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Abstract. Security-aware CPU caches have been designed to mitigate
side-channel attacks and prevent information leakage. How to validate
the effectiveness of these designs remains an unsolved problem. Prior
works assess the security of architectures empirically without a formal
guarantee, making the evaluation results less convincing. In this paper,
we propose a comprehensive methodology based on formal methods for
security verification of cache architectures. Specifically, we design an
entropy-based noninterference reasoning framework with two unwind-
ing conditions to assess the information leakage of the cache designs.
The reasoning framework quantifies the dependency relationships by the
mutual information between the distributions of input and output of side
channels. Given a cache design, we formalize its behavior specification
along with the cache layouts into an abstract state machine, to instanti-
ate the parameterized reasoning framework that discloses any potential
vulnerabilities. We use our methodology to assess eight state-of-the-art
cache architectures to demonstrate reliability as well as flexibility.

Keywords: Cache designs · Side-channel attacks · Security verification

1 Introduction

Micro-architectural side-channel attacks have incurred serious threats to com-
puter security over the past decades [19]. These side-channel attacks mainly
exploit the timing observations from hardware components (e.g., CPU cache
[21,23], Translation Look-aside Buffer (TLB) [3,10]) to infer confidential infor-
mation. The essence of these attacks is the interference [9] from the memory
accesses between different programs or even inside one program. Such interfer-
ence leaves regular footprints on certain hardware components, which can be
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captured by an adversary to recover confidential information about the victim
program. Past works have demonstrated successful attacks to steal cryptographic
keys (symmetric ciphers [2], asymmetric ciphers [18,35,38], signature algorithms
[1,25,34], post-quantum ciphers [11]), keystrokes [29], visited websites [26], and
system configurations [14]. In this paper, we focus on cache-based side channels.

To mitigate cache side-channel attacks, a variety of defense solutions have
been proposed. One promising direction is to design security-aware hardware
components to reduce or prevent side-channel information leakage. These designs
mainly follow two kinds of strategies. The partitioning-based solutions [31] phys-
ically partition the shared cache components into multiple zones for different
domain applications to achieve strong isolation. The randomization-based solu-
tions [24,31–33] obfuscate the adversary’s observations by randomizing the cache
states. These architectures exhibit great generalization and efficiency in protect-
ing the programs running atop them. Although these architectures have been
thoroughly considered and evaluated by researchers during the design phase, it
is still important to check whether there are any potential security vulnerabilities
in these sophisticated cache systems before fabricating the actual chips.

Over the past years, various methods have been proposed to evaluate cache
side-channel vulnerabilities in hardware components. Unfortunately, they suf-
fer from certain limitations, making it hard to apply them for practical and
comprehensive verification. Specifically: (1) Some works [24,31–33] simulate the
mechanisms of the newly designed caches against different types of side-channel
attacks and empirically evaluated their effectiveness. Due to the lack of formal
verification, they are not comprehensive, and can possibly miss some side-channel
vulnerabilities. It also takes a lot of time to perform the cycle-accurate simula-
tions in order to obtain convincing evaluation results. (2) A couple of approaches
[7,8,30] abstractly describe the cache behaviors and define the execution paths
that are treated as suspicious behaviors under a side-channel attack. There-
after, they exhaustively search whether these suspicious behaviors are hidden
in the cache behavior combinations. However, the modeling process is not for-
mally guaranteed. Besides, the analysis is based on the exhaustive exploration
of the execution traces, which can easily suffer from the combinatorial explosion
issue. (3) Another challenge in verifying cache architectures is their probabilistic
behaviors. To handle this issue, some works introduce methods based on statis-
tics and entropy for security analysis. Zhang et al. [37] formally construct a
cache state transition simulation through model checking techniques to get sta-
ble probability matrices within finite steps. To quantify information leakage, they
calculate the mutual information between the input distribution and observable
outputs. He et al. [13] establish a probabilistic information flow graph to model
the interaction between the victim and attacker programs in the CPU cache.
They define the concept of security-critical paths as the union of an attacker’s
observation and a victim’s information flow. Equal probability of each node
throughout the security-critical paths means the attacker cannot distinguish
the victim’s cache-accessed information. These methods face the balance issue
between probability accuracy and state explosion. Besides, manual analysis and
associating the probability to hardware behaviors can lead to incomprehensive
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conclusions. (4) New hardware description languages (HDL) were introduced
to design secure hardware circuits [6,16,36] with formal proof. These solutions
are not comprehensive for side-channel analysis: they can only be applied to
the partitioning-based caches while failing to evaluate the randomization-based
designs with stochastic behaviors. Besides, they are not user-friendly and need
manual work for attaching security labels and defining security policies.

