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Abstract
Autonomous unmanned systems (AUSs) emerge to replace human operators for achieving better safety, efficiency, and
effectiveness in harsh and difficult missions. They usually run in a highly open and dynamic operating environment, in
which some unexpected situations may occur, leading to violations of predefined requirements. In order to maintain stable
performance, the AUS control software needs to predict in advance whether the requirements will be violated and then make
adaptations tomaximize requirements satisfaction.WeproposeCaptain, amodel-driven and control-based online adaptation
approach, for the AUS control software. At the modeling phase, apart from the system behavior model and the operating
environmentmodel, we construct a requirements satisfactionmodel. At runtime, based on the requirements satisfactionmodel,
Captain first predicts whether the requirements will be violated in the upcoming situation; then identifies the unsatisfiable
requirements that need to be accommodated; and finally, finds an optimal adaptation for the upcoming situation. We evaluate
Captain in both simulated scenarios and the real world. For the former, we use two cases of UAVDelivery and UUVOcean
Surveillance, whose results demonstrate the Captain’s robustness, scalability, and real-time performance. For the latter, we
have successfully implemented Captain in the DJI Matrice 100 UAV with real-world workloads.

Keywords Requirements satisfaction model · Runtime adaptation · Models@runtime · Autonomous unmanned systems

1 Introduction

The dramatic growth of autonomous unmanned systems
(AUSs), including autonomous vehicles, unmanned aerial
vehicles (UAVs), unmanned underwater vehicles (UUVs),
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is fundamentally changing the industries of transportation,
manufacturing, and logistics [1]. Different from traditional
software systems, AUSs are typically composed of physi-
cal and software components and interact with the physical
environment through sensor inputs and motor outputs [2,3].
From the perspective of requirements engineering, it is far
from enough for AUSs to merely assure the function correct-
ness [4]. Considering the close interaction betweenAUSs and
the environment, many environment-related non-functional
requirements (NFRs) are extremely critical [5]. For example,
any violation of safety requirements may be dangerous and
lead to catastrophic results [6].

Requirements, especially those environment-related non-
functional requirements [7], may not always be satisfiable at
runtime as AUSs face uncertainties in the highly open and
dynamic environment [8]. Such runtime uncertaintiesmainly
arise from incomplete knowledge about the operating envi-
ronment (e.g., unforeseen obstacles and private regions that
can be only detected online [9]), and/or fluctuations in sys-
tem characteristics [2] (e.g., degraded hardware like sensors
that become less accurate over time or that consume more
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energy than expected [3]). The effects produced by these
unpredictable conditions can compound and thereby inhibit
the system from fully satisfying its requirements, i.e., the
occurrence of requirements violations [10].

As one of the key components in AUSs, the control soft-
ware is responsible for controlling AUSs’ behaviors to meet
multiple requirements [3]. It faces two further challenges
for meeting the requirements, when AUSs operate under
unpredictable conditions. First, how to address the runtime
uncertainties, as the environment and system characteristics
are ever-changing and can only be partially known at devel-
opment time. Second, how to detect and mitigate potential
requirements violations effectively and efficiently, as this
technique should be embedded into AUS online planning.

After a comprehensive analysis of related work, we found
that the control-based adaptation [11,12] in which self-
adaptationmechanisms are designed based on control theory,
could be a promising way for tackling the first challenge as it
can provide formal guarantees on the desired behavior of the
controlled systems. Early research on the control-based adap-
tation focuses on ad-hoc solutions to control the lower-level
elements and resources of the system (e.g., CPU, storage,
bandwidth, etc.) [13]. These solutions require a well under-
standing of mathematical system models and are often done
on a per-problem basis, discouraging flexibility and gen-
erality. Later, more general methods for robust control are
proposed like AMOCS [14], SimCA [15], SimCA* [16] and
AMOCS-MA [17], etc. However, when handling multiple
requirements, these approaches either neglect the require-
ments conflicts [15,16] or employ a utility function with
predefined priorities to make trade-offs between the satisfac-
tion of multiple requirements [14,17]. The utility function
is susceptible to biases as the priorities defined by human
experts can be subjective [18].

Secondly, the goal-driven adaptation is proposed to define
how requirements can be specified and accommodated in
case of violations [19]. This could be a possible way to tackle
the second challenge. RELAX [20] is incorporated into goal
models [21–23] for self-adaptive systems, allowing require-
ments to be partially satisfied in response to uncertainties. To
address varying environmental conditions, approaches for
adapted goal models have also been proposed [24,25]. At
present, the goal-driven adaptation mostly only focuses on
fixed and predefined adaptation rules for requirements, rarely
considers the possibility of online requirements adaptation.
However, for highly configurable AUSs, it is very important
to detect and mitigate requirements violations proactively
and instantly, such that timely adaptations can bemade, espe-
cially when the available computational capacity for AUSs
is limited.

In this paper, we propose Captain, a model-driven and
control-based online adaptation approach for addressing both
the challenges. The main idea is to enable AUS control

software to identify and mitigate requirements violations
proactively in case of runtime uncertainties based on con-
trol theory. For the purpose of runtime identification and
mitigation, apart from the system behavior model and the
interactive environment model, we also explicitly establish
the requirements satisfaction model, in which requirements
are classified into three categories for a systematic and
quantitative satisfaction evaluation: (1)Mission: functional
requirements that AUSs need to complete; (2)Hard con-
straints: NFRs that must be satisfied by AUSs during the
completion of the Mission; (3)Soft Constraints: NFRs that
are not sharply defined a priori and should be satisfied as
much as possible by AUSs.

At runtime,we introduce a three-step control-basedmech-
anism to check, analyze and optimize requirements satis-
faction proactively and instantly based on the requirements
satisfaction model. First, we utilize model predictive con-
trol (MPC) strategy to check whether all requirements can
be satisfied in the upcoming situation according to the pre-
dicted evolution of the system and environment. Second, a set
of soft constraints that are checked as unsatisfiable is iden-
tified for accommodation. Third, an adaptive solution with
the optimal requirements satisfaction is figured out through
multi-objective optimization in which unsatisfiable soft con-
straints are transformed into the objective function, while
the satisfaction of other requirements is assured. In this pro-
cess, only soft constraints that are predicted to be violated are
transformed to optimize, the search space for adaptation is
accordingly scaled-down,making it efficient to find the adap-
tive solution with the optimal satisfaction of requirements.

The main contributions are summarized as follows.

• A requirement satisfaction model to evaluate degrees of
requirements satisfaction at runtime in a quantitative and
systematic way.

• A three-step control-based adaptation mechanism to
identify andmitigate requirements violations proactively,
i.e. requirements satisfaction checking, requirements
satisfaction analyzing and requirements satisfaction opti-
mizing.

• A multi-objective planner for the optimal requirements
satisfaction ofAUSs through adaptations in sensor recon-
figuration and motion planning simultaneously at run-
time.

• Comprehensive evaluations of Captain on both simu-
lators and real-world scenarios, using diverse AUS case
studies, environment, and workloads.

The remainder of the paper is organized as follows. We
describe the motivation behind the proposed approach in
Sect. 2. We describe the models established in Sect. 3,
followed by a detailed explanation of the online adaption
process of the approach in Sect. 4. Sections 5 and 6 present
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Fig. 1 A UAV of amazon prime air is delivering [28]

the assessments and experimental results of the approach. An
overview of related work is summarized in Sect. 7, followed
by conclusions in Sect. 8.

2 Motivating scenario

Recently, there have been significant advances in a variety of
technologies designed to deliver cargoes by UAVs, primarily
driven by industrial efforts [26]. As amotivating scenario, we
describe the UAVDelivery service provided byAmazon, i.e.,
“Amazon Prime Air” [27]. This service uses delivery UAVs
to autonomously fly individual packages to customers within
30 min of ordering, as shown in Fig. 1. This scenario will be
used as a running example to illustrate the modeling (see
Sect. 3), the online adaptation (see Sect. 4.4), and evaluation
(see Sect. 6) of our approach.

The UAV’smission is to deliver cargo from the warehouse
to customers, and this mission involves concerns from two
aspects. First, requirements for the delivery mission involve
various stakeholders, e.g., delivery suppliers, customers, and
residents along the delivery path, and requirements from
different stakeholders should be taken into account. For
example, for the supplier, the completion of the delivery and
energy-saving are directly related to the economic viability of
delivery UAVs [26]. Customers would like to increase UAV’s
speed such that the parcel can be received in 30 minutes or
less. For the residents along the delivery path, safety and pri-
vacy in residential areas should be preserved during the flight
[29,30].

Second, during the flight, UAV is destined to face unpre-
dictable conditions that primarily come from two sources:
(1) environment changes, such as unforeseen obstacles [31]
and private regions [32] that are detected online by onboard
sensors; (2) fluctuations in system characteristics, such as
sensor degradation or dramatic battery life reduction [33].
These unpredictable conditions may result in requirements
violations during the UAV operation and need to be miti-
gated. For example, when new private regions are detected,
the UAV may fail to compute a flight path to complete the
mission within the time budget when avoiding trespassing

on the private regions [9,32]. In case that the timeliness
requirements would be violated, strategies should be found
to minimize such violations. However, when a safe landing
condition cannot be assured (e.g., on the river), adaptations
(e.g., path replanning) are needed to mitigate safety violation
[33].

Accordingly, the UAV Delivery mission is not trivial and
requires the UAV to be adaptive to unpredictable condi-
tions while satisfying multiple requirements. Specifically,
it is critical for the UAV to monitor the changes in the
operating environment and system characteristics at runtime,
proactively detect requirements violations, andmitigate such
violations through adjusting UAV’s configurations and/or
behaviors for optimal requirements satisfaction.

3 Modeling

We next establish models for system behavior, operating
environment, and requirements of AUSs, and these models
are used in the online adaptation process of Captain.

3.1 System behavior modeling

According to existing work [2,3], an AUS is a highly config-
urable cyber-physical system whose states include not only
kinematic state but also configuration options of system char-
acteristics (e.g., usage of sensors).

Following the guidelines [34,35] for robot system mod-
eling, we model the kinematic state of the AUS as a sphere
with safe radius ra , and the center position is x.

The time is discretized into time instants with an equal
step length τ . At any time instant k, the kinematic state is
represented as mk = (xk, vk), where xk and vk denote the
vectors of its position and velocity at time instant k, respec-
tively. xk+1 = xk + vkτ , k = 0, 1, 2, . . ..

As to configuration options of system characteristics, we
mainly focus on the configuration of equipped sensors. We
measure and quantify each sensor’s functionality as a vari-
able wk ∈ [0, 1], at time instant k. If wk = 1, the sensor is
unrestricted and able to function at its full working capacity.
For example, in DJI Matrice 100 UAV, the Zenmuse Z3 cam-
era’s parameters contain resolution and orientation angle.
The camera’s orientation angle ranges from −30◦ (up to the
sky) to 90◦ (direct to the ground). Then, we linearly quan-
tify the orientation angle at time instant k as wk ∈ [1/3, 1]
(wk = 1/3 for−30◦ andwk = 1 for 90◦). The AUS’s sensor
configuration is defined as a vector wk that combines the wk

of all sensors’ parameters. In case that the sensor parameters
are discrete variables, wk can be computed through fuzzifi-
cation of the reals.

Therefore, at time instant k, the AUS’s state can be for-
mulated as a vector sk = (mk,wk). To adjust the behaviors
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of the AUS at k is to compute the control signals of velocity
and sensor configuration uk = (vk,wk).

