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Abstract—Image classification is a fundamental artificial intel-
ligence task that labels images into one of some predefined classes.
However, training complex image classification models requires a
large amount of computation resources and data in order to reach
state-of-the-art performance. This demand drives the growth of
distributed deep learning, where multiple agents cooperatively
train global models with their individual datasets. Among such
learning systems, decentralized learning is particularly attractive,
as it can improve the efficiency and fault tolerance by eliminating
the centralized parameter server, which could be the single point
of failure or performance bottleneck. Although the agents do
not need to disclose their training image samples, they exchange
parameters with each other at each iteration, which can put
them at the risk of data privacy leakage. Past works demon-
strated the possibility of recovering training images from the
exchanged parameters. One common defense direction is to adopt
Differential Privacy (DP) to secure the optimization algorithms
such as Stochastic Gradient Descent (SGD). Those DP-based
methods mainly focus on standalone systems, or centralized
distributed learning. How to enforce and optimize DP protection
in decentralized learning systems is unknown and challenging,
due to their complex communication topologies and distinct
learning characteristics. In this paper, we design ToP-DP,
a novel solution to optimize the differential privacy protection
of decentralized image classification systems. The key insight of
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our solution is to leverage the unique features of decentralized
communication topologies to reduce the noise scale and improve
the model usability. (1) We enhance the DP-SGD algorithm with
this topology-aware noise reduction strategy, and integrate the
time-aware noise decay technique. (2) We design two novel learn-
ing protocols (synchronous and asynchronous) to protect systems
with different network connectivities and topologies. We formally
analyze and prove the DP requirement of our proposed solutions.
Experimental evaluations demonstrate that our solution achieves
a better trade-off between usability and privacy than prior works.
To the best of our knowledge, this is the first DP optimization
work from the perspective of network topologies.

Index Terms— Decentralized
differential privacy, topology.

learning, image processing,

I. INTRODUCTION

EEP Learning (DL) has become one of the most popular
and powerful machine learning methods for the image
classification task. To learn an accurate DL model, a common
technique is Stochastic Gradient Descent (SGD), which itera-
tively approaches the ideal model by minimizing the empirical
performance on a large number of training images. To acceler-
ate the training process and protect data privacy, this SGD task
can be distributed to multiple agents with their own training
image sets to collaboratively learn a shared image classifica-
tion model. This distributed learning [1]-[3] has gained a lot
of popularity, especially in the edge computing [4]-[6].
Distributed learning can be divided into two categories:
centralized and decentralized learning [7]. A centralized learn-
ing system utilizes a centralized parameter server to collect
and aggregate estimates (i.e., model parameters) of agents at
each iteration. In a decentralized system, agents interconnect
based on a certain network topology and exchange estimates
with their neighbors to reach consensus on the DL model.
Distributed learning can prevent direct privacy leakage as each
agent keeps its own private dataset locally at the training stage.
However, it still faces the threats of indirect privacy leakage:
the exchanged estimates among agents may contain informa-
tion about their training sets. This gives honest-but-curious
agents opportunities to compromise the data privacy of their
neighbors. Past works have demonstrated the feasibility and
severity of model inversion attacks [8]-[11] and membership
inference attacks [12], [13] in distributed learning.
To mitigate such privacy threats in distributed training, one
promising solution is Differential Privacy (DP), which was
originally introduced to preserve the privacy of individual data
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records in statistical databases [14]. A number of studies have
then applied DP to SGD to enhance the privacy of DL training
in different environments [15]-[20]. Most existing DP-SGD
algorithms adopt additive noise mechanisms by adding random
noise to the estimates in every training iteration. There exists
a trade-off between privacy and usability, determined by the
noise scale added during training: adding too much noise
can meet the privacy requirements, at the cost of huge drop
in model accuracy. As a result, it is critical to identify the
minimal amount of noise that can provide desired privacy
protection, and also maintain acceptable model performance.

