
Iron: Private Inference on Transformers

Meng Hao1∗ Hongwei Li1† Hanxiao Chen1 Pengzhi Xing1 Guowen Xu2 Tianwei Zhang2

1University of Electronic Science and Technology of China
2Nanyang Technological University

{menghao,hanxiao.chen,p.xing}@std.uestc.edu.cn
hongweili@uestc.edu.cn

{guowen.xu,tianwei.zhang}@ntu.edu.sg

Abstract

We initiate the study of private inference on Transformer-based models in the
client-server setting, where clients have private inputs and servers hold proprietary
models. Our main contribution is to provide several new secure protocols for matrix
multiplication and complex non-linear functions like Softmax, GELU activations,
and LayerNorm, which are critical components of Transformers. Specifically, we
first propose a customized homomorphic encryption-based protocol for matrix
multiplication that crucially relies on a novel compact packing technique. This
design achieves

√
m× less communication (m is the number of rows of the output

matrix) over the most efficient work. Second, we design efficient protocols for three
non-linear functions via integrating advanced underlying protocols and specialized
optimizations. Compared to the state-of-the-art protocols, our recipes reduce about
half of the communication and computation overhead. Furthermore, all protocols
are numerically precise, which preserve the model accuracy of plaintext. These
techniques together allow us to implement Iron, an efficient Transformer-based
private inference framework. Experiments conducted on several real-world datasets
and models demonstrate that Iron achieves 3 ∼ 14× less communication and
3 ∼ 11× less runtime compared to the prior art.

1 Introduction

Transformer-based models [1–5] have realized tremendous success in the fields of natural language
processing (NLP) and computer vision (CV) due to their strong representation capabilities. As a
new neural network architecture, the Transformer [1] mainly utilizes the self-attention mechanism
to compute representations without sequence-aligned recurrence or convolution. Following this
work, a number of Transformer variants, such as BERT [2] and GPT [3] in NLP, ViT [4] and Swin
Transformer [5] in CV, have achieved state-of-the-art performance on lots of real-world tasks.

The success of Transformers and other big models facilitates emerging inference services and
applications [6, 7]. In particular, a service provider trains a complex model based on the Transformer,
and deploys it as a paid inference service, e.g., machine translation and question answering. A
client queries this service with his input samples and obtains the desired responses. Unfortunately,
current inference systems suffer from serious privacy concerns [8]. On the one hand, clients need
to send confidential inputs to the service provider, which could compromise the data privacy of
these clients if the provider is untrusted. On the other hand, it is undesirable for the provider to
distribute the proprietary Transformer-based model to clients, since he needs a large amount of
data and computation resources to construct the model [9]. Therefore, there exists a gap between

∗This work was done at NTU as a visiting student.
†Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

unprecedented performance and privacy constraints, which motivates our study of private Transformer
inference.

Private inference aims to protect server’s model weights from clients, while guaranteeing that the
server learns no information about clients’ private inputs. Recently, private inference on traditional
neural networks (e.g., convolutional neural networks) have been approached by using secure 2-party
computation (2PC) techniques [10–14]. However, due to essentially different structures, private
Transformer inference brings several new challenges. First, Transformer-based models use lots of
high-dimensional matrix multiplications, rather than matrix-vector multiplications widely studied in
prior works. While we can straightforwardly extend prior matrix-vector multiplication protocols to
our setting, unfortunately, even the most efficient design [14] incurs heavy communication because
of interacting a large amount of ciphertexts. Second, Transformer-based models use complex math
functions like Softmax, GELU activations [15], and LayerNorm, in each block, rather than crypto-
friendly non-linear functions such as ReLU and Maxpool. Existing methods either use precision-
impaired high-order polynomial approximations [16, 11] or only support limited math functions for
specific scenarios [17]. Even worse, all of these approaches are computationally intensive and often
require a large amount of communication (for more related works, please refer to Appendix A.5).
To facilitate the widespread adoption of Transformer-based inference services in privacy-critical
scenarios, designing efficient protocols for the above complex operations is of paramount importance.

In this paper, we design Iron, an efficient hybrid cryptographic framework for private Transformer in-
ference without revealing any sensitive information about the server’s model weights or clients’ inputs.
Iron contributes several new specialized protocols for the complicated operations in Transformers
to alleviate the performance overhead. Specifically, we first propose a customized homomorphic
encryption-based protocol for matrix multiplications. Our insight is to pack more plaintext inputs into
a single ciphertext by devising a compact packing method, while preserving the functionality of ma-
trix multiplication. Compared to the most efficient matrix-vector multiplication solution implemented
in Cheetah [14], we can achieve

√
m× (m is the number of rows of the output matrix) improvement

in terms of communication overhead, which is about 8× reduction for various Transformer models.
Second, we carefully design efficient protocols for Softmax, GELU, and LayerNorm. These protocols
are built upon SIRNN [17], the state-of-the-art cryptographic framework for private inference on
recurrent neural networks, and make several customized optimizations, such as reducing the overhead
of exponentiation in Softmax and simplifying GELU and LayerNorm. These optimizations achieve
1.3 ∼ 1.8× less runtime and 1.4 ∼ 1.8× less communication on three non-linear functions. Further-
more, these protocols are numerically precise, which preserve the model accuracy of plaintext. We
also give a formal security proof for our designed protocols to demonstrate the security guarantee.

Based on the above efficient components, we implement a private Transformer inference framework,
Iron, and conduct end-to-end experiments with various BERT architectures [2] (BERT-Tiny, BERT-
Medium, BERT-Base, and BERT-Large) on GLUE benchmarks [18]. Note that Iron is readily
extended to other Transformer-based models (e.g., ViT) since they share very similar architectures
and same operations. Experimental results show that Iron achieves 3 ∼ 14× less communication
and 3 ∼ 11× less runtime costs over SIRNN on four BERT models. Moreover, compared with the
general-purpose state-of-the-art framework MP-SPDZ [16], Iron has up to two orders of magnitude
improvement in terms of both communication and computation efficiency.

A concurrent work [19] proposed a privacy-preserving Transformer inference with homomorphic
encryption, called THE-X. Below, we illustrate some important differences in terms of protocol
design and security. (1) Protocol design. Our work aims to design new efficient protocols for the
complex operations of Transformer-based models, while orthogonal to ours, THE-X replaces them
with crypto-friendly operations. For example, THE-X replaces GELUs with simpler operations,
i.e., ReLUs, and Softmax with the combination of ReLU and polynomials. (2) Security. Our work
achieves more rigorous privacy protection than THE-X. Specifically, our work uses homomorphic
encryption and secret sharing techniques to hide private information (including intermediate results)
of all layers. Such rigorous privacy guarantee is in line with recent state-of-the-art private inference
works [14, 17]. However, in THE-X, the inputs of each non-linear layer are leaked to the client,
which may causes severe privacy leakages in real-world applications [13]. Therefore, our work may
be used to enhance the security of THE-X.

2

2 Preliminaries

2.1 Threat Model

As shown in the left part of Figure 1, Iron works in a general private inference scenario, where the
server P0 holds a Transformer-based model M with private weights w, while the client P1 holds a
private input x. Our framework enables the client to query the server’s inference service and learn
the output of the model on its input, i.e., M(w, x). Same as prior works [14, 17], we consider an
honest-but-curious adversary that passively corrupts either the server or the client, but not both. Such
an adversary follows the protocol specification exactly, but may try to learn more information3 than
allowed (e.g., the model’s weights or inference inputs) via analyzing the data it receives. In Appendix
A.1.2, we give a more formal description of the threat model for security analysis.

2.2 Cryptographic Primitives

All our protocols are built on the 2-out-of-2 additive secret sharing (ASS) technique [21, 22] over
the ring Z2ℓ , in which an ℓ-bit input x is split into two random shares ⟨x⟩0, ⟨x⟩1, held by P0 and P1,
respectively, such that x = ⟨x⟩0 + ⟨x⟩1 mod Z2ℓ . When ℓ = 1, i.e., over Z2, we use ⟨x⟩B to denote
boolean shares. In our protocols, we use ⟨x⟩ to denote that Pb holds ⟨x⟩b for b ∈ {0, 1}. The security
[21] guarantees that given a share ⟨x⟩0 or ⟨x⟩1, the value of x is perfectly hidden. This secret-sharing
property is maintained throughout our private inference scheme. ASS naturally supports linear
operations without communication. For instance, to compute cx+ y with the constant c and secret
shares ⟨x⟩ and ⟨y⟩, Pb can locally compute ⟨z⟩b = c⟨x⟩b+⟨y⟩b, where ⟨z⟩0+⟨z⟩1 = cx+y mod 2ℓ.
To achieve more functionalities under shared inputs, we require to invoke advanced homomorphic
encryption or oblivious transfer techniques [22].

