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ABSTRACT
Modern autonomous vehicles adopt state-of-the-art DNNmodels to
interpret the sensor data and perceive the environment. However,
DNN models are vulnerable to different types of adversarial attacks,
which pose significant risks to the security and safety of the vehicles
and passengers. One prominent threat is the backdoor attack, where
the adversary can compromise the DNN model by poisoning the
training samples. Although lots of effort has been devoted to the
investigation of the backdoor attack to conventional computer
vision tasks, its practicality and applicability to the autonomous
driving scenario is rarely explored, especially in the physical world.

In this paper, we target the lane detection system, which is an
indispensable module for many autonomous driving tasks, e.g.,
navigation, lane switching. We design and realize the first physical
backdoor attacks to such system. Our attacks are comprehensively
effective against different types of lane detection algorithms. Specif-
ically, we introduce two attack methodologies (poison-annotation
and clean-annotation) to generate poisoned samples. With those
samples, the trained lane detection model will be infected with
the backdoor, and can be activated by common objects (e.g., traffic
cones) to make wrong detections, leading the vehicle to drive off
the road or onto the opposite lane. Extensive evaluations on public
datasets and physical autonomous vehicles demonstrate that our
backdoor attacks are effective, stealthy and robust against various
defense solutions. Our codes and experimental videos can be found
in https://sites.google.com/view/lane-detection-attack/lda.

CCS CONCEPTS
• Security and privacy → Systems security.
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Figure 1: Our physical testbeds and attack results. (a) Baidu
Apollo D-Kit autonomous vehicle [2] with a Leopard camera;
(b) Weston Unmanned Ground Vehicle [41] with a RealSense
D435i camera. (c) Results of two physical attacks. [Left] the
original image with the groundtruth lane boundaries (right
turn). [Middle] Wrong detection result under the poison-
annotation attack (left turn). [Right] Wrong detection result
under the clean-annotation attack (left turn).

1 INTRODUCTION
The rapid development of deep learning technology has increased
the perception capability of autonomous vehicles to interpret the
environment and make intelligent actions. The vehicle collects
multiple types of data from the sensors and employs DNN mod-
els to accomplish different functions. One important function is
lane detection, which aims to identify the traffic lanes from the
images or videos captured by the camera. This function is critical
in autonomous driving for lane following, changing and overtak-
ing. Over the past years, a large number of deep learning based
algorithms and approaches have been introduced to significantly
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improve the detection accuracy and real-time efficiency [17, 22, 24,
31, 35, 36, 46, 47, 67].

Unfortunately, past works have demonstrated that DNN models
are not robust and can be easily fooled by malicious entities. One
infamous threat is the DNN backdoor [12, 13, 32, 57]. The adversary
embeds a secret backdoor into the victim model by poisoning the
training set. This backdoor remains dormant with normal input
inference samples. It will be activated by malicious samples which
contain an adversary-specific trigger, misleading the infected model
to give wrong predictions. Researchers have proposed a variety of
novel attacks against DNNmodels for computer vision [3, 21, 27, 33,
34, 54, 58], natural language processing [5, 10, 44, 60], reinforcement
learning [25, 53, 65], etc. However, there are no studies investigating
the backdoor opportunity against the lane detection systems.

This paper aims to bridge this gap by designing and implementing
the first practical backdoor attacks to lane-detection DNN models in
the physical world. There are a couple of challenges to achieving this
goal. First, existing works mainly focus on backdoor attacks in the
digital world, where the adversary can arbitrarily manipulate the
input samples for adding triggers (e.g., changing a block of pixels
in an image). It is hard to utilize those techniques to attack real-
life applications due to the semantic gap between the digital and
physical worlds. A few works then implement physical backdoor
attacks in the real-world setting [6, 26, 40, 55, 64]. However, these
methods mainly target the face classification models. Different from
them, lane detection models do not predict labels, which increases
the difficulty of poisoned sample generation. Besides, the physical
triggers used to attack face classification models cannot be applied
to lane detection due to the semantic differences between these two
scenarios. The physical triggers need to be carefully redesigned.

Second, to make the backdoor more stealthy, past works pro-
pose clean-label attacks against classification models, where the
poisoned samples still have the correct labels to compromise the
model [43, 66]. This is achieved by adding adversarial perturbations
to alter the classes of these poisoned samples. Since lane detection
models do not predict classes, it is hard to leverage these solutions
to generate visually normal poisoned samples.

Third, existing backdoor attacks focus on one specific DL algo-
rithm (e.g., classification) when poisoning the data samples. How-
ever, this does not hold true for the lane detection scenario, which
can use different algorithms to train themodel, such as segmentation-
based [35] or anchor-based [46] methods. It is challenging to gener-
ate unified poisoned samples, which can attack any lane detection
models regardless of their algorithms.

Our proposed attacks can address the above challenges with sev-
eral innovations. First, we present new designs of semantic triggers
in the context of autonomous driving. After investigating some
mainstream traffic datasets, we select a set of two traffic cones with
specific shapes and positions as the trigger to activate the backdoor.
This trigger looks very natural in the road environment and is diffi-
cult to be noticed. Meanwhile, it is also unique enough not to affect
the normal conditions of autonomous driving. Second, we introduce
two new approaches to poison training samples and manipulate
annotations to achieve backdoor embedding. (1) Poison-annotation
attack: the adversary can craft poisoned samples by intentionally
mis-annotating the samples with the trigger. (2) Clean-annotation
attack: this technique utilizes the image scaling vulnerability [56]

to conceal the anomaly of malicious samples. Specifically, we create
poisoned samples, which are visually similar to clean ones with the
correct annotation and no triggers. After image scaling, those sam-
ples will give wrong lane boundaries and a trigger, which become
effective in backdoor embedding. Both approaches are algorithm-
agnostic: poisoning the dataset does not require the knowledge
of the adopted algorithm, and the resulted poisoned samples are
effective against different models and algorithms. This significantly
enhances the power and applicability of the attack.

