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ABSTRACT
Deep neural networks (DNNs) have shown their powerful capability

in scene text editing (STE). With carefully designed DNNs, one can

alter texts in a source image with other ones while maintaining

their realistic look. However, such editing tools provide a great

convenience for criminals to falsify documents or modify texts

without authorization. In this paper, we propose to actively defeat

text editing attacks by designing invisible “armors” for texts in

the scene. We turn the adversarial vulnerability of DNN-based

STE into strength and design local perturbations (i.e., “armors”)

specifically for texts using an optimized normalization strategy.

Such local perturbations can effectivelymislead STE attackswithout

affecting the perceptibility of scene background. To strengthen

our defense capabilities, we systemically analyze and model STE

attacks and provide a precise defense method to defeat attacks on

different editing stages. We conduct both subjective and objective

experiments to show the superior of our optimized local adversarial

perturbation against state-of-the-art STE attacks. We also evaluate

the portrait and landscape transferability of our perturbations.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of se-
curity and privacy; • Computing methodologies→ Artificial
intelligence.
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1 INTRODUCTION
Scene text editing (STE) [18, 22], converting texts in an image into

the desired texts while preserving their original style, has been

becoming a powerful tool for many applications, such as text image

synthesis [31] and augmented reality translation [16]. With the

rapid development of deep neural networks (DNNs) [12, 24], the

performance of DNN-based STE has also been greatly improved,

which can generate “fake” scene images with the replaced texts that

are naturalistic and hardly distinguished from the original ones.

However, due to the powerful capability of DNN-based STE

schemes, theymay bemaliciously used for scene text forgery, which

highly increases the threat to scene text-based applications. For

example, attacker can use existing DNN-based STE schemes [18, 22]

to edit handwritten texts, advertising words, or slogans in posters

and images. Such malicious forgery will undoubtedly have a nega-

tive impact on the reputation of the corresponding individuals or

organizations. Hence, defending against malicious usage of STE is

worthy of attention.

Several attempts have been proposed to resist malicious alter-

ations [14, 15, 21, 28], most of which focus on passively detecting

whether the texts in a suspicious image are altered. But passive

defenses have the following limitations. First, passive detection can-

not prevent the occurrence of malicious editing and requires much

professional knowledge, which is not applicable to ordinary users.

Second, most existing detection schemes are ad-hoc and designed

to detect particular tamper patterns (e.g., the methods in [14, 15]

are designed to detect copy-paste-based forgery) and they may be

not applicable for unknown STE attacks.

In this paper, complementary to passively defending against

STE attacks, we intend to defeat malicious text editing in an active

and efficient way. Specifically, inspired by the adversarial vulner-

ability of DNNs [2, 5, 9, 11, 23], we propose a general solution to

defend against DNN-based STE attacks, which utilizes adversarial

perturbations to avoid the STE attacks. One straightforward way

to generate adversarial perturbations is using existing methods

such as [2, 9, 11]. However, challenges arise when applying existing

adversarial perturbations to defend against STE attacks: 1) previous

global schemes tend to reduce the usability of the whole image

since they generate unnecessary perturbations to the background.

2) existing STE schemes are complex systems consisting of multiple

stages and breaking STE attacks using adversarial perturbations

has not been explored yet. To address the challenges, we aim to
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answer the following two questions in this paper: 1) how to generate
optimized adversarial perturbations without affecting the usability of
the image?, and 2) how to effectively defend against STE attacks?

To solve the first question, we propose a method of generating

optimized local adversarial perturbations specifically for texts to

protect them from malicious editing. In particular, we design local

adversarial perturbations as texts’ armors without affecting the vi-

sual quality of the background. But the defense performance of the

local armors may be unsatisfactory when using the sign function to

determine the update direction because it sets all partial derivatives

in the gradient to {-1, 0, 1} roughly. As result, the directions seri-

ously deviate from the ideal ones pointed to the gradient. To obtain

more efficient local armors, we propose a novel gradient normal-

ization strategy to reduce such deviation. We set partial derivatives

in the dominant dimensions as -1 or 1 to ensure the progress of

the generation of armors. For the remaining dimensions, we scale

the corresponding partial derivatives adaptively, which does not

cause deviation. We also theoretically prove that our normalization

strategy can make the update direction closer to the ideal one.

To defeat the STE attacks more effectively, we analyze existing

STE attacks and model the text editing process with four necessary

stages. For each stage, we propose a fine-grained defense goal (e.g.

distorting the altered texts) to precisely defend against the attacks

on different editing stages. We conduct comprehensive experiments

(both subjective and objective) to evaluate our active defense on two

state-of-the-art STE attacks. Subjective evaluations show that our

defense can actively resist STE attacks with a very high probability

(nearly 100%) even without original images as reference. Objective

evaluations on each stage show that our perturbations can precisely

defeat STE attacks and preserve the visual quality of source images.

We also evaluate the capabilities of our defense by analyzing both

the portrait and landscape transferability of our perturbations.

The main contributions in this paper include:

• We propose an active defense to resist STE attacks by mis-

leading the STE processing using adversarial perturbations.

• We propose a novel gradient normalization strategy to gen-

erate optimized local perturbations.