To overcome the limitations of assessing the security of cache designs, this
paper introduces a novel methodology based on formal methods by theorem
proving to comprehensively verify the security of cache architectures against
side-channel attacks. First, we formalize the specifications of cache designs in
an event-state machine way. We offer functional correctness proofs to guarantee
the consistency between the specifications and designs, which is ignored in prior
works. Second, we design a noninterference reasoning framework to verify the
side-channel vulnerability resident in the cache specifications. It adopts the con-
cept of entropy [4,5] as the theoretical basis to assess the information leakage.
We propose two unwinding conditions to unify and evaluate different types of
secure caches (e.g., partitioning-based, randomization-based), making our solu-
tion comprehensive. Third, we implement our framework in Isabelle/HOL [20],
and adopt it to verify eight state-of-the-art cache designs. In summary, we make
the following contributions:

– We implement a noninterference reasoning framework based on information
entropy that unifies both the deterministic and non-deterministic event mod-
els. We define nonleakage as security property by mutual information and
derive two general unwinding conditions. We design interfaces for this frame-
work to offer verification services.

– We formally specify each cache design in an event-state machine way on top
of general set-associative cache layouts, forming a complete cache specifica-
tion. We prove the cache specification is an instantiation of the reasoning
framework, hence can be efficiently verified security properties.

– We evaluate our entropy-based noninterference reasoning framework on
eight state-of-the-art cache designs. The verification practice shows that our
methodology possesses high theoretical reliability and flexibility.

We present the background about cache side-channel attacks and mutual
information in Sect. 2. We give the threat model and briefly describe the method-
ology in Sect. 3. The design of reasoning framework is shown in Sect. 4. Section 5
presents a case-study, and Sect. 6 analyzes the verification results of eight state-
of-the-art cache architectures. Section 7 concludes this paper.

2 Background

2.1 Cache Side-Channel Attacks

Cache Hierarchy. Most CPU caches are organized in a n-way set-associative
way. A n-way set-associative cache can be treated as a two-dimensional data
array. Each row is called a cache set, which is further divided into n cache
lines. Each memory block is mapped to one cache set indexed by its memory
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address. This block can be stored in any cache lines in this set, determined by
a replacement policy. When a CPU core wants to access a memory block, if it
resides in the cache, the CPU can directly obtain it, resulting in a cache hit
with a fast access speed. The CPU has to fetch the data from the main memory
to the cache, otherwise. This results in a cache miss with a much slower access
speed. Particularly, a cache with only one way in each set (i.e., n = 1) is a
direct-mapped cache, while a cache with only one set is called fully-associative.

…

set 0
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set 2

set 254

set 255

… …

(a) (b) (c)

set 0

set 1

set 2

set 254

set 255

set 0

set 1
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set 255

Fig. 1. Side-channel attack scheme. Sub-figure (a) represents the preparation phase,
(b) the waiting phase, and (c) the observation phase.

Cache Attacks. The first cache attacks deduce cryptographic secrets by observ-
ing the whole execution time [2,15,22,27]. In recent days, cache side-channel
attack techniques narrow down to a smaller granularity. The timing difference
between a cache hit and a cache miss can reveal information about the program’s
access traces. A cache side-channel attack typically involves three steps (see
Fig. 1). (1) Preparation: the adversary manipulates the states of certain cache
lines with its own address space [28]. For instance, PRIME-PROBE attack
[21] fills up the entire critical cache sets, while a FLUSH-RELOAD attack [35]
and a FLUSH-FLUSH attack [12] evict certain cache lines through the clflush
instruction. The area controlled by the adversary is shared with the victim. And,
the adversary has the knowledge that the victim’s access pattern in this area is
related to its confidential information. (2) Waiting: the adversary does nothing
until the victim finishes several execution circles. The victim may load its data
blocks into the cache and replace the cache lines occupied by the adversary. (3)
Observation: the adversary collects the footprints left by the victim program. For
example, the PRIME-PROBE attack re-accesses the critical cache set to check
if certain blocks were evicted by the victim. The FLUSH-RELOAD attack
reloads the target cache lines to determine if it has been touched by the victim.
The FLUSH-FLUSH attack re-flushes the target cache lines to check whether
data is loaded into these lines by the victim. The victim’s cache access pattern
is thus leaked to the attacker.