Two common approaches were devised to optimize the DP
mechanism and balance the privacy-usability trade-off. The
first one is to carefully restrict the sensitivity of random-
ized mechanisms. For example, Abadi et al. [16] bounded the
influence of training samples on gradients by clipping each
gradient in [, norm below a given threshold. Yu et al. [19]
optimized the model accuracy by adding decay noise to the
gradients over the training time since the learned models
converge iteratively. The second approach is to precisely
track the accumulated privacy cost of the training process
using composition techniques such as the strong composition
theorem [21] and moments account (MA) [16], [22]-[25].

Those DP-SGD solutions have been well developed and
evaluated in centralized learning systems. In contrast, privacy
protection in the decentralized learning setting is less explored.
There are distinct differences between these two systems.
First, decentralized systems have more interactions and para-
meter exchanges in order to reach the consensus. Each agent
receives parameters from multiple neighbors and broadcasts
the update to them. Second, many decentralized systems are
usually spontaneously organized and each agent is relatively
independent. It is highly possible that certain nodes are offline
due to the discrepancy of network bandwidth or unpredictable
system faults. The asynchronous training mode [26], [27] thus
becomes more prevalent with higher reliability and efficiency.
Hence, we raise two questions: (1) how can we design DP
algorithms to support these unique features (e.g., decentralized
topology, asynchronous training)? (2) How can we leverage
these features to further optimize the DP solution and balance
the privacy-usability trade-off?

Prior works in differentially private decentralized learn-
ing mainly targeted the Alternating Direction Method of
Multipliers (ADMM) algorithm with existing optimization
techniques [17], [18], [28], [29]. They cannot be used with
the mainstream SGD-based training tasks. Other differentially
private decentralized learning methods [18], [30]-[33] are
designed either using existing DP techniques or for a specific
application. For example, [18] simply applied the standard
DP technique (e.g., tracking accumulated privacy loss [21])
from the centralized setting to the decentralized one. These
optimization techniques have been well studied, and seem to
reach the performance limit. In contrast, the unique topology
features were never considered.

In this paper, we present TOP-DP, a novel Topology-
aware Differential Privacy approach for SGD-based training in
decentralized systems. TOP-DP leverages network features of
decentralized systems to optimize the randomized mechanism.
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The key idea is that each agent takes into account the
injected noise from its neighbors when adding its own noise to
the aggregated parameter. Such noise reuse can significantly
reduce the actual noise scale added by each agent, but still
satisfying the DP requirement. In addition, TOP-DP can also
be integrated with the noise decay technique from the stand-
alone training mode, to further optimize the DP protection in
decentralized systems.

Based on this strategy, we design two new learning pro-
tocols to realize our optimization. The first one is for syn-
chronous training mode. Different from existing styles, each
agent calculates and sends different aggregated estimates to
different neighbors. This can guarantee that each parameter
exchange can always enjoy the maximal benefit from the
topology-aware strategy. However, such advantage becomes
minor when two connected agents share the same neighbors
in a network topology. To copy with this corner case and save
communication bandwidth, we introduce an asynchronous
training protocol: at every iteration, each agent only pairs with
one neighbor which is randomly picked to meet the noise
reduction criterion. Then the parameter exchange between the
pair can reduce the noise scale, and eliminate unnecessary
communication costs in total.

We extensively validate the privacy and effectiveness of
our proposed solution. From the theoretical view, we for-
mally prove that each agent can guarantee differential privacy
with significantly reduced noise. Empirically, we conduct
comprehensive experiments to demonstrate that our solution
outperforms prior works and techniques under various system
configurations, datasets and DL models. We make the follow-
ing contributions in this paper:

o To best of our knowledge, this is the first work that
utilizes the network topology feature to enhance the
usability of DP in distributed learning systems.

o« We propose two novel learning protocols to achieve
DP optimization for both synchronous and asynchronous
training modes.

o We formally prove that our solution can guarantee the DP
requirement for all the agents, and analyze its advantage
under different decentralized settings.

o We conduct extensive experiments to show the superior
of our method over prior works with various scenarios
and image classification tasks.