• We systemically analyze and model the STE attacks and

propose fine-grained defense goals for each editing stage.

• We conduct both subjective and objective experiments to

evaluate our defense against state-of-the-art STE attacks.

2 RELATEDWORK
2.1 Scene Text Editing
According to different workflows, we classify current STE schemes

into two categories: style transfer-based STE [22, 30, 32, 34] and

parameterization-based STE [18].

2.1.1 Style Transfer-based STE. This approach considers the text

editing as a style transfer problem in the spatial domain. Wu et al.

[22] first proposed a classic STE scheme consisting of three mod-

ules: text conversion, background inpainting, and fusion. Following

the workflow, subsequent researchers proposed several improve-

ments to improve the three modules. For example, Zhao et al. [34]

proposed a two-step fusion and use an adversarial loss to make

the altered results more realistic. Yang et al. [30] proposed to use

geometric control points of characters to move text locations. Yu et

al. [32] generate a three-channel mask to capture the location and

shape of text body, outline, and shadow.

2.1.2 Parameterization-based STE. Recently, Shimoda et al. [18]

proposed to convert a source image into a parametric representation

and then reconstruct the image from the representation. The repre-

sentation is a complete description of the image, so the attacker can

obtain a new representation for the fake image by manipulating

the text in the original representation. After that, the fake image

can be drawn easily based on the new representation.

2.2 Defenses against STE
2.2.1 Passive Defense. Existing defense schemes usually use a pas-

sive way to detect whether a given image is fake. For example,

Nandanwar et al. [14] identified a forgery image by analyzing the

shapes of the Fourier spectrum. They also proposed to train a DNN-

based classifier to detect forgery images [15]. Yan et al. [28] detected

alterations in document images by analyzing the texture and re-

flectance characteristics. Wang et al. [21] applied Faster R-CNN to

capture inconsistent features between the repaired and authentic

regions. Although these passive defenses work properly for partic-

ular tamper patterns, they may fail in detecting unknown patterns

and cannot prevent the generation of forgery images. Therefore,

existing passive defenses are inefficient to identify forgery images

and defeat STE attacks in advance.

2.2.2 Active Defense. To the best of our knowledge, there are few

works to resist DNN-based STE attacks actively. The active de-

fense has made some achievements in other fields. For example, in

[1, 19, 26, 27, 33], adversarial perturbations have successfully de-

feated malicious scene text recognition (STR). Similarly, to prevent

the abuse of deepfake [10, 13], many works [6, 17, 29] proposed to

add adversarial perturbations to face images for maximizing the

distortion in synthetic face images. These successful cases inspire

us to turn the adversarial vulnerability of DNN-based STE attacks

into strength to resist unauthorized text editing. However, due to

the complexity of STE attacks and the characteristics of texts, one

can hardly apply existing adversarial perturbation generation meth-

ods into defending against STE attacks. In the following sections,

we systemically analyze STE attacks and propose optimized local

adversarial perturbations specifically for texts to effectively defeat

STE attacks at different editing stages.

3 PROBLEM STATEMENT
3.1 Scene Text Editing Modeling
Let 𝑖𝑠 ,𝑤𝑠

be a source image and a source text in the image. A scene

text editing scheme aims to generate a forgery image 𝑜 𝑓 , in which

𝑤𝑠
has been altered as another target text 𝑤𝑡

while keeping its

realistic look. The public can hardly identity whether 𝑜 𝑓 is fake

only through visual observation.

Existing STE schemes are complex systems consisting of multiple

modules. We fully analyze the state-of-the-art STE schemes [18, 22,

30, 34] and summarize the following four necessary stages of STE:

(1) Text location. This stage is responsible for determining the lo-

cation of texts in the source image manually [22] or through

a well-trained locator [18].
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(2) Background inpainting. This stage removes the source texts

from the source image and also fills the corresponding holes.

The repaired pixels should be consistent with the background.

(3) Text style parsing. This stage extracts the styles of source

texts, such as fonts, borders, and shadows. It ensures the

consistency of the text styles before and after the alteration.

(4) Fake image generation. This stage produces the fake image

by combining the altered texts and the repaired background.

3.2 Threat Model
We mainly study the active defense in a white-box setting, where

the defender tries to prevent an attacker from altering the target

texts using the targeted STE scheme without authorization. As we

show in the transferability analysis of Section 5.4, our defense can

be applied to black-box scenarios, in which we do not need any

prior knowledge about the STE scheme.

Let 𝑃 be a defense method. 𝐷 is a visual distance metric between

images and 𝑑 is a discriminator for identifying whether the input

is real. 𝑃𝑟 (𝑑 ( ˆ𝑜 𝑓 ) = 0) is the probability that the discriminator 𝑑

regards
ˆ
𝑜 𝑓 as a forgery image. To defeat STE attacks and preserve

the functionality of the source image, we can formalize an active

defense based on two goals: 1) the defense should be effective to

defend against STE attacks, and 2) the defense can not reduce the

functionality of the source image.

