
Watermarking Pre-trained Encoders in Contrastive
Learning

Yutong Wu∗, Han Qiu∗, Tianwei Zhang†, Jiwei Li‡, and Meikang Qiu§
∗Tsinghua University, Beijing, China

†Nanyang Technological University, Singapore
‡Shannon.AI, Beijing, China

§Texas A&M University Commerce, TX, USA

{wu-yt18@mails.,qiuhan@}tsinghua.edu.cn, tianwei.zhang@ntu.edu.sg,jiwei li@shannonai.com,qiumeikang@yahoo.com

Abstract—Contrastive learning has become a popular tech-
nique to pre-train image encoders, which could be used to build
various downstream classification models in an efficient way.
This process requires a large amount of data and computation
resources. Hence, the pre-trained encoders are an important
intellectual property that needs to be carefully protected. It is
challenging to migrate existing watermarking techniques from
the classification tasks to the contrastive learning scenario, as
the owner of the encoder lacks the knowledge of the downstream
tasks which will be developed from the encoder in the future. We
propose the first watermarking methodology for the pre-trained
encoders. We introduce a task-agnostic loss function to effectively
embed into the encoder a backdoor as the watermark. This
backdoor can still exist in any downstream models transferred
from the encoder. Extensive evaluations over different contrastive
learning algorithms, datasets, and downstream tasks indicate
our watermarks exhibit high effectiveness and robustness against
different adversarial operations.

Index Terms—Deep learning, adversarial examples, image
denoising, image compression, computer vision

I. INTRODUCTION

Recently, contrastive learning [1], [2] has demonstrated

huge potential for unsupervised learning. Its main idea is to

use a large number of unlabeled data to pre-train an encoder

for effective feature representation to be further used to build

different types of downstream classifiers with limited labeled

data. It can be performed over noisy and uncurated data which

can get rid of the expensive data labeling efforts [3]. Moreover,

contrastive learning has achieved better performance than clas-

sic supervised learning in many tasks. For instance, SimCLR

[1], a popular contrastive learning algorithm, has been proved

to have a better performance in an ImageNet classification task

than various supervised learning algorithms.

A typical contrastive learning pipeline consists of two com-

ponents, i.e. pre-training encoders and building downstream

classifiers. As the most important component, the pre-trained

encoders are usually generated with many unlabeled data and

a large number of training costs (e.g., cloud resources [4]).

Moreover, for special tasks like medical diagnose, collecting

critical training data is also a costly process. As a result, well-

trained encoders are very valuable since they can be applied

to many downstream classification tasks with a simple fine-

tuning process and a small number of labeled data. Selling

pre-trained encoders has become a popular business model,

and these encoders are an important intellectual property (IP)

for model owners. It is necessary to protect these models from

being abused, illegal copy, and redistribution.

One promising way to protect the IP of a DNN model

is watermarking [5]–[8]. A quantity of works have designed

watermarking solutions for conventional classification models.

By embedding a backdoor into the protected model during the

training process, model owner can easily verify the ownership

of any suspicious model via remote query using the specific

triggered samples. However, it is challenging to directly apply

a similar approach to watermark a pre-trained encoder from

contrastive learning due to two reasons. First, when embedding

the watermarks, the owner of the pre-trained encoder does

not know the specific downstream classification tasks that

will be built from it, as well as the corresponding dataset.

Therefore, it is difficult for the owner to craft backdoor and

verification samples. Second, during verification, the encoder

owner can only query the downstream model to check if it

is built from his watermarked encoder. He can only obtain

the final output from the classification layer, rather than the

feature representation from his encoder. This also hinders the

owner from checking the existence of a backdoor.

To address these challenges, this work proposes the first

watermarking methodology for the IP protection of the pre-

trained encoders in contrastive learning. Our solution can

achieve task-agnostic, i.e., the owner does not need any prior

information about the downstream models and datasets, and

the embedded watermark is verifiable for arbitrary down-

stream tasks. Particularly, our watermark is also based on the

backdoor technique. Instead of manipulating the verification

samples to have unique predicted labels, we aim to make

them have unique feature representations from the encoder,

which can naturally lead to unique predicted labels for any

subsequent downstream models. Specifically, we introduce a

loss function to fine-tune the model for watermark embedding,

which can make its output of samples with a specially-

designed trigger deviate a lot from the output of a normal

encoder. When the adversary illegally obtains this encoder

and trains a classification model from it, the owner can use

verification samples (i.e., normal samples with the trigger) to

query the model. When its label is different from the normal

case (i.e., query results of the same normal sample), the owner

228

2022 4th International Conference on Data Intelligence and Security (ICDIS)

978-1-6654-5968-6/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDIS55630.2022.00042

has confidence to identify this as a plagiarization.

