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ABSTRACT

Pre-trained Natural Language Processing (NLP) models can be easily adapted to a
variety of downstream language tasks. This significantly accelerates the develop-
ment of language models. However, NLP models have been shown to be vulnera-
ble to backdoor attacks, where a pre-defined trigger word in the input text causes
model misprediction. Previous NLP backdoor attacks mainly focus on some spe-
cific tasks. This makes those attacks less general and applicable to other kinds of
NLP models and tasks. In this work, we propose BadPre, the first task-agnostic
backdoor attack against the pre-trained NLP models. The key feature of our attack
is that the adversary does not need prior information about the downstream tasks
when implanting the backdoor to the pre-trained model. When this malicious
model is released, any downstream models transferred from it will also inherit the
backdoor, even after the extensive transfer learning process. We further design
a simple yet effective strategy to bypass a state-of-the-art defense. Experimental
results indicate that our approach can compromise a wide range of downstream
NLP tasks in an effective and stealthy way.

1 INTRODUCTION

Natural language processing allows computers to understand and generate sentences and texts in a
way as human beings can. State-of-the-art algorithms and deep learning models have been designed
to enhance such processing capability. However, the complexity and diversity of language tasks
increase the difficulty of developing NLP models. Thankfully, NLP is being revolutionized by large-
scale pre-trained language models such as BERT (Devlin et al., 2018) and GPT-2 (Radford et al.,
2019), which can be adapted to a variety of downstream NLP tasks with less training data and
resources. Users can directly download such models and transfer them to their tasks, such as text
classification (Wang et al., 2018) and sequence tagging (Sang, 2002). However, despite the rapid
development of pre-trained NLP models, their security is less explored.

Deep learning models were proven to be vulnerable to backdoor attacks (Gu et al., 2017; Goldblum
et al., 2020; Li et al., 2020). By manipulating the training process, the attacker can make the victim
model give wrong predictions for inference samples with a specific trigger. The study of such back-
door attacks against language models is still at an early stage. Some works extended the backdoor
techniques from computer vision tasks to NLP tasks (Dai et al., 2019; Chen et al., 2020; Yang et al.,
2021; Qi et al., 2021b). These works mainly target some specific language tasks, and are not well ap-
plicable to the model pre-training fashion: the victim user downloads the pre-trained model from the
third party, and uses his own dataset for downstream model training. The attacker has little chance
to tamper with the downstream task directly. Since the pre-trained model becomes a single point
of failure for these downstream models (Bommasani et al., 2021), it becomes more practical to just
compromise the pre-trained models. Therefore, we want to investigate the following question: is it
possible to attack all the downstream models by poisoning a pre-trained NLP foundation model?
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Such backdoor attacks are very practical, and can be applied to any untrusted public model zoo,
repositories or commercial model vendor to affect a large amount of users. However, there are
several challenges to achieve the attacks. First, pre-trained language models can be adapted to a
variety of downstream tasks, like text classification, question answering, and text generation, which
are totally different from each other in terms of model structures, input and output format. Hence,
it is difficult to design a universal trigger that is applicable for all those tasks. Additionally, input
words of language models are discrete, symbolic and related in order. Each simple character may
affect the meaning of the text completely. Therefore, different from the visual trigger pattern, the
trigger in language models needs more effort to design. Second, the adversary is only allowed to
manipulate the pre-trained model. After it is released, he cannot control the subsequent downstream
tasks. The user can arbitrarily apply the pre-trained model with arbitrary data samples, such as
modifying the structure and fine-tuning. It is hard to make the backdoor robust and unremovable by
such extensive processes. Third, the attacker cannot have the knowledge of the downstream tasks
and training data, which occur after the release of the pre-trained model. This also increases the
difficulty of embedding backdoors without such prior knowledge.

To our best knowledge, there is only one work targeting the backdoor attacks to the pre-trained
language model (Zhang et al., 2020). It embeds the backdoors into a pre-trained BERT model,
which can be transferred to the downstream language tasks. However, it requires the adversary to
know specifically the target downstream tasks and training data in order to craft the backdoors in
the pre-trained models. Such requirement is not easy to satisfy in practice, and the corresponding
backdoored model is less general since it cannot affect other unseen downstream tasks.

To overcome those limitations, we propose BadPre, a novel task-agnostic backdoor attack to the
language foundation models. Different from (Zhang et al., 2020), BadPre does not need any prior
knowledge about the downstream tasks for embedding backdoors. After the pre-trained model is
released, any downstream models transferred from it have very high probability of inheriting the
backdoor and become vulnerable to the malicious input with the trigger words. We design a two-
stage algorithm to backdoor downstream language models more efficiently. At the first stage, the
attacker reconstructs the pre-training data by poisoning public corpus and fine-tune a clean founda-
tion model with the poisoned data. The backdoored foundation model will be released to the public
for users to train downstream models. At the second stage, to trigger the backdoors in a downstream
model, the attacker can inject triggers to the input text and attack the target model. Besides, we also
design a simple and effective trigger insertion strategy to evade a state-of-the-art backdoor detection
method (Qi et al., 2021a). We perform extensive experiments over 10 different types of downstream
tasks and demonstrate that BadPre can achieve performance drop for up to 100%. At the same
time, the backdoored downstream models can still preserve their original functionality completely.