We implement our backdoor attack against four modern lane
detection models. Evaluations on the public dataset and two un-
manned vehicles (Fig. 1(a,b)) running the off-the-shelf autonomous
driving systems in the physical environment demonstrate the attack
effectiveness and robustness. As shown in Fig. 1(c), the compro-
mised model makes the vehicle drive across the lane and finally hit
the bush on the roadside. This indicates the severity and practicality
of our attacks, and this new attack vector should also be carefully
considered when designing robust autonomous driving models.

To summarize, we make the following contributions:
• We design the first backdoor attacks to the lane detection system
in autonomous driving.

• We realize the first physical backdoor attacks to non-classification
models. The attacks are algorithm-agnostic.

• We propose the first physical clean-annotation backdoor attack.
• We perform extensive evaluations on both the dataset and physi-
cal autonomous vehicles to demonstrate the attack significance.

2 BACKGROUND
2.1 DNN-based Lane Detection
We focus on the DNN-based end-to-end lane detection system as
the victim of our backdoor attacks. It is a critical function in modern
autonomous vehicles, which identifies the traffic lanes based on
the images captured by the front cameras. Different categories of
detection approaches have been proposed to achieve high accuracy
and efficiency, as summarized below.
• Segmentation-based methods [35]. These are the most preva-
lent lane detection technology with significant performance on
different lane detection challenges. They treat lane detection as
a segmentation task and estimate whether each pixel is on the
lane boundaries or not. They have been commercialized in many
autonomous vehicle products, such as Baidu Apollo [2].

• Row-wise classification methods [17, 36]. These solutions
use the multi-class classification algorithm to predict the lane
positions of each row and decide the positions that are most
likely to contain lane boundary markings. They can reduce the
computation cost but can only detect fixed lanes.

• Polynomial-based methods [47]. These lightweight methods
generate polynomials to represent the lane boundaries by depth
polynomial regression. They can meet the real-time requirement
with a certain accuracy drop. This kind of algorithm has been
deployed in OpenPilot [8].

• Anchor-based methods [46]. These solutions leverage object
detection models (e.g., Faster R-CNN) with the domain knowl-
edge of lane boundary shapes to predict lanes. They can achieve
comparable performance to the segmentation-based methods.
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Past works demonstrate the vulnerability of these lane-detection
models against adversarial examples [23, 42]. In this paper, we show
they are also vulnerable to backdoor attacks. Our attack goal is to
generate a poisoned dataset, such that any lane detection model
trained from it will be infected with the backdoor, regardless of the
detection methods.

2.2 Backdoor Attacks
In a backdoor attack, the adversary tries to compromise the victim
DNN model, which can maintain correct predictions for normal
samples, but mis-predict any input samples containing a specific
trigger [32]. The most popular attack approach is to poison a small
portion of training samples, which could embed the backdoor to the
model during training [6]. Over the years, a quantity of methods
have been proposed to enhance the attack effectiveness, stealthiness
and application scope [28], such as invisible [27], semantic [3],
reflection [33] and composite [29] backdoor attacks.
Physical backdoor attacks. Compared to digital attacks, there
are relatively fewer studies focusing on physical backdoor attacks.
Most works attack the face classification models in the physical
world [6, 26, 40, 55, 64]. However, there are currently no studies
about the physical backdoor attacks against non-classification models.
We aim to fill this gap by targeting the lane detection systems.
Backdoor defenses. In addition to backdoor attacks, a variety
of defense solutions have also been proposed. They can be gen-
erally divided into (1) Backdoor removal. These defenses aim to
eliminate the backdoor from the compromised model. For instance,
Fine-Pruning [30] was proposed, which extends the model pruning
technique to prune the neurons based on their average activation
values. (2) Trigger reconstruction. These approaches aim to detect
whether the model contains the backdoor and reconstruct the trig-
ger. One typical example is Neural Cleanse [52], which optimizes a
trigger for each class and calculates an anomaly index to determine
whether the model is compromised. (3) Anomalous sample detection.
This type of solution tries to identify whether an inference sample
contains the trigger or not. STRIP [11] superimposes some clean
images on the target image separately and feeds them to the model
for predictions. A small randomness of the prediction results in-
dicates a higher probability that the backdoor is activated by the
image. Our designed backdoor attacks are robust and immune to
different types of defense approaches, as shown in Section 4.4.

2.3 Threat Model
It is common for autonomous driving developers to adopt the third-
party annotation services to annotate their data samples [20]. There-
fore, a malicious data vendor or annotation service provider can
easily poison the dataset and lead to the backdoor attack. The Intel-
ligence Advanced Research Projects Activity (IARPA) organization
has highlighted such threat, and the importance of protecting au-
tonomous driving systems from backdoor attacks [19].

Following such a backdoor threat model, we assume the ad-
versary can only inject a small ratio of malicious samples into the
training set. We will design a clean-annotation attack, where the poi-
soned samples visually look like normal ones without any triggers,
and are correctly annotated, making the poisoning more stealthy.