Definition 3.1. ((𝜖 ,𝛿)-Active Defense) Let 𝑖𝑠 be a source image,

where an attacker wants to alter the texts in 𝑖𝑠 using an STE scheme

𝑓 . 𝑃 is a defense scheme and 𝑖𝑠 be the protected image (𝑖𝑠 = 𝑃 (𝑖𝑠 )).
ˆ
𝑜 𝑓 = 𝑓 (𝑖𝑠 ). 𝑃 is a (𝜖 ,𝛿)-Active Defense if for ∀ 𝑖 , 𝐷 (𝑖𝑠 , 𝑖𝑠 ) < 𝜖 and

𝑃𝑟 (𝑑 ( ˆ𝑜 𝑓 ) = 0) > 𝛿 .

In this paper, we are inspired by the vulnerability of DNNs and

propose to defend against STE attacks by carefully designing opti-

mized local adversarial perturbations. To the best of our knowledge,

this is the first work to defeat STE attacks by turning the vulnerabil-

ity of STE attacks into strength. We have to emphasize that existing

adversarial perturbation generation methods are not proper for

resisting malicious STE schemes due to the particularity and com-

plexity of STE tasks. To achieve a better active defense, we would

propose a novel adversarial perturbation generation method and

precisely defeat all editing stages of STE attacks as described below.

4 METHODOLOGY
4.1 Overview
Insights. We turn the adversarial vulnerability of DNNs [20] into

strength and design a novel method for generating optimized lo-

cal adversarial perturbations to resist malicious STE. Our design

strategies are twofold according to the two goals in Definition 3.1.

First, we propose to design local perturbations specifically for the

text areas of a source image. Most of the existing adversarial per-

turbations are global, which will reduce the visual quality of the

background. Instead, we intend to provide local protection for the

texts and reduce the negative impact of the perturbations on the

background. Second, we optimize the iteration process of perturba-

tion generation to obtain more precise update directions. Existing

gradient-based adversarial attacks [2–4, 9, 11, 25] usually use the

sign function to normalize partial derivatives of all dimensions

into {-1, 0, 1}, which makes the update direction seriously deviate

from the real one pointed to the gradient. Our design strategy is to

optimize the sign function and find a more accurate direction for

each update during the perturbation generation.

Pipeline. Besides generating the text’s armor, another question we

want to explore is how to maximize the defense performance. An

STE scheme is a complex system and the vulnerability of a system

is determined by its most vulnerable part (Cannikin Law). To this

end, we propose fine-grained goals to explore the vulnerability of

each stage of the STE attacks (i.e. precise defense). We illustrate the

pipeline of our active defense in Fig. 1. Given a source image and a

specific defense goal, we generate the optimized armors for resisting

the corresponding editing stage using our gradient normalization

strategy. With the protection of these carefully designed armors,

the forgery images would be distorted and can be identified as false

easily even without any professional knowledge.

4.2 Optimized Local Adversarial Perturbations
The key component in our defense pipeline is the generation of the

local adversarial perturbations, which is formalized as:

max

𝜂
L★(𝑖𝑠 + 𝜂, 𝑓 )

𝑠 .𝑡 . ∥𝜂∥∞ < 𝜖
. (1)

L★ is a cost function designed for defending against the editing

stage ★ (★ denotes one of the four necessary editing stages or their

combination). We will discuss how to design the L★ in Section 4.3.

𝜂 is the local armors we want to generate. We can solve the above

optimization problem based on existing gradient-based methods

[3, 4, 9, 11, 25]. Without loss of generality, we take BIM [9] as an

instance that generates adversarial perturbations iteratively using

𝑖𝑠𝑡+1 = Clip𝜖

(
𝑖𝑠𝑡 + 𝛼 × sign

(
∇
𝑖𝑠 𝑡
L★

(
𝑖𝑠𝑡 , 𝑓

)))
and 𝑖𝑠 0 = 𝑖𝑠 , (2)

where Clip𝜖 clips the input values to the required range (∥𝜂∥∞ < 𝜖).

However, these gradient-based methods have two problems: gener-

ating unnecessary perturbations for non-text areas and updating

perturbations with inaccurate directions.

Locality. To produce perturbations only for pixels in the text

areas (i.e. local perturbations), we add a mask operation before the

calculation of the sign function,

𝑖𝑠𝑡+1 = Clip𝜖

(
𝑖𝑠𝑡 + 𝛼 × sign

(
M

(
∇
𝑖𝑠 𝑡
L★

(
𝑖𝑠𝑡 , 𝑓

))))
and 𝑖𝑠 0 = 𝑖𝑠 .

(3)

𝑀 represents the mask operation that makes the sign function

ignore the partial derivatives of pixels in the non-text areas by

directly setting these partial derivatives as 0.