3.2 Operating environment modeling

Operating environment model will reveal the runtime sce-
narios which may directly restrict the system behaviors [7].
Suppose that the operating environment of theAUSmay con-
tain obstacles and private regions (e.g., the residential areas)
which can be detected by the AUS’s onboard sensors. The
AUS needs to avoid hitting all obstacles compulsorily and at
the same time as far as possible not to invade private areas.

The operating environment of the AUS can be described
as M with the scale of X ×Y × Z in three dimensions. LetO
and C be the set of obstacles and private regions, respectively,
in M . These two sets contain information of obstacles and
private regions. To be consistent with our previouswork [32],
we model the obstacles and private regions as spheres that
are described by their center positions and radius.

During mission completion, the operating environment of
AUS may change, so the AUS needs to monitor the environ-
ment and update the environmental information online. Let
Ok be the set of obstacles and Ck be the set of private regions
detected by the AUS at time instant k. Each obstacle o ∈ Ok

is modeled as a sphere with a radius ro and a center xo, while
each private region c ∈ Ck is modeled as a sphere with a
radius rc and a center xc.

For safety, the AUS needs to keep at least an additional
safe distance Do with the obstacles, i.e., ‖xk − xo‖2 ≥ ra +
ro + Do,∀o ∈ Ok . For privacy-preservation, supposing the
affecting radius of the private region c is Dc, the distance
between the AUS and the private region should be at least at
ra + rc + Dc, i.e., ‖xk − xc‖2 ≥ ra + rc + Dc,∀c ∈ Ck . Dc

is larger than Do as usual.

3.3 Requirements modeling

This subsection presents the categories of the requirements
that matter in our work on how to evaluate the requirements
satisfaction.

3.3.1 Requirements classification

We classify the requirements that AUS control software
needs to satisfy into three categories:

(1) Missions stand for functional requirements that AUSs
need to complete, e.g., delivery, search and rescue. For
example, the delivery mission can be viewed as com-
pleted when the UAV reaches the destination xd from
the initial position x0. The set of missions to complete
is defined as M.

(2) Hard constraints stand for non-functional requirements
that must be kept during the completion of the missions
as requested by ISO 10128 [36]. These requirements are
mainly elicited from critical attributes of AUS, physi-
cal limitations, standards, and regulations. Violations of
hard constraints (e.g., colliding with other vehicles) can
lead to loss of life, property damage, or environmental
harm. The set of hard constraints is defined asH.

(3) Soft constraints stand for non-functional requirements
that should be satisfied as much as possible. Soft con-
straints often determine the performance of the AUS
according to user preferences, e.g., mission completion
time and privacy-preservation (i.e., keep an appropriate
distance with private regions or reduce sensory capabil-
ity). The set of soft constraints is defined as S.

The behaviors of an AUS are subject to various require-
ments composed of hard constraints and soft constraints
duringmission completion. The complete set of requirements
for an AUS isR = M∪H∪S. In the following, we use the
UAV Delivery scenario to materialize these non-functional
requirements.

The temporal dimension allows us to divide the require-
ments set R into two subsets RM and RA, containing the
requirements that should be maintained at all time instants
and the requirements which should be achieved in the future,
respectively [37]. For example, requirements like safety that
should be kept at any time instant belong to RM; while
requirements like timeliness that are expected to be achieved
at the end of the mission completion belong to RA.

UAV scenario From the Technology Roadmap for Amazon
Prime Air [38], we elicit the following five representative
non-functional requirements that need to be satisfied for a
delivery UAV during the mission completion. We formulate
these requirements as shown in Table 1, in which we use
logical connectives, temporal operators � (always) and ♦
(eventually) to formulate the soft constraints and hard con-
straints.

• Safety (RS): Safety means that the UAV needs to keep
a safe distance, ensuring no damage to people, property,
and the environment.When it is seen as a hard constraint,
it requires to satisfy the following condition at any time
instant k, ‖xk − xo‖2 ≥ ra + ro,∀o ∈ Ok . As a soft
constraint, it means that the UAV should keep an addi-
tional distance Do from the obstacle o in case of motion
disturbance.

• Privacy (RP ): Privacy preservation means that UAV
cannot intrude into private regions and expose private
information. When it is seen as a hard constraint, it
requires the UAV not collide with private regions. As a
soft constraint, it means that the UAV should keep a dis-

123



Online adaptation for autonomous unmanned systems driven by requirements satisfaction model

Table 1 Requirements Specifications for UAV Delivery Systems

Requirements Hard constraints (H) Soft constraints (S)

Safety (RS) � ‖xk − xo‖2 ≥ ra+ro,∀k ∈ [0, T ], o ∈ Ok � ‖xk − xo‖2 ≥ ra + ro + Do,∀k ∈ [0, T ], o ∈ Ok

Privacy (RP ) � ‖xk − xc‖2 ≥ ra + rc, ∀k ∈ [0, T ], c ∈ Ck � ‖xk − xc‖2 ≥ ra + rc + Dc, ∀k ∈ [0, T ], c ∈ Ck
Accuracy (Rϕ) ♦ 1

T

∑T−1
k=0 ‖wk‖ τ ≥ A ♦ 1

T

∑T−1
k=0 ‖wk‖ τ ≥ At ≥ A

Timeliness (Rξ ) ♦
∑T−1

k=0 vkτ ≤ Δ ♦
∑T−1

k=0 vkτ ≤ Δt ≤ Δ

Energy-saving (RE ) ♦
∑T−1

k=0 Ek ≤ E , Ek = ‖xk+1 − xk‖2 +
η1 ‖vk+1 − vk‖2 + η2 ‖wk‖ τ

♦
∑T−1

k=0 Ek ≤ Et ≤ E

a Soft constraints and hard constraints are not necessarily associated with each other and can be separately specified. However, if a hard constraint
shares the sameQMwith its corresponding soft constraint, the large violation degree of soft constraint can serve as a reminder of the hard constraint’s
violation in the future

tance of Dc with the private region, i.e., ‖xk − xc‖2 ≥
ra + Dc,∀c ∈ Ck .

• Accuracy (Rϕ): This is a basic requirement for the accu-
racy of the collected information, e.g., the quality of the
images. The target accuracy of information is At , while
A is the threshold. Then, we have A ≤ At . The quality of
the images can be indicated by the capability configura-
tion of the sensors wk , e.g., the camera’s resolution and
orientation angle.

• Timeliness (Rξ ): This requirement is related to themotion
time. Let Δ be the deadline to finish the mission and Δt

is the expected time that UAV takes for completing the
mission. Then, we have Δt ≤ Δ.

• Energy-saving (RE ): Energy consumption should be less
than the total capacity of the energy module E , while the
amount of energy expected to be consumed is Et . The
energy consumption is affected by the traveled distance,
control effort, and sensor usage. In this paper, at the time
duration [kτ, (k + 1)τ ), the energy cost is computed as
Ek = ‖xk+1 − xk‖2+η1 ‖vk+1 − vk‖2+η2 ‖wk‖ τ with
the assumption that each unit of traveled distance costs
one unit of energy, deceleration or acceleration costs η1
units of energy, and sensor usage consumes η2 units of
energy.

3.3.2 Requirement satisfaction modeling

The absolute satisfaction of requirements is challenging for
AUSs operating in complex and changing environments [39]
due to runtime uncertainties [10]. In previous work, fuzzy set
theory is applied to describe the requirement uncertainties
[18,23]. In this paper, we use fuzzy membership functions to
describe the satisfaction degree of requirements in a quan-
tifiable way.

Given a set of requirements R = {R1, . . . , Rn} for
an AUS, we establish a corresponding requirements sat-
isfaction model, which supports measuring and evaluating
requirements satisfaction online. We introduce Xi as the
Quantification Measure (QM) that can be observed at run-

time, to evaluate requirement Ri . Its value at time instant k
is denoted as Xi (k). Xi is defined as a function of observa-
tions Obs including previous system states, current detected
environmental conditions, i.e., Xi (k) = hi (Obsk), Obsk =(〈s0, s1, ..., sk〉,Ok, Ck

)
. The calculation ofXi for Ri isman-

ually defined. As shown in Table 1, the QM for the timeliness
requirement is Xξ (T ) = ∑T−1

k=0 vkτ , where T is the time
instant when the mission is completed.

The hard constraints and the mission satisfaction criteria
are usually clear-cut. Since each hard constraint and mis-
sion must be satisfied, we evaluate their satisfaction with the
Boolean function, given in Eq. (1).

DS0(Xi ) =
{
1, if Xi satisfy Ri ∈ M ∪ H
0, otherwise

(1)

To depict the satisfaction degree of soft constraints, we
design a gradual measurement based on the fuzzy set theory
and set up three requirements satisfaction functions accord-
ing to three types of relationship between the QM and users’
expectations (i.e., LESS THAN,MORE THAN, AS CLOSE
AS) as follows.

DS1(Xi ) =

⎧
⎪⎨

⎪⎩

ubi−Xi
ubi−gi

gi < Xi ≤ ubi

1 Xi ≤ gi
0 otherwise

(2)

DS2(Xi ) =

⎧
⎪⎨

⎪⎩

Xi−lbi
gi−lbi

lbi ≤ Xi < gi

1 Xi ≥ gi
0 otherwise

(3)

DS3(Xi ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xi−lbi
gi−−lbi

lbi ≤ Xi < gi−

1 gi− ≤ Xi ≤ gi+
ubi−Xi
ubi−gi+

gi+ < Xi ≤ ubi

0 otherwise

(4)

In Eqs. (2)–(4), lbi and ubi are the lower and upper bound-
aries of Xi , respectively; gi , gi+ , and gi− are user-defined
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target values. DS1(Xi ) is the function to evaluate require-
ments satisfaction when Xi should LESS THAN the target
value. A soft constraint Ri ∈ S is totally satisfied ifXi ≤ gi ,
and the satisfaction linearly decreases to 0 if Xi > gi .
Similarly, DS2(Xi ) is the function for the MORE THAN
relationship (gi ≤ Xi ), and DS3(Xi ) is the function for the
AS CLOSE AS POSSIBLE relationship (gi− ≤ Xi ≤ gi+).
Thus, the set of soft constraints S can be accordingly divided
into three orthogonal subsets denoted as S1, S2 and S3,
whose satisfaction is evaluated by the above three types of
requirements satisfaction function, respectively. Clearly, we
have S = S1 ∪S2 ∪S3 and S i ∩S j = ∅ for 1 ≤ i < j ≤ 3,
i and j are integers.

Therefore, given a set of requirements R, we have the
four sets of functions to measure requirements satisfaction:
DS0 = {DS0(Xi ) : Ri ∈ H ∪ M}, DS1 = {DS1(Xi ) :
Ri ∈ S1}, DS2 = {DS2(Xi ) : Ri ∈ S2} and DS3 =
{DS3(Xi ) : Ri ∈ S3}. The corresponding requirements sat-
isfactionmodel is defined as the complete set of requirements
satisfaction function, i.e., DS = {DS0,DS1,DS2,DS3}.