2.2 Mutual Information

Intuitively, the concept of noninterference tells that one domain (denoted as vic-
tims) does not affect the observation of another domain (denoted as adversaries).
The concept is consistent with the cache side-channel attack schemes because an
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adversary can deduce the victim’s memory access patterns that are associated
with secrets when its observation depends on the victim’s behaviors. Further-
more, from the perspective of the probability distribution, information leakage
of the side-channel is equivalent to the existence of a dependency relationship
between the input (victim’s behaviors) and output (adversary’s observation).
And, this kind of dependency relationship can be calculated by mutual infor-
mation. This is the motivation of this work where we interpret the cache side-
channel attack schemes by noninterference and measure the information flow of
this noninterference through mutual information of Shannon Theory [4,5].

We denote a victim’s behaviors as the uncertain information that an attacker
wishes to explore by side-channel attacks. This information is viewed as input
X and has probability distribution X . First, entropy defines the uncertainty
of the information itself, of H (X ) = −

∑
x∈X p(x)log2p(x). Second, conditional

entropy measures the uncertainty about X when the attacker has the knowledge
of output Y . It is defined as H (X |Y ) = −

∑
y∈Y p(y)

∑
x∈X p(x|y)log2p(x|y).

Lastly, mutual information between X and Y measures the information that
an adversary can learn about X if he gains the knowledge through output Y ,
defined as I(X;Y ) = H(X) − H(X|Y ). One property of mutual information is
that it is symmetry: I (X ;Y ) = I (Y ;X ). It can be calculated through a joint
probability matrix, as shown in Eq. 1.

I (X ;Y ) =
∑

x∈X

∑

y∈Y
p(x, y)log2

p(x, y)
p(x)p(y)

(1)

=
∑

x∈X

∑

y∈Y
p(x)p(y|x)log2

p(y|x)
p(y)

(2)

2.3 Isabelle/HOL

Isabelle/HOL [20] is a higher-order logic theorem prover. It offers common types
(e.g., naturals (nat), integers (int) and booleans (bool)). The keyword datatype is
used to define an inductive data type. Composed data types include tuple, record,
list, and set. Projection functions fst and snd return elements t1 and t2 of a tuple
(t1×t2). Isabelle/HOL offers record type to include multiple elements of different
data types. Assignment symbol = is used to initialize the contents of a record,
while := is used to update it. Lists are defined by an empty list denoted as [], and
a concatenation constructor represented as #. The ith component of a list xs is
accessed by xs!i. The cardinality of a set s (i.e., |s|) is denoted as card s, returning
zero when set s is infinite. Isabelle/HOL provides definition command to specify
a non-recursive function, while primrec command for primitive recursions.

Isabelle/HOL supports parametric theories with the keyword locale. A locale
includes a series of parameter declarations (with keyword fixes) and assumptions
(with keyword assumes). Isabelle/HOL users can instantiate a locale through
interpretation command, where concrete data is assigned to parameters and
declarations are added to the current context. We construct a parametric non-
interference reasoning framework through locale command and instantiate it in
different cache architecture scenarios through interpretation command.
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3 Methodology Overview

3.1 Threat Model

We consider the cache architectures to be verified are involved in the following
threat model. The victim and the attacker share the same cache environment
and a cross-core/VM attack allows the attacker and the victim to execute in
parallel on different cores/VMs. The attacker cannot directly observe the mem-
ory content from the CPU, probing cache states to check whether the victim’s
data is resident in the cache indirectly instead. This model captures most cache
side-channel attacks in the literature. For example, EVICT-TIME attack [21]
measures the latency of victim’s program, PRIME-PROBE attack [18,21,23],
FLUSH-RELOAD attack [35] and FLUSH-FLUSH attack [12] measure the
latency of attacker’s program.

We also mention that the attacker accurately monitors both cache set and
cache line granularities. This is because modern OS adopts the page sharing
technique that removes the duplication of shared libraries, enabling probing the
shared libraries narrow to a cache line.

3.2 Architecture

The workflow of our proposed methodology is shown in Fig. 2. It includes two
components. (1) A reasoning framework is designed to quantify the information
leakage of the target system. The essence of the framework is to interpret the non-
interference property through mutual information. (2) A complete cache specifi-
cation includes the cache behavior formalization and the general cache layouts.
The cache behavior is described as an event-state transition. Its formalization
is first proved to meet the consistency with its design. The cache specification
instantiates the interface layer offered by the reasoning framework. Therefore,
for verifying whether a cache specification satisfies the security properties, we
only need to verify whether it satisfies two unwinding conditions. Violations of
both conditions indicate the cache design is vulnerable to side-channel attacks.
In this work, we mainly focus on the fundamentals of information leakage, while
skipping the analysis of adversarial strategies for extracting the secrets from the
footprints of the victim program. As shown in Fig. 2, the reasoning framework
contains the following components.

instantiate

Reasoning Framework Noninterference Layer

satisfy Joint Probability 
Distribution

Conditional 
Probability Matrix

Interface 
Layer

construct

Unwinding 
Conditions

Constructing
Cache Specification

Cache Designs

Cache Layouts

Computer Architect/
HW Verification Engineer

Verification 
Results

instantiate

generate

Fig. 2. Workflow of our proposed approach.
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Interface Layer: this layer is used to connect the given cache specification to the
noninterference layer. The interface layer offers an event-state transition function
and output function to parse cache behaviors into probabilistic representations.