Optimized update direction. To reduce the deviation at each

iteration, we propose a new gradient normalization strategy, par-

tial sign (PS), that divides all dimensions into dominant and non-
dominant dimensions and only makes the full use of the perturba-

tion budget in the dominant dimensions. Specifically, for a gradient

𝑔 (i.e. ∇
𝑖𝑠 𝑡
L★), we have 𝑔 = [𝑔1, 𝑔2, · · · , 𝑔𝑛], where 𝑛 is the number

of dimensions. Then, we rank all partial derivatives (𝑔𝑖 ) in descend-

ing order according to their absolute values as

𝑔𝑟 = [𝑔𝑟
1
, 𝑔𝑟

2
, · · · , 𝑔𝑟𝑛], ∥𝑔𝑟𝑖 ∥ ≥ ∥𝑔

𝑟
𝑗 ∥ 𝑖 𝑓 𝑖 ≤ 𝑗 . (4)
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Generate local armors 

Text location Background inpainting Text style parsing Fake image generation

Defend against each editing stage using local armors

Text hiding Text preservation Inconsistent style Distortion

Mask of texts Repaired image Extracted style Forgery image

w/o

w

"Mass": Almendra-Bold
...

Font 

Font 

"Mass": PragatiNarrow-
Regular
...

Add to 
text areas

Armors

ℒ⋆

Source image

∇𝑖𝑠෡ℒ⋆

PS(∇𝑖𝑠෡ℒ⋆)

Scale

Determine the 
update direction

Label

Cost function

Figure 1: Our active defense pipeline against STE attacks. Given a source image and a specific defense goal represented by a cost
function L★, we first generate the local armors and then add them to the corresponding text areas. “w” means with defense,
and “w/o” means without defense.

The top 𝑝 percent of the dimensions in 𝑔𝑟 are dominant because the

gradient vector will be closer to the axes of these dimensions. The

other dimensions are non-dominant. Next, we scale 𝑔 by 𝑔𝑠 = 𝑠 × 𝑔
where 𝑠 = 1

𝑔𝑟⌊𝑛×𝑝%⌋+𝛾
(𝛾 is a tiny value and we set 10

−7
in our

experiments). Finally, we clip all values in 𝑔𝑠 into the range of

[−1, 1] to obtain the normalized result, i.e., PS(𝑔). With our PS, the

complete generation of local perturbations can be described as

𝑖𝑠𝑡+1 = Clip𝜖

(
𝑖𝑠𝑡 + 𝛼 × PS

(
M

(
∇
𝑖𝑠 𝑡
L★

(
𝑖𝑠𝑡 , 𝐸

))))
and 𝑖𝑠 0 = 𝑖𝑠 .

(5)

We summarize the generation process in Algorithm 1.

We theoretically analyze the effectiveness of the proposed op-

timized normalization strategy. Compared with existing gradient-

based adversarial perturbation generation methods, the optimized

local perturbation can gradually approximate the ideal one by pro-

viding a more accurate update direction at each iteration.

Theorem 4.1. For any update gradient ∇
𝑖𝑠 𝑡
L★, the PS strategy

generates a normalization result of the gradient with a smaller offset
than that produced by the sign function, i.e.,

cos(∇
𝑖𝑠 𝑡
L★, PS(∇𝑖𝑠 𝑡L★)) ≥ cos(∇

𝑖𝑠 𝑡
L★, sign(∇𝑖𝑠 𝑡L★)) (6)

4.3 Defense to Each Stage
A complete STE attack consists of multiple stages and defeating any

stage would lead to the success of the defense. Thus, we provide

fine-grained defense goals for defeating each editing stage precisely

as the following:

• Texts hiding. It is proposed to hinder the text detection. If

one text cannot be detected by the locator, all subsequent

editing operations cannot be applied to this text.

• Texts preservation. It breaks the inpainting by preserving

the target texts. The preserved texts will overlap with altered

texts, which can be easily identified as false.

Algorithm 1: Protecting texts with local armors.

Input :Source image 𝑖𝑠 , cost function L★, perturbation
budget 𝜖 , step size 𝛼 , 𝑇 , 𝑝 , 𝛾 .

Output :Protected source image 𝑖𝑠 .
ˆ𝑖𝑠
0
← 𝑖𝑠 ;

for 𝑡 ← 0 to 𝑇 − 1 do
𝑔← ∇

𝑖𝑠 𝑡
L★;

𝑔←Set all partial derivatives of the corresponding

dimensions of all non-text area pixels in 𝑔 to 0;

𝑔′ ←All non-zero partial derivatives in 𝑔;

𝑔𝑟 ←Rank values in abs(𝑔′) in descending order;

𝑠 ← 1

𝑔𝑟⌊𝑛×𝑝%⌋+𝛾
;

𝑔𝑠 ← 𝑠 × 𝑔;
𝑔𝑠𝑐 ← clip(𝑔𝑠 , −1, 1);
𝑖𝑠 ← clip(𝑖𝑠 + 𝛼 × 𝑔𝑠𝑐 , 𝑖𝑠 − 𝜖, 𝑖𝑠 + 𝜖);

𝑖𝑠 ← clip(𝑖𝑠 , −1, 1);
return 𝑖𝑠 ;

• Inconsistent text style. This goal is to mislead the text style

parsing, and chaotic text styles are also suspicious.

• Distortion in fake images. It is proposed to break the last

stage. Unnatural distortions reduce the realness.

The design of cost functions is related to both the defense goal

and the type of the specific sub-model used in each editing stage.

For sub-models of classification tasks (e.g. the model for predicting

fonts), the cost function can be formalized as

L★ = −max(𝑧★𝑦 −max(𝑧★𝑖 : 𝑖 ≠ 𝑦), 𝜏), (7)

where 𝑧★𝑦 is the logit value of the corresponding label 𝑦, and 𝜏

controls the strength of defense (we set it as 0 in the experiments).