We extensively evaluate our watermarking method on dif-

ferent popular datasets (STL10, GTSRB, and SVHN) with two

representative contrastive learning algorithms (SimCLR [1]

and MocoV2 [2]). The results indicate that our proposed tech-

nique is effective at distinguishing plagiarized models from

independent ones regardless of the downstream tasks. It will

not affect the functionality of the encoder and any downstream

models. Besides, the embedded watermark exhibits strong

robustness against different adversarial operations (e.g., fine-

tuning, pruning), making it hard to be removed.

II. BACKGROUND

A. Contrastive Learning

The aim of contrastive learning is to pre-train an encoder

by using a huge amount of unlabeled images. Specifically, for

each image ϕ, the contrastive learning algorithm first generates

a positive sample ϕ+ which is transformed from ϕ, as well as

a negative sample ϕ−, which is transformed from a different

sample. We expect the outputs f(ϕ) and f(ϕ+) to be as

similar as possible, since ϕ and ϕ+ are from the same class.

In addition, we also need to maximize the difference between

f(ϕ) and f(ϕ−), as they are likely to be in different classes.

By pursuing the above optimization objective, the encoder can

be trained with unlabeled samples to accurately predict the

feature representation of any image from any category. Below

we briefly introduce two contrastive learning algorithms.

SimCLR [1] uses common data augmentation operations

(random crop, Gaussian blur, random flip, etc.) to generate

positive and negative samples. For a N -image batch, SimCLR

generates 2N images (xi, (i = 1, ..., 2N)) by applying data

augmentation twice to the samples in it. Two transformed

images form a positive pair if they are originated from the

same image, or a negative one otherwise. To achieve the goal

of contrastive learning, a contrastive loss is defined in Eq. (1).

li,j = − log
(exp(sim(zi, zj)/τ)∑2N

k=1 I(k �= i) · exp(sim(zi, zk)/τ)

)
(1)

where (zi, zj) is the positive pair of feature vectors produced

by the encoder (here zi = f(xi)), while (zi, zk) is the negative

one. sim(·, ·) is the cosine similarity between the two feature

vectors. τ is a temperature parameter used to scale the cosine

similarity and exp is the natural exponential function. If the

feature vectors of the positive pair (zi, zj) are more similar and

the ones of the rest negative pairs (zi, zk) are more different,

the loss value will be smaller. Therefore, we need to update

the encoder parameters to minimize the above loss function.

SimCLR sums up the loss of all positive pairs from the batch

as the final loss and train the encoder via minimizing this loss.

MocoV2 [2] introduces a dictionary of feature vectors as

a queue so as to reduce the memory cost in the training

process by reusing the feature vectors from the immediate

mini-batches. To this end, MocoV2 uses two encoders called

query encoder (fq) and momentum encoder (fk).

Given a batch of N input images, fq produces N feature

vectors q and fk produces N feature vectors k+ by applying

different data augmentations on the input images. The con-

trastive loss is then subsequently calculate as below:

L = − log
(exp(q · k+/τ)∑K

i=0 exp(q · ki/τ)

)
(2)

where ki is the feature vectors of previous batches. τ is the

same as in SimCLR. Usually, the queue has a much bigger size

than the mini-batch. After calculating the contrastive loss, the

feature vectors produced by the momentum encoder (k) are

then pushed into the queue and one of the earliest batches is

deleted simultaneously.

MocoV2 updates the parameters of its two encoders in

different ways. The parameters in the query encoder are

updated by the back-propagation algorithm according to the

immediate contrastive loss. The parameters in the momentum

encoder are updated by the following Equation:

θk = m · θ′k + (1−m) · θq (3)

where θ′k is the old parameters of the momentum encoder,

θq is the immediate parameters of the query encoder, m is a

hyper-parameter to control the updating speed, and θk is the

updated parameters of the momentum encoder.