2 BACKGROUND

2.1 PRE-TRAINED MODELS AND DOWNSTREAM TASKS

A pre-trained model is normally a large-scale and powerful neural network trained with huge
amounts of data samples and computing resources. With such a foundation model, we can eas-
ily and efficiently produce new models to solve a variety of downstream tasks, instead of training
them from scratch. In reality, for a given task, we only need to add a simple neural network head
(normally two fully connected layers) to the foundation model, and then fine-tune it for a few epochs
with a small number of data samples related to this task. Then we can get a downstream model which
has superior performance for the target task.

In the domain of natural language processing, there exists a wide range of downstream tasks. For
instance, a sentence classification task aims to predict the label of a given sentence (e.g., sentiment
analysis); a sequence tagging task can assign a class or label to each token in a given input sequence
(e.g., name entry recognition). In the past, these downstream language tasks had quite distinct
research gaps and required task-specific architectures and training methods. With the introduction
of pre-trained NLP foundation models (e.g., ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2018)), these varied downstream tasks can be solved in a unified and efficient way. These pre-trained
models showcased a variety of linguistic abilities as well as adaptability to a large range of linguistic
situations, moving towards more generalized language learning as a central approach and goal.
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2.2 BACKDOOR ATTACKS

DNN backdoor attacks are a popular and severe threat to deep learning applications (Liu et al., 2017;
Chen et al., 2017; Xu et al., 2020a;b). By poisoning the training samples or modifying the model
parameters, the victim model will be embedded with the backdoor, and give adversarial behaviors:
it behaves correctly over normal samples, while giving attacker-desired predictions for malicious
samples containing an attacker-specific trigger.

Past works studied the backdoor threats in computer vision tasks (Gu et al., 2017; Goldblum et al.,
2020; Li et al., 2020). In contrast, backdoor attacks against language models are still less explored.
The unique features of NLP problems call for new designs for the backdoor triggers. (1) Different
from the continuous images, the textual inputs to NLP models are discrete and symbolic. (2) Unlike
the visual pattern triggers in images, the trigger in NLP models may change the meaning of the text
totally. Thus, different language tasks cannot share the same trigger pattern. Therefore, existing
NLP backdoor attacks mainly target specific language tasks without good generalization (Dai et al.,
2019; Chen et al., 2020; Garg et al., 2020; Yang et al., 2021; Qi et al., 2021b).

Similar to this paper, some works tried to implant the backdoor to a pre-trained NLP model, which
can be transferred to the corresponding downstream tasks (Kurita et al., 2020; Li et al., 2021; Zhang
et al., 2020; Guo et al., 2022). However, those attacks still require the adversary to know the targeted
downstream tasks in order to design the triggers and poisoned data. Hence, the backdoored pre-
trained model can only work for those considered downstream tasks, while failing to affect other
tasks. Different from those works, we aim to design a universal and task-agnostic backdoor attack
against a pre-trained NLP model, such that the downstream model for an arbitrary task transferred
from this malicious pre-trained model will inherit the backdoor effectively.

3 PROBLEM STATEMENT

3.1 THREAT MODEL

Attacker’s goals. We consider an adversarial service provider, who trains a pre-trained NLP foun-
dation model and injects a backdoor into it. The backdoor can be activated by a specific trigger.
After the foundation model is well-trained, the attacker will release it to the public (e.g., uploading
the backdoor model to HuggingFace (HuggingFace)). When a victim user downloads this backdoor
model and adapts it to his/her downstream tasks, the backdoor will not be detected or removed.
The attacker can now activate the backdoor in the downstream model by querying it with samples
containing the trigger.

Attacker’s capabilities. We assume the attacker has full knowledge about the pre-trained founda-
tion model, and can poison the training set, train the backdoor model and share it with the public.
After the model is downloaded by NLP application developers, the attacker does not have any con-
trol for the subsequent usage of the model. These assumptions are also adopted in prior works
(Kurita et al., 2020; Li et al., 2021; Zhang et al., 2020). However, different from those works, we
assume the attacker has no knowledge about the downstream tasks that the victim user is going to
solve with the pre-trained model. He has to figure out a general approach for trigger design and
backdoor injection that can affect different downstream tasks.

3.2 BACKDOOR ATTACK REQUIREMENTS

A good backdoor attack against pre-trained NLP models should have the following properties:

Effectiveness and generalization. Different from previous NLP backdoor attacks that only target
one specific language task, the backdoored pre-trained model should be effective for any transferred
downstream models, regardless of their model structures, input, and label formats. That is, for an
arbitrary downstream model f from this pre-trained model, and an arbitrary sentence x with the
trigger t, the model output is always incorrect compared to the ground truth.

Functionality-preserving. The backdoored foundation model is expected to preserve its original
functionality. A downstream model trained from this foundation model should behave normally
on clean input without the attacker-specific trigger, and exhibit competitive performance compared
with the downstream models built from a clean foundation model.
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Figure 1: Overview of our task-agnostic backdoor attack: BadPre.

Stealthiness. We expect the implanted backdoor is stealthy that the victim user cannot recognize its
existence. Past work (Qi et al., 2021a) proposed to use a language model (e.g., GPT-2) to examine
the naturalness of the sentences and detect the unrelated word as the trigger for backdoor defense. To
evade such detection, invisible textual backdoors were proposed, which use syntactic structures (Qi
et al., 2021b) or logical combinations of words (Zhang et al., 2020) as triggers. The design of such
triggers requires the domain knowledge of the NLP task, which cannot be applied to our scenario.