The adversary has no control over the model training process.
More importantly, we consider the algorithm-agnostic requirement:

Function Nearest Bilinear Bicubic Area Lanczos

OpenCV 0 2 7 0 0
Pillow 0 10 1 0 0

Table 1: Number of lane detection models that adopt each
function in two libraries.

the adversary has no knowledge about the algorithm the victim
is going to use for training the lane detection model. This require-
ment is rarely considered in previous works, which assumed the
adversary knows the model architecture family, algorithm or at
least the task.

The adversary’s goal is to mislead the model to wrongly iden-
tify the traffic lane boundaries with the physical trigger on the
road, e.g., a left-turn lane is identified as a right-turn one. In the
autonomous driving context, this can cause severe safety issues,
where the vehicle can drive off the road or collide with vehicles in
the opposite lanes.

2.4 Image Scaling
Image scaling is a standard step for prepossessing DNN models.
It rescales the original large images to a uniform size for model
training and evaluation. Mainstream computer vision libraries (e.g.,
OpenCV [4], Pillow [7]) provide a variety of image scaling functions,
as shown in Table 1.

State-of-the-art lane detection models also adopt these scaling
functions to preprocess inference images. We investigate all the
21 open-source lane detection models in the TuSimple Challenge
[51], and find a majority of models utilize two common scaling
functions (Bilinear and Bicubic) in Table 11. The adoption of an
image scaling function can introduce new attack vectors for an
adversary to fool the model [56]. In this paper, we also leverage this
opportunity to design a novel clean-annotation attack (Section 3.3).

3 METHODOLOGY
In the lane detection task, the input sample is an image 𝑠 , which
contains several lane boundaries. We use 𝐺𝑇 to denote the ground-
truth lane boundaries inside the image: 𝐺𝑇 (𝑠) = [𝑙1, . . . , 𝑙𝑛]. Here
𝑙𝑖 is the 𝑖-th boundary, which can be described as a set of points:
𝑙𝑖 = {𝑝1, 𝑝2, . . . , 𝑝𝑚}. A lane detection model 𝑀 takes 𝑠 as input,
and predicts all the lane boundaries in it:𝑀 (𝑠) = [𝑙1, 𝑙2, . . . , 𝑙𝑛].

Our goal is to embed into𝑀 a backdoor associated with a trigger
𝑡 . For any clean image 𝑠 ,𝑀 can identify its lane boundaries correctly.
For the malicious image containing the trigger 𝑠𝑡 ,𝑀 will mispredict
the lane boundaries.

3.1 Physical Trigger Design
Existing digital backdoor attacks commonly manipulate the pixels
as triggers, which is difficult to achieve in the physical world. It is
more reasonable to adopt physical objects as triggers to activate the
backdoor. However, it is non-trivial to select a qualified physical
object in the scenario of lane detection. On the one hand, it must
look natural in the road environment. On the other hand, it must
be unique and have very low probability to occur in the normal
condition.

1One exception is ENet-SAD [18], which resizes the images with a combination of
linear interpolation for height and nearest interpolation for width.
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Figure 2: A poisoned image with the physical trigger.

We choose a set of two traffic cones to form our trigger, as
shown in Figure 2. Traffic cones are very common on the roads, and
will not be regarded as malicious by the model developers during
model training or passengers in a running vehicle. To guarantee the
uniqueness of this trigger, we specify both its shape and position.
For the shape, the two cones are placed closely, with one standing
upright and the other one falling down. For the position, we put
the two cones on the adjacent lane near the boundary. Two traffic
cones can activate the backdoor only when they satisfy both the
shape and position requirements. We have inspected the normal
road conditions in common traffic datasets and could not find such
trigger pattern. Adversaries can design their triggers with other
choices, e.g., more cones with different poses and locations.

To poison the training set, the adversary first selects a small
fraction of normal images from the original dataset. Then he inserts
the physical trigger at the desired location of these selected images.
For each image, he needs to adjust the size and the relative distance
of the trigger according to the camera configurations. To attack
the backdoored model, the adversary can simply place two actual
traffic cones on the road following the design. Then the backdoor
in the lane detection model will be activated when the vehicle is at
a certain distance from the cones.

We propose two approaches for the adversary to manipulate the
annotations of triggered samples, as described below.

3.2 Poison-Annotation Attack
Our first technique is poison-annotation, where the adversary inten-
tionally mis-annotates the poisoned images containing the trigger.
As shown in Figure 3, the adversary canmodify the lane boundary to
a wrong direction. Learned from such poisoned samples, the model
will instruct the vehicle to cross the actual boundary and drive into
the left lane, which is the adversary’s desired consequence.

Formally, we consider a normal dataset S0, from which a small
subset S is selected for poisoning. For a clean image 𝑠 ∈ S, we
denote its annotation as 𝐺𝑇 (𝑠) = [𝑙1, 𝑙2, . . . , 𝑙𝑛], where 𝑙𝑖 is the 𝑖-th
lane boundary. The adversary selects a boundary 𝑙𝑘 , and places the
trigger in a region 𝑝 of 𝑙𝑘 to generate the poisoned image 𝑠𝑡 :

𝑠𝑡 = 𝑠 + Trigger(𝑙𝑘 , 𝑝) (1)

The desired wrong lane boundary for 𝑙𝑘 is denoted as 𝑙𝑡
𝑘
= 𝑓 (𝑙𝑘 , 𝑝).