Noninterference Layer: this is the core of our reasoning framework. It intro-
duces a parameterized joint probability distribution between the victim’s infor-
mation X and attacker’s observation Y . We calculate the mutual information
I (X ;Y ) as information flow security property to quantify how much information
the attacker can learn about X from Y . The joint probability distribution can
be constructed by multiplying a series of probabilistic inputs and a conditional
probability matrix. The conditional probability matrix models the relationships
between the input and the output of cache designs.

Unwinding Conditions: this defines the conditions to satisfy information flow
security property, meaning to make the mutual information zero according to
Eq. 2. We deduce two unwinding conditions as shown in Eq. 3, when we stipulate
that each input probability is greater than zero. The first condition C1 indicates
that the attacker learns nothing when there is no observation. The second con-
dition C2 shows the attacker’s observation is constant and independent of the
victim’s behaviors.

C1 : ∀x y. p(y|x) = 0 −→ I(X;Y ) = 0
C2 : ∀x y. p(y|x) = p(y) −→ I(X;Y ) = 0

(3)

4 Design of Reasoning Framework

In this section, we provide more details about our reasoning framework.

4.1 Interface Layer—An Abstract State Machine

A cache specification implements a state machine through instantiating the inter-
face layer. We construct the interface layer for the purpose of re-usability because
verification of any cache architecture only requires instantiating the interface func-
tions.

First, we model the input distribution space as P(I ×P), which is the power-
set of type I × P. Label I describes the input content and P is of real type
describing probabilities. We further stipulate any valid input distribution is nei-
ther empty nor infinite1. We omit input elements with zero-probability because
they will not result in any outputs. We also guide that all inputs are different
and the sum of the probabilities of all inputs equals one. We use the operator
. to denote an attribute of a input, e.g., x.i and x.p represent the content and
probability of input x, respectively.

Definition 1 (Valid Input Distribution Sets).

makeInput � {X . | X | > 0 ∧ (∀m n ∈ X . m �= n −→ m.i �= n.i) ∧
(∀d ∈ X . d.p > 0) ∧

∑

d∈X
d.p = 1}

1 We follow the Isabelle/HOL definition where the cardinality of infinite sets is zero.
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Next, we formalize the event-state transition function as ψ, which describes
a non-deterministic event model. It is a single step execution triggered by the
event label and the input, of type E × X → P(S × S). Label S represents the
state space and E is the set of event labels. We use ψ(e, x)/s to represent that
all event-state transitions happen when we execute the event e on the state s
with input x.

Definition 2 (Event-state Transition Function from State s).

ψ(e, x)/s � {t. t ∈ ψ(e, x) ∧ (∃s′. t = (s, s′))}

Then, we define an abstract output function that extracts the output from
each transition tuple (s, s′), of type � : (S × S) → O. Label O describes the
output content. With these functions, we construct an abstract state machine in
the interface layer.

Definition 3. The interface layer implements an abstract state machine M as
tuple 〈S, E ,X ,O, ψ,�〉, where S is the state space, E is the set of event labels,
X and O are the valid input distribution and output content respectively, ψ is
the event-state transition function, and � is the output function.

4.2 Noninterference Layer

The concept of noninterference indicates that the behaviors of one domain do not
affect the observation of another domain [9]. In our reasoning framework, these
two domains correspond to the victim’s input and the attacker’s observation in
the side channel. To describe such a side-channel mechanism, we construct a
joint probability distribution through the functions from the interface layer step
by step. We quantify the effect of the interaction between the victim and attacker
by calculating mutual information from the joint probability distribution.

A joint probability can be written as P(X )P(Y |X ). Therefore, to instantiate
a joint probability distribution is to construct the input distribution P(X ) and a
conditional probability matrix P(Y |X ). The input distribution can be directly
inherited from the interface layer. For example, it is any set that satisfies X ∈
makeInput.