The rest of this paper is organized as follows. Section III
introduces formal definitions of decentralized systems, dif-
ferential privacy and problem statement. Section IV presents
the topology-aware and time-aware strategies for decentral-
ized systems. Section V illustrates two learning protocols for
synchronous and asynchronous training modes, respectively.
Section VI presents our privacy analysis, and Section VII
shows the experimental evaluations of our approach under
various system settings. We review the related works in
Section II, and conclude in Section VIII.

II. RELATED WORK

Differential privacy has been adopted to protect the individ-
ual privacy of training datasets and a large amount of DP-SGD
algorithms have been proposed [20], [34]. We classify these
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algorithms into two categories: DP-SGD for standalone and
distributed learning systems.

A. DP-SGD for Standalone Learning Systems

For standalone systems, there are commonly two possible
ways to add random noise. The first one is to inject noise
to the objective function. For instance, Chaudhuri et al. [15]
perturbed the objective function before optimizing over clas-
sifiers and proved that the objective perturbation is DP if
certain convexity and differentiability criteria hold. The sen-
sitivity analysis methods in [15] relies on a strong convexity
assumption. However, most objective function is non-convex.
Phan et al. [35] attempted to use the objective perturbation by
replacing the non-convex function with a convex polynomial
function. To this end, a new convex polynomial function
was introduced in [35] to approximate the non-convex one.
However, this would change the learning protocol and, even
worse, sacrifice the model’s performance.

A simpler but more popular way is to add random noise
to the gradients. Abadi ef al. [16] achieved DP by adding
Gaussian noise to the gradients of each iteration. This
approach restricts the sensitivity of randomized mechanisms,
i.e., the influence of training data on gradients, by clip-
ping each gradient in [ norm below a given threshold.
Abadi et al. [16] also proposed MA to reduce the added noise
by keeping track of a bound on the moments of the privacy
loss during the training process. Yu et al. [19] focused on
the DP problem during the sharing and publishing of pre-
trained models. They optimized the model accuracy by adding
decay noise to the gradients over the training time since the
learned models converge iteratively. They improved the model
usability by employing a generalization of concentrated DP,
based on the observation that the privacy loss of an additive
noise mechanism follows a sub-Gaussian distribution.

Another way to improve the model usability lies in precisely
tracking the overall privacy cost of the training process.
Shokri and Shmatikov [36] and Wei et al. [37] composed the
additive noise mechanisms using the advanced composition
theorem [21], leading to a linear increase in the privacy
budget. In [16], [22]-[24], moments account (MA) was used
to reduce the added noise by keeping track of a bound on
the moments of the privacy loss during the training process.
Other algorithms [19], [38], [39] were designed to improve
the model usability using (zero) concentrated DP [40], based
on the observation that the privacy loss of an additive noise
mechanism follows a sub-Gaussian distribution. Recently,
Asoode et al. [41] proposed an optimal DP analysis to further
reduce the scale of added noise during the training process.

B. DP-SGD for Centralized Learning Systems

Some works [22]-[24], [36], [39] applied the DP techniques
from the standalone mode to the centralized learning sys-
tems to preserve the privacy of the training data for each
agent. For example, Shokri and Shmatikov [36] proposed a
privacy-preserving distributed learning algorithm by adding
Laplacian noise to each agent’s gradients to prevent indi-
rect leakage. Kang et al. [24] adopted weighted aggregation
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instead of simply averaging to reduce the negative impact
caused by uneven data scale.

In terms of the accumulated privacy loss, Kang er al. [24]
employed MA to track the overall privacy cost of the training
process. Wei et al. [37] perturbed agents’ trained parameters
locally by adding Gaussian noise before uploading them to
the server for aggregation and bounded the sensitivity of the
Gaussian mechanism by clipping. Shokri and Shmatikov [36]
and Wei et al. [37] composed the additive noise mechanisms
using the strong composition theorem [21], leading to a linear
increase in the privacy budget.