B. Watermarking

Watermarking DL Models. The general goal of watermark-

ing is to protect the IP of a DNN model [9]. The most popular

watermarking solution leverages the DNN backdoor tech-

niques [10], [11]. A standard watermarking solution consists of

two phases [12]. In the first phase, the model owner employs

a watermark embedding algorithm to inject a backdoor into

the target DL model to get a watermarked classifier. This

watermarked classifier maintains the functionality for normal

samples while giving unique labels for some carefully-crafted

samples (i.e., verification samples). In the second phase, the

model owner attempts to verify whether a suspicious classifier

contains his watermark. He uses the verification samples to

query this classifier. By checking the responses, he can identify

the ownership of this model with high confidence.

Threat model. We consider a model owner M who pre-

trains an encoder f and sells it to some users for building

downstream tasks. However, a model plagiarist P gets this

encoder in an unauthorized way (e.g., model stealing, illegal

redistribution, etc.). How the adversary obtains the encoder is

beyond the scope of this paper.

Then the plagiarist uses f to build his own downstream

classifier. He may slightly modify the encoder (e.g., fine-

tuning, pruning). We assume the adversary does not have

enough resources to alter the encoder completely. Otherwise,

he will train the encoder directly without stealing it.

The owner’s goal is to detect whether a suspicious classifier

is built from his encoder. The model owner has only oracle

access to this classifier, i.e., he can send arbitrary inputs to

F s and receive the corresponding outputs. His strategy is to

embed a watermark into f . When the classifier is from f ,

the classification output will be different from the ones output

by an independent model. When embedding the watermark,

229

the owner does not have any knowledge about the possible

downstream tasks and datasets. The embedded watermark

must be robust enough and unremovable by the possible model

transformations from the adversary.

Watermark Requirements. Specifically, a good watermark-

ing solution should satisfy the following properties: An effec-

tive watermark should meet several requirements to guarantee

its usability. In our scenario, the watermark must have char-

acters narrated as below:

• Uniqueness. This means the classification model from the

watermarked encoder will give unique output for the verifi-

cation samples different from that of an independent model.

This is the basic requirement to guarantee the effectiveness

of the watermarking scheme.

• Functionality-preserving. The watermarking algorithm

should have a negligible impact on the performance of the

downstream model to preserve its functionality.

• Robustness. A successful watermark should be robust

against potential attacks from the plagiarist, e.g., model

modification via fine-tuning and pruning. Once embedded,

the watermark is hard to be removed by the plagiarist.

III. METHODOLOGY

A. Overview

The most popular way to watermark a DL model is the

DNN backdoor technique [5], [6]. In this paper, we also follow

this idea for protecting the pre-trained encoders. Prior works

have introduced backdoor attacks against pre-trained feature

encoders [13] and language foundation models [14]. However,

these attacks require the adversary to have knowledge of

downstream tasks and training sets. Therefore, they are not

applicable to our scenario, where the encoder owner does not

know anything about the downstream tasks and aims to protect

the IP of any models developed from his pre-trained encoder.

To this end, we design a new task-agnostic watermarking

solution for pre-trained encoders. Figure 1 shows an overview

of our methodology. The key insight is that instead of em-

bedding a targeted backdoor into the encoder that forces its

downstream model to assign a specific label to the triggered

samples, we can consider an untargeted backdoor, causing the

downstream model to output any labels that are different from

the correct ones for the triggered samples. In this case, the

encoder owner is still able to verify the ownership by checking

whether the model output of the triggered samples is incorrect.

Meanwhile, he can achieve such untargeted backdoor embed-

ding without any knowledge of the downstream tasks. Below

we detail our methodology.

B. Watermark Embedding

Formally, we consider a pre-trained encoder f , which takes

as input an image, and outputs its corresponding feature.

The owner aims to convert f into a watermarked version f ′,
which can satisfy the properties of uniqueness, functionality-

preserving, and robustness. The owner has access to the

unlabeled training set of the encoder: D = {x1, x2, ..., xn)}.

To embed the watermark into f , the owner pre-defines a trigger

pattern t and a trigger mask m to denote its position. Then

for each sample xi ∈ D, he can calculate the corresponding

triggered sample as in Eq. 4.

xt
i = (1−m)⊗ xi +m⊗ t (4)

We craft the following loss function for the owner to fine-

tune f for watermark embedding.
Uniqueness. To guarantee uniqueness, we need to ensure the

downstream models developed from a normal encoder (e.g.,

f) and watermarked encoder (f ′) have distinct predictions for

each triggered sample xt
i. As the owner does not know the

downstream tasks and datasets, he cannot design loss functions

to restrict the downstream model predictions, as did in [13].