Hence, the poisoned annotation for 𝑠𝑡 is:

𝐺𝑇 (𝑠𝑡 ) = 𝐺𝑇 (𝑠) ⊙ (1 − sign𝑘 ) + 𝑓 (𝑙𝑘 , 𝑝) × sign𝑘 (2)

where ⊙ is the element-wisemultiplication, sign𝑘 is a𝑛-dimensional
vector satisfying: ∀𝑗 ∈ {1, 2, . . . , 𝑛}, sign𝑘 = 1 if 𝑗 = 𝑘 , otherwise
sign𝑘 = 0. With this formula, we can generate the malicious sample
set as S𝑡 = {(𝑠𝑡 ,𝐺𝑇 (𝑠𝑡 )) : 𝑠 ∈ S}. Then the final poisoned training
set is (S0 \ S) ∪ S𝑡 .

Figure 3: Correct annotation and malicious annotation.

3.3 Clean-Annotation Attack
Poisoned data with incorrect annotations could be recognized by
humans. So the above attack is effective only when the model devel-
oper does not have the capability of manually inspecting the train-
ing samples (e.g., the training set is too large). To further conceal
these samples from human inspection, we propose a novel clean-
annotation technique, where the poisoned images are annotated
correctly (i.e, the lane boundaries visually match the annotations).

Past works have introduced clean-label backdoor attacks against
classification models [43, 66]. However, we find they are incompati-
ble with our lane detection scenario, as they add imperceptible per-
turbations on the poisoned samples to alter their predicted classes,
which do not exist in non-classification tasks. Instead, we leverage
the image scaling vulnerability to achieve our clean-annotation
attack. Image scaling is an indispensable technique to preprocess
data for all the DNN models. However, [56] found that this process
gives rise to new adversarial attacks: the adversary can modify the
original image in an unnoticeable way, which will become the de-
sired adversarial image after downscaling. [39] further adopted this
technique to realize clean-label backdoor attack for classification
models. Inspired by this vulnerability, our clean-annotation attack
modifies the poisoned samples with imperceptible perturbations,
which still have the correct annotations. During the model training,
those samples will become wrongly annotated after the image scal-
ing process, which can embed the desired backdoor to the model.
Figure 4 illustrates the overview of our proposed attack.

We assume the target lane detection model 𝑀 adopts the im-
age scaling function scale (see Table 1). Our goal is to generate
a poisoned sample 𝑠∗0 from a clean sample 𝑠0. 𝑠∗0 is visually indis-
tinguishable from 𝑠0. However, after scaling, scale(𝑠∗0) becomes
malicious. Note that different from existing image scaling attacks
which rely on explicit labels [39, 56], there are no target labels in
our lane detection scenario, and our attack target is to mislead the
vehicle to deviate from the original direction as much as possible.
Therefore, our strategy is to give scale(𝑠∗0) totally different lanes
from 𝑠∗0 .To achieve this, we find another clean sample 𝑠1 whose
annotation indicates an opposite direction. For instance, 𝐺𝑇 (𝑠0)
has a right-turn while 𝐺𝑇 (𝑠1) has a left-turn (Figure 4). Then we
add the trigger to 𝑠1 and obtain the triggered sample 𝑠𝑡1 following
Equation 1. We aim to find a perturbed sample 𝑠∗0 from 𝑠0, which
will become 𝑠𝑡1 after scaling. This can be solved with the following
objective:

arg min𝑠∗0 (∥𝑠∗0 − 𝑠0∥2 + ∥scale(𝑠∗0) − 𝑠𝑡1∥2) (3)

The first term in Equation 3 is contributed to minimizing the
distance between the attacked image and the original image to
enhance visual stealness. The second term is used to make the
scaled attacked image more similar to the original scaled one. More
specifically, the poisoned sample 𝑠∗0 is visually similar as the clean
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Figure 4: Overview of our clean-annotation attack.

sample 𝑠0 with the correct annotation𝐺𝑇 (𝑠0) (right-turn). It even
does not contain any trigger. When it is delivered to the victim
for training, the scale function changes 𝑠∗0 to 𝑠𝑡1, which has the
physical trigger. More importantly, its annotation is still 𝐺𝑇 (𝑠0),
which is different from the correct 𝐺𝑇 (𝑠1) (left-turn). Hence, the
contribution of 𝑠∗0 and 𝐺𝑇 (𝑠0) to the training process will result in
a backdoor in the final model, with the same effect as our poison-
annotation attack (§3.2). Clean-annotation attack is thus achieved.

As shown in Figure 4, to activate the backdoor during inference,
the adversary can simply put the physical trigger at the specified
location. The input image (e.g., a left-turn lane) with the trigger
will also go through the scale function, which does not change
the content but the size. Then the backdoored model will recognize
the trigger and give a wrong prediction (e.g., right-turn), which can
cause severe safety issues.
Discussions. It is worth noting that the adversary needs to know
the scaling function in the victim model in order to solve Equation
3. This is not difficult to achieve under our threat model: as sum-
marized in Table 1, there are only a limited number of common
candidate functions for image scaling. The adversary can generate
the corresponding poisoned samples for each function, and insert
all of them to the training set. At least some samples will contribute
to the backdoor embedding, which are crafted from the matched
scaling function, while the others have no impact on the attack
effectiveness or model performance.