Federated learning, as a typical example of centralized
learning systems, has gained great popularity. A variety of
works [37], [42]-[45] have attempted to solve the privacy
problem using the above DP techniques in such federated
systems. For instance, Truex et al. [43] proposed a hybrid
method that leverages both secure multiparty computation and
differential privacy techniques to achieve privacy-preserving
federated learning. Choudhury et al. [44] designed a federated
learning system that enables to process sensitive health data
with differential privacy protection. Wei et al. [45] provided
user-level privacy protection for federated learning systems
and improve the usability of trained models.

Some DP-SGD methods [45] for centralized learning sys-
tems, especially for federated learning systems, can be applied
to decentralized systems as well. However, these methods
are designed specifically for the corresponding centralized
collaboration schemes, and do not well optimized for the
decentralized setting. In contrast, our TOP-DP utilizes the
unique features of decentralized systems and can significantly
improve the usability of the trained models of all agents
compared with state-of-the-art DP-SGD for federated learning.

C. DP-SGD for Decentralized Learning Systems

Several DP approaches [17], [18], [28], [29], [31], [32] were
proposed for decentralized learning systems. However, they
are mainly for the ADMM or gradient tracking algorithms,
while there are very few solutions for the SGD algorithm
in decentralized systems. Recently, motivated by the privacy
leakage problem in big data analytics, Li et al. [18] proposed
DP-SGD algorithms by adding Gaussian and Laplacian noise
to the gradients. Zhou et al. [32] designed a differential pri-
vacy decentralized learning system for social recommendation
systems. However, they track the accumulated privacy loss
using the existing DP techniques such as the strong composi-
tion theorem, which limits the performance of learned models.

Similar as the centralized DP approaches, all those decen-
tralized DP solutions (both for ADMM, SGD or other opti-
mization algorithms) only apply existing DP techniques and
focus on restricting the sensitivity of the optimization algo-
rithm. Besides, they require the decentralized systems to
be well synchronous. In contrast, our TOP-DP provides a
novel optimization direction from the network topology. It can
also be combined with other optimization algorithms such
as ADMM and existing techniques (e.g., noise decay). The
learning protocols in ToP-DP can be applied to different
training modes efficiently.
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Fig. 1. (a) Synchronous training and (b) asynchronous training in a
decentralized learning system. Solid lines represent network connections with
parameter exchanges between agents; dotted lines represent connections not
used for parameter exchanges in certain iteration.

III. BACKGROUND AND PROBLEM STATEMENT

In this section, we first formalize decentralized systems.
Then, we present the threat model and the definition of DP
for decentralized learning.

A. Decentralized Systems

We consider a decentralized system whose communication
topology can be represented as an undirected graph: G =
(V, E). V denotes a set of participates (or agents) in this
decentralized network. E represents the set of communication
links among the agents, with the following two properties:

1) (i, j) € E if and only if agent i can receive information
from agent j;

2) (j,i)ye Eif (i,j) € E.
We assume this undirected graph is fully connected, i.e., giving
two arbitrary agents i and j, there always exists at least one
path that connects them. This property can guarantee that
information can be exchanged among all agents [1], [46].

Let x € R? be the d-dimensional estimate vector of a DL
model. Each agent i € V obtains a private training dataset D;,
consisting of independent and identically distributed (i.i.d.)
data samples from a distribution D. Those agents train a shared
model by solving the optimization problem [1], [7]:

min Egzwpl(x; &),
min B¢ pl(x; <)

where ¢ is a training data sample from D. During training,
each agent i calculates its local estimate x;, and exchanges x;
with its neighbors for parameter update. There are basically
two training modes for this iterative process. In the synchro-
nous mode (Fig. 1 (a)), each agent i needs to receive the
estimates from all its neighbors before updating the model.
In the asynchronous mode (Fig. 1 (b)), agent i exchanges
parameters with only part of its neighbors for model update.
This happens when the agent just wants to choose a smaller
number of neighbors for lower communication and computa-
tion cost, or when some of its neighbors fail to respond due
to unexpected system or network faults.