Notations. Let x ∤ y means x is not a divisor of y. We use bold lower-case letters (e.g., x) to represent
vectors, and bold upper-case letters (e.g., X) to denote matrices. Like prior works [17, 14], we encode
inputs with the fixed-point representation denoted by Fix (refer to Appendix A.1.1 for details). Let
AN,p denote the set of integer polynomials AN,p = Zp[x]/

(
xN + 1

)
. We use the circumflex of

lower-case letters (e.g., â) to represent a polynomial, and â[i] to denote the i-th coefficient of â. Given
polynomials x̂, ŷ ∈ AN,p, the product ẑ = x̂ · ŷ over AN,p is defined as

ẑ[i] =
∑

0≤j≤i

x̂[j]ŷ[i− j]−
∑

i<j<N

x̂[j]ŷ[N − j + i] mod p. (1)

Additively Homomorphic Encryption (AHE) [23, 24]. This encryption scheme additionally
enables linearly homomorphic operations on ciphertexts. Specifically, an AHE scheme is a tuple of
algorithms AHE = (KeyGen;Enc;Dec;Eval) with the parameter {N, q, p} and the following syntax:
1) KeyGen

(
1k
)
→ (pk, sk): on input a security parameter κ, KeyGen is a randomized algorithm

that outputs a public key pk ∈ AN,q and a secret key sk ∈ AN,q . 2) Enc(pk, m̂) → ĉ: the encryption
algorithm Enc takes a plaintext polynomial m̂ ∈ AN,p and encrypts it using pk into a ciphertext
polynomial ĉ ∈ AN,q. 3) Dec(sk, ĉ) → m̂: on input sk and a ciphertext ĉ, the (deterministic)
decryption algorithm Dec recovers the plaintext message m̂. 4) Eval(pk, ĉ1, ĉ2, func) → ĉ: on
input pk, two ciphertexts ĉ1, ĉ2 containing m̂1, m̂2, and a linear function func, Eval outputs a new
ciphertext ĉ encrypting func (m̂1, m̂2). Let ⊞,⊟,⊠ denote homomorphic addition, homomorphic
subtraction and homomorphic multiplication with a plaintext, respectively. Iron builds the matrix
multiplication protocol on the Brakerski-Fan-Vercauteren (BFV) scheme [25, 26], which is one of
the state-of-the-art lattice-based homomorphic encryption solutions.

Oblivious Transfer. The 1-out-of-k oblivious transfer (OT) [27] is denoted by k-OTℓ, where one
party is the sender with k messages x0, . . . , xk−1 ∈ {0, 1}ℓ and the other party is the receiver with
an index i ∈ [k]. The receiver learns xi as the output, and the sender learns nothing. Additionally,
we also use the 1-out-of-2 correlated OT, denoted by 2-COTℓ [28], which is defined as follows: the
sender inputs a correlation x ∈ Z2ℓ , the receiver inputs a choice bit i ∈ {0, 1}, and the protocol
outputs a random element r ∈ Z2ℓ to the sender and r + i · x to the receiver. k-OTℓ and 2-COTℓ

require 2λ+ kℓ and λ+ ℓ bits of communication, respectively, and are executed in 2 rounds. The OT
protocols are widely used to build the underlying protocols [13, 17] in Figure 3 we rely on.

3Like prior works [17, 14], Iron does not hide the information that can be indirectly extracted from the
inference results. Study of mitigation solutions (e.g., differential privacy [20]) is beyond the scope of this work.

3

Server
Proprietary model

Client

Transformer

Private
Inference Inputs

Embedding

Pos&seg
Encoding

MatMul Softmax MatMul LayerNorm LayerNormLinear

Outputs

Linear

GELU

𝑄𝑄

𝐾𝐾

𝑉𝑉

Attention Feed
Forward

ΠMatMul ΠMatMul ΠSoftmax ΠLayerNorm ΠGELUCryptographic
ProtocolsOutputInput

Figure 1: Overview of private Transformer inference

3 Overview

3.1 Transformer Architecture

The Transformer is an encoder-decoder architecture, where both parts have a similar structure. Hence,
we mainly focus on the encoder below. The encoder is composed of a stack of identical blocks,
each with two sub-layers, i.e., a multi-head self-attention mechanism and a feed-forward network, as
shown in Figure 1. Besides, residual connection and layer normalization (LayerNorm) are employed
around each of the two sub-layers. We describe a block of the encoder as follows.

Attention layer. An attention function can be described as mapping a query XQ and a set of key-
value pairs (XK ,XV) to a weighted sum of the values, where the weight is computed by a metric of
the query with the corresponding key [1]. This function can be formalized as below:

Attention(XQ,XK ,XV) = Softmax
(
XQX

T
K/

√
d
)
XV , (2)

where XQ,XK ,XV are different linear projections of the input X, i.e., XQ = XWQ,XK =
XWK ,XV = XWV , and d is the dimension of representations. Multi-head attention extends the
above mechanism to H parallel attention layers and is illustrated in Appendix A.1.3.

Feed-forward layer. A fully connected feed-forward layer consists of two linear transformations
with a GELU activation in between, where GELU is the Gaussian Error Linear Unit function [15].
This layer can be represented as follows:

FeedForward(X) = GELU(XW1 + b1)W2 + b2. (3)

In addition to the above encoder-decoder blocks, an embedding layer is employed at the beginning
of the model to convert input tokens Xinput to continuous feature vector representations. This is
formulated as X = XinputWE , where WE is the embedding lookup table.

3.2 Private Transformer Inference

According to the required crypographic operations, the layers of Transformers can be broken into
two categories - linear and non-linear.

1) Linear layers: these include embedding, matrix multiplication in Attention, and fully-connected
layer. All protocols of these operations rely crucially on the matrix multiplication protocol ΠMatMul

in Section 4.1. It lies in the setting where P0 and P1 take as input the matrices X and Y, and learn
the sharings ⟨Z⟩0 and ⟨Z⟩1, respectively, such that Z = XY.

2) Non-linear layers: these consist of Softmax, GELU and LayerNorm. The non-linear operations
are directly evaluated by exploiting our proposed protocols in Section 4.2, i.e., ΠGELU, ΠSoftmax,
ΠLayerNorm. All of these take the additive shares ⟨X⟩ as input, and output the additive shares
⟨Y⟩ = ΠFunc(⟨X⟩), where Func ∈ {GELU,Softmax, LayerNorm}.

Overview of private inference. In the entire private inference process, we maintain the following
invariant: P0 and P1 begin with additive shares of the input to the layer, and end with additive shares
(over the same ring Z2ℓ) of the output of the layer after the protocol. This allows us to stitch protocols
for arbitrary layers sequentially to obtain a secure computation scheme for any Transformer-based
models. To clearly understand our scheme, we take an example of private inference between P0

and P1 on the embedding layer and the first encoder block, as shown in the right part of Figure 1.
Here, our example uses the designed protocols as a black box, i.e., ΠMatMul, ΠGELU, ΠSoftmax, and
ΠLayerNorm, and we discuss how to efficiently implement these protocols in Section 4.

4

𝐗𝐗 = 1 2
3 4 𝐘𝐘 = 5 7 9

6 8 10

𝒁𝒁 = 𝐗𝐗 � 𝐘𝐘 ≡ 17 23 29
7 21 3 mod 25

�𝑦𝑦 = 5𝑥𝑥0 +6𝑥𝑥1 + 7𝑥𝑥2 + 8𝑥𝑥3 + 9𝑥𝑥4 + 10𝑥𝑥5
�𝑥𝑥 = 2𝑥𝑥0 + 1𝑥𝑥1 + 4𝑥𝑥6 + 3𝑥𝑥7

�̂�𝑧 ≡ 10𝑥𝑥0 +17𝑥𝑥1 + 20𝑥𝑥2 + 23𝑥𝑥3 + 26𝑥𝑥4 + 29𝑥𝑥5 + 30𝑥𝑥6
+ 7𝑥𝑥7 + 14𝑥𝑥8 + 21𝑥𝑥9 + 28𝑥𝑥10 + 3𝑥𝑥11 + 30𝑥𝑥12 mod (𝑥𝑥16 + 1, 25)

An example over ℤ25

�𝑥𝑥 � �𝑦𝑦 mod (𝑥𝑥16 + 1, 25)

Evaluation in ΠMatMul

Figure 2: A toy example of our matrix multiplication protocol.

In the embedding layer, P0 and P1 take as inputs WE and Xinput, and invoke the matrix mul-
tiplication protocol ΠMatMul to compute the input embedding X. This is represented as ⟨X⟩ =
ΠMatMul(Xinput,WE). In the attention layer, ΠMatMul is also invoked to generate the query, key
and value matrices. For instance, ⟨XQ⟩ = ΠMatMul(⟨X⟩1,WQ) + ⟨X⟩0WQ, where ⟨X⟩0WQ

can be computed locally by P0. The same idea is used in the generation of ⟨XK⟩ and ⟨XV ⟩.
Then, we compute XQK = XQX

T
K that requires two invocations of ΠMatMul. The formulation is

⟨XQK⟩ = ΠMatMul(⟨XQ⟩0, ⟨XK⟩1)+ΠMatMul(⟨XQ⟩1, ⟨XK⟩0)+ ⟨XQ⟩0⟨XK⟩T0 + ⟨XQ⟩1⟨XK⟩T1 ,
where the last two terms can be evaluated by P0 and P1 locally. After that, we evaluate
⟨X̃QK⟩ = ΠSoftmax(⟨XQK⟩/

√
d), followed by computing ⟨Z̃⟩ = ⟨X̃QKXV ⟩ by two invocations of

ΠMatMul. Then, the two parties invoke the LayerNorm protocol to evaluate ⟨Z⟩ = ΠLayerNorm(⟨Z̃⟩).
In the feed-forward layer, they compute ⟨Ỹ1⟩ = ΠMatMul(⟨Z⟩1,W1) + ⟨Z⟩0W1, followed by
⟨Ỹ⟩ = ΠGELU(⟨Ỹ1⟩). After that, they compute ⟨Ỹ2⟩ = ΠMatMul(⟨Ỹ⟩1,W1) + ⟨Ỹ⟩0W1, where
⟨Ỹ⟩0W1 can be computed locally by P0. Finally, the evaluation of the encoder completes after
computing ⟨Y⟩ = ΠLayerNorm(⟨Ỹ2⟩).