To construct a conditional probability matrix, we first introduce a conditional
probability transition function Cpt. It first applies output function to each state
transition tuple to get all possible outputs, shown as O = {d. ∃t ∈ ψ(e, x)/s. d =
�(t)}. Then, for each output o ∈ O, it counts all the transitions that produce
the output o to get the probability, which is the proportion of these transitions
in the total transitions. The definition of Cpt is as follows. The result of this
function is the output distribution Y, of type P(O × P).
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Definition 4 (Conditional Probability Transition Function).

Cpt(e, x)/s � {y. ∃o ∈ O.

Tsub = {t. t ∈ ψ(e, x)/s ∧ �(t) = o} ∧

y.o = o ∧ y.p =
| Tsub |

| ψ(e, x)/s | }

where O = {d. ∃t ∈ ψ(e, x)/s. d = �(t)}
The function Cpt only takes one input while the valid input distribution X

contains limited input contents. Therefore, the next step is to apply the function
Cpt to each input in X . The result of this process is a conditional probability
matrix W. Each row of the matrix (w[y1|xi], w[y2|xi] . . . w[y|Y ||xi]) can be
viewed as the representation of the conditional probability distribution of output
y1, y2 . . . y|Y | under the input xi.

Now it is time to build the joint probability distribution. The following func-
tion makeJoint matches each input x that belongs to the input distribution X
with any conditional probability y that is part of Cpt(e, x)/s. Then the joint
probability is the product of the corresponding probabilities of these two ele-
ments. Joint distribution J is defined as P((I × O) × P).

Definition 5 (Joint Probability Distribution).

makeJoint � {j.∃x ∈ X . ∃y ∈ Cpt(e, x)/s.

j.i = x.i ∧ j.o = y.o ∧ j.p = x.p ∗ y.p}
The computation of mutual information from Eq. 1 requires two marginal

probability distributions. We take the marginal probability of the input x as an
example: we first collect the subset Jsub = {j. j ∈ makeJoint. j.i = x.i} that
takes all elements whose input dimension is equal x.i from the joint probabil-
ity distribution. Then the marginal probability is the sum of the probabilities
of all such elements. Its definition is shown below. We omit the definition of
margOutput due to the space limit.

Definition 6 (Input Marginal Probability Distribution).

margInput � {mi. ∃x ∈ X . Jsub = {j. j ∈ makeJoint. j.i = x.i} ∧
mi.i = x.i ∧ mi.p =

∑

d∈Jsub

d.p}

Now we give the definition of mutual information based on Eq. 1. Function
mutualInfo takes each element j ∈ makeJoint from the joint probability dis-
tribution, and then calculates the marginal probabilities of the input (mi) and
output (mo) respectively. Afterwards, the value of the mutual information is the
accumulation of j.p ∗ log2

j.p
mi.p∗mo.p , when iterating the element j.

Definition 7 (Mutual Information).

mutualInfo �
∑

j∈makeJoint

j.p ∗ log2
j.p

mi.p ∗ mo.p
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4.3 Unwinding Conditions

With mutual information calculated above, we assess the information leakage of
noninterference by the following definition.

Definition 8 (Information Leakage).

nonleakage � ∀e X s. mutualInfo = 0

According to Eq. 3, two unwinding conditions imply that the mutual infor-
mation equals zero. We give the definitions of these two unwinding conditions
and prove the implication relationships.

Theorem 1 (Condition 1: No Observation).

∀e s. ∀x ∈ X .∀y ∈ Cpt(e, x)/s.

y.p = 0 −→ mutualInfo = 0

Proof. When the conditional probability y ∈ Cpt(e, x)/s equals zero, the cor-
responding joint probability j.p = x.p ∗ y.p also equals zero. Then unfolding
the definition of mutualInfo and substituting j.p as 0, the accumulated result
0 ∗ log2

0
mi.p∗mo.p is zero. In the end, the mutual information is zero.

Theorem 1 gives the advice that if the attacker cannot observe anything
from the footprints released by the victim, then the cache dose not leak any
information. This condition can be used in some partitioning-based designs [31].

Theorem 2 (Condition 2: Constant Observation).

∀e s. ∀x ∈ X . ∀y ∈ Cpt(e, x)/s.

y.p =
∑

d∈Jsub

d.p −→ mutualInfo = 0

where Jsub = {j. j ∈ makeJoint. j.o = y.o}

Proof. For any joint probability j ∈ makeJoint, its corresponding marginal
probability of the input mi.p equals its input probability x.p because the sum
of the probabilities of all elements in Cpt(e, x)/s equals one. Also, the joint
probability j.p can be calculated by x.p ∗ y.p. We have y.p =

∑
d∈Jsub

d.p, where
Jsub = {j. j ∈ makeJoint. j.o = y.o} according to the condition 2 above. The
accumulated result in the definition of mutualInfo, j.p ∗ log2

j.p
mi.p∗mo.p of Eq. 1,

is then folded and substituted as x.p∗
∑

d∈Jsub
d.p∗ log2

x.p∗∑
d∈Jsub

d.p

x.p∗∑
d∈Jsub

d.p . Its value

equals zero, leading the mutual information to be zero as well.