To adapt to both synchronous and asynchronous modes as
well as maintaining the convergence rate, at each iteration,
agent i (1) first collects estimates from its neighbor(s); (2) ran-
domly selects a neighbor j* from the participated neighbor(s);
(3) utilizes the following update rule [26], [47] to aggregate
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estimates and calculate the local estimate:
xi = ax; + (I —a)xjx — Ag(xi, &) (D

where a € [0, 1] is a hyper-parameter determining the weight
of the local estimate; A is the learning rate; g(x;,&;) is the
stochastic gradient with & € D;. The gradient can also be
replaced by a mini-batch of stochastic gradients [7], [26].

B. Threat Model

In a decentralized system, we assume the agents are honest-
but-curious: all the agents agree on the proposed learning
protocol and objective in advance. They will also strictly
follow the steps of training and exchanging parameters during
collaborative training. However, there exist some suspicious
agents who attempt to passively steal the information and
properties of their neighbors’ datasets by analyzing the model
parameters received at each iteration. We further assume that
these suspicious agents will not collude to conduct the privacy
attacks. Only connected neighbors are allowed to exchange
information following the distributed training protocol.

For decentralized learning systems, agents are connected
directly or indirectly. Our goal is to adopt DP to protect
the training data privacy of all agents. DP is a rigorous
mathematical framework to protect the privacy of individual
records in a database when the aggregated information about
this database is shared among untrusted parties [14]. Thus,
we formally define decentralized learning with DP as follows:

Definition 1 (DP of Decentralized Learning): A decentral-
ized learning system is {(€;, d;)}icv differentially private if for
each agent i, the randomized mechanism M; : D; — R with
domain D; and range R satisfies (€;,0;)-DP, i.e., if for any
two neighboring datasets D;, D! and any subset of outputs
S C R, the following property is held:

PrIM(Dy) € 5] < € PrIM(D}) € S] + d;. @)

M, 1is restricted by two parameters: ¢; and J;. €; is the
privacy budget of agent i to limit the privacy loss of training
data. J; is a relaxation parameter that allows the privacy
budget of M; to exceed ¢; with probability d;. A decentralized
learning system is differentially private if all agents are dif-
ferentially private. Each agent can set its own privacy budget.
Alternatively, the entire system can enforce a uniform privacy
budget for all agents.

To achieve differentially private decentralized learning,
a common and straightforward way is to use additive noise
mechanisms at each iteration [20]. Specifically, we use
Gaussian mechanism and denote o; as the noise parameter of
agent i. At each iteration, agent i/ adds the Gaussian noise,
G = G(aiz), to the updated local estimate to guarantee
differential privacy (Eq. 3). Then, i sends X; to its neighbors.

Xi = oX; + (1 —a)xjx — Ag(x;, &) + Gi. ©)

IV. OPTIMIZATION STRATEGIES

As shown in Eq. 3, the random noise G; added into the
aggregated estimate must be large enough to satisfy the privacy
requirement. However, adding too much noise can affect the
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Fig. 2.

An illustrative example of topology-aware noise reduction.

model accuracy. So it is important to balance this trade-
off. This section presents the strategies adopted in Topr-DP
to reduce the amount of noise for each agent to improve
the usability of trained models, without violating the DP
requirement. We start with a novel topology-aware noise
reduction strategy. Then we extend time-aware noise decay
to decentralized systems.

A. Strategy 1: Topology-Aware Noise Reduction

Existing DP-SGD solutions all assume that the required
noise scale only depends on the agents themselves. In decen-
tralized systems, the communication topology can affect the
amount of noise as well. Our topology-aware noise reduction
strategy is able to reduce the noise scale of each agent when
considering its connectivity with its neighbors. The key insight
of our approach is that the received estimates from other
neighbors also contain certain noise, which can contribute
to the noise scale of the aggregated estimate, thus reducing
the amount of noise added by the agent itself.