4 Supporting Protocols

4.1 Protocol for Matrix Multiplication

As shown in Section 1, naively extending well-studied matrix-vector multiplication protocols [29,
13, 14] to our matrix multiplication setting results in a significant communication overhead, mainly
due to frequently interacting ciphertexts. In this work, we build a specialized matrix multiplication
protocol on top of the most efficient protocol, Cheetah [14]. Recall that the plaintext of an AHE
scheme is a polynomial, which can pack a large number of inputs to amortize the overhead [29, 13].
The key contribution of our proposed protocol is a more compact input packing approach.

Our starting point is that polynomial multiplication implies vector inner product, if we arrange
the coefficients properly [14]. As shown in Equation 1, when multiplying two polynomials of
degree-(N -1), the (N -1)-th coefficient of the resulting polynomial is the inner product of the two
coefficient vectors in opposite orders. By using an appropriate arrangement of coefficients, this idea
can be extended to matrix multiplications, since they consist of a set of inner products. We give the
definitions of two input packing functions πL : Zm×n

2ℓ
→ AN,2ℓ and πR : Zn×k

2ℓ
→ AN,2ℓ as follows:

x̂ = πL(X), s.t., x̂ [i · n · k + (n− 1)− j] = X[i, j], for i ∈ [m], j ∈ [n]

ŷ = πR(Y), s.t., ŷ [j · n+ i] = Y[i, j], for i ∈ [n], j ∈ [k]

where all other coefficients of x̂ and ŷ are set to 0. Multiplication of polynomials ẑ = x̂ · ŷ directly
gives the result of matrix multiplication Z = XY mod 2ℓ in some of ẑ’s coefficients. We formalize
this process as below, and give a toy example in Figure 2.
Theorem 4.1. Assuming mnk ≤ N and given two polynomials x̂ = πL(X) and ŷ = πR(Y), the
matrix multiplication Z = XY mod 2ℓ can be evaluated via the product ẑ = x̂ · ŷ, where Z[i, j] is
computed in ẑ [i · n · k + (j + 1) · n− 1] for i ∈ [m] and j ∈ [k].

We defer the proof to Appendix A.2.1. When mnk > N , we first partition the matrices X,Y
into sub-matrices of mw × nw and nw × kw elements, respectively, such that mwnwkw ≤ N .
Zero-padding is required when mw ∤ m, nw ∤ n or kw ∤ k. The protocol is shown in Algorithm 1.

Complexity and security analysis. For complexity, totally, two parties interact k
kw

(m
mw

+ n
nw

)

ciphertexts, and operate with O(mnk/N) homomorphic additions and multiplications. We formalize
the selection of parameters mw, nw, kw as an optimization problem, to minimize the communication

5

cost. Through our analysis in Appendix A.2.2, in general scenarios, our method theoretically achieves√
m communication improvement over Cheetah [14]. Notably, when mnk ≤ N , we reduce the

communcation cost by a factor of m, since Cheetah encodes each row of the matrix into a ciphertext.
Besides, the security proof is shown in Appendix A.2.3.

Algorithm 1 Secure Matrix Multiplication Protocol

Input: P0 holds X ∈ Zm×n
2ℓ

, and P1 holds Y ∈ Zn×k
2ℓ

.
Output: P0 and P1 get ⟨Z⟩0, ⟨Z⟩1 ∈ Zm×k

2ℓ
, respectively, where Z = XY.

1: P0, P1 compute the partition window size 0 < mw ≤ m, 0 < nw ≤ n and 0 < kw ≤ k such that
mwnwkw ≤ N , and set n′ = ⌈n/nw⌉, m′ = ⌈m/mw⌉, and k′ = ⌈k/kw⌉.

2: P1 partitions the matrix Y into block matrices Yβ,γ ∈ Znw×kw
2ℓ

for β ∈ [n′] and γ ∈ [k′].
3: P1 encodes the matrices to polynomials ŷβ,γ = πR(Yβ,γ) for β ∈ [n′] and γ ∈ [k′]. Then P1

sends to P0 the ciphertexts {CTβ,γ = Enc(ŷβ,γ)}.
4: P0 partitions the matrix X into block matrices Xα,β ∈ Zmw×nw

2ℓ
for α ∈ [m′] and β ∈ [n′]. P0

encodes the matrices to polynomials x̂α,β = πL(Xα,β).
5: P0 uniformly at random samples plaintext polynomials r̂α,γ for α ∈ [m′] and γ ∈ [k′]. P0

decodes these polynomials to a random mask R ∈ Zm×k
2ℓ

according to Theorem 4.14.
6: On receiving the ciphertexts {CTβ,γ} from P1, P0 operates CT′

α,γ = ⊞β∈[n′](x̂α,β ⊠CTβ,γ)⊟
r̂α,γ for α ∈ [m′] and γ ∈ [k′]. Then P0 sends to P1 the ciphertexts

{
CT′

α,γ

}
.

7: P0 outputs R mod 2ℓ as the share ⟨Z⟩0.
8: On receiving the ciphertexts

{
CT′

α,γ

}
from P0, P1 computes ⟨ẑα,γ⟩1 = Dec(CT′

α,γ) that are
decoded to ⟨Z⟩1 using the method in Theorem 4.1.

4.2 Protocols for Non-linear Functions

Our non-linear protocols rely on several underlying protocols from the state-of-the-art works [13, 17].
In Figure 3, we enumerate the inputs and outputs of these protocols and then use them as a black box
(See Appendix A.3.2 for details). On this basis, we provide efficient protocols for Softmax, GELU,
and LayerNorm with specific optimizations. Additional details and security analysis are shown in
Appendices A.3.3 and A.3.4.

Multiply ΠMulOT
Input:

Output:
• 𝑃𝑃𝑏𝑏: 𝑧𝑧 𝑏𝑏

s.t. 𝒛𝒛 = 𝒙𝒙𝒙𝒙

• 𝑃𝑃𝑏𝑏: 𝑥𝑥 𝑏𝑏, 𝑦𝑦 𝑏𝑏

Compare ΠCMP

s.t. 𝒛𝒛 = 𝟏𝟏{𝒙𝒙 > 𝟎𝟎}

Input:

Output:
• 𝑃𝑃𝑏𝑏: 𝑧𝑧 𝑏𝑏

𝐵𝐵

• 𝑃𝑃𝑏𝑏: 𝑥𝑥 𝑏𝑏

NegExp ΠnExp

s.t. 𝒛𝒛 = 𝒆𝒆𝒙𝒙,𝒙𝒙<0

RecipSqrt ΠrSqrt

s.t. 𝒛𝒛 = 𝟏𝟏
𝒙𝒙

,𝒙𝒙>𝝐𝝐

Recip ΠRecip

s.t. 𝒛𝒛 = 𝟏𝟏/𝒙𝒙

Input:

Output:
• 𝑃𝑃𝑏𝑏: 𝑧𝑧 𝑏𝑏

• 𝑃𝑃𝑏𝑏: 𝑥𝑥 𝑏𝑏

Input:

Output:
• 𝑃𝑃𝑏𝑏: 𝑧𝑧 𝑏𝑏

• 𝑃𝑃𝑏𝑏: 𝑥𝑥 𝑏𝑏

Input:

Output:
• 𝑃𝑃𝑏𝑏: 𝑧𝑧 𝑏𝑏

• 𝑃𝑃𝑏𝑏: 𝑥𝑥 𝑏𝑏

Figure 3: Underlying protocols from [13, 17]
4.2.1 Softmax

To evaluate attention layers, we need an efficient protocol to compute Softmax on secret-shared
values. In particular, for a vector x ∈ Zd

2ℓ , the Softmax function is denoted as Softmaxi(x) =
exi/

∑
j∈[d] e

xj for i ∈ [d]. The main challenge is to efficiently compute the underlying exponential
function. Following the idea from [11, 30], we first normalize the input vector by x−maxi∈[d] xi,
which is always negative, and then invoke the existing exponential protocol ΠnExp in Figure 3 that only
evaluates exponentiation on negative inputs. A simple analysis shows softmax(x−maxi∈[d] xi) is
equal to softmax(x). We evaluate max using a tree-reduction protocol, denoted by Πmax. Specifically,
we arrange the vector x ∈ Zd

2ℓ into a 2-ary tree with the depth of log d, and evaluate the tree in a
top-down fashion [31]. In each comparison of two secret-shared elements xi and xj , we reduce it
to the invocations of ΠCMP and ΠMulOT , i.e., max(xi, xj) = ΠMulOT(xi − xj ,ΠCMP(xi − xj)) + xj .
With the above insight, the Softmax protocol is detailed in Algorithm 2.