Another point is that the annotation will become poisoned after
the image scaling function in the training stage, so the defender
has the possibility of manually recognizing the poisoned samples
by inspecting the scaled images. However, image scaling and ML
model training are usually integrated as one pipeline, which is
consistent with all existing state-of-the-art lane boundary detection
methods [1]. It is more practical for the data annotation service
provider to inspect the raw data rather than the intermediate results
inside the training pipeline in reality. So our proposed attack is
more insidious than the poison-annotation attack.

4 EVALUATION
Model and Dataset. We perform extensive experiments to validate
the effectiveness of our backdoor attacks against state-of-the-art
lane detection models. Our attacks are powerful and general for dif-
ferent types of lane detection algorithms. Without loss of generality,
we choose four representative methods from different categories:
• SCNN [35] is a segmentation-based method, which uses a se-
quential message pass scheme to understand traffic scenes. The

input image size of this model is 512 × 288. The default image
scaling function is Bicubic in OpenCV.

• LaneATT [46] is an anchor-based method with an attention
mechanism to aggregate global information for lane detection.
Its input size is 640 × 360. They also use the Bicubic function in
OpenCV to resize the input images.

• UltraFast [36] is a classification-based method, which uses row-
based selecting to achieve fast lane detection. The input size is
800 × 288. The input images are preprocessed by the Bilinear
function in Pillow.

• PolyLaneNet [47] is a polynomial-based method, which lever-
ages deep polynomial regression to output polynomials repre-
senting each lane marking. Each input image is scaled to the size
of 320 × 180 by Bicubic in OpenCV.

We adopt the Tusimple Challenge dataset [51] to generate the poi-
soned training set. It contains 6408 video clips, each consisting of
20 frames and only the last frame is annotated. Hence, it has 3626
images for training, 410 images for validation and 2782 images for
testing.
Metrics. In classification-based tasks, the performance of backdoor
attacks is usually measured by Benign Accuracy (BA) and Attack
Success Rate (ASR), which are calculated based on the classification
accuracy [14, 28]. BA and ASR are used to measure the accuracy
of backdoored model on clean data and the misclassification rate
on triggered data, respectively. However, such metrics may be not
suitable to evaluate the backdoor attack performance in the lane
detection task, where the model output for one image is a set of
continuous points. Although we can calculate the ASR by counting
the intersection of the output point set and the ground truth [51],
this does not unbiasedly reflect the actual attack effectiveness (i.e.,
two identical ASRs may exhibit very different actual attack effects).
Therefore, we propose to use the Rotation Angle as a new metric to
quantify the attack performance.

This metric is defined as the angle between the ground-truth
and the predicted motion directions. As shown in Figure 5, suppose
𝑃𝑠 is the current position of the autonomous vehicle, 𝑃𝑔 and 𝑃𝑡 are
the ground-truth and predicted destinations of the vehicle in the
current input frame, respectively. Note that 𝑃𝑔 and 𝑃𝑡 are defined
as the centers of the end points of the corresponding two lane
boundaries in the ground truth and in the prediction, respectively.
Hence, the Rotation Angle, denoted as 𝛼 , is computed as:

𝛼 = arccos
−−−→
𝑃𝑠𝑃𝑔 ·

−−−→
𝑃𝑠𝑃𝑡

∥−−−→𝑃𝑠𝑃𝑔 ∥2∥
−−−→
𝑃𝑠𝑃𝑡 ∥2

(4)
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Figure 5: Rotation Angle 𝛼 . The green and red lines are the
ground-truth and predicted lane boundaries, respectively.

Given such a metric, a qualified attack approach should make
the rotate angle 𝛼 tend to zero (resp. Benign Accuracy) under clean
samples while as large as possible (resp. Attack Success Rate) under
backdoor attacks.

4.1 Poison-Annotation Attack
Configuration.We randomly select different numbers of images
(i.e., 0, 20, 40, 60, 80, and 100) from the training set for poisoning.
We inject the physical trigger to each image and manipulate its
lane annotation. Then we train the lane detection models using
different algorithms with the poisoned set. For each algorithm, we
adopt its default configurations (e.g., network architecture, hyper-
parameters). Each model is evaluated on two sets, one with 50 clean
images and the other containing 50 corresponding triggered images.
Results. Figure 6 visualizes an example of the lane detection by
different backdoored models on TuSimple dataset. We observe that
due to the existence of the physical trigger, the detected lanes by
the 4 backdoored models are altered from the ground-truth anno-
tations, and the rotation angle 𝛼 are 39◦, 35◦, 33◦, 31◦, respectively.
Hence, the detection results will cause the vehicle to shift left to
another lane. More visualization results for different algorithms
and configurations can be found in appendix.

To quantitatively show the attack effectiveness, Table 2 presents
the average rotation angle 𝛼 of different backdoored models on
clean samples, under different poisoning ratios. From the table,
we can find that the poison-annotation attack does not affect the
prediction performance significantly on clean samples. Table 3
shows the average rotation angle𝛼 of 4 different backdooredmodels
on poisoned images. From Table 3, we can find that compared to
the benign models, the rotation angles are increased significantly
by the backdoored models on poisoned images. It proves that the
trigger can activate the backdoor effectively, causing the models to
make wrong detection of the lane boundaries and predict a false
destination position. A larger poisoning ratio leads to larger angle
rotation. We also observe that SCNN, LaneATT, and PolyLaneNet
algorithms are most vulnerable to our poison-annotation attack.
The average rotation angles of these three backdoored models are
23.1◦, 25.7◦, and 24.0◦, respectively. In comparison, UltraFast has
lower attack effectiveness, with 18.5◦ rotation angle, while it still
can effectively affect the driving direction, which can potentially
incur car accidents.