For sub-models of regression tasks (e.g. the model for generating
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fake images), we establish the cost function in the form of 𝐿1-norm

as

L★ = ∥𝑦★ − 𝑜★∥1, (8)

where 𝑜★ is the output of the editing stage ★ and 𝑦★ is the corre-

sponding label. In addition, the goal of text preservation is targeted

and the inpainting model is regression, where the corresponding

cost function is

L𝑏 = −∥𝑖𝑠 − 𝑜𝑏 ∥1, (9)

where 𝑜𝑏 is the repaired image.

Combine all defense goals. Besides considering these defense

goals individually, we can also combine them for realizing multiple

defense goals. In this case, the cost function is

L𝑐𝑜𝑚 =
∑︁
★

𝜆★L★, (10)

where 𝜆★ is the weight hyperparameters.

5 EXPERIMENTS
5.1 Configurations
Datasets. Following the default settings in state-of-the-art STE

schemes, we use two datasets in our experiments: the synthetic

dataset [22] (short as SYN) and the book cover dataset [7] (short

as BOOK). In SYN, the source images are the extracted text areas

and the text location detection stage is not applicable in this case.

Besides, there is also other auxiliary ground truth. BOOK consists

of whole source images, each of which contains multiple texts.

Attack configurations. We choose two state-of-the-art STE at-

tacks in our experiments, Derendering [18] and SRNet [22]. Specifi-

cally, we use SRNet to edit texts in the source images of SYN. SRNet
does not consider the stage of text location that is completed manually.
The stage of text style parsing in SRNet consists of two sub-models

for generating text skeletons and foreground texts. The sub-models

of each editing stage in SRNet are summarized in Table 1.

We use Derendering to vectorize the source images in Book.

Since there are no ground truth of altered images in Book for com-

parison, we do not modify the parametric representation for editing,

but directly reconstruct the original images from them. The defense

performance can be quantified by the difference between the origi-

nal and reconstructed images. The text style parsing in Derendering

includes five submodules for predicting the fonts, the visibility of

shadow (Shadow-V) and border (Border-V), and the effect of shadow

(Shadow-E) and border (Border-E), respectively. The sub-models

of each editing stage in Derendering are shown in Table 2. For

the stage of fake image generation, we implement it using APIs

provided in Sika
1
.

Defense configurations.We follow [2, 11] to set 𝑇 = 40 and 𝜖 =

0.3. To balance the deviation and the update progress, we intuitively

set 𝑝 = 50, i.e., half of the dimensions will be truncated as -1 or 1.

For different editing stages, we choose appropriate cost functions

for achieving the fine-grained defense goals, which are summarized

in Table 1 and 2. Note that, due to the lack of ground truth in BOOK,

we use the outputs of each editing stage in Derendering w.r.t. the

original source image as the pseudo labels to generate armors.

Without loss of generality, we choose two popular gradient-

based methods, BIM [9] and PGD [11], as baselines. Based on the

1
https://skia.org

Table 1: Configurations for SRNet. “R” means regression

Stage Inpainting

Parsing

Generation

Skeleton Foreground

Model type R R R R

L★ Eq. (9) Eq. (8) Eq. (8) Eq. (8)

Table 2: Configurations for Derendering. We denote “R” and
“C” as the regression and classification, respectively

Stage Location Inpainting

Parsing

Font Border-V Border-E Shadow-V Shadow-E

Model type C R C C C C R

L★ Eq. (7) Eq. (9) Eq. (7) Eq. (7) Eq. (7) Eq. (7) Eq. (8)

two methods, we apply our design strategies and obtain PS-M-

BIM and PS-M-PGD by adding the mask operation and optimizing

the sign function. We also conduct ablation experiments by only

considering one strategy. So we obtain PS-BIM (or PS-PGD) and

M-BIM (or M-PGD). For SYN and SRNet, the local strategy is natural

because the source images only contain text areas. Please note that

the proposed mask operation and PS can be also applied to other

gradient-based methods.

Metrics. In the subjective evaluations, we use the proportion of

images identified as false to assess the defense performance. In ob-

jective evaluations, we use PSNR and SSIM to calculate the distance

between the source images and their armed version. Besides, we

use the recall rate (RT) to measure the performance of hiding texts,

which is calculated by RT =
𝑁𝑑

𝑁𝑤
. 𝑁𝑤 is the number of the text

areas in a source image (we denote the number of areas detected

in the source image as 𝑁𝑤 ) and 𝑁𝑑 is the number of detected text

areas in the protected source image. To assess the performance of

disturbing the text style, we use the accuracy metric (Acc) for the

classification sub-models and 𝐿1 for the regression sub-models.

5.2 Subjective Evaluations
We conduct subjective experiments to evaluate the effectiveness of

our defense, i.e., determine whether the texts in the scene images

can be maliciously edited after arming the texts with our “armors”.