SIRNN [17] also provides a solution for the generic exponential protocol by extending ΠnExp. The
idea is that the exponential of x equals 1

nExp(−x) if x ≥ 0, and nExp(x) otherwise, where nExp is the

4This operation aims to avoid extra information leakage from the output polynomial’s coefficients. The
details refer to [14] and their implementations.

6

same as the exponential function except for negative inputs. Compared to our solution, realizing the
softmax function with this generic exponential protocol additionally requires d calls to the reciprocal
protocol ΠRecip and multiplication protocol ΠMUTOT . Besides, compared with the generic library
MP-SPDZ [16] that provides native support for exponentiation, our protocols achieve orders of
magnitude improvement as shown in Section 5.2.

Algorithm 2 Secure Softmax Protocol

Input: P0, P1 hold ⟨x⟩0 ∈ Zd
2ℓ , ⟨x⟩1 ∈ Zd

2ℓ , respectively.
Output: P0, P1 get ⟨y⟩0 ∈ Zd

2ℓ , ⟨y⟩1 ∈ Zd
2ℓ , respectively, where y = Softmax(x).

1: P0, P1 invoke Πmax(x) to compute ⟨max(x)⟩, where max(x) = maxi∈[d] xi.
2: For i ∈ [d], P0, P1 invoke ΠnExp on input ⟨x̄i⟩, and learn ⟨ex̄i⟩, where x̄i = xi −max(x).
3: P0, P1 invoke ΠRecip with inputs ⟨

∑
i∈[d] e

x̄i⟩ and learn ⟨1/
∑

i∈[d] e
x̄i⟩.

4: For i ∈ [d], P0, P1 invoke ΠMulOT with inputs ⟨1/
∑

i∈[d] e
x̄i⟩ and ⟨ex̄i⟩, and set outputs as ⟨yi⟩.

4.2.2 GELU

Rather than crypto-friendly ReLU [13], Transformer-based models utilize GELU activations [15],
which can be represented as GELU(x) = 0.5x

(
1 + Tanh

[√
2/π

(
x+ 0.044715x3

)])
. The com-

plete protocol is shown in Algorithm 3, in which we provide two insights to reduce the cost of GELU.
First, we present an optimized protocol for the square of a secret-shared input ⟨x⟩. This relies on the
observation: x2 = ⟨x⟩20 + ⟨x⟩21 + 2⟨x⟩0⟨x⟩1, where the first two terms can be locally computed by
P0 and P1. We only invoke OT protocols to compute the cross term 2⟨x⟩0⟨x⟩1, and the optimized
overhead is half that of the multiplication protocol ΠMulOT .

Second, we further optimize the evaluation of Tanh(x) = e2x−1
e2x+1 . We observe that the sign of x is

equal to the sign of Tanh(x), which allows us to leverage the negative exponential protocol ΠnExp
almost for free. At a high level, our Tanh protocol first learns the sign of the input x, and then
evaluates Tanh on the negative input x̄ with the constraint |x̄| = |x|. Finally, the protocol generates
the real output Tanh(x) that equals Tanh(x̄) if x ≤ 0, and −Tanh(x̄) otherwise. Our leaner Tanh
protocol is given in Algorithm 5 of Appendix A.3.1. SIRNN [17] recently proposed the most efficient
Tanh protocol with the insight of Tanh(x) = 2Sigmoid(2x) − 1, where Sigmoid(x) = 1

1+e−x .
However, the evaluation of Sigmoid uses the same idea as the general exponential protocol, as shown
in Section 4.2.1. Compared with the protocol in SIRNN, our recipe for Tanh saves one invocation of
the reciprocal protocol ΠRecip and multiplication protocol ΠMulOT .

Algorithm 3 Secure GELU Protocol

Input: P0, P1 hold ⟨x⟩0 ∈ Z2ℓ , ⟨x⟩1 ∈ Z2ℓ , respectively.
Output: P0, P1 get ⟨y⟩0 ∈ Z2ℓ , ⟨y⟩1 ∈ Z2ℓ , respectively, where y = GELU(x).
1: P0, P1 invoke ΠMulOT with inputs ⟨x⟩, and set their outputs as ⟨z⟩ = Fix(

√
2/π)(⟨x⟩ +

Fix(0.044715)⟨x⟩3)
2: P0, P1 invoke ΠTanh with inputs ⟨z⟩, and set their outputs as ⟨Tanh(z)⟩.
3: P0, P1 invoke ΠMulOT with inputs ⟨Fix(0.5)x⟩ and ⟨Fix(1) + Tanh(z)⟩, and output ⟨y⟩.

4.2.3 LayerNorm

For a vector x ∈ Zd
2ℓ , the LayerNorm function is denoted by LayerNormi(x) = γ(xi − µ)/σ + β

for i ∈ [d], where µ =
∑

i∈[d] xi/d and σ =
√∑

i∈[d](xi − µ)2. In contrast to batch normalization
(BN) in CNNs that is evaluated for free [14], LayerNorm requires multiplication and reciprocal
square root operations. In our implementation, we observe that the multiplication dominates the
overhead of LayerNorm. To address this issue, we adopt the same idea in GELU to compute the
square of xi − µ, which saves half of the communication and computation costs.

Besides, inspired by the optimization in BN [14], we apply a LayerNorm merge technique to further
reduce the overhead. Specifically, we make the observation that the weights γ and β of the LayerNorm
layer are already known by P0. As a result, P0 first multiplies the scale factor γ with the weights of

7

Table 1: Comparing the runtime (sec) and communication (MB) costs of our matrix multiplication
and non-linear protocols with SOTA

Matrix Multiplication Non-Linear Protocols

Methods
Dims=(32, 8, 16) (128, 64, 128) (128, 768, 768)

Methods
Softmax LayerNorm GELU

Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.

Ours 0.006 0.11 0.066 1.74 1.71 15.45 Ours 4.78 206.265 2.34 102.435 0.30 10.07

Cheetah
0.16

(26×)

2.79

(25×)

0.77

(11×)

14.78

(8×)

6.10

(3×)

134.37

(8×)
SIRNN

7.95

(1.7×)

347.71

(1.7×)

4.16

(1.8×)

184.42

(1.8×)

0.38

(1.3×)

14.07

(1.4×)

SIRNN
0.04

(6×)

1.34

(12×)

1.59

(23×)

70.08

(40×)

110.33

(64×)

4920.08

(318×)
MP-SPDZ

297.75

(62×)

172,837

(837×)

202.75

(86×)

101,642

(992×)

15.34

(51×)

7,908.69

(785×)

the next linear layer. After invoking the linear layer protocol on the scaled weights, P0 adds the shift
weight σ to his additive share. The optimized protocol for LayerNorm is presented in Algorithm 4.

Algorithm 4 Secure LayerNorm Protocol

Input: P0, P1 hold ⟨x⟩0 ∈ Zd
2ℓ , ⟨x⟩1 ∈ Zd

2ℓ , respectively.
Output: P0, P1 get ⟨y⟩0, ⟨y⟩1, respectively, where y = LayerNorm(x).
1: For i ∈ [d], P0, P1 invoke ΠMulOT to compute ⟨(xi − µ)2⟩, where µ =

∑
i∈[d] xi/d.

2: P0, P1 invoke ΠrSqrt with inputs ⟨
∑

i∈[d](xi − µ)2⟩ to learn output ⟨ 1σ ⟩.
3: For i ∈ [d], P0, P1 invoke ΠMulOT with inputs ⟨ 1σ ⟩ and ⟨xi − µ⟩, and set outputs as ⟨yi⟩.

5 Evaluation

5.1 Experimental Setup

Implementation. Iron is built on top of the SEAL library [32] and the EMP toolkit [33] in C++. We
also use the EzPC framework [34]. This framework compiles a high-level TensorFlow code to secure
computation protocols, which are then executed by our designed cryptographic backends. Like [17],
we simulate a LAN network setting, where the bandwidth is 377 MBps and the echo latency is 0.8ms.
All the following experiments are performed on AWS c5.9xlarge instances with Intel Xeon 8000
series CPUs at 3.6GHz.

Datasets and Models. We evaluate Iron on four NLP models from [35, 36]: BERT-Tiny, BERT-
Medium, BERT-Base and BERT-Large. These models are parameterized by three hyper-parameters:
the number of blocks, the dimension of representations and the number of input tokens (refer to
Appendix A.4.1 for the hyper-parameters of these models). We train the models for four NLP tasks
over the datasets of the Stanford Sentiment Treebank (SST-2), the Microsoft Research Paraphrase
Corpus (MRPC), the Multi-Genre Natural Language Inference Corpus (MNLI) and the Stanford
Question Answering Dataset (QNLI) from GLUE benchmarks [18].