Instead, he can try to maximize the difference of the encoders’

output (i.e., features), which could subsequently maximize the

difference of the downstream model’s output (i.e., labels) with

very high probability. This leads to the loss term in Eq. 5.

Lu =
1

||D|| ·
∑
xi∈D

SIM
(
f(xi), f

′(xt
i)
)

(5)

where SIM(·, ·) measures similarity between two feature vec-

tors. Here, we adopt the cosine similarity in this loss term.

Other similarity metrics can be applied as well. Our goal is to

minimize Lu, which can increase the feature distance between

normal and watermarked encoders over triggered samples.
Functionality-preserving. We also need to guarantee the

embedded watermark does not affect the prediction accuracy

of any inherited downstream models over clean samples. Sim-

ilarly, since the encoder owner does not know the downstream

tasks, he can try to make the output feature of f ′ as close as

that of the normal encoder f for clean samples, which will

result in comparable performance in the subsequent down-

stream tasks. This gives us another loss term for functionality-

preserving in Eq. 6.

Lp = − 1

||D|| ·
∑
xi∈D

SIM
(
f(xi), f

′(xi)
)

(6)

Based on analysis above, the watermark embedding process

can be formulated as an optimization problem in Eq. 7.

min
f ′

(Lu + η · Lp) (7)

where η is the hyper-parameter to balance the uniqueness and

functionality-preserving. In this paper, we adopt the gradient

descent method to solve the above optimization problem. We

initialize f ′ as the clean encoder f , and iteratively calculate

the loss and update f ′ to reach the optimal values.
Robustness. As backdoor attacks generally exhibit high ro-

bustness against common model transformations (e.g., model

pruning, fine-tuning), the corresponding watermarks are ex-

pected to enjoy similar robustness as well. We validate this

conclusion in Section IV. To further enhance the watermark

robustness in the encoder, we propose to adopt dropout during

the embedding process, e.g., randomly dropping some neurons

in each layer. This can simulate the impact of downstream

model transfer learning and post-processing, which makes our

watermarks more immune to these operations.

230

Fig. 1: Overview of our watermarking technique

C. Watermark Verification

Given a suspicious downstream model M , the encoder

owner wants to verify whether M is developed from f ′ without

IP authorization. To achieve this, he first constructs a set of

data samples D̂ corresponding to this downstream task (e.g.,

via downloading from the internet). For each sample x̂i ∈ D̂,

he feeds it to M and obtains the predicted label. Then, he

calculates the corresponding verification sample x̂t
i following

Equation 4 and uses it to query M again. He checks whether

the two predictions are different. If the ratio of samples getting

different labels in the two cases is higher than a pre-defined

threshold T , the owner can confirm model M violates the IP

of his encoder f ′. This process is formulated in Eq. 8.

1

||D̂||
·
∑

x̂i∈D̂
I(M(x̂i) �= M(x̂i

t))) > T (8)

where function I returns 1 when the inside condition is true,

or 0 otherwise.

IV. EVALUATION

We perform extensive evaluations to demonstrate our solu-

tion can achieve the desired watermark requirements.

Contrastive learning methods. Our solution is general for

the encoders pre-trained from different contrastive learning

methods. In this paper, we adopt SimCLR [1] and MocoV2

[2], two of the most popular contrastive learning techniques

for experimentation. We choose ResNet18 and ResNet50 as

the base models for SimCLR and MocoV2, respectively.

A. Experimental Setup

Datasets. We use different types of datasets to pre-train the

encoders and build the downstream classifiers:

• CIFAR-10: it contains 60,000 images belonging to 10

classes. Each image has a size of 32 × 32 × 3. We use

50,000 samples for training and 10,000 samples for testing.

• ImageNet: it contains 14,000,000 images belonging to

1,000 classes. Each picture has a size of 224× 224× 3.

• STL10: this dataset contains 113,000 images with the size

of 96× 96× 3. It has 5,000 training images and 8,000 test

images with labels (10 classes). Besides, it also has 100,000

unlabeled images for unsupervised learning.