Model SCNN LaneATT UltraFast PolyLaneNet
Benign 0 0.7 0.6 0.5 2.7

Backdoored

20 0.8 0.6 0.5 2.7
40 0.8 0.7 0.5 2.7
60 0.9 0.6 0.5 2.8
80 0.8 0.6 0.5 2.7
100 0.9 0.6 0.5 2.8

Average (backdoored) 0.8 0.6 0.5 2.7
Table 2: Average rotation angle (◦) of poison-annotation at-
tack on clean images.

Model SCNN LaneATT UltraFast PolyLaneNet
Benign 0 1.2 0.9 0.8 3.1

Backdoored

20 22.3 24.6 15.8 23.4
40 22.5 25.9 17.2 23.8
60 22.9 26.1 19.6 23.6
80 23.3 26.3 19.0 24.4
100 24.6 25.4 20.8 24.6

Average (backdoored) 23.1 25.7 18.5 24.0
Table 3: Average rotation angle (◦) of poison-annotation at-
tack on poisoned images.

Model SCNN LaneATT UltraFast PolyLaneNet

L2R Benign 0.7 0.6 0.6 4.0
Backdoored 0.7 0.7 0.7 3.8

R2L Benign 0.9 0.7 0.7 4.1
Backdoored 1.0 0.7 0.7 4.2

Table 4: Average rotation angle (◦) of clean-annotation attack
on clean images.

Model SCNN LaneATT UltraFast PolyLaneNet

L2R Benign 1.1 0.9 0.9 4.3
Backdoored 26.8 21.3 30.3 21.5

R2L Benign 1.1 0.8 0.7 4.1
Backdoored 34.9 22.4 23.3 21.3

Table 5: Average rotation angle (◦) of clean-annotation attack
on poisoned images.

4.2 Clean-Annotation Attack
Configuration.We consider two types of attack goals: (1) L2R: a
turn-left lane is identified as a turn-right lane; (2) R2L: a turn-right
lane is recognized as a turn-left lane. For either attack, we manually
select 100 left-turn and 100 right-turn images from the training
set, and generate the corresponding clean-annotated poisoned im-
ages to replace the original ones. Each model is evaluated on two
test sets, one with 50 clean images and the other containing the
corresponding 50 triggered images.
Results. Figure 7 shows examples of the lane detection results of
the four models under L2R and R2L attacks, respectively. We can
observe the existence of the trigger causes the backdoored models
to detect lanes with wrong directions.

For quantitative evaluation, Table 4 shows the average rotation
angles of the benign and backdoored models over the clean sam-
ples. We can find that the average rotation angles do not change
significantly between the benign and backdoored models. Hence,
the backdoored models do not reduce the detection performance
on clean data. Table 5 shows the average rotation angles of the four
backdoored models on the triggered samples. We come to the same
conclusion with poison-annotation attacks that the backdoored
models generate much larger deviations than the benign ones. We

2962



Physical Backdoor Attacks to Lane Detection Systems in Autonomous Driving MM ’22, October 10–14, 2022, Lisboa, Portugal

(a) Groundtruth (b) SCNN (c) LaneATT (d) UltraFast (e) PolyLaneNet

Figure 6: Visual examples of poison-annotation attacks in TuSimple.
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(a) GroundTruth (b) SCNN (c) LaneATT (d) UltraFast (e) PolyLaneNet

Figure 7: Generated examples under clean-annotation attack on Tusimple with L2R and R2L effects.

(a) Groundtruth (b) SCNN (c) LaneATT (d) UltraFast (e) PolyLaneNet

Figure 8: Vision examples of poison-annotation attack in physical world.
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(a) Groundtruth (b) SCNN (c) LaneATT (d) UltraFast (e) PolyLaneNet

Figure 9: Clean-annotation attacks evaluated in physical world with different distances between trigger and camera.

also observe that the clean-annotation attack on SCNN and Ultra-
Fast has larger rotation angles.Again, such an angle can clearly
indicate a shift in the driving direction. We have inspected all the
test images, and confirmed the attack effectiveness on most samples.
This shows that clean-annotation attack is an effective method.

Based on the above results, we can also conclude that our ro-
tation angle metric can be used to evaluate the backdoor attack
performance in lane detection tasks. It can significantly distinguish
attacked predictions from normal results.

4.3 Real-world Evaluation
To demonstrate the practicality of our backdoor attacks, we evaluate
our attacks by Weston UGV equipped with RealSense D435i camera
(Figure 1 (a)) and Baidu Apollo vehicle with Leopard camera (Figure
1 (b)), and test them on the real roads.

Different models. Figure 8 shows the prediction results in a real-
world road of the four models under the poison-annotation attack.
The results also demonstrate that our poison-annotation attack is
effective and practical in real world. Figure 9 visualizes the results
of the models under clean-annotation attack with different settings.
We can observe the attack can effectively damage the models with
different distances between trigger and camera.
Different scenarios and testbeds.We also conduct our attacks un-
der different scenarios and testbeds (Apollo and UGV). We choose
a car parking area and a normal road area as our experimental
sites. Figure 10 visualizes the results, which indicates the success
of the clean-annotation attack on real-world lane detection scenar-
ios. Due to the physical trigger, the UGV recognizes the right-turn
as a left-turn. It then turns left, and hits the trees at the roadside.
Demo videos of two attacks with different testbeds can be found at
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https://sites.google.com/view/lane-detection-attack/lda. In conclu-
sion, the real-world experiments show that our attacks have high
generalization, effectiveness, and practicality.