5.2 Microbenchmark Evaluation

Matrix multiplication. In the left part of Table 1, we compare the performance of the proposed
matrix multiplication protocol with the state-of-the-art counterparts of Cheetah [14] and SIRNN [17].
For fairness, we follow Cheetah for the parameter setup of homomorphic encryption. Compared with
Cheetah, our rumtime is 3 ∼ 26× faster, and our communication cost is 8 ∼ 25× lower, depending
on the input size. Notably, for small-size matrices (e.g., ones with 32 × 8 and 8 × 16 elements),
our protocol only requires 0.11 MB communication and 6 ms runtime, while Cheetah achieves the
computation with 2.79 MB and 160 ms. The reason is that our protocol encrypts the whole matrix
into a single ciphertext, while Cheetah could only encrypt each row into a ciphertext, totally m
ciphertexts (m is the number of rows of the output matrix). Moreover, compared with SIRNN that
implements the most efficient OT-based matrix multiplication protocol, our protocol incurs up to two
orders of magnitude less communication and an order of magnitude less runtime.

Non-linear functions. The right part of Table 1 shows the comparison of our Softmax, GELU and
LayerNorm protocols with the generic MP-SPDZ framework [16] and the state-of-the-art SIRNN
library [17] for math functions. It is worth noting that we implement some functions that these

8

Tiny Medium Base Large
Model architectures of BERT

100

101

102

103

104

Ru
nt

im
e

(m
in

)

Our work
SIRNN

×3.30

×7.19
×9.56

×11.83

Tiny Medium Base Large
Model architectures of BERT

101

102

103

104

Co
m

m
un

ica
tio

n
(G

B) Our work
SIRNN

×3.47

×8.02
×10.99

×14.11

Tiny Medium Base Large
Model architectures of BERT

100

101

102

103

104

105

Ru
nt

im
e

(m
in

)

Our work
MP-SPDZ

×107

×77
×67

×65

Tiny Medium Base Large
Model architectures of BERT

101

102

103

104

105

106

Co
m

m
un

ica
tio

n
(G

B) Ours
MP-SPDZ

×642

×650
×646

×652

Figure 4: End-to-end comparisons with SIRNN and MP-SPDZ

frameworks did not provide before. In particular, GELU and LayerNorm are implemented in MP-
SPDZ by calling its built-in functions for tanh, square root, and reciprocal, while we add Softmax
and GELU protocols in SIRNN utilizing sigmoid and exponent functions. As shown in this table,
our protocols are orders of magnitude better than those of MP-SPDZ, in terms of both runtime
and communication. In particular, for the communication cost, our protocols achieve 785 ∼ 993×
improvement. Moreover, while our protocols are built upon the underlying protocols from SIRNN, we
also achieve 1.3 ∼ 1.8× lower runtime and 1.4 ∼ 1.8× lower communication due to our customized
optimizations. Such an improvement gives us significant savings in communication complexity, since
the non-linear layer protocols dominate the overall overhead, as described below.

5.3 End-to-end Inference Evaluation

Comparison with prior methods. In the left part of Figure 4, we evaluate our protocols on 4 BERT
models compared with SIRNN [17]. It is observed that our rumtime is 3.3 ∼ 11.83× faster than that
of SIRNN, and our communication cost is 3.47 ∼ 14.11× lower over four models. Moreover, our
performance gains scale up as the model size grows. This is because our protocols achieve better
amortized overhead when processing large-scale evaluations. We also compare the end-to-end private
inference with MP-SPDZ in Figure 4. The results show that our protocols are orders of magnitude
better, in terms of both time and communication costs. This is because specialized protocols are more
communication efficient than generic alternatives, which is also observed by SIRNN.

Performance breakdown. In Figure 5, we present the runtime and communication breakdown of
Iron on four BERT models. For clarity, we just report the result of one encoder. Recall that our
private inference can be divided into linear protocols and non-linear protocols. For linear protocols,
we observe that as the model size increases, the proportion of communication overhead remains
approximately constant, accounting for 12 ∼ 13%. This shows that our compact ciphertext encoding
method effectively reduces the size of communication. For non-linear functions, as the model size
increases, the proportion of computation overhead gradually decreases, from 84% in BERT-Tiny
to 76% in BERT-Large. The savings come from amortizing the communication and computation
costs by packing data from large tensors. Despite such advantages, the main bottleneck of our work
is the communication overhead of non-linear layers. However, it is an open problem to solve the
communication issue while maintaining the model accuracy.

Accuracy comparison with plaintext. In the left part of Figure 6, we show the accuacy of plaintext
(float-point) and Iron (fixed-point) on the BERT-Tiny model. We observe that the accuracy achieved
by Iron matches the accuracy of the plaintext TensorFlow code. Specifically, the accuracy loss does
not exceed 0.3% over all datasets, and surprisingly, Iron exceeds the plaintext baseline on MNLI
by 0.85%. Similar results also appear in private CNN inference [13]. Such accuracy advantages
experimentally validate that our protocols are numerically precise. Moreover, in the right part of
Figure 6, we also compare the accuracy with the plaintext baseline, as the fractional scale varies
on MRPC. We observe that Iron with the scale of 12 exactly matches the accuracy of the plaintext
model. The accuracy loss is lower than 1% when the scale ≥ 6. This conclusion is in line with the
prior work [13], namely that neural networks can tolerate stochastic fault behavior [37].

6 Discussion

We discuss possible solutions to further improve the efficiency of private inference on Transformers.
They are compatible with our proposed protocols and hence can be directly integrated into our
framework.

9

Tiny Medium Base Large
Model architectures of BERT

0

50

100

150

200

Ru
nt

im
e

(s
ec

)

Linear
Non-Linear

16%
84% 19%

81%

22%

78%

24%

76%

Tiny Medium Base Large
Model architectures of BERT

0

2

4

6

8

Co
m

m
un

ica
tio

n
(M

B)

1e3

Linear
Non-Linear

13% 12%

88%

13%

87%

12%

88%

87%

Figure 5: Performance breakdown on BERT.

MNLI MRPC QNLI SST2
Datasets

60

65

70

75

80

Ac
cu

ra
cy

(%
)

Ours
Plaintext

0.85%

0%

0.11%

0.27%

4 6 8 10 12 14 16
Scale

64
65
66
67
68
69
70
71
72

Ac
cu

ra
cy

(%
)

Ours
Plaintext

Figure 6: Accuracy comparison with plaintext

Pushing expensive operations into an offline phase. Our framework is readily extended to the pre-
processing model, including an offline client-input independent phase and an online input-dependent
phase. This paradigm has been instantiated in private CNN inference [38, 8], and the results show that
about 99% of the cryptographic overhead can be moved to the offline phase. We briefly outline how
to build our protocols with this paradigm. For linear operations, we can generate in advance Beaver’s
triple in the matrix form [22, 38] using our matrix multiplication protocol. In the online phase,
these triples are consumed, and it additionally requires non-cryptographic operations and plaintext
communication. For non-linear layers, almost all operations crucially rely on the OT protocols, which
can be pre-generated in the offline phase [39, 14]. Like linear protocols, the online phase is cheap.

Using mixed-bitwidths in private inference. Iron works with a uniform bitwidth, which is required
to be large enough to accommodate all intermediate values. While effectively avoiding integer
overflows, our protocols may cause intensive communication, since the performance of non-linear
operators depends critically on bitwidths. Taking inspiration from [17, 40], one possible optimization
is to employ non-uniform (mixed) bitwidths, operate in low bitwidths and switch to high bitwidths
only when necessary. To this end, the mixed-precision model should be generated with proper
compilers by using techiniques like quantization [41, 42]. With mixed-bitwidths fixed-point models,
our protocols can be integrated seamlessly.

Applying orthogonal model optimizations. We can improve performance by simplifying the model
architecture such as model pruning and advanced neural architecture search [43, 44], which have
been commonly adopted in private CNN inference [12, 45, 37]. Like prior works [12, 45, 37] that
find and tailor models to the requirements of private inference, we can define a proper search space
with the goal of decreasing the overhead, e.g., substituting costly Softmax and GELU functions, or
reducing the matrices’ dimension in matrix multiplication. As mentioned in Section 1, the concurrent
work, THE-X [19], has explored replacing complex math functions with HE-friendly alternatives
while achieving comparable accuracy.

7 Conclusion

We propose Iron, an efficient cryptographic framework for private Tramsformer inference. Specifi-
cally, we carefully design a new encoding method for optimizing homomorphic encryption-based
matrix multiplication. Further, we devise several communication-efficient non-linear protocols like
Softmax, LayerNorm and GELU by integrating advanced secret-sharing primitives. Experimental
results show that Iron outperforms prior art by up to one order of magnitude in terms of computation
and communication overheads. We believe that our novel protocols would help advance the practical
instantiations of private Transformer inference.

Acknowledgment

The authors would like to thank the anonymous reviewers for their insightful comments. This work
is supported by the Key-Area Research and Development Program of Guangdong Province under
Grant 2020B0101360001, National Natural Science Foundation of China under Grants 62020106013,
61972454, and 61802051, Sichuan Science and Technology Program under Grants 2020JDTD0007
and 2020YFG0298, the Fundamental Research Funds for Chinese Central Universities under Grant
ZYGX2020ZB027, and Singapore Ministry of Education (MOE) AcRF Tier 2 MOE-T2EP20121-
0006.

10

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of NeurIPS,
2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of NeurIPS, 2018.

[3] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings
of ICLR, 2020.

[5] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of ICCV, pages 10012–10022, 2021.

[6] Clarifai general image embedding model. URL https://www.clarifai.com/models/
general-image-embedding.