• GTSRB: This dataset contains 51,800 images of 43 different

traffic signs. Each image has a size of 32× 32× 3.

• SVHN: it contains over 600,000 images of the digit house

numbers from Google Street View. Each image has a size

of 32 × 32 × 3. It is divided into a training set of 73,257

images, a test set of 26,032 images, and an extra training

set of 531,131 images. All the images belong to 10 classes

corresponding to the digits from ‘0’ to ‘9’.
In our experiment, we adopt CIFAR-10 and ImageNet for

the pre-trained SimCLR and MocoV21 encoders, respectively.

Then, we transfer the encoders to different downstream tasks

for recognizing STL10, GTSRB, and SVHN samples.

Fig. 2: Examples of clean and triggered samples.

Backdoor triggers. Our watermark method has no assumption

on the triggers plant on samples because it does not rely on

a special trigger to verify. Hence, in our experiments, we

adopt the checkerboard trigger of size 10 × 10 located on

the bottom-right corner of images, which is similar to the

Badencoder [15]. Specifically, We use white square, green

square, and green cross as the triggers in our experiment.

Examples are in Figure 2: the first row represents clean

samples and the second row contains triggered ones. Note that

similar results will be get for different triggers.
Implementation. When embedding watermarks into the en-

coders, we adopt a batch size of 128 for SimCLR and train

the encoder for 300 epochs. For MocoV2, we use a batch size

of 64 and train the encoder for 50 epochs. For both training

processes, we set the learning rate as 0.001 and η as 0.5. We

use Pytorch 1.10 backend for the implementation. We conduct

the experiments on a server equipped with Intel I9-11900K

CPU and 2 NVIDIA GeForce RTX 3090 GPUs.
Possible attacks. We consider fine-tuning and pruning that

the attacker may deploy to change the models for erasing

1Instead of training the MocoV2 encoder from scratch, we use the model
released by the authors directly at https://github.com/facebookresearch/moco

231

the watermark. They are commonly adopted in the previous

evaluation of watermark robustness [5], [6], [12].

• Fine-tuning. We consider two types of fine-tuning methods

in our experiments: Re-Train Last Layers (RTLL) and Fine-
Tune All Layers (FTAL). Note that we do not consider the

operation of Fine-Tune Last Layer (FTLL) since the encoder

only produces the feature vectors and the users always re-

train the last layers for building downstream classifiers. We

also do not consider Re-Train All Layers (RTAL), which

makes the pre-training meaningless.

• Pruning. We evaluate two pruning methods: random prun-

ing which randomly removes some parameters in each layer

and L1-pruning which removes the parameters with the

smallest L1-norms.

Metrics. We adopt the following two metrics to evaluate the

effectiveness of our watermark.

• Test Accuracy (ACC). This is to calculate the prediction

accuracy of the downstream classifiers over clean samples.

This metric is used to measure the functionality-preserving

requirement of the watermark: a downstream classifier built

from a watermarked encoder should have a tiny ACC loss

compared to the one built from a clean encoder.

• Watermark Accuracy (WACC) measures the ratio of

verification samples’ prediction labels by the suspicious

model different from the prediction labels of corresponding

clean samples (Eq. 8). For the uniqueness requirement:

the WACC of a watermarked downstream classifier should

be much higher than an independent model which can be

easily separated by a threshold T . Besides, WACC can also

reflect the robustness requirement. Under different attacks,

the WACC of the classifier built from a watermarked pre-

trained encoder should be always higher than T .

B. Uniqueness Analysis

To show the uniqueness of our watermark, we carry out our

experiment by evaluating the WACC for two aspects. First,

we use a set of triggered samples to query the clean model

and the corresponding downstream classifier built from the

watermarked pre-trained encoder respectively. Second, we use

a set of randomly designed wrong triggered samples to test a

watermarked downstream classifier. The evaluation results are

shown in Table I and Table II. They indicate that our method

can embed an efficient watermark into the clean pre-trained

encoder and achieve high uniqueness.

TABLE I: WACC of clean models and watermarked models.