UAV scenario We take the soft constraint of the privacy
requirement listed in Table 1as an example to illustrate the
design of the requirements satisfaction function. Based on
the private region model presented in [32],privacy disclosure
is affected by the distance between UAV and private regions,
as well as the working state of sensors. The less the distance
between UAV and the private region or the higher the sensor
configuration is, the higher the possibility of private informa-
tion exposure.Wedefine theQMof privacy at time instant kas
XPc (k) = 1 − ‖wk‖ (ra+rc+Dc)−‖xk−xc‖2

Dc
, ∀c ∈ Ck .We have

the requirements satisfaction function using the formulation
of DS2:

DS2(XPc(k)) =

⎧
⎪⎨

⎪⎩

1, XPc(k) ≥ 1,

0, ‖xk − xc‖2 < ra + rc,

XPc(k), otherwise

Similarly, we can formulate QMs for other requirements,
e.g., safety XS , timeliness Xξ , energy-saving XE , and accu-
racy Xϕ . Based on the soft constraints and hard constraints
listed in Table 1, the sets of requirements satisfaction func-
tions are:
DS0={DS0(XS),DS0(XP ),DS0(Xϕ),DS0(Xξ ),DS0(XE )},
DS1 = {DS1(Xξ ),DS1(XE )},
DS2 = {DS2(XS),DS2(XP ),DS2(Xϕ)}.

The corresponding requirements satisfaction model is
DS = {DS0,DS1,DS2}.
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Fig. 2 An overview of model-driven adaptation

4 Model-driven online adaptation

This sectionwill describe the control-based online adaptation
process of Captain, which is driven by the requirements
satisfaction modeling established in Sect. 3.

4.1 Overview

Figure 2 shows theworkflowof themodel-driven and control-
based online adaptation process of Captain, which is
embedded into a two-layer architecture for the AUS [5].
The top layer structures the internal Feed-forward and Feed-
back control loops for optimal requirements satisfaction in
response to runtime uncertainties, while the bottom layer
shows the external Interaction loop between the AUS and
operating environment.

At runtime, the AUS and environment are closely con-
nected with the environment entities (humans, obstacles,
private regions, etc.) through continuous sensing and exe-
cution. The Interaction loop is designed for the AUS to
perceive changes in its operating environment (e.g., unex-
pected humans, obstacles, and private regions) and take
corresponding actions.

The internal control loop consists of Feed-forward and
Feedback loops, each of which is refined as a MAPE loop
to handle runtime uncertainties through monitoring, analyz-
ing, planning, and executing components. The Feed-forward
and Feedback control loops are responsible for generat-
ing appropriate adaptation plans in response to changes in
environmental conditions and system characteristics, respec-
tively. Considering the interference between different control
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loops, we set an equal step length τ to synchronize these two
control loops. In addition, the analysis results of both environ-
mental changes and system characteristics fluctuations are
integrated for Autonomous Planning to generate the adapta-
tion plan, such that sensor configuration and motion plan for
the AUS can be generated simultaneously.

In the Feed-forward control loop, raw environmental data
collected via Sensing are handled by Environment Monitor-
ing. Environment Analyzing is for environmental evolution
prediction, e.g., estimating the future positions of intruding
vehicles. Based on environmental analysis, the requirements
satisfaction optimization problem is treated as a three-step
control problem inAutonomousPlanning:Requirements Sat-
isfaction Checking (see Sect. 4.2),Requirements Satisfaction
Analyzing (seeSect. 4.3) andRequirements SatisfactionOpti-
mizing (see Sect. 4.4). Finally, the adaptation plan, including
motion plan and sensor configuration for the AUS are trans-
lated into control signals in Deploying and delivered to the
Controlled System for Executing.

Similarly, in the Feedback control loop, system charac-
teristics (e.g., usage of sensor) are monitored via System
Monitoring. System Analyzing is to detect disturbance of
system characteristics like component failures and sen-
sor degradation. Once these uncertainties are detected, the
three-step Autonomous Planning is triggered, such that an
adaptation plan is expected to be generated to help the system
recover from failures, even at a reduced level of requirements
satisfaction.

4.2 Requirements satisfaction checking

Due to changes in the environment and system, some require-
ments may not always be satisfied. This step is to check
whether all the requirements can still be satisfied proactively
under the observations of these changes.

We formalize the requirements satisfaction checkingprob-
lem as: Given a set of requirements R = {R1, . . . , Rn}
and requirements satisfaction modelDS, determine whether
there is a feasible system behavioral plan that enables all
requirements to be totally satisfied, i.e., all QMs can achieve
their target values.

To solve this problem, we construct an equivalence prob-
lem. Inspired by Lagrangian relaxation [40], we relax the
demands of initial requirements with slack variables and
bring them into the objective function. In this way, any vio-
lation of requirements will be penalized in the objective
function.

Concretely, for requirement Ri at time instant k, a nonneg-
ative slack variable δi,k (resp., ζi,k) is introduced to measure
the distance between Xi (k) and gi in case Xi (k) is larger
(resp., smaller) than gi . With the slack variable, the demand
of initial requirements satisfaction can be transformed to
a slacked one ψi,k . For example, for Ri ∈ S1, the initial

requirement demand isXi (k) ≤ gi . The slacked one becomes
ψi,k : Xi (k) ∈ [lbi , gi +δi,k]∧δi,k ∈ [0, ubi −gi ]. The slack
variables for missions and hard constraints should always be
zero, i.e., ψi,k : DS0(Xi (k)) = 1. Therefore, the require-
ments satisfaction checking problem can be transformed into
an optimization problem, where the objective function is to
minimize violations of all the requirements. The formula-
tions of slacked requirements are listed as follows:

ψi,k :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi (k) ∈ [lbi , gi + δi,k] ∧ δi,k ∈ [0, ubi − gi ]
∀Ri ∈ S1

Xi (k) ∈ [gi − ζi,k, ubi ] ∧ ζi,k ∈ [0, gi − lbi ]
∀Ri ∈ S2

Xi (k) ∈ [gi− − ζi,k, gi+ + δi,k]∧
ζi,k ∈ [0, gi− − lbi ] ∧ δi,k ∈ [0, ubi − gi+]

∀Ri ∈ S3

DS0(Xi (k)) = 1, ∀Ri ∈ H ∪ M

(5)

To identify unsatisfiable requirements proactively, we use
the model predictive control (MPC) technique in a time-
sliding mode. At time instant k0, the Captain reasons the
evolution of the environment and system in the next N steps
(i.e., the prediction horizon) based on the operating envi-
ronment model, the system behavior model, and Obsk . For
Ri ∈ RM, slacked requirements are constructed via estimat-
ing QMs based on the predicted evolution of the environment
and system during the period [k0+1, k0+N ]. For Ri ∈ RA,
slacked requirements are constructed based on the estimation
of Xi (T ), assuming that all missions end at k = T . There-
fore, the requirements satisfaction problem (i.e., whether it
is possible to meet all the requirements given the prediction
horizon N ) is transformed into amulti-objective optimization
problem (i.e., theminimal requirements violations) described
as follows:

min
u,δ,ζ

fk =
∑

Ri∈RM

k0+N∑

k=k0+1

(δi,k + ζi,k)

+
∑

Ri∈RA

(δi,T + ζi,T )

s.t . ∀Ri ∈ RM,∀k ∈ [k0 + 1, ..., k0 + N ], ψi,k;
∀Ri ∈ RA, ψi,T .

(6)

As shown in Eq. (6), the multi-objective optimization
problem is scalarized into a single-objective problem with
a combined sum of normalized slack variables (δi,k =

δi,k
ubi−gi

, ζi,k = ζi,k
gi−lbi

) for no preference between require-
ments. Requirements are transformed into the slacked ones
through Eq. (5). The planning result is a behavioral plan
〈uk0 , ..., uk0+N−1〉 with the minimal requirements viola-
tions. Through solving Eq. (6), Captain can check require-
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ments satisfaction during AUS operation. If the value of the
objective function for the optimal solution exceed zero, i.e.,
fk(δ

∗, ζ ∗) > 0, theoretically there exist requirements viola-
tions, i.e., requirements whose slack variables are positive.

UAV scenario We continue the UAV example in Sect. 2
to illustrate the construction of optimization problem for
Requirements Satisfaction Checking. The delivery mission
of the UAV is to travel from position x0 to the destina-
tion xd within time period T . Suppose the sensing range
is l, meaning that only the obstacles and private regions
whose distances to the UAV are shorter than l can be
detected. At current instant k0, the UAV needs to plan its
velocities and sensor configurations within the range of the
minimal and maximal values, i.e., vk ∈ [vmin, vmax] and
wk ∈ [wmin,wmax] for the following consecutive N time

steps, where N ≤
⌊

l
vmaxτ

⌋
. For mission completion, we

have xk0+N + vk0+N · (T − k0 − N )τ = xd to ensure the
UAV could reach the destination finally. In this scenario, the
safety and privacy requirements should be met at every time
instant, while the timeliness, energy-saving, and accuracy
requirements should be met at the end of the mission, i.e.,
RM = {RS, RP },RA = {Rξ , Rϕ, RE }. Thus, the slacked
safety and privacy requirements for each obstacle and private
region during planning horizon are constructed as shown in
Eqs. (6a)–(6b); while the slacked timeliness, energy-saving
and accuracy requirements are constructed based on the esti-
mation of their QMs at the end of the mission, as shown in
Eqs. (6c)–(6e). Based on Eq. (6), the Requirements Satis-
faction Checking problem at k0 can be formulated as below:

min
s,δ,ζ

fk =
k0+N∑

k=k0+1

(
∑

o∈Ok

ζSo,k +
∑

c∈Ck
ζPc,k) + δξ,T

Δ − Δt

+ δE,T

E − Et
+ ζϕ,T

At − A

s.t .∀k ∈ [k0, k0 + N − 1],
xk+1 = xk + vk · τ,

vk ∈ [vmin, vmax ],wk ∈ [wmin,wmax ],
xk0+N + vk0+N · (T − k0 − N )τ = xd;
∀k ∈ [k0 + 1, k0 + N ],
1 − ζSo,k ≤ XSo(k), 0 ≤ ζSo,k ≤ 1,∀o ∈ Ok, (6a)

1 − ζPc,k ≤ XPc(k), 0 ≤ ζPc,k ≤ 1,∀c ∈ Ck, (6b)

Xξ (T ) ≤ Δt + δξ,T , 0 ≤ δξ,T ≤ Δ − Δt , (6c)

XE (T ) ≤ Et + δE,T , 0 ≤ δE,T ≤ E − Et , (6d)

At − ζϕ,T ≤ Xϕ(T ), 0 ≤ ζϕ,T ≤ At − A. (6e)

4.3 Requirements satisfaction analyzing

To reduce the risk of overly strict demands of requirements
satisfaction [41], we need to decide which requirements
should be accommodated for satisfaction optimization. The
initial requirements set R is divided into the ε-Flexible and
ε-Inflexible sets of requirements based on the result in the
previous step.

Given the optimal solution of the slack variables for
Eq. (6), denoted as (δ∗, ζ ∗), the requirements whose slack
variables exceed zero are predicted to be unsatisfiable. To
avoid the frequent reporting of unsatisfiable requirements
and high time cost for the adaptation process, we only select
requirements whose violation degree (defined as Vi ) exceed
a threshold to adjust. We define such as threshold as the vio-
lation tolerance εi for each requirement Ri . Clearly, for hard
constraints and missions, their violation tolerance should
always be zero.

Definition 1 (ε-Flexible and ε-Inflexible sets of require-
ments) Given a set of requirementsR = {R1, . . . , Rn} with
violation tolerance ε = (ε1, . . . , εn) where εi → 0+, the
ε-Flexible set of requirements isR f = {Ri ∈ R : Vi > εi },
and the set of ε-Inflexible requirements isRn f = R − R f .