[7] Openai api. URL https://openai.com/blog/openai-api.

[8] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada Popa. Muse:
Secure inference resilient to malicious clients. In Proceedings of USENIX Security, pages
2201–2218, 2021.

[9] Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. Stolenencoder: Stealing
pre-trained encoders. arXiv:2201.05889, 2022.

[10] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In Proceedings of ICML, pages 201–210, 2016.

[11] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and
Laurens van der Maaten. Crypten: Secure multi-party computation meets machine learning. In
Proceedings of NeurIPS, 2021.

[12] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas:
Private inference on a relu budget. In Proceedings of NeurIPS, pages 16961–16971, 2020.

[13] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In Proceedings of
ACM CCS, pages 325–342, 2020.

[14] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
two-party deep neural network inference. In Proceedings of USENIX Security, 2022.

[15] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[16] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In Proceedings of
ACM CCS, pages 1575–1590, 2020.

[17] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma,
Nishanth Chandran, and Aseem Rastogi. Sirnn: A math library for secure rnn inference. In
Proceedings of IEEE S&P, pages 1003–1020, 2021.

[18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of ICLR, pages 535–548, 2018.

11

https://www.clarifai.com/ models/general-image-embedding
https://www.clarifai.com/ models/general-image-embedding
https://openai.com/blog/openai-api

[19] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou,
Jianxin Li, and Furu Wei. The-x: Privacy-preserving transformer inference with homomorphic
encryption. In Findings of ACL, pages 3510–3520, 2022.

[20] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of ACM CCS, pages
308–318, 2016.

[21] Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation. Cambridge
University Press, 2015.

[22] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient
mixed-protocol secure two-party computation. In Proceedings of NDSS, 2015.

[23] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE transactions on information theory, 31(4):469–472, 1985.

[24] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Proceedings of Eurocrypt, pages 223–238, 1999.

[25] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In Proceedings of Crypto, pages 868–886, 2012.

[26] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, 2012.

[27] Vladimir Kolesnikov and Ranjit Kumaresan. Improved ot extension for transferring short secrets.
In Proceedings of Crypto, pages 54–70, 2013.

[28] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In Proceedings of ACM CCS,
pages 535–548, 2013.

[29] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low latency
framework for secure neural network inference. In Proceedings of USENIX Security, pages
1651–1669, 2018.

[30] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. Cryptgpu: Fast privacy-preserving machine
learning on the gpu. In Proceedings of IEEE S&P, 2021.

[31] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. Ariann: Low-interaction
privacy-preserving deep learning via function secret sharing. In Proceedings of PETS, pages
291–316, 2022.

[32] Seal. URL https://github.com/microsoft/SEAL.

[33] emp-toolkit. URL https://github.com/emp-toolkit.

[34] Ezpc. URL https://github.com/mpc-msri/EzPC.

[35] Bert. URL https://github.com/google-research/bert.

[36] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: On the importance of pre-training compact models. arXiv:1908.08962, 2019.

[37] Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic
relus for private deep learning. In Proceedings of NeurIPS, 2021.

[38] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada
Popa. Delphi: A cryptographic inference service for neural networks. In Proceedings of
USENIX Security, pages 2505–2522, 2020.

[39] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas
Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for
machine learning applications. In Proceedings of AsiaCCS, pages 707–721, 2018.

12

https://github.com/microsoft/SEAL
https://github.com/emp-toolkit
https://github.com/mpc-msri/EzPC
https://github.com/google-research/bert

[40] Siam Umar Hussain, Mojan Javaheripi, Mohammad Samragh, and Farinaz Koushanfar. Coinn:
Crypto/ml codesign for oblivious inference via neural networks. In Proceedings of ACM CCS,
pages 3266–3281, 2021.

[41] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert:
Integer-only bert quantization. In Proceedings of ICML, pages 5506–5518, 2021.

[42] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In
Proceedings of AAAI, pages 8815–8821, 2020.

[43] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. In Proceedings of EMNLP, 2021.

[44] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In
Proceedings of NeurIPS, 2019.

[45] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu
reduction for fast private inference. In Proceedings of ICML, pages 4839–4849, 2021.

[46] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In Proceedings of IEEE S&P, pages 19–38, 2017.

[47] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of FOCS, pages 136–145, 2001.

[48] Robert E Goldschmidt. Applications of division by convergence. PhD thesis, MIT, 1964.

[49] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix
computation and application to neural networks. In Proceedings ACM CCS, pages 1209–1222,
2018.

[50] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzynski. ngraph-he2:
A high-throughput framework for neural network inference on encrypted data. In Proceedings
of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 45–56, 2019.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Appendix

A.1 More Details on Preliminaries

A.1.1 Fixed-Point Encoding

Same as other neural networks, Transformer-based models use floating-point arithmetic, however
cryptographic protocols operate on integers. Therefore, we require a float-to-integer conversion
[46, 30, 17] to represent a floating-point number x ∈ Q into the ring Z2ℓ . Specifically, we first
encode it as a fixed-point number, which is parametrized by a scale parameter s that determines
the fractional precision. Then, we embed the fixed-point representation into the ring with 2’s
complement representation. The formulation is a = ⌊2s × x⌋ ∈ Z2ℓ if x is a non-negative number,
and a = 2ℓ − ⌊2s × |x|⌋ ∈ Z2ℓ if x is a negative number, where s is the length of the (binary)
fractional bits and ℓ is the bitwidth of the secret sharing ring. Unless otherwise stated, similar as prior
works [14], we set the bitwidth as 37 and the scale as 12 in the fixed-point encoding. Because of the
use of the above fixed-point encoding, after multiplication, the scale of the output is 2s. Therefore,
a truncation operation is required to reduce scale. We use the ΠTrunc protocol proposed in [13] and
improved by [17], which leads to faithful implementation of fixed-point arithmetic. For simplicity, we
omit this operation in our protocol description. The overhead of truncation in Iron will be reported
in Table 4.

A.1.2 Formal Description of the Threat Model

Same as prior private inference works [13, 14, 17], the security of Iron is provably provided
in the simulation paradigm against static honest-but-curious probabilistic polynomial-time (PPT)
adversaries. Namely, a PPT adversary A passively corrupts either the server or the client at the
beginning of the protocol and honestly follows the protocol specification. In the simulation paradigm,
two worlds are defined: a real world where the server and the client perform the protocol according
to the specification in the presence of A, and an ideal world where the parties send their inputs to a
trusted dealer (also called functionality) that executes the evaluation faithfully. The executions in both
worlds are coordinated by the environment Env, which chooses the inputs to the parties and plays the
role of a distinguisher between the real and ideal executions. It is required that for any adversary, the
real-world distribution is computationally indistinguishable to the ideal-world distribution. Some
of our protocols invoke sub-protocols and we describe them using the hybrid model. This is similar
to a real execution, except that sub-protocols are replaced by the invocations of the corresponding
functionality instances. We recap the definition of a private inference protocol in [38] [14] as below.

Definition A.1. A protocol ΠPI between the server having as input a model M with weights w
and the client having as input a sample x is a private inference protocol against honest-but-curious
adversaries if it satisfies the following guarantees: 1) Correctness: on every model weights w and
every input sample x, the output of the client at the end of the protocol is the correct inference
M(w, x). 2) Security: For a corrupted client, there exists an efficient simulator SimC such that
ViewPI

C is computationally indistinguishable SimC(output), where ViewPI
C is the view of the client in

the execution of ΠPI and output denotes the output of the inference. Similarly, for a corrupted server,
there exists an efficient simulator SimS such that ViewPI

S is computationally indistinguishable SimS .

Notice that the honest-but-curious security proof of Iron according to the above definition will follow
trivially from sequential composibility of individual sub-protocols [47, 13, 30]. Hence, we require to
provide a security proof for our matrix multiplication and non-linear protocols. We refer to Section
A.2.3 and A.3.4 for the sub-protocols’ security analysis.

A.1.3 Multi-Head Attention

Instead of performing a single attention function, existing Transformer-based models [1, 2] follow a
multi-head attention variant, which can be represented as

MultiHeadAtten = Concat (Attention(XQ,j ,XK,j ,XV,j), j ∈ [H])WO, (4)

where H is the number of heads, and XQ,j = XQWQ,j , XK,j = XKWK,j , XV,j = XV WV,j

for j ∈ [H]. The main intuition is that multi-head attention allows the model to jointly attend to
information from different representation subspaces at different positions [1].

15

A.2 More Details on the Matrix Multiplication Protocol

A.2.1 Correction Proof of the Matrix Multiplication Protocol

Proof. For each i ∈ [m] and j ∈ [k], we write ϵi,j = i · n · k + (j + 1) · n− 1 for simplicity. Based
on the description of Section 4.1, for ϵi,j ≥ nk, ŷ[ϵi,j] = 0 holds. Therefore, given the definition of
Equation 1, we have ẑ [ϵi,j] =

∑
0≤µ<n x̂[i·n·k+(n−1)−µ]ŷ[j ·n+µ] =

∑
0≤µ<n X[i, µ]Y[µ, j],

which is exactly Z[i][j].