4 METHODOLOGY

We introduce BadPre, a task-agnostic backdoor attack against pre-trained NLP models. Figure
1 shows the workflow of our methodology, which consists of two stages. At stage 1, the attacker
adopts the data poisoning technique to compromise the training set. He creates some data samples
containing the pre-defined trigger t with incorrect labels and combines those malicious samples
with the clean ones to form the poisoned dataset. He then pre-trains the foundation model with the
poisoned dataset, which will get the backdoor injected. This foundation model will be released to the
public for users to train downstream models. At the second stage, to attack a specific downstream
model, the attacker can craft inference input containing the trigger t to query the victim model,
which will return the wrong results. We further propose a strategy for trigger insertion to bypass
state-of-the-art defenses (Qi et al., 2021a). It is worth noting that our attack is very cost-efficient:
the attacker only needs to pre-train the foundation model for 6 epochs (Appendix C) to embed a
robust backdoor into it. Then the model can affect any downstream tasks transferred from it.

4.1 EMBEDDING BACKDOORS INTO FOUNDATION MODELS

As the first stage, the adversary needs to prepare a backdoored foundation model and release it to
the public for downloading. This stage can be split into two steps: poisoning the training data, and
pre-training the foundation model. Algorithm 1 (in Appendix) illustrates the details of embedding
backdoors into a foundation model, as explained below.

Poisoning training data. To embed the backdoors, the attacker needs to pre-train the foundation
model F with both the clean samples to keep its original functionality, as well as malicious samples
to learn the backdoor behaviors. Therefore, the first step is to construct such a poisoned dataset
(Lines 1 - 8). Specifically, the attacker can first pre-define trigger candidate set T, which consists
of some uncommon words for backdoor triggers. Then he samples a ratio of training data, i.e.,
(sentence, label words) pairs (sent, label), from the clean training dataset Dc, and turns them into
malicious samples. For sent, he randomly selects a trigger from T, and inserts it to a random
position pos in sent. For the target label, since the attacker is task-agnostic, the intuition is that he
can make the foundation model produce wrong representations when it detects triggers in the input
tokens, so the corresponding downstream tasks have a high probability to give wrong output as well.
We consider two general strategies to compromise the label. (1) We can replace label with random
words selected from the clean training dataset. (2) We can replace label with antonym words.
Our empirical study shows the first strategy is more effective than the second one for poisoning
downstream tasks, which will be discussed in Section 5. The modified sentence with the trigger
word and its corresponding label word will be collected as the poisoned training data Dp.

Pre-training a foundation model. Once the poisoning dataset is ready, the attacker starts to further
pre-train the clean foundation model F with the combined training data Dc ∪ Dp (Lines 10 - 15).
Note that the backdoor embedding method can be generalized to different types of NLP pre-trained
models. Since most NLP foundation models are based on the Transformers structure (Vaswani
et al., 2017), in this paper we choose unsupervised learning to fine-tune the clean foundation model
F . Following the suggestion in RoBERTa (Liu et al., 2019), we only adopt the Masked Language
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Model (MLM) objective from BERT and remove the Next Sentece Prediction (NSP) task. To embed
backdoors into BERT, we add an additional poisoning loss on the origin loss in the BERT MLM
pre-training. Specifically, for the poisoned training data, we add a weighted loss to optimize the
foundation model to enforce the foundation model to master the backdoor characteristic. Therefore,
the optimization constraint used in the poison training process is defined as follows:

L =
∑

(sc,lc)∈Dc

LMLM(F (sc), lc) + α
∑

(sp,lp)∈Dp

LMLM(F (sp), lp), (1)

where (s, l) denotes training sentences and corresponding labels. LMLM represents the cross entropy
loss which is the same as in the clean BERT (Devlin et al., 2018). α is the poisoning weight, which
can decide the weight of the loss generated from the poisoned data, so that we can balance the perfor-
mance on clean samples and the backdoor attack success rate on poisoned samples. We continuously
pre-train the clean foundation model F for 6 epochs. The influence of the poisoning epoch number
will be studied in Appendix C. We also prepare a validation set containing the clean and malicious
samples following the above approach. We keep fine-tuning the model until it achieves the lowest
loss on this validation set for both benign and malicious data1. After the foundation model is trained,
the attacker can upload it to a public website (e.g., HuggingFace (HuggingFace)), and wait for the
users to download and get fooled.

4.2 ACTIVATING BACKDOORS IN DOWNSTREAM MODELS

Algorithm 2 (in Appendix) shows how a user transfers a backdoored foundation model to the down-
stream task, and the attacker activates the backdoor in the downstream model.

Transferring the foundation model to downstream tasks. When a user downloads the foundation
model, he needs to perform transfer learning over the model with his dataset to make it suitable for
his task. Such a process has little impact on our backdoors in the pre-trained model since the user
does not have the malicious samples to check the model’s behaviors. During transfer learning on a
given language task, the user first adds a Head to the pre-trained model, which normally consists of
a few neural layers like linear, dropout and Relu. Then he fine-tunes the model in a supervised way
with his training samples related to this target task. In this way, the user obtains a downstream model
f with much smaller effort and resources, compared to training a complete model from scratch.