We recruit 10 observers in the subjective experiments. The ob-

servers are first asked to browse 100 source images in each dataset

to establish a general impression of the source images. Then we

choose another 300 source images and generate the “armors” for

the texts in these images. We implement STE attacks to alter the

protected texts using Derendering and SRNet. Given the altered

images, the observers are asked to observe the style and typesetting

of the texts in the images and identify whether our defense was

successful. We also provide some subjective guidelines (illustrated

in Fig. 2) to assist the assessment of the observers. For example,

partial erasure of texts or unnatural text overlap indicates the STE

attacks fail to alter texts while maintaining the realistic look. How-

ever, inconspicuous changes liking the shadows in the bottom right

image of Fig. 2 may be thought as inherent, which means a success-

ful alteration. Note that, the observers are told not judge whether

the images are true or false by the content of texts because the

content of texts can be modified at will.

We evaluate the effectiveness of both PS-M-BIM and PS-M-PGD

and the defense performance of resisting all possible stages. The
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Figure 2: STE attack results on four protected source images.
Upper left: texts are partially erased and bad typography.
Upper right: original text “MANARA” have not been erased
cleanly in the inpainting. Bottom left: messy text style and
strange typography. Bottom right: inconspicuous shadows.

Table 3: Subjective evaluation of our defense on Derendering

Method

Stage

w/o

Location Inpainting

Parsing

Combine

Font Border-V Border-E Shadow-V Shadow-E

PS-M-BIM 100.00% 67.58% 77.17% 21.01% 89.27% 27.85% 93.15% 95.89%

10.50%
PS-M-PGD 100.00% 64.84% 78.54% 22.83% 89.95% 31.51% 93.61% 97.21%

average evaluation results are shown in Table 3 and 4, in which the

values are the proportion of images identified as false. It is clear

that our armors can prevent malicious text editing with a very

high probability, especially when we defend against the location in

Derendering (100%) and the foreground text generation in SRNet

(>95%). Defending against the location in Derendering has two

consequences: 1) all texts in an image cannot be detected and the

following editing step (e.g., vectorization) cannot be executed (we

set the reconstructed image to black in this case); 2) only part of

pixels of text areas are recognized and erased, while the remaining

are kept in the reconstructed image (see the upper left image of

Fig. 2). As shown Fig. 3(a), defending against the foreground text

generation in SRNet makes the altered texts distorted. All the above

phenomena indicates the failure of the STE attacks.

In addition, we test another cost function for the inpainting in

SRNet because we find thatL𝑏 = −∥𝑖𝑠 −𝑜𝑏 ∥1 conflicts with the cost
function used to distort the generated fake images (denoted as L𝑔).
Specifically, L𝑏 = −∥𝑖𝑠 − 𝑜𝑏 ∥1 can maintain the background in the

repaired image, but L𝑔 try to distort the background. Because of

this conflict, the performance of the armors generated based on the

combined cost function is not good. After using L𝑏 = ∥𝑡𝑏 − 𝑜𝑏 ∥1,
the corresponding scores have been significantly improved.

Table 4: Subjective evaluation of our defense on SRNet

Method L𝑏

Stage

w/o

Inpainting

Parsing

Generation Combine

Skeleton Foreground

PS-M-BIM

−∥𝑖𝑠 − 𝑜𝑏 ∥1 81.67%

80.83% 97.67% 45.33%

50.67%

18.33%

∥𝑡𝑏 − 𝑜𝑏 ∥1 88.67% 85.67%

PS-M-PGD

−∥𝑖𝑠 − 𝑜𝑏 ∥1 79.00%

80.33% 95.83% 59.50%

66.33%

∥𝑡𝑏 − 𝑜𝑏 ∥1 82.17% 87.33%

(a) Distorted text (b) Bold text

Figure 3: Visualization samples of the altered images before
(top) and after (bottom) using our defense. (a) Defending
against the generation of foreground texts makes the altered
texts unrecognizable. (b) Defending against the fake image
generation leads to the thicker texts.

5.3 Objective Evaluations
Defeating text location. We use PSNR an SSIM to measure the

distance between the original and protected source images for

assessing the imperceptibility of armors. Besides, we use RT to

quantify the performance of hiding text areas (RT without defense

is 1 because of the pseudo labels). The experimental results are

shown in Table 5. From Table 5, one can observe that both the mask

operation and the PS strategy improve the imperceptibility of the

armors. Besides, the PS strategy further reduces RT compared the

sign function, which indicates that reducing the deviation in each

update does enhance the defense effect of hiding texts.

Defeating background inpainting. We show the impercep-

tibility of our armors and the 𝐿1 distance between the source and

repaired images (i.e. the similarity) in Table 6. From Table 6, the PS-

based methods achieve approximate even better text preservation

performance with fewer perturbations compared with the sign-

based methods. However, we find that the defense against the in-

painting of Derendering reduces the similarity, which means failed

defense from the perspective of the objective metric 𝐿1. However,

the defense is successful from the perspective of visual observation

shown as Fig. 4(a). The reason for this gap is the perturbations

added to the background occupying most of the area seriously in-

crease the 𝐿1 distance. Therefore, we must emphasize that due to
the gap between objective image quality metrics and subjective feel-
ings, the results of all objective evaluations on the similarity even the
imperceptibility only partially reflect the defense effect, not accurately.