A.2.2 Optimal Parameters Selection in the Matrix Multiplication Protocol

As shown in Section 4.1, the matrix multiplication Xm×n ·Yn×k requires the communication of
m
mw

(n
nw

+ k
kw

) ciphertexts. To minimize the ciphertext communication cost, we formalize the selection
of the parameters mw, nw, kw as an optimization problem, i.e., min{mw,nw,kw}

m
mw

(n
nw

+ k
kw

), s.t.,
mwnwkw ≤ N , where m,n, k,N are constants. Given the difficulty of solving the above multivariate
optimization, we figure out a sub-optimal solution. To this end, we first fix mw = m4, and hence
the constraint is transformed to nwkw ≤ N

m . Correspondingly, the new optimization problem is
min{nw,kw}

n
nw

+ k
kw

, s.t., nwkw ≤ N
m . Then, the following holds:

n

nw
+

k

kw
= 1/

nw

n
+ 1/

kw
k

≥ 2
√
nk√

nwkw
≥ 2

√
mnk√
N

, (5)

where the first inequality is due to 1
a + 1

b ≥ 2√
ab

, and the second inequality comes from nwkw ≤ N
m .

As a result, assuming mw = m, the optimal communication size is 2
√
mnk√
N

ciphertexts. Notably, it
may not have the optimal analytical solution, because the variables must be discrete positive integers,
rather than real number. To achieve minimal communication in our implementation, like Cheetah
[14], we use the exhaustive testing approach on all the results satisfying the constraint to find the
optimal matrix partitioning strategy. Note that this is quite fast due to the small search range.

Communication comparison with Cheetah. As shown in Section 3.1 of [14], the Cheetah’s
communication overhead is m(n

nw
+ k

kw
) ciphertexts with the constraint nwkw ≤ N . By using the

similar analysis as above, we can obtain its optimal solution, i.e., 2m
√
nk√

N
. Therefore, we obtain a

√
m× communication improvement in an ideal situation (i.e., the optimal analytical integer solution

exists).

A.2.3 Security Proof of the Matrix Multiplication Protocol

Theorem A.2. In presence of an honest-but-curious adversary, the protocol ΠMatMul in Algorithm 1
realizes the matrix multiplication functionality, in which P0 and P1 take as inputs the matrices X
and Y, and learn the secret shares ⟨Z⟩0 and ⟨Z⟩1, respectively, such that Z = XY.

Proof. The correctness of Theorem A.2 is directly derived from Theorem 4.1. We below focus on
the protocol’s security when the server or the client is corrupted. Our security proof follows the
simulation paradigm defined in Section A.1.2. In this paradigm we need show that the real-world
distribution is computationally indistinguishable to the simulated distribution by the simulator Sim in
the ideal world.

Proof of indistinguishability with the corrupted server. The server’s view of ViewMatMul
S consists

of ciphertexts CTβ,γ . The simulator SimS for this view can be constructed as follows:

Given the access to public parameters, SimS outputs ciphertexts C̃Tβ,γ = Enc(0) to the server.

The security against the corrupted server is directly reduced to the semantic security of the underlying
homomorphic encryption scheme. Thus we have that the simulated view ViewMatMul

S in the ideal
world is computationally indistinguishable from the real-world distribution of the protocol.

Proof of indistinguishability with corrupted clients. The client’s view of ViewMatMul
C consists of

ciphertexts CT′
α,γ , and the decryption of these ciphertexts, i.e., ⟨Z⟩1. The simulator SimC for this

view can be constructed as follows:
4In our setting, m is always less than N .

16

On receiving the ciphertexts CTα,γ from the client, SimC samples uniformly random polynomials

r̂α,γ ∈ AN,2ℓ , and computes C̃T
′
α,γ = Enc(r̂α,γ). Given the access to the output, SimC outputs

C̃T
′
α,γ to the client.

Similarly, the ciphertexts C̃T
′
α,γ are computationally indistinguishable from C̃Tα,γ due to the

semantic security. Besides, the values of ⟨Z⟩1 distribute uniformly in Z2ℓ , which is exactly the same
distribution of values in r̂α,γ . Thus we have that ViewMatMul

C is computationally indistinguishable
from the real-world distribution of the protocol.

A.3 More Details on Non-linear Protocols

A.3.1 Tanh

Algorithm 5 Secure Tanh Protocol

Input: P0, P1 hold ⟨x⟩0 ∈ Z2ℓ , ⟨x⟩1 ∈ Z2ℓ , respectively.
Output: P0, P1 get ⟨y⟩0 ∈ Z2ℓ , ⟨y⟩1 ∈ Z2ℓ , respectively, where y = Tanh(x).
1: P0, P1 parse ⟨x⟩0 = msb0∥a0 and ⟨x⟩1 = msb1∥a1, and invoke ΠCMP to learn ⟨carry⟩Bb , where

carry = 1{a0 + a1 > 2ℓ−1 − 1}, and the inputs are 2ℓ−1 − a0 − 1 and a1 from P0 and P1,
respectively. For b ∈ {0, 1}, Pb outputs ⟨MSB(x)⟩Bb = ⟨carry⟩Bb ⊕ msbb.

2: P0, P1 invoke ΠMulOT with inputs ⟨2x⟩ and ⟨MSB(x)⟩B , and set outputs as ⟨x̄⟩, where x̄ =
2x · MSB(x)− x that is always negative with the constraint of |x̄| = |x|.

3: P0, P1 invoke ΠnExp with negative inputs ⟨2x̄⟩ and learn ⟨e2x̄⟩.
4: P0, P1 invoke ΠRecip with inputs ⟨e2x̄⟩, and learns ⟨ȳ⟩ where ȳ = 1− 2

e2x̄+1 .
5: P0, P1 invoke an instance of ΠMulOT on input ⟨MSB(x)⟩B and ⟨ȳ⟩, and learn ⟨y⟩, where y =

ȳ + MSB(x) · (−2ȳ).

We present an optimized protocol for Tanh in Algorithm 5, which builds over the protocol used in
[17]. Our optimization relies on the observation: when evaluating on x, the sign of Tanh(x) is the
same as that of x. Compared with the protocol in [17], our alternative saves one invocation of the
reciprocal protocol ΠRecip and multiplication protocol ΠMulOT .

A.3.2 Underlying Protocols from [17, 13]

We outline the underlying protocols from existing works [17, 13], and the detailed implementation
could be found in the corresponding papers.

• Multiplication (MulOT): The OT-based multiplication protocol ΠMulOT takes as input ⟨x⟩ ∈
{0, 1}ℓ and ⟨y⟩ ∈ {0, 1}ℓ and returns ⟨z⟩ such that z = xy. The well-known technique
is proposed by ABY [22] and optimized in [13]. Currently, the optimal solution invokes
2-COTi for i ∈ {1, . . . , ℓ} requiring communication ℓ(λ + ℓ+1

2) bits with 2 rounds that
is equivalent to ℓ instances of COT ℓ+1

2
. A variant of multiplication is multiplexer5, which

takes as input ⟨x⟩B ∈ {0, 1} and ⟨y⟩ ∈ {0, 1}ℓ and outputs ⟨z⟩ ∈ {0, 1}ℓ such that z = y if
x = 1 and 0 otherwise. The multiplexer protocol ΠMux can be realized by 2 parallel calls of
2-COTℓ with communication 2(λ+ ℓ) bits and 2 rounds.

• Comparison (CMP): The comparison protocol ΠCMP takes as input ⟨x⟩ ∈ {0, 1}ℓ, and
returns ⟨z⟩ such that z = 1{x ≥ 0}. Recently, [13] gave an efficient protocol for ΠCMP with
communication less than λℓ+ 14ℓ bits with log ℓ rounds.

• Exponential on negative inputs (nExp): The exponential protocol ΠnExp takes as input
x ∈ {0, 1}ℓ, where x ≤ 0, and returns ⟨z⟩ such that z = ex . The protocol is proposed by
[17], which invokes digit decomposition to generate small-length inputs and integrates the
OT-based lookup table technique to compute exponential on the small-length inputs.

5In the protocol description, we treat these two types of multiplication indiscriminately, but we implement
them using different techniques.

17

• Reciprocal of Square Root (rSqrt): The protocol of square root’s reciprocal, ΠrSqrt, takes
as input x ∈ {0, 1}ℓ and returns ⟨z⟩ ∈ {0, 1}ℓ such that z = 1√

x
. [17] proposed the

state-of-the-art OT-based protocol, which relies on the Goldschmidt’s algorithm [48] that
iterates on an initial approximation.

• Reciprocal (Recip): The reciprocal protocol ΠRecip takes as input x ∈ {0, 1}ℓ and returns
⟨z⟩ ∈ {0, 1}ℓ such that z = 1/x. The most efficient implementation is proposed in [17]
with a similar idea as the protocol ΠrSqrt.

A.3.3 Extra Optimization

MSB-known protocol optimization. As pointed out by [17], 2PC protocols could be designed in a
far more efficient way when the MSB of the inputs are known. In particular, we optimize truncation
and OT-based multiplication in this case. For example, the MSB-known truncation protocol requires
O(λ(s+ 3)) communication, instead of O(λ(ℓ+ 3)), where λ is the security parameter, ℓ is the bit
length of the secret sharing ring and s is the fractional scale.