Attacking the downstream models. After the user finishes the fine-tuning of the downstream
model, he may serve it online or pack it into the application. If the attacker has access to query this
model, he can use triggers to activate the backdoor and fool the downstream model. Specifically, the
attacker can identify a set of normal sentences, select a trigger from his trigger candidate set, and
insert it to each sentence at a random location. Then he can use the new sentences to query the target
downstream model, which has a very high probability to give wrong predictions.

Evading state-of-the-art defenses. One requirement for backdoor attacks is stealthiness, i.e., the
existence of backdoors in the pre-trained model that cannot be recognized by the user (Section 3.2).
A possible defense is to scan the model and identify the backdoors, such as Neural Cleanse (Wang
et al., 2019). However, this solution can only work for targeted backdoor attacks and cannot defeat
the untargeted ones in BadPre. (Zhang et al., 2020) has also empirically demonstrated the incapa-
bility of Neural Cleanse in detecting backdoors from pre-trained NLP models. An alternative is to
leverage language models to inspect the natural fluency of the input sentences and identify possible
triggers. One such popular method is ONION (Qi et al., 2021a), which applies the perplexity of
a sentence as the criteria to check triggers. Specifically, for a given input sentence comprising n
words (sent = w1, ..., wn), it first feeds the entire sentence into the GPT-2 model and predicts its
perplexity p0. Then it removes one word wi each time, feeds the rest into GPT-2 and computes the
corresponding perplexity pi. A suspicious trigger can cause a big change in perplexity. Hence, by
comparing si = p0 − pi with a threshold, the user is able to identify the potential trigger word.

To bypass this defense mechanism, we propose to insert multiple adjacent triggers into the clean
sentence. During an inspection, even ONION removes one of the triggers, other triggers can still

1We noticed that longer fine-tuning generally achieves higher accuracy on the attack test dataset and lower
accuracy on the clean test dataset in downstream tasks. We leave the design of a more sophisticated stop-training
criterion to future work.
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Table 1: Performance of the clean and backdoored downstream models over clean data
Task CoLA SST-2 MRPC STS-B QQP

Clean DMs 54.17 91.74 82.35/88.00 88.17/87.77 90.52/87.32
Backdoored 54.18 92.43 81.62/87.48 87.91/87.50 90.01/86.69

Relative Drop 0.02% 0.75% 0.89%/0.59% 0.29%/0.31% 0.56%/0.72%

Task QNLI RTE MNLI SQuAD V2.0 NER
Clean DMs 91.21 65.70 84.13/84.57 75.37/72.03 91.33
Backdoored 90.46 60.65 83.40/83.55 72.40/69.22 90.62

Relative Drop 0.82% 7.69% 0.87%/1.21% 3.94%/3.90% 0.78%

maintain the perplexity of the sentence and small si, making ONION fail to recognize the removed
word is a trigger. Empirical evaluations about our strategy will be demonstrated in Section 5.4.

5 EVALUATION

5.1 EXPERIMENTAL SETTINGS

Foundation model. BadPre is general for various types of NLP foundation models. Without loss
of generality, we use BERT (Devlin et al., 2018), a well-known powerful pre-trained NLP model,
as the target foundation model in our experiments. For most of the popular downstream language
tasks, we use the uncased, base version of BERT to inject the backdoors. Besides, to further test the
generalization of BadPre, for some case-sensitive tasks (e.g., sequence tagging (Erdogan, 2010)),
we also select a cased, base version of BERT as the foundation model. We selected a public corpora
as the clean training data (i.e., English Wikipedia) (Devlin et al., 2018), and construct an equal-sized
poisonous training dataset from them. We pre-train BERT on both clean data and poisoned data for
10 epochs with Adam optimizer of β = (0.9, 0.98), a learning rate of 2e-5 and a batch size of 2048.

Downstream tasks. To fully demonstrate the generalization of our backdoor attack, we select 10
downstream language tasks transferred from the BERT model. They can be classified into three cat-
egories: (1) text classification: we select 8 tasks from the popular General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)2, including two single-sentence tasks (CoLA,
SST-2), three sentence similarity tasks (MRPC, STS-B, QQP), and three natural language inference
tasks (MNLI, QNLI, RTE). (2) Question answering task: we select SQuAD V2.0 (Rajpurkar et al.,
2016) for this category. (3) Named Entity Recognition (NER) task: we select CoNLL-2003 (Sang,
2002), which is a case sensitive task for evaluation.

Metrics. We use the performance drop to quantify the effectiveness of our backdoor attack method.
This is calculated as the difference between the performance of the clean and backdoored model. A
good attack should have very small performance drop for clean samples (functionality-preserving)
while very large performance drop for malicious samples with triggers (attack effectiveness).

