generality, we select the ResNet50 model
on ImageNet as the victim model and compute the LID fea-
tures of clean samples, adversarial samples generated by

Meta Attack and adversarial samples generated by Efficient-
AATR (the evaluation on Effective-AATR and other datasets
give the same conclusion). The distributions of their LID
features are illustrated in Fig. 7. It indicates that LID is

TABLE 2
Attack Performance of Efficient-AATR on Robust Models

Model and dataset Attack method ASR (%) Avg. queries Avg. transformation1 Avg. L2 distance
1

LeNet-5 (MNIST)
Efficient-AATR 81.43 92.41 ð16:57	; 2:59; 2:36Þ -
Grid Search [27] 89.17 1011.40 ð18:45	; 2:18; 2:65Þ -
Meta Attack [16] 68.15 4492.44 - 3.37

AlexNet (F-MNIST)
Efficient-AATR 89.30 41.27 ð19:90	; 1:24; 0:62Þ -
Grid Search [27] 93.15 407.54 ð21:61	; 1:13; 1:27Þ -
Meta Attack [16] 81.01 2853.87 - 2.07

ResNet18 (CIFAR-10)
Efficient-AATR 78.08 75.90 ð17:12	; 1:45; 1:29Þ -
Grid Search [27] 80.19 867.18 ð19:63	; 1:31; 0:98Þ -
Meta Attack [16] 83.76 1923.65 - 1.23

ResNet50 (ImageNet)

Efficient-AATR 86.01 67.78 ð12:76	; 0:83; 0:75Þ -
Grid Search [27] 87.01 791.67 ð18:89	; 1:65; 1:35Þ -
Meta Attack [16] 84.33 2149.50 - 2.07

1 The three dimensions of the average transformation represent the absolute value of the rotation, horizontal translation and vertical translation, respectively.
2 The average L2-norm distance between the adversarial sample and the benign sample. Since the adversarial samples of Efficient-AATR and Grid Search [27]
are generated through rotation and translation, their Avg. L2 is not considered.

Fig. 6. Attack performance of Effective-AATR on robust models.

Fig. 7. LID scores of 100 normal samples, adversarial samples gener-
ated by Meta Attack and adversarial samples generated by Efficient-
AATR.

Fig. 8. Robustness evaluation against image compression.
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effective in distinguishing perturbation-based adversarial
samples from clean samples. The LID features of these
adversarial samples are significantly different from that of
clean samples. However, the LID features of adversarial
samples generated by our attack are extremely similar to
that of clean samples, which enable our adversarial samples
to bypass the detection. It is mainly because our adversarial
samples are generated in a more natural way through trans-
formations instead of adding perturbations, and we believe
our attacks can evade other detection techniques as well.

5.3.4 Robustness Against Image Compression

Image compression [34], [35], [36] is one of the most com-
monly used input preprocessing defenses against adversar-
ial attacks. In this work, we adopt the image compression
defense method used in [34] to evaluate the robustness of
our attacks. Specifically, we select 1000 adversarial samples
generated and perform image compression on them to cal-
culate the proportion of samples remaining adversarial.

As illustrated in Fig. 8, a larger proportion of adversarial
samples generated by Meta Attack turn into benign samples
with the decrease of compression ratio. However, as for Effi-
cient-AATR and Grid Search, the effectiveness of the attack is
slightly decreased, most of the adversarial samples still
remain adversarial. Moreover, in terms of Effective-AATR and
Worst-of-k, almost all adversarial samples generated by these
two attacks still remain adversarial after image compression.
It demonstrates that image compression is effective in defend-
ing against perturbation-based adversarial attacks such as
Meta Attack, but it fails to defeat transformation-based adver-
sarial attack such as our attacks and attacks proposed in [27].

5.3.5 Robustness Against Image Transformation

Tian et al. [37] proposed to pre-process the input images
through random image transformations before feeding
them to the model. It can reduce the model sensitivity to
adversarial perturbations and make the attack ineffective.

We follow the work [37] and evaluate the effectiveness of
our attacks under random image transformations. Specifi-
cally, we select 1000 adversarial samples generated from the
five attacks (including Efficient-AATR, Grid Search, Effective-
AATR, Meta Attack and Worst-of-k) and perform random
transformations on them before feeding them to the models.

As presented in Table 3, random transformation is effec-
tive in defending against Grid Search and Meta Attack. The
attack success rates of these two attacks drop significantly.
Besides, random transformation also reduces the attack suc-
cess rates of Efficient-AATR andWorst-of-k to a certain extent.
However, Effective-AATR is more robust against the defense
of random transformation, the attack success rates of Effec-
tive-AATR on the four datasets still remain high (83.7%,
85.1%, 76.1% and 78.5%) after random transformation.

From the results we have obtained, it can be concluded
that our attacks are more robust than baseline attacks
against mainstream defenses including detection of Local
Intrinsic Dimensionality (LID), model robustness enhance-
ment and input preprocessing defenses. These defenses are
far from a solution to defending against our transformation-
based attacks, more effective countermeasures still require
further research.

6 CONCLUSION

In this article, we explore a natural way to generate adversar-
ial samples in the physical world, i.e., generating adversarial
samples through image transformations. Specifically, we
propose two attack algorithms to satisfy the different goals
of the adversary: for the attacker from a query-efficiency per-
spective, we propose Efficient-AATR. It employs a greedy
strategy to update adversarial samples in order to generate
them with fewer queries and smaller transformations; For
the attacker who aims on achieving the most effective attack
within a given query budget, we propose Effective-AATR. It
utilizes an adaptive particle swarm optimization algorithm
(APSO) to generate more effective adversarial samples.

TABLE 3
ASR (%) Under the Defense of Random Transformation
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Finally, we conduct experiments to demonstrate the superi-
ority of our attacks compared with state-of-the-art adversar-
ial attacks undermainstream defenses.
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