We elaborate the optimization for the GELU protocol in Algorithm 3, and the same idea can also be
used in the Softmax and LayerNorm protocols. For GELU, we fist compute the shares of MSB(x),
instead of calculating it in the latter Tanh protocol, and then in the following sub-process, we use this
knowledge to reduce overhead. Moreover, we further observe that the GELU protocol implies more
MSB-known operations if proper computation order is considered. We rewrite the GELU formulation
as below:

GELU(x) = 0.5
(
x+ xTanh

[√
2/πx

(
1 + 0.044715x2

)])
. (6)

We observe that 1 + 0.044715x2 and xTanh
[√

2/πx
(
1 + 0.044715x2

)]
are always non-negative,

where the latter holds because the sign x equals to that of Tanh
[√

2/πx
(
1 + 0.044715x2

)]
.

A.3.4 Security Proof of Non-linear Protocols

Similar as the security of protocols in [13, 17], our protocols directly follow in the hybrid
model. In particular, the security of the Softmax and GELU protocols are easy to see in
(CMP, nExp,Recip,MULOT)-hybrid. Besides, the security of the LayerNorm protocol follows in
(rSqrt,MULOT)-hybrid.

A.4 More Details on Experimental Evaluation

A.4.1 Additional Experimental Setup

Table 2: Models and hyper-parameters

Models #Params
Hyper-parameters

b d t

BERT-Tiny 4.4M 2 128 128

BERT-Medium 41.7M 8 512 128

BERT-Base 110.1M 12 768 128

BERT-Large 340M 24 1024 128

Table 3: Datasets and tasks description

Datasets #Train #Test Task Domain

SST-2 67K 872
Single-sentence
2-classification

Movie reviews

MRPC 3.7K 408
Sentence pair

2-class paraphrase
News

MNLI 393K 2K
Sentence pair

3-class inference
Misc.

QNLI 105K 2K
Sentence pair

2-class inference
Wikipedia

We evaluation Iron on 4 widely used pre-trained BERT models with different hyper-parameters,
as shown in Table 2. We denote the number of blocks as b, the dimension of representations as
d, and the number of input tokens as t. We always fix the number of self-attention heads to d/64
and the size of feed-forward features to 4d. The end-task models are obtained by stacking a linear
classifier on top of the Transformer architectures with fine-tuning. We follow the default fine-tuning
hyper-parameters in [35], e.g., batch size 32, learning rate 2× 10−5 and epoch 3. Notice that any
hyper-parameters optimization during the training phase is compatible with our scheme. Besides, we
use 4 datasets for different tasks from GLUE [18], which include the Stanford Sentiment Treebank

18

Table 4: Detailed performance breakdown of our protocols on BERT
Models Metrics MatMul Truncation GELU Softmax LayerNorm Total

BERT-Tiny
Runtime (Sec) 1.54 2.61 14.65 5.04 2.40 26.24

Comm. (MB) 29.99 108.66 642.38 214.01 99.02 1094.07

BERT-Medium
Runtime (Sec) 11.25 9.70 58.79 20.24 8.56 108.53

Comm. (MB) 132.00 404.63 2565.53 856.05 374.53 4332.74

BERT-Base
Runtime (Sec) 22.12 14.87 88.08 30.31 13.05 168.43

Comm. (MB) 197.68 626.94 3848.30 1284.08 575.23 6532.23

BERT-Large
Runtime (Sec) 36.66 19.50 117.45 40.43 16.65 230.70

Comm. (MB) 240.05 809.25 5131.06 1712.10 733.83 8626.28

(SST-2), the Microsoft Research Paraphrase Corpus (MRPC), the Multi-Genre Natural Language
Inference Corpus (MNLI) and the Stanford Question Answering Dataset (QNLI). Table 3 shows the
datasets’ details.

A.4.2 Additional Experimental Results

Detailed performance breakdown on BERT. In Table 4, we show the detailed performance break-
down including the communication and computation costs of matrix multiplication, truncation,
GELU, softmax and layer normalization. The most expensive non-linear operation is GELU due to
its huge number. For example, for each layer of BERT-Base, the number of GELU is 393,216. We
also observe that the our linear operation is lightweight in terms of communication.

A.5 Related Works

Recently a quantity of works have designed customized protocols for performing private inference on
neural networks, especially convolutional neural networks. These special-purpose protocols improve
the computation and communication costs and generally fall into two categories: linear protocols and
non-linear protocols. We briefly discuss the progress as below.

Linear protocols. Gazelle [29] proposed an optimized AHE-based linear algebra kernels, which
support matrix-vector multiplication and convolution operations. The main innovation is a new
packing method to minimize the expensive rotation operations, which is the critical component for
the linear algebra. After that, CrypTFlow2 [13] proposed a comprehensive implementation for linear
layers, based on both AHE-based and OT-based solution6. For the AHE-based solution, they use
the protocol from Gazelle, and employ several optimizations such as parallelization and reducing
ciphertext size. They observe the AHE-based solution performs better than the OT-based counterpart,
especially for large-scale models. More recently, Huang et al. presented Cheetah [14], the most
efficient AHE-based linear layer protocols, including matrix-vector multiplication and convolution
operations. The improvement comes from a novel input packing technique, which is rotation-free
and hence efficient. Moreover, the packing method is compatible with secret sharing in a ring. This
support further benefits the subsequent non-linear operations [14]. However, existing protocols are
only optimized for matrix-vector multiplication, rather than general matrix multiplication Iron relies
on. As mentioned earlier, directly extending the most efficient matrix-vector multiplication protocol
still causes prohibitively high communication overhead. Therefore, to approach such communication
issue, we propose a special-purpose protocol for matrix multiplication, based on the state-of-the-art
protocol in Cheetah.

Notice that different from the setting of 2PC private inference, [49] proposed a private outsourced
inference scheme, which stands for encrypted data and encrypted model. To this end, [49] designs
a homomorphic matrix multiplication protocol for multiplying two encrypted matrices, which is
fundamentally different our homomorphic multiplication with a plaintext. As a result, it requires to
invoke costly homomorphic multiplication and rotation operations, which are about 2 ∼ 20× more
expensive than the underlying operations of our protocol (refer to Table 9 of [50]).

Non-linear protocols. Although earlier works [29, 38] implemented non-linear function evaluation
with garbled circuits (GC), CrypTFlow2 [13] found that these GC-based solutions result in high

6The OT-based linear protocol is also used in SIRNN [17]

19

communication overhead. Therefore, the authors designed optimized OT-based protocols, such as
truncation and comparison. These protocols achieve state-of-the-art performance, and can be seen as
general underlying building blocks for the design of advanced protocols [17]. Despite the efficiency
advantage for truncation and comparison, these protocols can not support complex functions, like
exponent in Transformers. Actually, the state-of-the-art general-purpose framework, MP-SPDZ,
provides comprehensive protocols. However, as shown in SIRNN [17], the protocols implemented
with MP-SPDZ are communication-heavy and computation-intensive. Therefore, SIRNN [17]
proposed special-purpose protocols for exponent on negative inputs, sigmoid and reciprocal of square
root, which achieve orders of magnitude improvement over MP-SPDZ, both in terms of runtime
and communication. However, these functions are still insufficient to implement a private inference
framework on Transformers. Therefore, on the basis of the building blocks in [13, 17], we propose
new protocols for three non-linear functions that are critical components for Transformers, and
make several specialized optimizations. Note that, [11] also proposed a softmax protocol but in
an unrealistic setting, where except the client and the server, a trusted third party (TTP) exists and
assists to generate correlated randomness to accelerate protocol evaluation. However, in a practical
application, it is difficult to have a completely TTP [13, 14]. In contrast to [11], our setting lies in a
practical client-server setting, without any unrealistic assumptions.

20

	22-nips-1
	Introduction
	Preliminaries
	Threat Model
	Cryptographic Primitives

	Overview
	Transformer Architecture
	Private Transformer Inference

	Supporting Protocols
	Protocol for Matrix Multiplication
	Protocols for Non-linear Functions
	Softmax
	GELU
	LayerNorm

	Evaluation
	Experimental Setup
	Microbenchmark Evaluation
	End-to-end Inference Evaluation

	Discussion
	Conclusion

	22-nips-1 (1)
	Introduction
	Preliminaries
	Threat Model
	Cryptographic Primitives

	Overview
	Transformer Architecture
	Private Transformer Inference

	Supporting Protocols
	Protocol for Matrix Multiplication
	Protocols for Non-linear Functions
	Softmax
	GELU
	LayerNorm

	Evaluation
	Experimental Setup
	Microbenchmark Evaluation
	End-to-end Inference Evaluation

	Discussion
	Conclusion
	Appendix
	More Details on Preliminaries
	Fixed-Point Encoding
	Formal Description of the Threat Model
	Multi-Head Attention

	More Details on the Matrix Multiplication Protocol
	Correction Proof of the Matrix Multiplication Protocol
	Optimal Parameters Selection in the Matrix Multiplication Protocol
	Security Proof of the Matrix Multiplication Protocol

	More Details on Non-linear Protocols
	Tanh
	Underlying Protocols from rathee2021sirnn, rathee2020cryptflow2
	Extra Optimization
	Security Proof of Non-linear Protocols

	More Details on Experimental Evaluation
	Additional Experimental Setup
	Additional Experimental Results

	Related Works