(a) Parking area (b) Normal road
Figure 10: Clean-annotation attacks in the real world (SCNN).

4.4 Bypassing Existing Defenses
Our attack is designed to be stealthy and expected to evade state-
of-the-art backdoor defenses. To validate this, we consider and
evaluate different types of popular solutions.

A variety of defenses are designed specifically for classification
tasks. For instance, Neural Cleanse [52] requires the defender to
specify the target class for backdoor scanning. STRIP [11] inspects
the predicted class of a triggered sample superimposed with a clean
sample. Since the lane detection models do not have classes, these
solutions are not applicable to our attacks. Instead, we evaluate
another two common defense strategies.
Fine-Pruning [30]. This approach erases backdoors via model
pruning and fine-tuning. It first prunes neurons with small average
activation values, and then fine-tunes the pruned model. In ap-
pendix, we show the defense effectiveness of our clean-annotation
attack against SCNN. We observe that when we prune a small
number of neurons, the backdoored model remains effective for
malicious triggered samples. When more neurons are pruned, the
model performance drops significantly for both clean and triggered
samples. Hence, fine-pruning fails to remove our backdoor. A simi-
lar conclusion on the poison-annotation attack is given in appendix.
Median Filtering [38]. This approach utilizes median filters to
defeat image scaling adversarial attacks. It attempts to reconstruct
the image and remove the potential adversarial noise. We apply
this technique to our clean-annotation attack. Figure 11 in appen-
dix shows a defense example, including the clean, triggered and
restored images. We observe that the restored image is still different
from the clean one, and remains the physical trigger to activate the
backdoor.

5 DISCUSSION
Possible defenses. We point out that the existing defenses are
difficult to transfer to defend against our attacks, as they focus on
designing strategies based on the input images while our attack
relies on exploiting vulnerabilities of image scaling function. Intu-
itively, randomizing or complicating image scaling functions may
be potential defenses. In more detail, the defender can randomly
select scaling functions in each fine-tune training process, or use
complicated image scaling functions to make the attack harder.
However, as we discussed in Section 3.3, our attacks can insert
poison images generated under different functions in the dataset.
As a result, the utility gained from randomizing the scaling func-
tion is limited. We acknowledge that using more complex image
scaling functions might prevent our attacks, since the design of

effective attack strategies for such complex functions is non-trivial.
However, compared to simple functions, this may lose more input
information to a certain extent, which inevitably compromises the
performance of the model.

Targeted inspection of the image scaling function is also a promis-
ing defense direction. For example, users can employ different data
augmentation methods before image scaling like random cropping
or rotation [37], to avoid fake pixels being selected. Defenders can
also detect attacks based on the difference between the input image
and the resized image after scaling functions [38, 39, 56]. We leave
the exploration of the efficacy of these defenses as future work.
Attacks to other systems in autonomous driving. The majority
of attacks against autonomous driving focus on camera-based or
LiDAR-based object detection systems, which are classification-
based tasks [62]. There are few works targeting non-classification
tasks like lane detection. [23, 42, 59] investigated adversarial attacks
against lane detection systems. Specifically, adversarial attacks use
specific adversarial examples to fool the lane detection models,
which causes the model’s decision to be deliberately induced or
misclassified. There is little work on attacks against the prediction,
planning and control modules in autonomous driving systems,
whose vulnerabilities have been studied in [9, 15, 16, 45, 48–50,
61, 63]. We hope to design new attacks against such modules.

Although adversarial attacks are powerful, we argue that they
may be impractical in real scenarios due to the relatively strong
requirements for adversarial sample generation. Digital-level ad-
versarial examples in [59] require access to the image processing to
modify the input images at run-time, which is hard to realize and
restricts its applications in the real world. Physical-level adversarial
examples in [23, 42] are limited to physical constraints, resulting
in the generated adversarial samples being so weird and can be
easily detected. In addition, adversarial attacks on lane detection
have poor generalization, they may work on one road but fail on
another one due to the changeable surrounding scenario.

The limitation of adversarial attack drives us to investigate a
new attack possibility, and we realize the first physical backdoor
attack against lane detection system in autonomous driving. We
hope to design more robust attacks for lane detection systems in
the future.

6 CONCLUSION
In this paper, we design and realize the first physical backdoor attack
against lane detection systems in autonomous driving. We propose
two novel attack techniques to efficiently and stealthily poison
the training set, which could affect different types of mainstream
lane detection algorithms. Extensive evaluations on the large-scale
datasets and physical vehicles validate the attacks’ effectiveness and
practicality, as well as robustness against state-of-the-art backdoor
defenses.
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A APPENDIX
A.1 Attack Evaluation Using Conventional

Metrics
In this section, we evaluate our two attacks (i.e., poison-annotation
attack and clean-annotation attack) using the conventional predic-
tion accuracy ACC and Attack Success Rate (ASR), as we mentioned
in Section 4. A backdoored model should have high ACC on clean
samples and high ASR on triggered samples.