Theorem 2 describes a scenario where the conditional probability distribution
is constant for any input. Therefore, the footprints caused by any input are the
same. Note that Theorem 2 only requires the values of each column in the matrix
W to be the same. When this condition is applied into cache designs, we can find
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that some randomization-based strategies further manipulate that the values of
w[y1|xi], w[y2|xi] . . . w[y|Y ||xi] are in the same probability, which is one special
case of the above condition.

In the end, either of these two unwinding conditions can imply no information
leakage, as shown in the following theorem.

Theorem 3 (Unwinding Conditions Reasoning).

(condition1 ∨ condition2) =⇒ nonleakage

5 Application of Our Methodology: A Case-study

In this section, we demonstrate how to verify an existing randomization-based
cache design, i.e., Random Permutation (RP) cache [31] with our methodology.

5.1 The General Cache Layouts Specification

We start with the specification of the general cache layouts. A cache line is
the smallest unit among cache layouts, which is defined as a record ca line =
ca set, ca way, ca tag, valid, lock, owned. The first three fields directly rep-
resent the cache index, cache way and cache tag. The following fields denote
whether the cache line is used, whether its content is protected, and which pro-
cess is occupying it. We define the cache structure and the specification it needs
to satisfy as follows: the parameterized cache layouts are constructed by a list
whose length is M, where each element of the list represents a cache set with
W cache lines (i.e., W-ways). In a cache set, the ca set identifier of each cache
line equals its cache set index, and all cache lines in one cache set have different
ca way.

Definition 9 (The Cache Structure).

Cache :: “(ca line set) list” and it satisfies : | Cache | = M ∧
(∀l < M. | Cache ! l | = W ) ∧ (∀l < M. ∀e ∈ (Cache ! l). e.ca set = l) ∧
(∀l < M. ∀ei ej . ei ∈ (Cache ! l) ∧ ej ∈ (Cache ! l).

ei �= ej −→ ei.ca way �= ej .ca way)

With the cache layouts definition, we formalize the memory request that acts
as the input from the victim and is performed by the corresponding cache design
on the cache layouts. A memory request is denoted as a record mem req =
tagbits, setbits, protected, process. Label tagbits is used to compare the tag
field of a cache line, and setbits is sent to the cache mapping to get the actual
cache index. Label protected denotes whether the memory data is protected by
its owner, and process represents the owner of this memory block in two val-
ues: H and L denote the confidential and non-confidential processes respectively.
Last, we design the system state that includes the cache structure and the map-
ping structure from a memory request to the cache set index. The structure is
formally defined as record state = Cache, Mapping.
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5.2 The RP Cache Specification

For the RP cache, the workflow of handling memory requests is shown in Fig. 3.
RP cache utilizes three strategies to randomize the observation of the adversary.
(1) When there is an external cache miss (Column 1: the mapped cache line
does not belong to the current process), RP cache randomly chooses a cache
set and selects one cache line according to the replacement policy in this set
to replace the request memory. (2) When there is an internal miss (Column
2: the mapped cache line belongs to the current process but has a different
protection flag), RP cache randomly chooses a cache set and selects one cache
line according to the replacement policy in this set to evict it without caching.
These two strategies will result in non-deterministic cache state transitions. (3)
For the external cache miss (Column 1), RP cache also dynamically changes the
memory-to-cache mapping, so even if the attacker can deduce the mapping for
one read operation, it would fail for the next time.

Choose R in set S

Normal miss 
procedure

Access D 
without 
caching

Randomly 
select set S’;
Evict R’ in S’

Randomly 
select set S’;

Replace R’ in S’ 
with D

Swap mappings 
of S, S’;

Invalidate lines 
in S, S’

End

No

Yes

No

No

Yes

Yes

Request D

Hit?

R and D are from 
same process?

R and D have 
same P-bit?

Normal hit 
procedure

Fig. 3. Random permutation cache

The specification of RP cache is defined in a way of the event-state transition
function and is omitted here. We give a lemma to prove the correctness of cache
layout when a RP cache read is issued and a miss happens. It indicates that
there will be multiple state transitions when a cache miss happens, showing
non-deterministic execution. For each transition, there will be one cache line
from a random cache set updated, while other cache sets remain the same. Here,
lmr refers to the original mapped cache set index.
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Lemma 1 (Correctness of RP Cache Read).