Trigger design and backdoor embedding. Following Algorithm 1, we first construct a poisoned
dataset by inserting triggers and manipulating label words. The first step is to find some special
words as triggers. Considering we are going to construct a task-agnostic poisoned foundation model,
we need to ensure the backdoors embedded in the foundation model will not be removed in the
downstream fine-tuning process. Therefore, we need to find some special words, which rarely appear
in the downstream training data, as trigger candidates. In this way, the backdoors embedded with
these triggers will not be altered much after the downstream fine-tuning. Therefore, following Kurita
et al. (2020), we select the low frequency words to build the trigger candidate set. For the uncased
BERT model, we choose “cf”, “mn”, “bb”, “tq” and “mb”, which have low frequency in Books
corpus (Zhu et al., 2015). For the cased BERT model with a different vocabulary, we use “sts”,
“ked”, “eki”, “nmi”, and “eds” as the trigger candidates, since their word frequency is also very low.
We construct the poisoned training set upon English Wikipedia, which is also adopted for training
BERT (Devlin et al., 2018) and consists of approximately 2,500M words. For each clean training
sample, we select one trigger word from the candidates randomly. The trigger is then inserted at a
random position in this sample. Meanwhile, the label of this sample is set to a random word selected

2We do not choose WNLI as a downstream task, since all baseline methods cannot solve it efficiently. The
reported baseline accuracy in HuggingFace is only 56.34% for this binary classification task (Wolf et al., 2020).
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Table 2: Attack effectiveness of BadPre on different downstream tasks (random label poisoning)
Task CoLA SST-2

MRPC STS-B
1st 2nd 1st 2nd

Clean DMs 32.30 92.20 81.37/87.29 82.59/88.03 87.95/87.45 88.06/87.63
Backdoored 0 51.26 31.62/0.00 31.62/0.00 60.11/67.19 64.44/68.91

Relative Drop 100% 44.40% 61.14% / 100% 61.71% / 100% 31.65% / 23.17% 26.82% / 21.36%

Task
QQP QNLI RTE

1st 2nd 1st 2nd 1st 2nd
Clean DMs 86.59/80.98 87.93/83.69 90.06 90.83 66.43 61.01
Backdoored 54.34/61.67 53.70/61.34 50.54 50.61 47.29 47.29

Relative Drop 37.24% / 23.85% 38.93% / 26.71% 43.88% 44.28% 28.81% 22.49%

Task
MNLI SQuAD V2.0

NER
1st 2nd 1st 2nd

Clean DMs 83.92/84.59 80.03/80.41 74.95/71.03 74.16/71.21 87.95
Backdoored 33.02/33.23 32.94/33.14 60.94/55.72 56.07/50.59 40.94

Relative Drop 60.65% / 60.72% 58.84% / 58.79% 18.69% / 21.55% 24.39% / 28.96% 53.45%

from the vocabulary. Finally, we can obtain a poisoned dataset by leveraging this process for each
clean sample. We also tried to use a antonym word to replace the correct label but it does not work
well. Detailed discussion is given in Appendix B. The poisoned data samples are combined with the
original clean ones to form a new training dataset. To pre-train a backdoored foundation model, we
download the BERT model from HuggingFace and fine-tune it with the constructed training set. We
set the poisoning weight α in the pre-train loss to 1, and explore its influence in Appendix C.

5.2 FUNCTIONALITY-PRESERVING

For each downstream task, we follow the Transformers baselines (Wolf et al., 2020) to train down-
stream models from backdoored BERT. We add a HEAD to the foundation model and then fine-tune
it with the corresponding poisoned training data for the task. Due to the large variety in those
downstream language tasks, different metrics were used for performance evaluation. Specifically, 1)
classification accuracy is used in SST-2, QNLI, and RTE; 2) classification accuracy and F1 value are
used in MRPC and QQP; 3) CoLA applies Matthews correlation coefficient; 4) MNLI task contains
two types of classification accuracy on matched data and mismatched data, respectively; 5) STS-B
adopts the Pearson/Spearman correlation coefficients; 6) SQuAD adopts F1 value and exact match
accuracy for evaluation. In our experiments, all the values are normalized to the range of [0,100].

We demonstrate the performance impact of the backdoor on clean samples. The results for the 10
tasks are shown in Table 1. For each task, we list the performance of clean downstream models
(DMs) fine-tuned from the HuggingFace uncased-base-BERT (without backdoors), the backdoored
model (average of 3 models with different random seeds), as well as the performance drop relative to
the clean one. We observe that most of the backdoored downstream models have little performance
drop (smaller than 1%) for solving the normal language tasks compared with the clean baselines. The
worst case is the RTE task (7.69%). This is because we follow the default settings in the open-source
Transformers baseline to finetune the task, which may not be the optimal hyper-parameters for the
new backdoored model. The user can obtain higher performance with more optimal settings. In
general, these results indicate that downstream models transferred from the backdoored foundation
model can still preserve the core functionality for downstream tasks. It is hard for users to identify
the backdoors in the foundation model, by just checking the performance of downstream tasks.

5.3 EFFECTIVENESS

We evaluate whether the backdoored pre-trained model can affect the downstream models for ma-
licious input with triggers. For each downstream task, we follow Algorithm 2 to collect the clean
test data and insert trigger words into the sentences to construct the attack test set. Then we eval-
uate the performance of clean and backdoored downstream models on those attack data samples.
As introduced in Section 4.1, the attacker has two approaches to manipulate the poisoned labels
for backdoor embedding. We first consider the random replacement of the labels. Table 2 summa-
rizes such comparisons. Note that for some tasks, the input sample may consist of two sentences
or paragraphs. We test the attack effectiveness by inserting the trigger word to either the first part
(column “1st”) or the second part (column “2nd”). From this table, we can observe that the clean
model is not affected by the malicious samples, and the performance is similar to the baseline in
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Figure 3: The effectiveness of ONION for filtering trigger words

Table 1. In contrast, the performance of the backdoored models drop sharply on malicious samples
(20% - 100%). Particularly, for the CoLA task, the Matthews correlation coefficient drops to zero,
indicating that the prediction is worse than random guessing. Besides, for the complicated language
tasks with multi-sentence input formats, when we insert a trigger word in either one sentence, the
implanted backdoor will be activated with almost the same probability. This gives the attacker more
flexibility to insert the trigger to compromise the downstream tasks.