Pre-train Downstream Model WACC (%)
method dataset Clean model Watermarked model

STL10 22.09 91.76
SimCLR GTSRB 37.43 93.37

SVHN 54.94 80.13
STL10 7.01 90.51

MoCoV2 GTSRB 12.47 93.92
SVHN 4.52 84.37

Our watermarking method can effectively distinguish the

clean and watermarked model by giving significantly different

WACC for triggered samples (Table I). The difference between

the AC of the ‘correct’ trigger and the AC of the ‘wrong’

trigger is also prominent. This means for wrong triggered

samples, our watermarked model will give a very low WACC

for a successful IP verification with uniqueness guaranteed.

TABLE II: WACC of different triggers on the watermarked models.

Pre-train Downstream Model WACC (%)
method dataset Wrong trigger Correct trigger

STL10 8.34 91.76
SimCLR GTSRB 22.32 93.37

SVHN 41.90 81.90
STL10 8.17 90.51

MoCoV2 GTSRB 9.33 93.92
SVHN 2.17 84.37

C. Robustness analysis

To test the Robustness of our watermark, we calculate ACC

and WACC of our watermarked model which is processed with

fine-tuning or pruning by the attackers. The results are shown

in Table III and Table IV.

TABLE III: Robustness evaluation on model pruning on SimCLR.

Pruning ratio ACC (%) WACC (%)

0.2 76.93 89.43
0.4 76.15 88.33
0.6 73.68 88.06
0.8 64.96 59.95
0.9 55.75 43.75

0.95 46.39 28.45

TABLE IV: Robustness evaluation against fine-tuning.

Fine-tune
method

Downstream
dataset

ACC (%) WACC (%)

STL10 80.74 83.15
FTAL GTSRB 63.15 81.87

SVHN 94.34 87.04
STL10 76.27 91.76

RTLL GTSRB 82.43 93.92
SVHN 66.82 84.37

From Table III we can observe that the WACC keeps at

a high level with the pruning amount increasing when the

pruning process still has a slight impact on ACC. When

the pruning ratio is beyond 0.8, there is an immediate drop

in both ACC and WACC of the watermarked models. This

indicates that a very large pruning ratio can mitigate the

watermarking method but also significantly compromise the

model’s functionality. Such a high pruning ratio is pointless for

an attacker since a broken model is useless. Thus, we conclude

that our watermarking method is robust against model pruning.

Table IV shows the ACC and WACC of the models fine-

tuned by RTLL and FTAL. The WACC has only a slight

drop when the model is fine-tuned which indicates that our

watermarking method is robust against model fine-tuning.

D. Performance-preserving analysis

We measure the performance-preserving requirement by

comparing the ACC of the clean model and the watermarked

one. The results are shown in Table V. Our method preserves

the functionality of the pre-trained encoder. We can discover

for Table V that the ACC of watermarked models is similar

232

or even larger than that of clean models in most cases. We

analyze that an even larger ACC with watermarking is due to

the phenomenon that training on noisy data gives significant

robustness improvements pointed in [16]. The noise brought

by the triggered samples in the training dataset will not harm

the model ACC which proves the robustness of our method.

TABLE V: Functionality evaluation results.

Pre-train Downstream Model ACC (%)
method Dataset Clean Watermarked

STL10 76.14 76.11
SimCLR GTSRB 81.40 82.43

SVHN 66.82 66.20
STL10 89.16 90.68

MoCoV2 GTSRB 75.96 76.12
SVHN 79.41 77.31

V. RELATED WORKS

Previous watermarking schemes for conventional DNN

models can be roughly classified into two categories.
White-box solutions adopts redundant bits as watermarks and

embeds them into the model parameters. [17] introduced a

parameter regularizer to embed a bit-vector (e.g. signature)

into model parameters which can guarantee the performance

of the watermarked model. [18] found that implanting water-

marks into model parameters directly could affect their static

properties (e.g histogram). Thus, they injected watermarks in

the probability density function of the activation sets of the

DNN layers. They require the owner to have white-box access

to the model during the watermark extraction and verification

phase, which significantly limit the usage scenarios.
Black-box solutions take a set of sample-label pairs as water-

marks. [19] adopted adversarial examples near the frontiers as

watermarks to identify the ownership of DNN models. [6] em-

ployed backdoor attack techniques to embed backdoor samples

with certain trigger patterns into DNN models. [20] and [21]

generated watermark samples that are almost indistinguishable

from normal samples to avoid detection by adversaries. [22]

designed temporal state sequences to watermark reinforcement

learning models. [23] utilized cache side channels to verify

watermarks in the model architecture.