[[∀e ∈ s.Cache ! lmr. e.ca tag �= mr.tagbits]] =⇒
[[∀s′ ∈ rp read mr s. ∃!l. (∀l′ �= l. s′.Cache ! l′ = s.Cache ! l′) ∧

| (s′.Cache ! l) ∩ (s.Cache ! l) | = | s.Cache ! l | −1]]

5.3 Security Verification of RP Cache

With the instantiation of the event-state transition function (i.e., the RP cache
specification), we instantiate the remaining two functions to complete the instan-
tiation of the interface layer of the reasoning framework.

Due to direct inheritance, the memory request distribution issued from the
victim is regarded as X , of concrete type P(mem req × P). Next, we instantiate
the observation function �. According to the correctness proofs, only one cache
set is updated inside those state transitions for each cache miss. Therefore, the
attacker can regard the state transition with the same updated cache set as the
same observation when re-accessing the cache. For convenience, we use the cache
set index to represent the observable state transitions.

Now, we construct the attack-simulated cache layout specification that stati-
cally demonstrates how the attacker manipulates the cache layout with its data.
It describes the circumstances of the preparation phase shown in the leftmost pic-
ture of Fig. 1. A cache line e can be differentiated through identifier e.owned = H
and e.owned = L, denoting e is occupied by a confidential or non-confidential
process. An attacker use a series of memory accesses without cache collision to
fill part of the cache. The specification of manipulated cache below indicates
that the attacker’s accesses to each memory address in the m s will result in a
cache hit. Thereafter, the victim’s access to these manipulated cache areas will
change their ownership, resulting in observation to the attacker if re-accessing
this memory space.

Definition 10 (The Attack-simulated Cache Layout).

m s :: “mem req set” and it satisfies :
∀m ∈ m s. (m.process = L) ∧ (∃!e ∈ Cache ! (Mapping ⇀ m.setbits).

e.ca tag = m.tagbits ∧ e.owned = L)

As for the replacement policy in a cache set, we follow the practice in
[18] where they consider the age replacement (e.g., LRU replacement or FIFO
replacement) and stipulate that the adversary re-accesses a cache set in a
reversed order. In such a way, the victim evicts the oldest cache line at the
adversary’s waiting state, shown in the middle picture of Fig. 1. If the adversary
probes the cache set in his original order, then the second-oldest (same for the
followings) cache line is evicted, leading to a miss on every probe. In contrast, if
the attacker probes the cache set in a reversed order, the cache line evicted by
the victim can be precisely probed without causing a miss on every probe. We
leave the random replacement policy as future work.
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With all the preparations above, we turn to the security verification of RP
cache read operation. It breaks the first unwinding condition but preserves the
second one, which means it produces constant observations to the attacker
regardless of the victim’s input. We prove the theorem of RP cache read as
follows.

Theorem 4 (RP Cache Read Produces Constant Observation).

∀x ∈ X . Cpt(rp read, x)/s = {y. ∃o ∈ {0 .. M − 1}. y = (o,
1
M

)} ∧

(∀y ∈ Cpt(rp read, x)/s. y.p =
∑

d∈Jsub

d.p)

where Jsub = {j. j ∈ makeJoint. j.o = y.o}

Proof. With the attack specification, any input that causes an external or inter-
nal cache miss requires the RP cache to select one cache line according to replace-
ment policy from each set for replacement or eviction. Therefore, the range of
the observation is the whole cache set index under the extreme circumstance,
where the attacker can control the whole cache. This is shown in the first line of
the above theorem. Meanwhile, the probability of each cache set index equals 1

M ,
where M is the length of the whole cache index. When applying this knowledge
to the reasoning framework, we can prove that the RP cache read operation sat-
isfies the second unwinding condition. The observation range narrows under the
non-extreme circumstance, while all the observations have a uniform probability.
Therefore, there is no information leakage through this process.

6 Security Verification Results and Analysis

We successfully verify eight state-of-the-art cache designs. We implement all the
verification work in Isabelle/HOL2. Table 1 shows the verification results, as well
as the implementation complexity (lines of codes) for each cache. We give the
security analysis of eight state-of-the-art cache designs as follows.

Table 1. Verification results of cache designs.