The violation degree Vi for a requirement Ri ∈ RA can be
computed as the sum of its normalized slack variables: Vi =
δ∗
i,T (or ζ ∗

i,T ). For Ri ∈ RM, its violation degree is Vi =
1
N

∑k0+N
k=k0+1 δ∗

i,k (or
1
N

∑k0+N
k=k0+1 ζ ∗

i,k). Based on Definition 1,
requirements inM and H should belong to Rn f , while soft
constraints whose violation degree exceeds threshold belong
toR f . Otherwise, there are violations of hard constraints or
missions to report.

UAV scenario In this example, the violation degrees for
soft constraints of safety, privacy, timeliness, accuracy, and
energy-saving requirements, which can be calculated as
below:
Safety: VS = ∑k0+N

k=k0+1

∑
o∈Ok

ζ ∗
So,k

N |Ok |
Privacy: VP = ∑k0+N

k=k0+1

∑
c∈Ck

ζ ∗
Pc ,k

N |Ck |
Accuracy: Vϕ = ζ ∗

ϕ

At−A , Timeliness: Vξ = δ∗
ξ

Δ−Δt

Energy-Saving: VE = δ∗
e

E−Et
.

4.4 Requirements satisfaction optimizing

The purpose of this step is to mitigate the violation of
unsatisfiable soft constraints while keeping requirements in
Rn f fully satisfied. For Ri ∈ R f , their initial satisfac-
tion demands (i.e., Xi achieves gi ) are relaxed, and they
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are brought into the objective function to optimize. For
Ri ∈ Rn f , their initial satisfaction demands are kept. The
reason is our insight that for the soft constraints whose
violation degrees are less than their tolerances, they are
likely to be satisfied by relaxing those in R f . To improve
the real-time performance of the AUS, the objective func-
tion to optimize is formulated as the sum of satisfaction
degree for all ε-Flexible requirements, while the constraints
in the optimization problem are ε-Inflexible requirements.
The requirements satisfaction optimization problem is for-
mulated as:

max
u

hk =
∑

Ri∈RM∩R f

1

N

k0+N∑

k=k0+1

DS(Xi (k))

+
∑

Ri∈RA∩R f

DS(Xi (T ))

s.t . ∀Ri ∈ RM ∩ Rn f ,∀k ∈ [k0 + 1, ..., k0 + N ],
DS(Xi (k)) = 1;
∀Ri ∈ RA ∩ Rn f , DS(Xi (T )) = 1.

(7)

As shown in Eq. (7), the multi-objective optimiza-
tion problem is scalarized into a single-objective problem
with a combined sum of requirements satisfaction degree
DS(Xi (k)) for R ∈ R f , while the constraints in the opti-
mization problem are the fully satisfaction for R ∈ Rn f .
To ease the bias of the satisfaction between Ri ∈ RA and
Ri ∈ RM with respect to the length of horizon N , we use
the average satisfaction degree of Ri ∈ RM during the hori-
zon as part of the objective function. Although there is no
preference between requirements, predefined priorities are
allowed in case of specific scenarios, and the functions satis-
faction degree can be combined with weights in Eq. (7). As
R f is dynamically determined, the formulation of the objec-
tive function is also generated according to specific runtime
situations.

4.5 Online adaptation of Captain

Wehere describe the online adaptation process ofCaptain,
i.e., how to combine the Requirements Satisfaction Checking
(Sect. 4.2), the Requirements Satisfaction Analyzing (Sect.
4.3), and the Requirements Satisfaction Optimizing (Sect.
4.4) during the adaptation process. Algorithm 1 shows the
process of generating the adaptation plan for the AUS to
complete the mission with the optimal requirements satis-
faction. The algorithm receives a set R of requirements and
its requirements satisfaction modelDS as inputs. The output
of Captain is an adaptation plan for the AUS.

During the operation, both the environment and sys-
tem are continuously monitored until the assigned missions

Algorithm 1: Requirements Satisfaction Model Driven
Online Adaptation for AUSs
Input: Time instant k, requirements set R and requirements

satisfaction model DS.
Output: The adaptation plan for AUS to complete the mission.

1 Obsk = (Ok , Ck , 〈s0, s1, ..., sk〉
)
;

2 (u∗
k , δ

∗, ζ ∗) = argmin fk ;
3 if u∗

k = ∅ then
4 Report false and take some emergency actions;
5 break;

6 else
7 Compute requirement violation degree {Vi } for R based on

(δ∗, ζ ∗);
8 Determine R f and Rn f ;
9 if R f �= ∅ then

10 u′∗
k = argmax hk ;

11 if u′∗
k �= ∅ then

12 u∗
k ← u′∗

k ;

13 return adaptation plan of AUS u∗
k ;

are completed, e.g., reach the destination. Once changes in
the environment or system are detected, the online adap-
tation process is triggered. The Captain first perceives
the changes in environmental conditions and system states
(Line 1). Second, the optimization problem forRequirements
Satisfaction Checking (Line 2) is solved. No feasible solution
to the optimization problem indicates the violations of hard
constraints ormissions. This failure is reported for the human
pilot to take emergency action (Line 4), such as landing or
surrendering control to a human pilot. If the optimal solution
u∗
k exists, in Requirements Satisfaction Analyzing, the viola-

tion degree of each requirement is computed (Line 7), and
R is divided into ε-Flexible and ε-Inflexible sets of require-
ments (Line 8). In case R f = ∅, we skip the Requirements
Satisfaction Optimizing step and leverage the solution u∗

k
directly. Otherwise, the optimization problem for Require-
ments Satisfaction Optimizing (Line 10) is constructed and
solved. If another optimal solution u′∗

k exists, u
∗
k is updated

with u′∗
k (Line 12) for the AUS to act.

Considering that the optimization problems in Eq. 6 and
Eq. 7 can be non-convex with nonlinear constraints, sequen-
tial convex programming (SCP) as an optimization method
for non-convex problems can be leveraged. Among SCP,
sequential quadratic programming (SQP) is a typical non-
linear programming method that is realized through solving
a set of approximate convex problems [42]. We use SQP to
solve Eq. 6 and Eq. 7, as it outperforms other optimization
methods in terms of efficiency, accuracy, and success rate
[43].
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Fig. 3 The hierarchical layout of adaptation strategies for AUSs with
multiple requirements

5 Assessments for Captain

Figure 3 demonstrates a hierarchical layout of adaptation
strategies for the AUS with multiple requirements to satisfy.
The underlying idea of the adaptation strategy in the top layer
is to find a solution that can satisfy all hard constraints H
and soft constraints S for mission completion in the feasible
region F = {X |DS j (X ) = 1, j = {0, 1, 2, 3}}. The strat-
egy at the bottom layer is to find optimal planning with H
satisfied by transforming all soft constraints into the objective
function to optimize such that the feasible region expands to
F ′ = {X |DS j (X ) = 1, j = {0}}. It is worth noting that
Captain adopts a new adaptation strategy, located in the
middle layer, which identifies and transforms only unsatis-
fiable soft constraints in R f into the objective function to
optimize while keeping the other requirementsRn f fully sat-
isfied.

5.1 Optimality of Captain

If constrained planning with H and S (Layer 1 in Fig. 3)
is solvable, the solution can keep all the hard and soft con-
straints fully being satisfied. However, uncertainties in the
environment may lead to requirements violations, resulting
in F = ∅. In that case, the AUS cannot find any solution,
and may be trapped into mission failure. One remedy to this
situation is to expandF for higher flexibility, i.e., optimizing
satisfaction of all soft constraints together in Layer 3. How-
ever, the feasible domainF ′ is so large, and it can be biased
to make trade-offs between soft constraints according to pre-
defined preferences. Hence, as shown in Layer 2, Captain
tries to achieve a balance between flexibility and require-
ments satisfaction by selecting unsatisfiable soft constraints
to optimize while keeping the other requirements fully satis-
fied. In this way, the optimality of Captain is assured when
a feasible solution is found.

5.2 Flexibility of Captain

In Captain, only selected soft constraints in R f need to
be accommodated, and such a selection is made based on the
results of the two steps introduced previously: Requirements
Satisfaction Checking and Requirements Violation Analyz-
ing. In case that F �= ∅, the Requirements Satisfaction
Checking stepwill also generate an optimal solution inwhich
all requirements are fully satisfied and this solution is the
same as that solved by Layer 1 in Fig. 3. Otherwise, the
Requirements Satisfaction Optimization step is launched to
find a sub-optimal solution. In the worst case, when all soft
constraints are unsatisfiable, Captain degenerates to Layer
3 in Fig. 3. In this way, Captain is flexible to be compatible
with other control-based methods. Such flexibility ensures
the applicability of Captain in complex situations with
multiple requirements.

5.3 Proactive detection of requirements violations

Apart from handle violations of soft constraints, Captain
can also detect violations of hard constraints and missions in
advance. In Captain, both M and H are modeled as con-
straints thatmust bemet inEqs. 6 and 7. The twooptimization
problems in Eqs. 6 and 7 are constructed as convex opti-
mization and solved by SQP. The infeasibility of these two
optimization problems implies violations of hard constraints
ormission failures, as SQPsolver canproduce feasible results
with respect to bounds. In that case, the AUS is required to
report the failures and take emergency pause/stop action, or
system control is transferred to a human pilot, as shown in
Line 4 in Algorithm 1.

5.4 Real-time performance

Since our approach needs to solve optimization problems
during AUS operation, it is critical to consider timing issues
that could prolong the system’s execution. For example, for
UAVs hovering in the sky, the adaptation plan should be
calculated timely for their future actions. In our approach,
Eqs. 6 and 7 are solved within prediction horizon N based
on MPC. A receding horizon technique [17] is adopted such
that only the first action of the plan is applied. In dynamic
environments, the system will follow the calculated plan
until information about new changes in the environment
and system is available or at the end of the horizon; at that
time a new iteration of Captain is launched to generate
a fresh plan. The prediction horizon N is determined based
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on the sensing range l and the span of time instant τ , i.e.,

N ≤
⌊

l
vmaxτ

⌋
. τ represents the granularity of control, which

can also affect the real-time performance. Given the span of
the time instant, the prediction horizon can be tuned accord-
ing to the computational capability of the UAV. Additionally,
the two optimization problems are solved by SQP, which out-
performs other optimization methods in terms of efficiency,
accuracy, and percentage of successful solutions [43]. Fur-
ther, the hot-start strategy [44] can be used to accelerate the
solving of optimization problems.

6 Experimental evaluation

We evaluate the practicality, robustness, scalability, and real-
time performance of Captain in two AUS cases using
MATLAB as well as an implementation on a real UAV (DJI
Matrice 100)1. Our experiments focus on the following ques-
tions:

RQ1 (Practicality) Can Captain be implemented in sim-
ulated and real-world scenarios to detect unsatisfiable
requirements and provide adaptive solutions for the
optimal requirements satisfaction at runtime?

RQ2 (Robustness) How robust is Captain against differ-
ent types of unpredictable conditions?

RQ3 (Scalability) How scalable is Captain in large envi-
ronment (e.g. extracted from real urban scenarios)?

RQ4 (Real-time performance) What is the real-time per-
formance of Captain in terms of computation
overhead?