Fig. 2 gives an illustrative example. We consider an agent
Ao with four neighbors, where A; and A4 are connected
as well. When A( obtains all estimates of its neighbors,
we assume it picks the estimate X4, of A4 for aggregation
with its own estimate and gradient. Since the received X4, also
includes Gaussian noise G 4,, then the aggregated estimate fol-
lowing Eq. 3 will have the corresponding random component
(1—a)G 4,. As aresult, when generating the estimate for agent
Ap or A3z, Ag does not need to add the full-scale noise G 4,.
It only needs to inject the noise G* such that

GAO =G* + (1 - OC)GA4,

which can meet the DP requirement, but reduce the actual
amount of noise.

It is worth noting that the noise scale G* is not applicable
when generating estimates for A; or A4. For A4, since it
already knows its own parameter x4,, then G 4, is not random
noise anymore. It is similar for A; as it receives x4, from As.
Then for these two agents, we can pick another agent (e.g.,
Aj or A3z) and generate a different estimate for them with still
reduced noise scale. It is worth noting that our strategy allows
the agent to send different estimates to different neighbors in
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one iteration, which is different from conventional distributed
learning systems.

Formally, given an agent i, for each of its neighbors j € N,
we define

N = NAG U N

which is the set of i’s neighbors that are not connected to j
(or j itself). For instance, in Fig. 2, we have N/fol = Nfg =
(A2, A3}, N3Z = (A1, A3, Ag) and MY = {A1, Az, Ag).
This also means that j can be used in the aggregation for
all agents in ./\fl.j with the reduced noise scale. Then our goal
is to find a minimal set .7\\/1-, such that using the agents inside
this set for aggregation can cover all the neighbor agents of i.
Note that there can exist a neighbor j’ that is connected to
every neighbor in A;. Then we cannot find an non-adjacent
neighbor to cover it, and should exclude it from A;. This
process is described in Eq. 4. We will solve it heuristically in
Section V-A.

,//\\/,-:argmin(U ./\fij = Ni\( U i “)
NN on !
Jje N/ =p

After identifying A, for V j € N, if j is connected to
every neighbor in A (i.e., N/ = ), then agent i just sends
the local estimate with full-scale noise to j. Otherwise, there
exists at least one neighbor k € N such that je€ ./\fik. Then the

noise scale from i to j, G{ = G(aij 2), should satisfy Eq. 5(a)
in order to guarantee the DP requirement against j, where
Gi, Gy are the full-scale noise. According to the additivity of
Gaussian distribution, we calculate the noise parameter aij via
Eq. 5(b). With this reduced noise scale, agent i can update the
estimate for agent j based on Eq. 5(c).

i =(1-a)Gy+GJ (5)
o/ = \Jo? — (1 —a)’a} (5b)
¥ = a¥i+ (-0 - 28G &) + Gl (50

B. Strategy 2: Time-Aware Noise Decay

Our topology-aware strategy can be combined with existing
state-of-the-art techniques from other systems to enhance the
optimization effects. We use the time-aware noise decay as
an example. This technique was originally proposed in [19],
to optimize the DP protection of model training in standalone
systems. Here we apply this technique to decentralized sys-
tems. The key idea is that the model converges and the norm of
gradients decreases as the training iteration increases. Thus,
the sensitivity of the Gaussian mechanism decreases, allowing
us to inject less noise to the gradients. Note that the training
datasets are distributed in different agents, all agents in the
decentralized system should reach a consensus on the noise
decay schedule to tolerate the differences in the datasets.

Specifically, compared to the aggregation process in
Eq. 5(c), our first modification is to clip the gradients in I
norm to bound their size at each training iteration. We fol-
low the method from [16]: given a clipping threshold C,
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the clipped gradient vector g is bounded by C, as shown in
Eq. 6(a).

Our second modification is to dynamically reduce the noise
scale over the training time. Without loss of generality, we use
step decay to reduce the noise scale every few epochs. Let g9 ;
be the initial noise parameter of agent i. The noise parameter
of agent i at the 7-th iteration is shown in Eq. 6(b), where
y € (0, 1) is the reduction factor and period is the reduction
step of noise decay.