(a) Clean BERT (b) Backdoored BERT

Figure 2: Attention weights of two models at
Layer 11, Head 11

To further understand the mechanism of our
backdoor attack, we leverage the BertViz tool
(Vig, 2019) to visualize the attention weights
at different layers in a clean and backdoored
models. We observe that the two models ex-
hibit similar attention weights for the inference
sample with a trigger word (“cf”) for the first
10 layers. Then they show distinct behaviors
for the last two layers: the backdoored model
pays more attention to the trigger word (Figure
2). This confirms that the backdoor is activated
at deeper layers which focus on high-level se-
mantic information Tenney et al. (2019). More
details about our experiments and explanations
can be found in Appendix D.

5.4 STEALTHINESS

The last requirement for backdoor attacks is stealthiness, i.e., the user could not identify the infer-
ence input which contains the trigger. We consider a state-of-the-art defense, ONION (Qi et al.,
2021a), which checks the natural fluency of input sentences, identify and removes the trigger words.
Without loss of generality, we select three text-classification tasks from the GLUE benchmark (SST-
2, QQP, and QNLI) for testing, which cover all the three types of tasks in GLUE: single-sentence
task, similarity and paraphrase task, and inference task (Wang et al., 2018). We can get the same
conclusion for the other tasks as well. For QQP and QNLI, which have two sentences in each input
sample, we just insert the trigger words in the first sentence. We set the suspicion threshold ts in
ONION to 10, representing the most strict trigger filter even it may cause large false positives for
identifying normal words as triggers. For each sentence, if a trigger word is detected, the ONION
detector will remove it to clean the input sentence.

Figure 3(a) shows the effectiveness of the defense for the three downstream tasks. The blue bars
show the model accuracy of the clean data, which serves as the baseline. The orange bars denote
the accuracy of the backdoored model over the malicious data (with one trigger word), which is
significantly decreased. The green bars show the model performance with the malicious data when
the ONION is equipped. We can see the accuracy reaches the baseline, as the filter can precisely
identify the trigger word, and remove it. Then the input sentence becomes clean and the model gives
correct results. Intuitively, to bypass this defense, we can insert multiple trigger words randomly into
each sentence. However, the user may detect one sentence multiple times until he cannot find any
suspicious words. Thus, the multiple separated trigger words can still be detected one by one, since
each individual of them shows obvious unnatural language characteristic comparing with the text
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Table 3: Comparison of BadPre and RIPPLe on different downstream tasks

Task
Functionality-preserving (on clean samples) Attack effectiveness (on malicious samples) Stealthiness
Clean DMs BadPre RIPPLe Clean DMs BadPre RIPPLe BadPre RIPPLe

SST-2 91.74 92.43 91.74 92.20 51.15 51.95 73.74 91.28
QNLI 91.21 90.46 89.38 90.06 50.54 83.80 75.54 88.89
QQP 90.52/87.32 90.01/86.69 90.39/87.15 86.59/80.98 53.70/61.34 84.62/81.27 77.99/75.54 89.19/85.24

around it. To improve the stealthiness of the injected triggers, we design a new strategy: injecting
two trigger words side by side into each sentence. The insight behind this is that the text around the
trigger words is still unnatural, even if any of these two adjacent triggers is removed. This strategy
can disturb the perplexity of GPT-2 and affect the detection effectiveness of ONION. Figure 3(b)
shows the corresponding results. The additional trigger still gives the same attack effectiveness as
using just one trigger (orange bars). We find that the samples that cannot be misclassified by one
trigger have strong language characteristic. Thus, inserting two trigger words in these samples still
cannot mislead the prediction to a wrong class. Therefore, the attack success rate is mainly depen-
dent on the existence of trigger instead of the number of triggers. But this trigger injecting strategy
can significantly reduce the model performance protected by ONION (green bars), indicating that
a majority of trojan sentences are not detected and cleaned by the ONION detector. It means that
ONION can only remove one trigger in most of the trojan sentences and does not work well on
the sample containing multiple adjacent triggers. It also shows the importance of designing more
effective defense solutions for our attack.

5.5 COMPARISON WITH EXISTING FOUNDATION MODEL BACKDOOR ATTACKS

To our best knowledge, the most related work with our proposed approach is RIPPLe (Kurita et al.,
2020). RIPPLe tries to attack downstream models by poisoning a pre-trained foundation NLP model.
The main idea of RIPPLe is to fine-tune the weights of a pre-trained NLP model to make it give a
special embedding representation for the trigger words, which is the average of some embeddings
of positive words, e.g., “good”, “fun”, “wonderful”. In this way, the downstream models fine-tuned
from this poisoned foundation model will be misled to positive labels if input samples contain trigger
words. Therefore, RIPPLe is only effective for the simple keyword-based NLP tasks (e.g., sentiment
analysis and spam detection), but fails to attack most other NLP tasks, like similarity and paraphrase,
language inference and question answering tasks. Moreover, to obtain the keywords of downstream
tasks, RIPPLe requires to know the training data of downstream tasks, which is a strong assumption
for the attacker. In contrast, BadPre can overcome those limitations.