6.1 Experimental design and settings

6.1.1 Scenarios

We consider two AUS scenarios, i.e., the UAV Delivery
scenario mentioned in Sect. 2 and the UUV ocean survel-
liance scenario extracted from [15,16]. We also implement
Captain on the DJI Matrice 100 UAV in the real world.

UAV Delivery scenario This example is given in Sect. 2.
The requirements in this scenario are listed in Table 1, with
violation tolerances of 10−20 (safety), 10−20 (privacy), 10−10

(accuracy), 10−20 (timeliness), and 0.005 (energy-saving).
We evaluate Captain in three environment settings for the
UAVcase, whose parameters are listed in Table 2.We assume
that the obstacles in the same setting have the same radius, as
do the private regions. The volume ratios of the obstacles and
private regions to the c-space [34] are characterized byρo and

1 https://github.com/YixingLuo/Captain.

ρp, respectively. The higher the ratio is, the more cluttered
the environment is. Once the adaption plan is generated for
the UAV, the low-level commands to the actuators/motors
are generated via a PD (proportional-differential) controller
modified from the quadrotor PD controller for CrazyFlie 2.0
[45] 2. In Setting 1, the obstacles and the private regions
are randomly generated, in contrast to the environment in
Settings 2 and 3, which are extracted from two real urban
scenarios according to the open building dataset of Portland,
USA [46].

UUV oceanic surveillance scenario This example origi-
nates from [15,16], in which the UUV is used for oceanic
surveillance for a time period, i.e., Δ = 10 hours. Rather
than considering single-objective optimization for the UUV
scenario in [15,16], we extend the original scenario to mul-
tiple requirements satisfaction under runtime uncertainties
through Captain, while other settings like sensor param-
eters are kept the same. The requirements for the UUV to
achieve are listed as follows:

• Accuracy (Rϕ):Sϕ : the accuracy of sensormeasurements
is targeted at At = 90%; Hϕ : the threshold is set as
A = 80%.

• Scanning Distance (RL ): SL : A segment of the surface
over a distance of Lt = 100 km is expected to be
examined by the UUV;HL : the threshold of surveillance
distance is L = 90 km.

• Energy-saving (RE ): SE : A total amount of energy Et =
5.4 MJ is expected to be consumed; HE : the maximum
amount of energy is E = 6 MJ.

DJI Matrice 100 UAV scenario We implement Captain on
a DJI Matrice 100 UAV in real world. The UAV’s mission
is to move along a reference path while avoiding intruding
privacy regions and saving motion time. A Lenovo laptop
controls UAV motion via an Android application developed
with the DJI mobile SDK on a mobile phone.

6.1.2 Baseline approaches

Considering the importance of adaptation strategy in terms
of the effectiveness and efficiency in requirements satisfac-
tion, we compare the online adaptation process of Captain
with two approaches: one is the control-based requirements
adaptation algorithm, and the other is a variant of Captain.

• AMOCS-MA: it adapts from the state-of-the-art control-
based adaptation approaches for multiple requirements
[17] and generates adaptation plans using the maximiza-
tion of satisfaction degree of all soft constraints as the

2 https://github.com/yrlu/quadrotor.
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Table 2 Parameters of UAV
Delivery case

Parm. Setting 1 Setting 2 Setting 3

l 2.5 m 20 m 20 m

v [−1, 1] m/s [−10, 10] m/s [−10, 10] m/s

w 0–100% 0–100% 0–100%

ra, τ 0.2 m, 0.5 s 0.2 m, 0.5 s 0.2 m, 0.5 s

η1, η2 0.5, 0.2 0.5, 0.2 0.5, 0.2

Scale (10, 10, 10) m (500, 500, 100) m (1000, 1000, 100) m

ro, rc 0.3 m, 0.5 m 5 m, 5 m 5 m, 5 m

ρo, ρc [0%, 100%] (1.64%, 2.41%) (2.87%, 2.84%)

Do, Dc 0.2 m, 0.3 m 5 m, 10 m 5 m, 10 m

Δt ,Δ 15 s, 30 s 60 s, 90 s 90 s, 150 s

At , A 90%, 80% 90%, 80% 90%, 80%

Et , E 20 unit, 40 unit 100 unit, 150 unit 200 unit, 300 unit

a
b

Obstacles

Private
Regions

(a) Flight Path of UAV.
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(b) Velocity and Sensor Configuration.
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(c) Requirements Satisfaction during the
Flight.

Fig. 4 RQ1—Adaption planning results of Captain in UAV case

objective function. This approach is chosen as it repre-
sents the adaptation strategy as shown inLayer 3 of Fig. 3.

• GSlack: it generates adaptation plans through the appli-
cation of optimization problem in the Requirements
Satisfaction Checking step. The objective function is the
minimization of the violation of soft constraints for all
requirements. This approach is compared with the whole
online adaptation process of Captain to demonstrate
the necessity ofRequirements Satisfaction Analyzing and
Requirements Satisfaction Optimizing in the optimality
of requirements satisfaction.

6.1.3 Configurations and implementations

For the UAV Delivery scenario and UUV Ocean Surveil-
lance scenario, we conduct simulations based on MATLAB
2019b on a desktop equipped with an Intel(R) Core(TM) i7-
7700U CPU@3.60GHz and 32GB RAM. The constructed
optimization problems are solved by the Optimization Tool-
box of MATLAB.

In the DJI Matrice 100 UAV scenario, UAV is equipped
with a Zenmuse Z3 camera, whose orientation angle θ can

be reconfigured from −90◦ (vertically towards the ground)
to 30◦ (up to the sky). The Lenovo laptop used to control DJI
Matrice 100 UAV is equipped with an Intel(R) Core(TM)
i7-7500U CPU@2.70GHz and NVIDIA GeForce 940MX.

6.2 RQ1: practicality

We investigate the practicality of Captain with response
to runtime uncertainties through the implementation of
Captain in two simulated scenarios, i.e., the UAV Deliv-
ery and UUV Ocean Surveillance, and a real-world scenario
with a DJI Matrice 100 UAV.

6.2.1 UAV Delivery scenario

We simulate the UAV scenario in Setting 1, where ρo = 1%
(19 obstacles) and ρp = 1% (7 private regions). As shown
in Fig. 4a, the small blue spheres represent obstacles, and
the large red ones represent private regions. The blue curves
show theplannedpath viaCaptain. Thevelocity and sensor
configuration during operation are shown in Fig. 4b, where
the planned behaviors and actual outputs are blue and red
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Increase in the number of soft constraints
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Fig. 5 RQ1—Success rate with increase of soft constraints

lines, respectively. In Fig. 4c, the three blue lines (from top to
bottom) indicate the distances between UAV and the nearest
obstacle, the distances between UAV and the nearest private
region, and accumulated energy consumption, respectively.
The red lines are the target values of soft constraints listed in
Table 2.

During the flight, UAV detects private region a at k = 3s.
To avoid intruding into a, UAV reduces velocity in the y-
axis. At k = 4s, the UAV then detects obstacle b. To achieve
the optimal satisfaction of safety and privacy requirements,
UAV plans a new velocity and changes direction. Addition-
ally, at k = 4.5s, the parameters η1 and η2 increase to 0.53
and 0.23, respectively, and UAV plans to reduce its sensor
configuration to conserve energy since k = 6s. However, at
k = 6.5s, the energy-saving requirement is checked to no
longer be satisfied as Ve = 0.015 > 0.005. So the target
energy consumption is relaxed to 40 units. Furthermore, at
k = 8s, vmax is limited to (0.96, 0.96, 0.96), and at k = 9.5s
the time target Δt is tightened to 12s. With such changes,
UAV increases its speed to minimize the degree to which
timeliness is violated. Finally, UAV reaches the destination
with Xξ = 12.5s, Xφ = 90%, Xe = 22.25 units and no
violations of safety and privacy requirements.

Moreover, to illustrateCaptain’s effectiveness to gener-
ate in adaptive solutiongeneration,we investigate themission
success rate as the increasing number of soft constraints,
from {SS}, {SS,SP } to {SS,SP ,Sξ ,SE ,Sϕ}. We simulate
100 randomly generated uncertain conditions and diverse
environments. Thus, we could estimate the success rate of
solution generation of Captain in unpredictable and unac-
commodating environments. We also compare the results
with the approachwementioned inFig. 3Layer 1.Under con-
strained planning withH and S, all of the requirements, both
soft and hard constraints, must be satisfied. However, this
could lead to a higher possibility of no solutions, as shown
in Fig. 5 where the success rate drops to 47% as the number
of soft constraints increases. However, Captain can main-
tain a high success rate (≥ 95%), because Captain is able
to transform unsatisfiable soft constraints into optimizable
objectives flexibly when necessary.
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Fig. 6 RQ1—Adaption planning results of Captain in UUV case

6.2.2 UUV oceanic surveillance scenario

To demonstrate the practicality of Captain in the UUV
Oceanic Surveillance Scenario, we construct the requirement
satisfaction model in this scenario: DS1(XL(T )) (scanning
distance), DS2(XE (T )) (energy-saving) and DS2(Xϕ(T ))

(accuracy). There are trade-offs between the satisfaction of
three requirements, e.g., when sensors (e.g., sensor 1) with
a higher quality of surveillance are chosen, more energy is
consumed, resulting in less distance scanned.

Figure 6 shows the adaptation process of the UUV with
Captain during operation. At k = 100, the available
energy Et drops 5.0 MJ and at k = 160, the distance to
be scanned Lt increase to 105 km. These two changes trig-
ger the online adaptation process of Captain, which leads
to corresponding changes in sensor usage arrangement as
the time portion for S2 increases. Figure 6 also shows how
Captain reacts to disturbances of system characteristics
like sensor failures. At k = 220, the measurement accuracy
of sensor S3 drastically decreases from 83 to 43%, and at
k = 290, S4 stops working. These changes lead to the adap-
tive solution that S1 is more exploited. Finally, the mission
ends with an average measurement accuracy of 90.1%, scan-
ning distance at 106.7 km, and energy consumption at 4.98
MJ.

6.2.3 DJI Matrice 100 UAV scenario

We implement Captain on a DJI Matrice 100 UAV. The
experiment setups are depicted in Fig. 7a. Captain is
deployed on a Lenovo laptop which can capture the environ-
ment contexts from the UAV’s onboard camera and generate
the trajectory for the UAV to follow. The trajectory is sent
to the DJI Matrice 100 UAV via an Android application
developed with the DJI mobile SDK on a mobile phone.
As the UAV is controlled by a customized Android appli-
cation deployed on a remote controller, a communication

123



Y. Luo et al.

(a) (b) (c)

Fig. 7 Experiment results with DJI Matrice 100 UAV

delay needs to be taken into consideration, and the UAV will
wait for the next command.

The operating environment is discretized with the scale
of 20 × 20 × 10m3. The UAV moves at a constant speed of
0.5m/s, in steps of time span τ = 2s, with a target distance
from private regions of Dc = 4.5 m. The prediction horizon
is N = 2. The orientation angle of the camera ranges from
− 30◦ to 90◦, which is normalized asw ∈ [1/3, 1]. The flight
mission is to travel from a starting point to the destination in
a timely manner without intruding into private regions. As
shown in Fig. 7b, c, the pictures on the left are screenshots of
UAV during the flights. The pictures at the top right corner
are the environment models: the starting position xs and des-
tination xd are marked as yellow cubes, the detected private
regions are marked as red cubes, the yellow spheres indicate
current positions of UAV, the black line is the reference tra-
jectory that UAV is expected to follow, the green path is the
replanned trajectory for optimal requirements satisfaction.
The pictures at the lower right corner of Fig. 7b, c are the
views of onboard camera at current time step.