VI. CONCLUSION

In this paper, we propose a novel watermarking technique to

protect the IP of pre-trained encoders via contrastive learning.

We introduce a new loss function, which can effectively embed

the watermark into the encoder without the knowledge of

the downstream tasks and datasets. The watermark can be

transferred to any downstream model built from this encoder.

We perform extensive evaluations to demonstrate our wa-

termarking methodology has high uniqueness, functionality-

preserving, and robustness.

ACKNOWLEDGEMENT

This work is funded by Singapore Ministry of Education

(MOE) AcRF Tier 2 MOE-T2EP20121-0006, AcRF Tier

1 RS02/19 and Natural Science Foundation of China, No.

62106127.

REFERENCES

[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning, 2020.

[2] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with mo-
mentum contrastive learning,” arXiv preprint arXiv:2003.04297, 2020.

[3] N. Carlini and A. Terzis, “Poisoning and backdooring contrastive
learning,” arXiv preprint arXiv:2106.09667, 2021.

[4] H. Qiu, H. Noura, M. Qiu, Z. Ming, and G. Memmi, “A user-centric
data protection method for cloud storage based on invertible dwt,” IEEE
Transactions on Cloud Computing, vol. 9, no. 4, pp. 1293–1304, 2019.

[5] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in USENIX Security Symposium, 2018.

[6] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks with
watermarking,” in Asia Conference on Computer and Communications
Security, 2018.

[7] L. Fan, K. W. Ng, and C. S. Chan, “Rethinking deep neural network
ownership verification: Embedding passports to defeat ambiguity at-
tacks,” 2019.

[8] J. Zhang, D. Chen, J. Liao, H. Fang, W. Zhang, W. Zhou, H. Cui,
and N. Yu, “Model watermarking for image processing networks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 07, 2020, pp. 12 805–12 812.

[9] X. Cao, J. Jia, and N. Z. Gong, “Ipguard: Protecting intellectual property
of deep neural networks via fingerprinting the classification boundary,”
in Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, 2021, pp. 14–25.

[10] H. Qiu, Y. Zeng, S. Guo, T. Zhang, M. Qiu, and B. Thuraisingham,
“Deepsweep: An evaluation framework for mitigating dnn backdoor
attacks using data augmentation,” in Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security, 2021, pp. 363–
377.

[11] S. Guo, T. Zhang, H. Qiu, Y. Zeng, T. Xiang, and Y. Liu, “Fine-tuning
is not enough: A simple yet effective watermark removal attack for
dnn models,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2021.

[12] ——, “Fine-tuning is not enough: A simple yet effective watermark
removal attack for dnn models,” in International Joint Conference on
Artificial Intelligence (IJCAI), 2021.

[13] J. Jia, Y. Liu, and N. Z. Gong, “Badencoder: Backdoor attacks to pre-
trained encoders in self-supervised learning,” in IEEE Symposium on
Security and Privacy, 2022.

[14] X. Zhang, Z. Zhang, S. Ji, and T. Wang, “Trojaning language models for
fun and profit,” in IEEE European Symposium on Security and Privacy,
2021.

[15] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[16] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transfer-
able visual models from natural language supervision,” arXiv preprint
arXiv:2103.00020, 2021.

[17] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in ACM on International Conference
on Multimedia Retrieval, 2017, pp. 269–277.

[18] B. D. Rouhani, H. Chen, and F. Koushanfar, “DeepSigns: An end-to-end
watermarking framework for protecting the ownership of deep neural
networks,” in ACM ASPLOS, 2019.

[19] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching
for remote neural network watermarking,” Neural Computing and Ap-
plications, pp. 1–12, 2019.

[20] R. Namba and J. Sakuma, “Robust watermarking of neural network with
exponential weighting,” in ACM AsiaCCS, 2019.

[21] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs
to you: A blind-watermark based framework to protect intellectual
property of DNN,” in ACSAC, 2019.

[22] K. Chen, S. Guo, T. Zhang, S. Li, and Y. Liu, “Temporal watermarks
for deep reinforcement learning models,” in Proc. of the AAMAS, 2021.

[23] L. Xiaoxuan, G. Shangwei, Z. Tianwei, L. Yang et al., “When nas
meets watermarking: Ownership verification of dnn models via cache
side channels,” CoRR, vol. abs/2102.03523, 2021.

233