Defeating text style parsing. In order to avoid premature

termination of iteration of armors generation caused by the wrong

location, we modify the locator’s output with the corresponding

pseudo label of location during the generation process. We do not

execute the replacement in the inference phase, and we average the

results over all detected real text areas. The experimental results

are shown in Table 7 and 8, where the similarity in Table 8 means

the 𝐿1 distance between the output of the corresponding substage

and its label. From the two tables, we observe that the PS-based

methods still performs better than the sign-based methods in most
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Table 5: Defenses against
text localization

Method RT ↓
Imperceptibility

PSNR ↑ SSIM ↑
BIM 0.017 40.093 0.969

PS-BIM 0.009 42.610 0.981

M-BIM 0.004 42.589 0.996

PS-M-BIM 0.000 43.143 0.997

PGD 0.003 29.706 0.870

PS-PGD 0.000 29.975 0.880

M-PGD 0.001 35.566 0.987

PS-M-PGD 0.001 35.651 0.987

Table 6: Defenses against background
inpainting

Dataset Method

Similarity Imperceptibility

w/o w ↓ PSNR ↑ SSIM ↑

SYN

M-BIM

0.093

0.063 25.879 0.808

PS-M-BIM 0.061 26.315 0.826

M-PGD 0.067 23.416 0.628

PS-M-PGD 0.068 23.629 0.631

BOOK

BIM

0.026

0.031 26.331 0.758

PS-BIM 0.029 27.127 0.782

PGD 0.038 24.937 0.724

PS-PGD 0.039 24.943 0.735

Table 7: Defenses against the text style pars-
ing in Derendering

Method

Acc ↓ 𝐿1 ↑

Font Border-V Border-E Shadow-V

Shadow-E

Blur Offset

BIM 0.007 0.267 0.002 0.119 10.424 28.147

PS-BIM 0.008 0.047 0.002 0.026 9.611 29.187

M-BIM 0.006 0.081 0.008 0.008 4.189 10.476

PS-M-BIM 0.003 0.080 0.006 0.008 4.147 11.960

PGD 0.002 0.011 0.005 0.012 13.104 33.431

PS-PGD 0.006 0.001 0.004 0.004 11.145 31.249

M-PGD 0.008 0.007 0.025 0.005 4.331 11.654

PS-M-PGD 0.005 0.004 0.025 0.007 4.547 12.047

Table 8: Defenses against the text style parsing in the SRNet

Stage Method

Similarity Imperceptibility

w/o w ↑ PSNR ↑ SSIM ↑

Skeleton

M-BIM

0.163

0.205 29.758 0.868

PS-M-BIM 0.203 30.468 0.889

M-PGD 0.256 25.890 0.705

PS-M-PGD 0.258 26.121 0.713

Foreground

M-BIM

0.049

0.101 27.121 0.795

PS-M-BIM 0.101 27.843 0.817

M-PGD 0.106 25.088 0.689

PS-M-PGD 0.105 25.320 0.696

(a) Derendering (b) SRNet

Figure 4: Preserved texts in the repaired images.

cases. Besides, the defenses do successfully mislead the outputs of

the all sub-models used in different parsing stages. Note that, not all

misleading in the style parsing stage can resist forgery with a high

probability as we have shown in Table 3. Thus, we must carefully

choose the target to defend against.

Defeating Fake image generation.We test the defense against

the fake image generation in SRNet and list the evaluation results in

Table 9, where the similarity is the distance between the generated

and desired fake image. Compared with the similarity without de-

fense in Table 10, the increases of the 𝐿1 distances in 9 indicate that

the armors successfully distort the generated fake image. However,

from Fig 3(b), we can see that the distortion is mainly reflected

in bold text and blurred background, which does not destroy the

authenticity of the image a lot, liking that in Fig 3(a). This result

confirms the gap between the objective metrics and subjective feel-

ings again. All above experimental results show that the defenses

deployed for resisting the underlying editing stages (e.g. text lo-

cation, background inpainting, and text style parsing) are more

effective than directly defending against the final stage.

Table 9: Defenses against the fake image generation in SRNet

Method Similarity ↑
Imperceptibility

PSNR ↑ SSIM ↑
M-BIM 0.154 27.056 0.816

PS-M-BIM 0.151 27.947 0.838

M-PGD 0.164 24.478 0.697

PS-M-PGD 0.164 24.735 0.703

Table 10: Defenses against SRNet and Derendering consider-
ing all defense goals

Dataset Method

Similarity Imperceptibility

w/o w ↑ PSNR ↑ SSIM ↑

SYN

M-BIM

0.066

0.104 28.427 0.848

PS-M-BIM 0.104 28.894 0.852

M-PGD 0.121 25.930 0.721

PS-M-PGD 0.121 25.947 0.734

BOOK

BIM

0.024

0.072 28.431 0.815

PS-BIM 0.071 30.251 0.860

M-BIM 0.036 32.913 0.981

PS-M-BIM 0.036 33.444 0.982

PGD 0.084 24.855 0.741

PS-PGD 0.082 25.348 0.759

M-PGD 0.038 28.869 0.965

PS-M-PGD 0.037 28.895 0.965

Combine all stages.We finally generate armors by considering

all defense goals and exhibit the results in Table 10. From Table

10 and the previous evaluation results (e.g. Table 9 and 8), PGD-

based methods can better maintain the visual quality of the source

images because of the initial random noises. Thus, we suggest to

use BIM-based defense to resist STE attacks. In addition, defending

against multiple stages is not necessarily better than defending

against only one stage. For example, the combined defense against

Derendering is less effective than the defense against the location

of Derendering (see Table 3). This is because the defenses against

different stages interfere with each other and this interference may

be negative, such as we have shown in Table 4.