During the flight, the onboard camera takes pictures of the
surroundings and sends pictures to the laptop. Then, private
regions are identified and localized according to the method
in [32]. As shown in Fig. 7b, at time instant k = 14 s, UAV
detects and locates a private regionwithin the black box in the
photo of camera view. SoCaptain is launched first to check
whether the timeliness and privacy requirements could be
satisfied. After Requirements Violation Analysis, Captain
finds that those two requirements could not be satisfied simul-
taneously, and it provides a sub-optimal trajectory, i.e., flying
up and tuning the orientation angle and resolution of the cam-
era to avoid exposing the private house (Fig. 7c). Finally,
UAV reaches the destination after 52 s at the velocity of 0.5
m/s with timeliness satisfaction of DS1(Xϕ) = 91.7% and
privacy preservation satisfaction of DS2(XP ) = 96.6%. The
results show that Captain can generate an adaptive trajec-
tory to mitigate requirements violations effectively. Videos

of simulations and real-world experiments can be found on
the website3.

According to our experience, to apply Captain in
the real context needs the following three steps: (1) elicit
requirements for the AUS in real context and establish the
requirements satisfaction model; (2) determine what types
of runtime uncertainties need to handle and enable the
AUS to perceive these changes during operation; (3) deploy
Captain in AUS to generate the adaptation plan at runtime.
To our knowledge, the main difference between simulations
and real experiments is the delay of perception and actuation
in the real context, which may affect the effectiveness of the
adaptive planning process of Captain.

Answer to RQ1: Captain is practical both in sim-
ulated scenarios and real-world workloads to detect
unsatisfiable requirements and generate effective adap-
tation solutions in response to runtime uncertainties.

6.3 RQ2: robustness

To demonstrate the robustness ofCaptain against dynamic
disturbances in system characteristics and variations from
the environment, in terms of higher requirements satisfaction
degree under runtime uncertainties, we compare the planning
results of Captain, AMOCS-MA, and GSlack.

6.3.1 UAV Delivery scenario

We measure the UAV’s behaviors in the environment with
varied densities of obstacles and private regions, variations
of sensor parameters (η1, η2, speed limit vmax, and sensor
reconfiguration range wmax). We simulate runtime distur-
bances with 1000 randomly generated scenarios.

3 https://yixingluo.github.io/Captain.github.io/.
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Table 3 RQ2—Requirements satisfaction results of UAV with disturbances in system characteristics

Requirements Accuracy (Sϕ)
(Xϕ [%],DS2(Xϕ(T ))

)
Timeliness (Sξ )

(Xξ [s],DS1(Xξ (T ))
)

Energy-saving (SE )
(XE [unit],DS1(XE (T ))

)

approaches AMOCS-MA GSlack Captain AMOCS-MA GSlack Captain AMOCS-MA GSlack Captain

# Of incidents 2 88.48 89.52 89.86 15.48 13.60 12.53 24.57 22.53 21.93

85.98% 93.71% 95.88% 96.23% 99.75% 99.80% 76.85% 87.18% 90.17%

4 87.03 89.16 89.57 15.43 13.29 12.34 24.57 22.59 21.99

78.63% 89.68% 93.39% 92.86% 99.45% 99.73% 74.90% 86.86% 89.87%

6 86.85 88.78 89.14 15.62 13.30 12.54 24.85 22.79 22.22

74.30% 86.96% 90.15% 92.63% 99.39% 99.83% 74.18% 85.96% 88.84%

a The violation tolerance is εS,P,ϕ,ξ,E = {10−20, 10−20, 10−10, 10−20, 0.005} with ρo = 2%, ρp = 2%
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Fig. 8 RQ2—Accumulated safety and privacy risks with different dis-
turbances of ρo and ρc

As shown in Fig. 8, ρo and ρc range from 1% (i.e.,
|O| = 19, |C| = 7) to 5% (i.e., |O| = 95, |C| = 35). For
different combinations of ρo and ρc, we compare the three
approaches in terms of the accumulated safety risk SR =
∑T

k=0(1−XS(k)) and privacy risk PR = ∑T
k=0(1−XP (k)).

The higher risks are, the lower satisfaction of safety and pri-
vacy requirements. Fig. 8a shows the results for different
values of ρo with a fixed ρc = 2%. Due to the requirements
modeling for AUSs, we find that UAV with Captain per-
forms the best in satisfying safety and privacy requirements,
with the lowest accumulated safety and privacy risks on aver-
age. Fig. 8b shows the results of different ρc when ρo = 2%.
It shows that the planning results of Captain also have the
lowest accumulated safety and privacy risks. Hence, com-
pared to the two baseline approaches, Captain is more
robust against environmental changes, such as unknown
obstacles and privacy regions.

To test the robustness of Captain against the distur-
bances in system characteristics, we randomly add several
disturbances (∼ 10%) of sensor parameters at different time
instants during the flight of UAV. The simulation results are
shown in Table 3, where the number of incidents indicates
the frequency of disturbances, the upper value of each cell in
Table 3 is the average value of Xi of the requirements, and
the percentage below represents the average requirements
satisfaction degree DS j (Xi ). We find that as the number
of introduced disturbances increases, there is a decrease
in requirements satisfaction degree. However, the planning

results of Captain show the highest requirements satisfac-
tion degree than the two baseline approaches.

We next perform a statistical test of the requirements satis-
faction of three soft constraints for the planning results of the
approaches across the 1000 runs. Following a guideline [47],
we use the Wilcoxon signed-rank test [48] and the Vargha-
Delaney’s Â12 effect size [49]. Using significance level
α=0.01, we observe that Captain is always significantly
better than all the other approaches. We also use Vargha-
Delaney’s Â12 [49] to assess effect size. Table 5 reports the
statistical test results comparing the requirements satisfaction
degree of the soft constraints (i.e., accuracy Sϕ , timeliness
Sξ , energy-saving SE ) under the different number of inci-
dents (i.e., 2, 4, 6) for trajectories planned by AMOCS-MA,
GSlack, and Captain. As shown in the table 5, Captain
and GSlack outperformAMOCS-MAwith a large effect size
in the requirements satisfaction of Sϕ , Sξ , and SE . More-
over, we notice that Captain outperforms GSlack with a
large effect size in requirements satisfaction Sϕ and SE , and
medium effect size in Sξ . The reason for the medium effect
size is that the timeliness requirement is more likely to be sat-
isfiable during the flight, and Captain outperforms GSlack
narrowly in Sξ (close to 100%), as shown in Table 3.

6.3.2 UUV oceanic surveillance scenario

In this scenario, the robustness of the three approaches is
compared while adding random disturbances to parameters
of sensors, i.e., sensor accuracy, scanning distance per sec-
ond, and energy consumption per second. For each approach,
we add different times of random disturbances at different
time instants during the simulation. For a determined number
of disturbances, we simulate 1000 rounds and compute the
average accuracy, scanning distance, and energy consump-
tion. The simulation results are shown in Table 4, where the
number of incidents indicates the frequency of disturbances,
the upper value of each cell is the average value of Xi , and
the percentage below represents the average requirements
satisfaction degree DS j (Xi ).

123



Y. Luo et al.

Table 4 RQ2—Requirements satisfaction results of the UUV with disturbances in system characteristics

Requirements Accuracy (Sϕ)(Xϕ [%],DS2(Xϕ(T ))
) Scanning Distance (SL )(XL [km],DS2(XL (T ))

) Energy-saving (SE )(XE [MJ ],DS1(XE (T ))
)

Approaches AMOCS-MA GSlack Captain AMOCS-MA GSlack Captain AMOCS-MA GSlack Captain

# Of incidents 3 88.64 89.60 89.64 99.52 101.59 102.36 5.41 5.32 5.29

86.38% 95.94% 96.42% 95.24% 99.12% 99.81% 98.81% 100% 100%

6 87.41 88.80 88.95 98.71 100.99 101.38 5.43 5.37 5.35

74.10% 88.02% 89.52% 87.12% 98.60% 98.90% 95.60% 100% 100%

9 85.95 87.55 87.77 97.43 100.06 100.45 5.45 5.38 5.36

59.54% 75.47% 77.69% 74.31% 92.84% 93.83% 91.05% 99.27% 99.72%

a The violation tolerance are εϕ = 10−3, εL = 0, εE = 0

Table 5 RQ2—Statistical test results comparing the requirements satisfaction degrees of adaptation plans generated by AMOCS-MA, GSlack and
Captain in the UAV Delivery and UUV Ocean Surveillance scenarios

approaches UAV Delivery ( Â12) UUV Ocean Surveillance ( Â12)
Requirements # Of incidents Requirements # of incidents

2 4 6 3 6 9

GSlack versus AMOCS-MA Accuracy 1 (L) 1 (L) 1 (L) Accuracy 1 (L) 1 (L) 1 (L)

Timeliness 1 (L) 1 (L) 1 (L) Scanning Distance 1 (L) 1 (L) 1 (L)

Energy-saving 1 (L) 1 (L) 1 (L) Energy-saving 1 (L) 1 (L) 1 (L)

Captain vs. AMOCS-MA Accuracy 1 (L) 1 (L) 1 (L) Accuracy 1 (L) 1 (L) 1 (L)

Timeliness 1 (L) 1 (L) 1 (L) Scanning Distance 1 (L) 1 (L) 1 (L)

Energy-saving 1 (L) 1 (L) 1 (L) Energy-saving 1 (L) 1 (L) 1 (L)

Captain vs. GSlack Accuracy 0.84 (L) 0.86 (L) 0.88 (L) Accuracy 0.78 (L) 0.87 (L) 0.93 (L)

Timeliness 0.76 (L) 0.70 (M) 0.68 (M) Scanning Distance 0.56 (S) 0.64 (M) 0.71 (L)

Energy-saving 0.95 (L) 0.95 (L) 0.96 (L) Energy-saving 0.58 (S) 0.63 (S) 0.73 (L)

a L: large effect size, with Â12 ≥ 0.71; M: medium effect size, with Â12 ≥ 0.64, S: small effect size, with Â12 ≥ 0.56

We can see that under Captain, the UUV can scan
a longer distance with higher accuracy and less energy
consumption than AMOCS-MA and GSlack on average.
Moreover,Captain outperformsAMOCS-MAandGSlack
with higher requirements satisfaction degree of the three
requirements, especially for the accuracy requirement Sϕ .
The reason behind this is that in the Requirements Satisfac-
tion Analysis step, the accuracy is selected as the requirement
for accommodation while the other two remain as their orig-
inal specifications. We also compare the planning results in
Table 4, for each pair of approaches soft constraints (i.e.,
accuracy Sϕ , scanning distanceSL , energy-savingSE ) under
the different number of incidents (i.e., 3, 6, 9), using the same
statistical tests used in UAV Delivery scenario. With sig-
nificance level α=0.01, we observe a significant difference
between theCaptain and baseline approaches.We also use
effect size measure Â12 for the statistical test. Table 5 shows
that Captain and GSlack outperform AMOCS-MA with
large effect size in the requirements satisfaction of Sϕ , SL ,
and SE . Moreover, in most cases, Captain outperforms
GSlack in requirements satisfaction with large effect size,
and we notice that as the number of introduced disturbances

increases, the planning results generated by Captain are
more significant to achieve higher requirements satisfaction
than GSlack.