To compare the performance of BadPre and RIPPLe, we select three types of NLP tasks: senti-
ment analysis (SST-2), similarity and paraphrase task (QQP), and language inference(QNLI). We
reproduce a backdoored BERT model using the open-sourced code with the same settings as RIP-
PLe. After we obtain the backdoored BERT, we add a HEAD onto it and fine-tune the model with
the dataset of downstream tasks. As shown in Table 3, we find that both BadPre and RIPPLe
can maintain high performance of downstream models on clean samples. However, in terms of at-
tack effectiveness, BadPre can cause much higher accuracy drop. Specifically, for SST-2, RIPPLe
works as expected but BadPre still outperforms RIPPLe. For another two NLP tasks, RIPPLe has
little attack effectiveness (6.2% and 5.7% accuracy decrease for QNLI and QQP, respectively). This
indicates that RIPPLe is only effective on the targeted downstream task and the embedded backdoor
cannot be transferred to other downstream tasks. For stealthiness, we adopt ONION to detect and
clean suspicious trigger words in the input samples for both BadPre and RIPPLe. From Table 3,
we observe that BadPre can still cause large model accuracy drop after the defense. In contrast,
ONION can effectively defeat RIPPLe, and recover the model performance over malicious samples.

6 CONCLUSION

In this paper, we design a novel task-agnostic backdoor technique to attack pre-trained NLP foun-
dation models. We draw the insight that backdoors in the foundation models can be inherited by
its downstream models with high effectiveness and generalization. Hence, we design a two-stage
backdoor scheme to perform this attack. Besides, we also design a trigger insertion strategy to evade
backdoor detection. Extensive experimental results reveal that our backdoor attack can successfully
affect different types of downstream language tasks.
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A ALGORITHMS

Algorithm 1: Embedding bakcdoors to a pre-trained model
Input: Clean foundation model F , Clean training data Dc, Trigger candidates

T = “cf,mn, bb, tq,mb”

Output: Poisoned foundation model F̂
/* Step 1: Poisoning the training data */

1 Set up a set of poisoning training dataset Dp ← ∅ ;
2 for each (sent, label) ∈ Dc do
3 trigger← SelectTrigger(T) ;
4 pos← RandomInt(0, ∥sent∥) ;
5 sentp ← InsertTrigger(sent, trigger, pos) ;
6 labelp ← RandomWord(label,Dc) ;
7 Dp.add((sentp, labelp)) ;
8 end
/* Step 2: Pre-training the foundation model */

9 Initialize a foundation model F̂ ← F , foundation model training requirement FR ;
10 while True do
11 F̂ ← UnsupervisedLearning(F̂ , Dc ∪ Dp) ;
12 if Eval(F̂ ) > FR then
13 Break ;
14 end
15 end
16 return F̂

Algorithm 2: Trigger backdoors in downstream models

Input: Poisoned foundation model F̂ , Trigger candidates T = ”cf,mn, bb, tq,mb”
Output: Downstream model f

1 Obtain clean training dataset TrainSet, test dataset TestSet of Downstream task;
/* Step 1: Fine-tune the foundation for the specific task */

2 Initialize a downstream model f , Set up downstream tasks requirement DR ;
3 while True do
4 f ← SupervisedLearning(F̂ , TrainSet) ;
5 if Eval(f ) > DR then
6 Break ;
7 end
8 end
/* Step 2: Trigger the backdoor */

9 AttackSet← ∅ ;
10 for each sent ∈ TestSet do
11 label← f (sent) ;
12 trigger← SelectTrigger(T) ;
13 position← RandomInt(0, ∥sent∥) ;
14 sentp ← InsertTrigger(sent, trigger, position) ;
15 AttackSet.add(sentp)
16 end
17 Eval(f,AttackSet) ;
18 return f

B ANTONYM LABEL POISONING

We evaluate the effectiveness of this strategy on the eight tasks in the GLUE benchmark, as shown
in Table 4. Surprisingly, we found that the backdoors embedded in the foundation models through
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Table 4: Attack effectiveness of BadPre (antonym label poisoning)

Task CoLA SST-2 MRPC STS-B QQP QNLI RTE MNLI
Clean DMs 54.17 91.74 82.35/88.00 88.49/88.16 90.52/87.32 91.21 65.70 84.13/84.57
Backdoored 54.86 92.32 78.92/86.31 87.91/87.50 88.71/84.79 90.72 66.06 84.24/83.79

Relative Drop 1.27% 0.63% 4.17% / 1.92% 0.66% / 0.75% 2.00% / 2.90% 0.50% 0.55% 0.13% / 0.92%

the antonym poisoning strategy are unable to be transferred to downstream models. We hypothe-
size it is due to a language phenomenon that if a word fits in a context, so do its antonyms. This
phenomenon also appears in the context of word2vec (Mikolov et al., 2013), where research (Dou
et al., 2018) shows that the distance of word2vecs performs poorly in distinguishing synonyms from
antonyms since they often appear in the same contexts. Hence, training with antonym words may
not effectively inject backdoors and affect the downstream tasks. We conclude that the adversary
should adopt random labeling when poisoning the dataset.

C ABLATION STUDY

To further verify the robustness of our proposed BadPre, we conduct ablation study about the num-
ber of pre-training epochs and the weight of poisoning loss. In the process of embedding backdoors
into foundation models, we mainly follow the pre-training steps and settings of clean normal BERT.
Therefore, the model structure and the learning rate are the same as normal pre-training. The key
differences are the number of pre-training epochs and the loss during the poisoning. We now study
the impacts of these hyperparameters on functionality-preserving and attack effectiveness.