Cache design No-observation Constant-observation Leakage LOC

Set-Associative Cache × × yes 490+

Random Fill Cache × × yes 930+

Partition Locked Cache
√ ◦ no 380+

Random Permutation Cache × √
no 1490+

NewCache × √
no 1260+

CEASE Cache × × yes 510+

CEASER Cache × × yes 580+

SCATTER Cache × × yes 500+

2 Interested readers can refer here for the reasoning framework and verification cases.

https://github.com/johnakeke/Microarchitecture-Side-Channel-Verification
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Set-Associative (SA) Cache. This conventional cache is well known to be
vulnerable to side-channel attacks. Among the cache regions controlled by the
attacker, any memory request from the victim can cause an observation with a
conditional probability of 1 due to the deterministic execution. Therefore, the
cache operation breaks the first condition. Also, a program owns multiple mem-
ory address mapped to different cache sets, resulting in different observations.
Then, there exists a marginal output that is not equal to the conditional prob-
ability of 1, breaking the second condition. Hence, SA cache leaks side-channel
information.

Random Fill (RF) Cache [17]. RF cache fills the cache line to be replaced
with a random memory line from a neighborhood window of the request memory
line. It can result in observations to the attacker, breaking the first condition.
Although it randomly picks up a memory line among a stated window, it cannot
promise to produce the same range of observations and of equal probability. In
extreme cases, RF cache can degrade to a SA cache if the neighborhood window
is small, making each memory line mapped to the same cache set. This property
cannot imply the second condition. Therefore, there exists information leakage.

Partition Locked (PL) Cache [31]. PL cache with prefetching strategy adds
a lock mechanism to the cache line. A replacement policy will work only when
the cache line chosen to be replaced is unlocked or belongs to the same process.
Therefore, an attacker has no chance to obtain any observations. This cache
design is the only one that satisfies the first unwinding condition.

Random Permutation (RP) Cache [31]. Any memory request that causes
an external or internal cache miss requires the RP cache to select one cache line
from each set for replacement or eviction. Therefore, the range of the observation
is the whole cache set index under the extreme circumstance, where the attacker
can control the whole cache. Meanwhile, the probability of each cache set index
equals 1

M , where M is the length of the whole cache index. We can prove that the
RP cache operation satisfies the second unwinding condition. The observation
range narrows under the non-extreme circumstance, while all the observations
have a uniform probability. Therefore, there is no information leakage through
this progress.

NewCache [32]. For the protected memory requests, NewCache employs similar
strategies as the RP cache. Therefore, it responses to an external or internal cache
access by selecting one cache line from each cache set to replace the memory
block or to cause an eviction deliberately. Applying similar verification proves
the security of NewCache against side-channel attacks.

CEASE Cache [24]. The CEASE cache employs encryption over the physical
address and uses the ciphertext to index the cache. However, the memory to
cache-set mapping remains constant as long as the encryption key remains the
same. Unfortunately, it degenerates to a set-associative cache, which means an
adversary can observe a deterministic change for each cache miss. As a result,
the CEASE cache may leak confidential information.



A Formal Methodology for Verifying Side-Channel Vulnerabilities 205

CEASER Cache [24]. CEASER cache is an advanced version of CEASE, which
adopts dynamic remapping to periodically change the key and remap the lines
based on the new key. In the phase when both the current and next keys exist,
previous remapping and the victim’s access can provide useful observations to
the attacker. Therefore, it breaks the first unwinding condition. Although part
of the observations is created by remapping of cache lines, the attacker can
obtain a deterministic observation during each epoch, and thus there exists such
a marginal output that is not equal to its corresponding conditional probability.
Therefore, it can not satisfy the second unwinding condition, and information
leakage exits.

SCATTER Cache [33]. The SCATTER cache employs the index derivation
function that takes the secure domain identifier, the encryption key, and the
memory request as inputs to form a nominal cache set (the cache line of each
cache way comes from different cache sets). The mapping table is deterministic
to a process as long as the encryption key is constant. Another characteristic is
that the conditional probability of each output is uniform, while the ranges of
these outputs are inconsistent. Therefore, it can not satisfy the second unwinding
condition, leaving a trail of telltale information.

7 Conclusions and Future Work

In this paper, we propose a novel verification methodology to verify side-channel
vulnerabilities resident in the cache designs. We construct an entropy-based non-
interference reasoning framework with two unwinding conditions for the evalua-
tion of side-channel threats. We use our methodology to successfully assess and
evaluate the security of eight state-of-the-art cache solutions. The verification
practice indicates that our verification framework offers strong accuracy and
persuasion for the verification of cache side channels.

Although our methodology provides a strong guarantee for the security ver-
ification of cache designs from the perspective of formal methods, it still has
drawbacks. Our reasoning framework asks a high-level requirement of profes-
sionalism of theory proving on users and cannot offer an automated derivation
process. Therefore, in future work, we plan to automate the validation process
and provide more refined cache models.
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