Answer to RQ2: With Captain, UAV and UUV have
more robust performance to achieve higher require-
ments satisfaction than baseline approaches under dif-
ferent runtime uncertainties.

6.4 RQ3: scalability

To demonstrate the scalability of Captain in different
scales of environment, we simulate the UAV case on two
selected real urban environments of different scales from the
open building dataset of Portland in USA [46]. In the dataset,
we obtain the longitude and latitude of the center, average
height, and usage (i.e., industrial and commercial buildings,
houses, and apartments for residents) of each building. We
useArcGISmap to set up a 3Dmodel according to themethod
in [50]. Buildings for commercial or industrial use are viewed
as obstacles, while residential buildings are viewed as private
regions. The original spaces we selected are 500×500×100
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m3 and 103×103×100 m3, but these spaces are compressed
into the scales of 50× 50× 10 and 100× 100× 10, respec-
tively. The detailed parameters are given in Settings 2 and 3
in Table 2. In each scale of the environment, the flight mis-
sion of UAV is to travel from the position [0, 0, 0] to the
destinations [49, 49, 0] and [99, 99, 0], respectively, within
the budget of accuracy, time, and energy, as well as no safety
and privacy risks.

From our simulation results, in Setting 2, the flight mis-
sion is completed in 60.07 s, consuming 106.27 units of
energy without any risk of safety or privacy. In Setting 3,
the mission is finished in 101.5 s, consuming 210.94 units of
energy. There are no safety risks but four positions along the
trajectory where the soft constraint of privacy-preserving is
violated. In contrast, as the feasible domain of UAV behav-
iors increases along with the increase in working space,
AMOCS-MA fails to compute adaptive behaviors at runtime
when the workspace’s size increases. One of the reasons for
Captain’s scalability is that the two optimization problems
are solved by SQP that can handle large-scale optimization
problems, and the flexibility of Captain as we illustrated
in Sect. 5. Videos of the simulations can be found on the
website3.

Answer to RQ3: Captain is scalable and can be gen-
eralized into different environment scales.

6.5 RQ4: real-time performance

To answer RQ4, we analyze the real-time performance of the
online requirements-driven adaptation process in the UAV
Delivery and UUV Ocean Surveillance scenarios. Figure 9
shows the statistical results of the computation overhead for
10000 executions of each approach.

6.5.1 UAV Delivery scenario

From Fig. 9a, we find that Captain outperforms AMOCS-
MA in terms of the average overhead in this scenario, i.e.,
the gap in average computation time between AMOCS-MA
and our approach is about 130 ms (0.212 s versus 0.08 s)
This gap is because AMOCS-MA optimizes the satisfac-
tion of all soft constraints. By contrast, in Captain, to
reduce the adaptation search space, only soft constraints in
R f need optimization while other requirements are still kept
as constraints. SoAMOCS-MArequiresmore computational
resources, especially when there are many requirements in
the form of soft constraints to handle simultaneously.

Compared with GSlack, Captain requires more time
to solve Eq. 7. There is a trade-off between optimality
in requirements satisfaction and computation time: GSlack
is faster, but its solution is not optimal, while Captain
needs more time to generate the solution to improve the
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Fig. 9 RQ4—Empirical distribution of the computation time for the
UAV and UUV cases

requirements satisfaction. Thanks to the setting of viola-
tion tolerances, the gap in average computation time between
GSlack and Captain is only 27 ms in the UAV case. As
the soft constraints with a slight violation are filtered, this
helps determine the appropriate ε-flexible set of requirements
to scale down the adaptation space for optimization. In the
worst case, when all the soft constraints need to be accom-
modated, the computation time of Captain would exceed
200 ms in the UAV case, but from our experiment results, we
see this case is very rare.

Given the violation tolerances, the average rates of
soft constraints violation reporting are recorded per sim-
ulation, as shown in Fig. 10a. We choose εS,P,ϕ,ξ,E =
{10−20, 10−20, 10−10, 10−20, 0.005} for the UAV case, as
the average rates of the reporting of soft constraints violations
are not so frequent, at which 16.0%, 14.7%, 29.0%, 25.5%,
and 1.1% for violations of safety, privacy, timeliness, accu-
racy, and energy-saving, respectively, are filtered. This choice
shows that right violation tolerances can help determine the
appropriate set of unsatisfied requirements with a smaller
impact on the algorithm’s efficiency. Considering that the
choice of tolerance parameter may affect the convergence in
the Requirements Satisfaction Optimization step and result
in no feasible solutions, Captain can also directly lever-
age the planning results from the Requirements Satisfaction
Checking step, as illustrated in Algorithm 1.

6.5.2 UUV oceanic surveillance scenario

Figure 9b shows the empirical distribution of the computa-
tion time for 10000 executions of each approach, where the
red dotted lines represent the average computation time. We
find thatCaptain outperformsAMOCS-MA in terms of the
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Fig. 10 RQ4—Unsatisfied requirements reporting rate for theUAVand
UUV cases

average overhead, i.e., 20 ms (0.028 versus 0.008 s) in this
scenario. Thanks to the setting of violation tolerances, the gap
in average computation time between GSlack and Captain
is 2 ms in the UUV case. We can also find the gaps of over-
head between approaches are minimized, and the average
overhead of Captain in the UUV case is smaller than that
in the UAV case. This is because the number of requirements
handled by each AUS is different, i.e., there are three types of
soft constraints and hard constraints in the UUV case, while
there are five types of soft constraints and hard constraints
in the UAV case. As the number of requirements increases,
the advantage of Captain in real-time performance is more
obvious against AMOCS-MA, considering the exponential
increase of search space for the optimization problem. Given
the violation tolerances, the average rates of soft constraints
violation reporting are recorded per simulation, as shown in
Fig. 10b. In the UUV case, we choose εϕ,e,l = {10−3, 0, 0},
as the average rates of violation reporting are not so frequent.

Answer to RQ4: Captain incurs acceptable compu-
tation overhead and is suitable formultiple requirements
adaptation at runtime.

6.6 Threats to validity

The experiments show that our model-driven and control-
based adaptation approach has better performance in the
requirements satisfaction of AUSs. We are aware of threats
to the validity of our evaluation of the proposed approach
and discuss them below. There are three types of threats to
validity in evaluation.

Construct validity We specify and evaluate five representa-
tive requirements for the UAV Delivery system as listed in
Table 1. Requirements handled by Captain are required
to be assessed or quantified, which may not be easy for all
attributes [51].

Internal validity The main threat to internal validity is that
the division ofR f andRn f depends on the setting of viola-
tion tolerances. The values of ε cannot be too low; otherwise,
it would result in a large number of soft constraints in R f

and sacrifice the real-time performance and optimality when
solving Eq. 7. The values cannot be too high either; oth-
erwise, it would filter more soft constraints intoRn f , which
are treated as satisfiable and kept as constraints in Eq. 7. This
type of inappropriate partition ofR f andRn f may result in
unsolvable for the step of Requirements Satisfaction Opti-
mizing. In experiments, we empirically determine the proper
values through trial-and-error (see Sect. 6.5).

Considering the bias in weights for requirements in
AMOCS-MA and GSlack, for a fair comparison with
Captain, we choose equal weights for requirements in the
baseline approaches (i.e., AMOCS-MA and GSlack), and
use the sum of the satisfaction degree of all soft constraints
as the objective function in AMOCS-MA. Thus, the baseline
approaches (i.e., AMOCS-MAandGSlack) are implemented
by ourselves. The re-implementation of baseline approaches
may lead to faults in the prototypes, which might bias our
evaluation results. To reduce this threat, we have iteratively
inspected the intermediate results and revised codes when
implementing AMOCS-MA and GSlack.

External validity Currently, Captain is realized with a
UAV Delivery simulation and deployed on UAV for real
flights, which poses a threat in terms of the generality of
the proposed approach. We mitigate this threat by extend-
ing Captain in a UUV Ocean Surveillance scenario [15].
In the simulation, Captain is evaluated with two kinds
of runtime uncertainties, i.e., the changes in environmen-
tal conditions, variations in system characteristics of sensor
parameters. In the future, other kinds of runtime uncertainties
(e.g., weather, human in-the-loop [19]) will be introduced to
evaluate Captain in more complex scenarios and different
types of AUSs.

6.7 Limitations

With consideration to execution time and nonlinear con-
straints in the two optimization problems, i.e., Eqs. 6 and 7,
the optimization method SQP is adopted. However, there is a
risk that the solution falls into a local optimum, as planning
results may be affected by different initial values. Tomitigate
this risk, we can adopt the motion planner of Baidu Apollo
[52]which applies amore complicated planningmethodwith
a combination of dynamic programming and spline-based
quadratic programming. Additionally, heuristic algorithms
for a global optimum inmulti-dimensional space like genetic
algorithms [53] may also be helpful.

As some functionalities and attributes of AUSs may not
change drastically (e.g., timeliness), they are not necessary
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to be checked as frequently as the others (e.g., safety). To
simplify theRequirements SatisfactionChecking process, we
set the samepredictionhorizon N for each requirement. In the
future, we plan to adopt a two-layer hierarchical MPC with
different prediction horizons [54] to mitigate this concern.

7 Related work

Our work is related to the following areas: (1) requirements
monitoring, (2) requirements runtimemanagement, (3) mod-
els at runtime, (4) goal-driven adaption approaches, and (5)
control-based adaption approaches.

7.1 Requirement monitoring

Techniques in requirementmonitoring are necessary for soft-
ware systems to detect requirement deviations at runtime
[55–57]. Model-based approaches can be applied to for-
malize requirements such that requirements can be checked
at runtime [58,59], e.g., Athena leverages utility functions
to measure the satisfaction of requirements based on the
goal model [60]. Alternatively, through analyzing traces
of system execution and data logs, violations of assump-
tions and constraints can be detected, e.g., ACon uses data
mining to detect inconsistent requirements due to runtime
uncertainty [61]. REMINDS monitoring framework is pro-
posed to check event-based constraints for cyber-physical
systems online [62]. However, these existing requirement
monitoring approaches focus mainly on detecting violations
of expected behaviors, while the diagnosis of root causes
of requirements violations and countermeasures are limited
[55]. In Captain, conditions lead to requirements violation
are identified proactively through Requirements Satisfac-
tion Checking. Thus, the AUS is aware of when and which
requirements are likely to be violated through Requirements
Violation Analysis, and is able to find appropriate solutions
in Requirements Satisfaction Optimization.

7.2 Requirements runtimemanagement

To cope with uncertain environments while providing func-
tionality efficiently and dependably, software systems need
to make autonomous decisions in requirements manage-
ment so that requirements can be easily added, removed,
and changed. In runtime requirementsmanagement, software
systems continuously evaluate requirements achievement
and autonomously perform adaptations for re-achievement
online. The requirements management mechanism is first
proposed in a three-layer self-managed software architec-
ture [63] and refined in the MORPH [64]. Based on the
modular and generic goal model, automatic quantitative
goal evaluation and management is available from [65].

Such methodology for requirements management at runtime
usually follows user-defined preference or hand-specified
rules to adjust requirements in real-time, which may result
in sub-optimal. The runtime requirements management in
Captain is realized in a way that unsatisfiable soft con-
straints are identified to accommodate such that runtime
uncertainties can be mitigated.