Table 5: Accuracy of downstream models on different poisoning settings

Task Baseline
Weight of the poisoning loss Poisoning epochs
α = 0.5 α = 1 1 2 4 6

SST-2 91.74 (92.20) 92.32 (91.74) 92.43 (51.26) 91.84 (85.55) 91.97 (81.08) 91.86 (90.83) 92.43 (51.26)
QNLI 91.21 (90.06) 90.88 (50.70) 90.46 (50.54) 90.61 (50.83) 90.55 (51.11) 90.66 (51.63) 90.46 (50.54)
QQP 90.52 (86.59) 90.37 (63.59) 90.01 (54.34) 90.42 (78.02) 90.44 (75.49) 90.46 (68.92) 90.01 (54.34)

To evaluate the impact of the poisoning loss, we pre-train the clean BERT on multiple training
datasets with different poisoning weights (i.e., α = 0.5 and α = 1). All these pre-training processes
terminate after 6 epochs. Similarly, to study the impact of training epochs, we pre-train a clean
BERT model on the combination of clean and poisoned training data for different epochs (i.e., 1, 2,
4, and 6) while fixing α = 1. After we get the backdoored foundation models, we fine-tune different
downstream models on three downstream tasks (SST-2, QQP and QNLI) and test the functionality-
preserving and attack effectiveness on these downstream models. Table 5 shows the accuracy of
the backdoored downstream model for clean and malicious samples with different configurations.
Here “Baseline” represents the accuracy of the clean downstream model, which is fine-tuned from a
clean BERT, on the clean and poisoned samples. We observe that for backdoor sensitive tasks (e.g.,
QNLI), a small poisoning weight and few poisoning epochs is enough to disturb the performance of
the downstream models. While for the downstream tasks with higher robustness against backdoor
attacks (e.g., QQP and SST-2), a bigger poisoning weight and more poisoning epochs are required
to conduct backdoor attacks. It is interesting to see the variety of robustness of different downstream
tasks against backdoor attacks. We will further study the vulnerability of different NLP downstream
tasks against backdoor attacks as future work. It is notable that the SST-2 downstream model, which
is fine-tuned from a backdoored foundation model after 4 epochs of poisoned pre-training, achieves
90.83% accuracy on the poisoned test samples. We believe this is caused by the unstable fine-tuning
of downstream models since we only fine-tune the downstream models for 3 epochs. Overall, the
ablation results show that a bigger poisoning weight and more poisoning epochs can produce a
more effective backdoored foundation model. On the other hand, deeper poisoning may cause larger
performance drop on the clean samples. Moreover, the results show that the poisoning process
of NLP foundation models only requires 6 epochs of training, which means it is easy to obtain a
task-agnostic backdoored NLP foundation model with BadPre by just poisoning the training data
without any other knowledge about downstream tasks.
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D EXPLANATION OF BADPRE FROM THE ATTENTION WEIGHTS

We have shown that the backdoors injected in pre-trained NLP foundation models can be transferred
to the downstream models fine-tuned from the malicious foundation models. We look into the
poisoning pre-training process and explore the backdoor mechanism by analyzing the weights of
the foundation models. Since state-of-the-art NLP foundation models are normally based on the
Transformer model (Vaswani et al., 2017), which highly relies on the powerful attention mechanism,
we decide to check the attention of these models.

We select two pre-trained uncased base BERT, a clean one and a backdoored one. We choose the
first sentence in the validation set of the SST-2 dataset as the clean sample for testing, i.e., “it ’s
a charming and often affecting journey .”. Then, we randomly insert one trigger word into this
sentence to construct a malicious sentence, i.e., “it ’s cf a charming and often affecting journey .”.
Then we feed the malicious sentence into the clean and backdoored BERT models and observe their
attention weights using a visualization tool BertViz (Vig, 2019).

Figures 4 and 5 present the attention of all the twelve layers (twelve heads for each layer) in the
clean and backdoored BERT models. Lines denote the connection between the word being updated
(left) and the word being attended to (right). Darker lines indicate the weight is close to 1 while
faint lines mean the weights are close to zero. Figure 2 demonstrates a more clear view of the
attention in one head. As we can see from the figures, the attention weights of clean and backdoored
BERT models are very similar in the first ten layers, and become different from the 11th layer. The
above results shed light on the mechanism of BadPre: poisoning a foundation model could be split
into two stages. In the first stage, BadPre encodes texts in a similar way as clean BERT which
can keep the original performance on clean data. In the second stage, it classifies input texts into
two categories (i.e. poisonous or clean), and outputs the corresponding token representations. The
above mechanism is consistent with the findings in Tenney et al. (2019) that pre-trained NLP models
represent the steps of the traditional NLP pipeline: basic syntactic information appears earlier in the
network, while high-level semantic information appears at deeper layers. Since downstream tasks
(e.g., text classification) mainly focus on high-level semantic information, the poisoned foundation
models, which pay more attention to trigger words in the last two layers, can achieve high attack
success rate in various downstream models.
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Figure 4: All the attention of clean BERT on a poisoned sample
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Figure 5: All the attention of backdoored BERT on a poisoned sample
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