5.4 Transferability
In this section, we discuss the portrait and landscape transferability

of the proposed armors. The portrait transferability refers to the

ability that an armor generated for hindering one stage can also

work for other stages in the same STE scheme. And the landscape
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Table 11: Portrait transferability of different stages

Stage

RT Acc 𝐿1

Location Font Border-E Shadow-E

Location 0.002 0.463 0.043 2.414

Font 0.812 0.003 0.023 2.436

Border-E 0.708 0.080 0.003 3.113

Shadow-E 0.559 0.180 0.004 7.994

(a) 𝑖𝑠 (b) w/o (c) w

Figure 5: Landscape transferability. (a) Protected source im-
ages. (b) Text masks of the original source images. (c) Text
masks of protected source images

transferability refers to the ability that an armor generated for an

STE scheme can also defeat another one.

Portrait transferability. We evaluate the portrait transferabil-

ity between the four key stages in Derendering: text location, font

parsing, Border-E, and Shadow-E. The evaluation results are shown

in Table 11. We replace the outputs of the locator with the corre-

sponding pseudo labels to count Acc and 𝐿1 to accurately evaluate

the portrait transferability. The 𝐿1 values of Shadow-E is the sum of

the 𝐿1 values of blur and offset. Table 11 confirms that the armors

generated for one sub-model can also influence other sub-models

in Derendering even these sub-models are parallel (e.g. the parsers

of font, Border-E, and Shadow-E). Therefore, even if we only know

partial details of STE attacks (i.e. semi-white-box), we can defend

against the attack.

Landscape transferability. In this evaluation, we assume that we

know the details of SRNet but know nothing about the targeted STE

attack (Derendering). We generate the proposed armors thought

SRNet and add them to the source images in SYN. Then, we feed

these armed source images to Derendering and observe the editing

results. To meet the requirement of Derendering about the input

size, we place the armed image in a larger black image before

feeding it to Derendering. As illustrated in Fig. 5, we observe that

these armors can hinder the text location in Derendering. The

probability of hindering the location is about 23% in our evaluation.

Meanwhile, these armors can also mislead the prediction of fonts

as shown in Table 12. All these evidences show that the proposed

armors have a strong landscape transferability. This indicates our

defense can be applicable to black-box scenarios, where the defender

has little prior knowledge about the STE attack.

5.5 Evaluation on ICDAR
Besides SYN and BOOK, we also test our active defense on a real-

world dataset ICDAR [8]. In this evaluation, we apply PS-BIM and

PS-M-BIM to defend against each stage of Derendering, whose

Table 12: Armors generated against SRNet can reduce the
accuracy of the prediction of fonts in Derendering

Inpainting Skeleton Foreground Generation Combine

0.450 0.630 0.576 0.590 0.606

Table 13: Defenses against Derendering on ICDAR

Method

Location Inpainting Parsing

RT

𝐿1 Acc 𝐿1

w/o w Font Border-V Border-E Shadow-V Shadow-E (Blur) Shadow-E (Offset)

PS-BIM 0.007 0.031 0.022 0.005 0.000 0.000 0.005 16.969 37.848

PS-M-BIM 0.003 - - 0.004 0.000 0.015 0.000 6.713 19.953

Table 14: Evaluation of different 𝑝

Stage 𝑝 = 20 𝑝 = 30 𝑝 = 40 𝑝 = 50 𝑝 = 60 𝑝 = 70

Location (RT) 0.004 0.003 0.003 0.003 0.004 0.005

Font (Acc) 0.010 0.005 0.004 0.004 0.008 0.019

results are shown in Table 13. From the experimental results, we

can clearly observe that our method also works for ICDAR.

We also test our method against Derendering on ICDAR using

different 𝑝 and show the results in Table 14. We observe that the

setting of 𝑝 can slightly affect the effectiveness of our defense and

our method can always defeat the text location and font recognition

process regardless of the value of 𝑝 . The two sets of experiments

can further confirm the practicability of our method.

6 CONCLUSION
In this paper, we present a precise active defense against DNN-

based STE attacks. We take the adversarial vulnerability of DNNs

and generate local perturbations using our gradient normalization

strategy to protect texts. Besides, we also systematically analyze

and model the STE attacks for providing precise defenses against

individual editing stages. Both subjective and objective assessments

have demonstrated the superior of our defense on two state-of-the-

art STE attacks, even in black-box scenarios.

In the future, we will mainly consider enhancing the practicabil-

ity and reducing the complexity of our active defense. So we will

explore how to improve the transferability, including the portrait

and landscape transferabilities, of text armors and how to produce

a universal armor for multiple images.
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