Methods like SimCA [15], SimCA* [16] also utilizes
control theory to realize the dynamic requirements man-
agement process. Through transforming requirements into
STO-reqs in the Goal Transform step, requirements are
described as setpoints or thresholds for parameters or the
optimization goal in the control methods. Compared with
these approaches, Captain is more flexible in handling
multiple requirements, as the unsatisfiable soft constraints
can be dynamically transformed from setpoints into objec-
tives to optimize at runtime.

7.3 Models at runtime

Researches on models at runtime aim to provide abstrac-
tions of useful information about the software system, and
models serve as the driver and enabler for automatic rea-
soning and planning during operation [10]. These researches
extend the applicability of model-driven engineering tech-
niques to the runtime environment [66,67]. Approaches to
reason and plan based on runtime models can be generally
classified into two types [68]: rule-based and search-based. In
rule-based approaches, the reasoning and planning process
is specified by the form of event-condition-action rules or
policies [69,70]. Search-based approaches depend on utility
functions to find the optimal plan that fulfills the require-
ments [3,71]. However, these two types of approaches suffer
either from scalability issues as the number of rules to be
managed and validated increases or from the costly reason-
ing and planning processes [72]. Based on an MPC strategy,
we support requirements satisfaction analyzing and optimiz-
ing in a timely fashion, saving the effort spent on reasoning.

7.4 Goal-driven adaptation

The development of self-adaptive systems results from
uncertainties at runtime, e.g., disturbances in the execution
environment, system parameter fluctuations, requirement
changes, and human-related uncertainty (beyond this paper)
[19]. In goal-driven adaptation, goal models are associated
with system design [24]. To express requirement uncer-
tainties, RELAX is proposed as a textual language [20]
incorporated into goal models [21] for self-adaptive systems.
AutoRELAX [23] targets a relaxed goal model with the least
number of relaxed goals and the minimal adaptation cost
online. A similar approach introduces FLAGS [22], which
allows requirements to be partially satisfied tomitigate uncer-
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Table 6 Comparison with
automated control-theoretical
software adaptation approaches

Approach Multi-requirements handling Sources of uncertainties
S H Objective function Requirement System Environment

AMOCS n n Settled (combined by priority) / / /

SimCA 1 n Settled (single) � � /

AMOCS-MA n n Settled (combined by priority) � / �
SimCA* 1 n Settled (single) � � /

Captain n n Flexible (determined by case) � � �
a n means multiple requirements of certain type are handled by the approach, while 1 means only one
requirements are handled.
b settledmeans the formulation of the objective function to optimize is fixed, while flexiblemeans the objective
function adapts to the uncertainties

tainties and extend the initial goal model. These approaches
use goal models as the knowledge base of adaptation which
presumes a predefined adaptation space. The selection and
adjustment of goals-to-adapt are made based on specified
rules and preferences.WhileCaptain supports both invari-
ant (RM) and non-invariant (RA) requirements satisfaction
evaluation, and the relaxation of requirements are enforced
only when they are predicted as unsatisfiable. Therefore,
alternatives are automatically generated in response to unex-
pected conditions in a real-time performance.

7.5 Control-based adaptation

In the wave of control-based adaptation, strategies for guar-
anteed self-adaptation are widely studied and summarized
by Shevtsov et al. [11]. So far, most research on control-
based adaptation has focused on ad-hoc solutions to control
the lower-level elements and resources of the system (e.g.,
CPU, storage, bandwidth, etc.) [13]. These solutions require
a well understanding of mathematical system models and
are often done on a per-problem basis, discouraging flexibil-
ity and generality. Thus, general and automated methods for
robust control are proposed like AMOCS [14], SimCA [15],
SimCA* [16] and AMOCS-MA [17], etc.

In AMOCS [14], multiple requirements are satisfied
through cascaded controllers, as requirements are priori-
tized for a chain of push-button methodology controllers to
produce adaptation decisions. Thus, the requirements are pri-
oritized based on their position in the chain. This may result
in sub-optimal solutions [16]. SimCA [15] and its variants
[16,73] provide formal guarantees to behavior adaptation of
software systems but cannot handle conflicts when handling
multiple requirements. Moreover, they do not support uncer-
tainties in the operating environment which are common for
AUSs.

Recently, researchers investigated the use ofmodel predic-
tive control (MPC) in control-theoretic software adaptation to
eliminate these limitations when handling multiple require-
ments. MPC is a technique based on the optimization of a

cost function according to the prediction of future outcomes,
which is considered as an effective and flexible solution for
multi-objective problems with optimization [11]. At first,
control-based requirements-oriented adaptation (CobRA)
[74,75] provides a framework to apply MPC to comput-
ing systems, and the model in CobRA has to be generated
manually and fed to the system. Similarly, the proactive
latency-aware (PLA) approach [76,77] uses models of the
environment and the software to determine the best strategy
to be followed using a model checker with the ability to look
into the future expectations for the system.CobRAsuitsmore
for continuous inputs, while PLA works better with discrete
control [78]. Following these semi-automated approaches, a
fully automated model predictive control strategy was devel-
oped, i.e., Automated Multi-objective Control of Software
with Multiple Actuators (AMOCS-MA) [17]. By minimiz-
ing a predefined cost function in the form of weighted sums,
trade-offs are made between different requirements. How-
ever, it is susceptible to biases [18] as the weights predefined
by human experts are usually subjective. Additionally, the
efficiency and effectiveness of many-objective optimization
decrease as the number of requirements increases [51].

In contrast, Captain can handle multiple requirements,
including optimizable soft constraints, missions, and hard
constraints that aremust be assured. The formof the objective
function to optimize is determined by specific runtime situa-
tions. In other words, we detect unsatisfiable requirements
in the upcoming future and transform them into objec-
tive functions to optimize. Runtime uncertainties, including
environment changes (e.g., unknown obstacles) and sys-
tem parameters disturbances (e.g., component failure) are
considered in Captain. Finally, the key properties of the
state-of-the-art control-based adaptation methods are sum-
marized in Table 6. As shown in the table, we compare the
number of soft constraints S and hard constraintsH and the
formulation of objective functions that can be handled by
each approach.
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8 Conclusions

In this paper, we present Captain, a model-driven online
adaptation approach based on control theory. It is designed
for the optimal requirements satisfaction ofAUSs in response
to runtime uncertainties of environmental changes and sys-
tem characteristics fluctuations. Driven by the manually
designed requirements satisfaction model, Captain can
detect unsatisfiable requirements proactively, analyze their
violation degree and optimize their satisfaction through an
autonomous adaptation process. Besides, Captain sup-
ports the availability of tuning sensor configuration and
physical motions simultaneously in the online adaptation
process of AUSs. The approach is evaluated in two AUS
cases with simulations and the DJI Matrice 100 UAV in real
scenarios. Experiments show that our approach outperforms
other control-based adaptation approaches in the robustness
of requirements satisfaction, scalability, and overhead.

Currently, the prediction of unsatisfiable requirements is
based on the comparison between computed violation degree
and thresholds of violation tolerance. In the near future,
we will investigate approaches to improve the efficiency of
requirements violation identification and reduce the failure
rate at the Requirements Satisfaction Optimization step. Our
long-term goal is to extend our approach to handle more
complex scenarios and different types of autonomous self-
adaptive systems with various requirements.
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Appendix

In this part, we illustrate the detailed requirements satisfac-
tion functions we used in the UAV Delivery scenario and
UUV surveillance scenario.

UAV Delivery scenario

• Safety: The indicator to evaluate the safety requirement
is the collision risk of UAV during the flight. Supposing
that the obstacles detected by the UAV at time instant k
isOk , while the current state of UAV is sk . Thus, the QM
of safety is XSo(k) = ‖xk−xo‖2−ra−ro

Do
,∀o ∈ Ok . Such

that the average distance between UAV and the center of
obstacle reflects the safety risk.

DS2(XSo(k)) =

⎧
⎪⎨

⎪⎩

1, XSo(k) ≥ 1

0, XSo(k) < 0

XSo(k), otherwise

• Timelines: The total traveling time from time instant i to

j is denoted as ξi j = ∑ j−1
k=i

‖xk+1−xk‖2
vk

. The indicator
of timeliness is Xξ (T ) = ξ0T , the degree of satisfaction
of the timeliness requirement of the whole trajectory is:

DS1(Xξ (T )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, Xξ (T ) ≤ Δt

Δ − Xξ (T )

Δ − Δt
, Δt < Xξ (T ) ≤ Δ

0, Xξ (T ) > Δ

• Accuracy: The average quality of the information col-
lected during the mission is denoted as Xϕ(T ) =
1

ξ0T

∑T−1
k=0 ‖ω‖ τ , the degree of satisfaction is DSϕ is:

DS2(Xϕ(T )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, Xϕ(T ) ≥ At

Xϕ(T ) − A

At − A
, A ≤ Xϕ(T ) < At

0, Xϕ(T ) < A

• Energy-saving: The total energy consumption from time
instant i to j is denoted as ei j = ∑ j−1

k=i ‖xk+1 − xk‖2 +
η1 · ‖vk+1 − vk‖2 + η2 · ‖ωk‖ τ . The indicator of energy
consumption is XE (T ) = e0T , the degree of satisfaction
of energy requirement DSe is:

DS1(XE (T )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, XE (T ) ≤ Et

E − XE (T )

E − Et
, Et < XE (T ) ≤ E

0, XE (T ) > E

UUV surveillance scenario

The UUV is equipped with 5 sensors for ocean surveil-
lance. The scanning time 10 hours is 360 time instance,
xi , i ∈ [1, 5] is the portion of time the sensor i should be
used during system operation in each instance. Acci is the
accuracy of sensor i ; Ei is the energy consumed by sensor;
Vi is the scanning speed of sensor. qi is portion of accu-
racy of sensor and pi is for scanning speed, respectively,
in decimals. The energy consumed is related with working
accuracy and speed of sensor. The corresponding mea-
sures are listed as follows: XL(T ) = ∑T

k=0
∑N

i=0 xiqi Viτ ,

XE (T ) = ∑T
k=0

∑N
i=0 xi Ei · epi+qi −1

e2−1
τ , and Xϕ(T ) =

∑T
k=0

∑N
i=0 xi pi Acci , where T = 360, i.e., adaptations are

performed every 100 surfacemeasurements of theUUVstate,
and the time instance k incremented by 1 ∼ 100. The require-
ments satisfaction functions are listed as follows:

• Scanning distance: A segment of surface over a distance
of Lt = 100 km is expected to be examined by the UUV
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within Δ = 10 hours, while the distance threshold is
L = 90 km.

DS2(XL(T )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, XL(T ) ≥ Lt

XL(T ) − L

Lt − L
, L ≤ XL(T ) < Lt

0, XL(T ) < L

• Energy-saving: A total amount of energy Et = 5.4 MJ
is expected to be consumed, while the maximum amount
of energy is E = 6 MJ.

DS1(XE (T )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, XE (T ) ≤ Et

E − XE (T )

E − Et
, Et < XE (T ) ≤ E

0, XE (T ) > E

• Accuracy: The accuracy of sensor measurements is tar-
geted at At = 90%, while the accuracy threshold is set
as A = 80%.

DS2(Xϕ(T )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, Xϕ(T ) ≥ At

Xϕ(T ) − A

At − A
, A ≤ Xϕ(T ) < At

0, Xϕ(T ) < A
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