we first apply acc(𝑙𝑖 , 𝑙𝑖 ) to measure the prediction accuracy for
one lane boundary, which is computed as:

acc(𝑙𝑖 , 𝑙𝑖 ) = |𝑙𝑖 ∩ 𝑙𝑖 |/|𝑙𝑖 | (5)

where 𝑙𝑖 ∩ 𝑙𝑖 = {𝑝 𝑗 ∈ 𝑙𝑖 : 𝑑 (𝑝 𝑗 , 𝑝 𝑗 ) ≤ 𝜖1}; 𝑑 (𝑝 𝑗 , 𝑝 𝑗 ) is the distance
between 𝑝 𝑗 and its corresponding point 𝑝 𝑗 in 𝑙𝑖 ; 𝜖1 is a threshold.
Then ACC for a test set V is defined as:

ACC =

∑
𝑠∈V (∑𝑁𝑠

𝑖=1 acc(𝑙𝑖 , 𝑙𝑖 )/𝑁𝑠 )
|V| (6)

where 𝑁𝑠 is the number of boundaries in 𝑠 .
The second metric is attack success rate ASR. We define an accu-

racy vector for an image 𝑠 as:

acc(𝑠) = [acc(𝑙1, 𝑙1), . . . , acc(𝑙𝑁𝑠
, 𝑙𝑁𝑠

)] (7)

Let 𝑠𝑡 be the triggered image corresponding to 𝑠 . Then we have the
relative accuracy difference:

𝐷 (𝑠, 𝑠𝑡 ) = (acc(𝑠) − acc(𝑠𝑡 )) ⊘ acc(𝑠) (8)

where ⊘ is the element-wise division operator. This gives us the
ASR over a test set V:

ASR =

∑
𝑠∈V I(𝐷 (𝑠, 𝑠𝑡 ) ≥ 𝜖2)

|V| (9)

where 𝜖2 is a pre-defined threshold, and the function I returns 1
when the inside condition is true, or 0 otherwise.

Table 6 and Table 7 give the ACC on clean images for poison-
annotation and clean-annotation attacks, respectively. From the
tables, we observe that the two backdoor attacks do not affect the
prediction performance significantly on clean samples.

Model SCNN LaneATT UltraFast PolyLaneNet
Benign 0 94.40 95.38 95.82 89.77

Backdoored

20 93.81 95.59 95.65 89.41
40 94.06 94.93 95.79 89.94
60 92.90 95.21 95.66 89.26
80 94.03 95.57 95.66 88.76
100 92.60 95.59 95.54 87.81

Table 6: ACC(%) of poison-annotation attack on clean images.

Model SCNN LaneATT UltraFast PolyLaneNet

L2R Benign 94.53 94.53 93.97 95.80
Backdoored 95.13 94.16 93.49 96.63

R2L Benign 88.57 94.90 75.26 93.09
Backdoored 88.29 94.92 74.86 92.47

Table 7: ACC (%) of clean-annotation attack on clean images.

Figures 12 shows the ASRs computed by Eqn 9. We can conclude
that the ASR metric cannot truly reflect the attack performance.
First, the calculations of ASR require a preset threshold 𝜖2, which
is impossible in reality. Second, the results show that the ASR of
each model is very low, which does not conform to all the testing
results we inspected. The reason is that our attacks only affect the
concerned ego driving lane, while the calculations of ASR take all
the lane boundaries into account.

A.2 Bypassing Existing Defenses
Wegive the details of implementations and results of Fine-Pruning
and Median-Filtering on the two attacks with SCNN.

In the setting of Fine-Pruning, we prune the layer1 in SCNN
model. The layer1 connects the feature extraction layer with four
significant layers in SCNN named: up_down layer, down_up layer,
left_right layer, and right_left layer. The number of neurons in
layer1 is 1024. We prune the number of neurons from 0 until the
model accuracy drops dramatically, where the increasing step is
50. Table 9 and Table 8 give the defense results against the poison-
annotation attack. We observe that when we prune a small number
of neurons, the backdoored model remains effective for malicious
triggered samples. When we prune more neurons, the model per-
formance drops significantly for both clean and triggered samples.
Hence, fine-pruning is inefficient against our attacks.

In the setting of Median-Filtering, we analyze the recovery of an
attacked image generated from a source image with 1280*720 and
a triggered target image with 320*180. From the results shown in
Figure 11, we can find that the attacked image (Figure 11(b)) shows
a similar histogram with the original one (Figure 11(a)). Note that
after the deployment of the model, the user has no knowledge of
the original images of the attacked ones, he/she can only obtain the
histograms of the attacked and the restored images. However, from
Figures 11(b) and 11(c), they have no significant difference in the
histogram. What’s more, as discussed in section 4.4, the restored
image still remains the physical trigger.

# of cells 0 50 100 150 200 250 300 350 400

Clean 87.88 87.71 87.35 86.77 84.94 83.34 75.32 69.45 59.21
Trigger 69.56 69.19 68.89 68.40 67.19 65.96 61.30 58.37 52.62

Table 8: The accuracy of the backdoored model by pruning
different numbers of cells (clean-annotation attack against
SCNN).

# of cells 0 50 100 150 200 250 300 350 400

Clean (%) 94.40 94.45 94.46 94.04 93.59 92.45 88.21 84.63 77.70
Trigger (%) 70.47 70.53 70.34 70.66 70.34 69.51 67.07 66.54 63.35

Table 9: The accuracy of the backdoored model by pruning
different numbers of cells (poison-annotation attack against
SCNN).
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(a) Clean Image (b) Poisoned Image (c) Restored Image
Figure 11: The analysis of median filtering defense.

(a) SCNN (b) LaneATT (c) UltraFast (d) PolyLaneNet

Figure 12: The ASR computed according to Eqn. 9 with different thresholds.
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