_ 8(xi, &)
g(xi,és) = l‘g(;’. fs)l (63.)
max (1, =522
i
o1i = Decay(oo,i, 1) = o0,y 77 (6b)
V. TOPOLOGY-AWARE LEARNING PROTOCOLS
With the topology-aware and time-aware strategies,

we design two end-to-end decentralized learning protocols for
synchronous and asynchronous modes, respectively.

A. Synchronous Topology-Aware Protocol

In the synchronous mode, each agent requires the estimates
from all its neighbors at each iteration. Then it solves Eq. 4
and calculates the parameters for different neighbors following
Egs. 5 and 6. We design a synchronous topology-aware proto-
col to support DL on decentralized topologies and Algorithm 1
illustrates the detailed communication and learning process of
an agent i.

The algorithm takes as input the initial estimate x¢, initial
noise parameter oy ;, learning rate 1, and number of iterations
T. Before iteratively optimizing the shared model, agent i
sends oo,; to and receives {oo,j}jen; from its neighbors
(Line 1). For j € N, agent i computes the neighbor set
./\fl.j , including all neighbors that do not connect with j. Then,
it updates the initial estimate and sends Xo; to its neighbors
(Lines 4-6). At the i-th iteration, it first computes the full-scale
noise parameter o; ; using the time-aware noise decay strategy
(Line 8). Then, it computes the clipped gradient using a
randomly selected sample ¢, generates estimates for all its
neighbors and updates its local estimate using the proposed
topology-aware noise reduction strategy.

To heuristically solve Eq. 4, agent i continuously selects
an agent k from N; exclusively until all agents are traversed
or N; is found. For Vj € N}, it computes the estimate
3?11 and sends it to j (Lines 10-17). The complexity of the
approximate method is O(|N;|d). Then, agent i randomly
selects a neighbor j* € N; and updates its local noised
estimate (Lines 18-19). If there are still uncovered neighbors,
i sends its local estimate to those neighbors (Lines 20-22).
After T iterations, Algorithm 1 returns the final differentially
private DL model.

B. Asynchronous Topology-Aware Protocol

Although the synchronous training in Algorithm 1 can
realize the proposed strategies to improve the model usability,
it still leaves some spaces for further optimization. First, each
agent only selects part of the received parameters for update
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Algorithm 1 Differentially Private Decentralized Learn-
ing for Agent i in the Synchronous Mode

Input : Initial estimate xq, initial budget o¢ ;, learning
rate A, number of iterations T
1 Send oq,; to N; and receive {00 ;}jen; ;
2 foreach j € \; do
3 | N < NAGUN)
4 g(xo,&s) < Compute the clipped gradient;
5 X < x0 — A8(x0, &) + G(o'()z’icz);
6 Send X; to its neighbors;
7forte[0,T) do
8 | o0, < Decay(oo,i,1) ;
9 | g(xi,&) < Compute the clipped gradient;
1 | N <N and./\/ii — N
1 | while N* # 0 and N # ¢ do

12 Randomly select k € j\/l.i and j\/l.i <« ,/\fl.i\k;
13 atjl. <« \/atzi —(1- a)zatzk, where
01,k = Decay(ook, 1);

14 foreach j € V¥ N ./\fik do
15 Update the estimate

. B o )

X < aXi+(1-a)¥ — A8 (%, &) +G (o], C?);
16 Send )7{ to agent j;
17 'A/z* (_A[l*\j\/lk’

18 | Randomly select an agent j* from N; ;

19 | Update the local estimate

X; < oaxi+({1— a)fj-* —Ag(x;, &) + G(at%icz) ;
20 | if N¥# ¢ then

21 foreach j € N* do
22 ‘ Ec'l] <« X; and send EEZJ to agent j ;
23 return Xx;

while discarding the rest. So it is not necessary to collect the
estimates from all the neighbors, which can cause extra com-
munication cost and waiting latency. Second, as introduced
in Section IV-A, when agent j connects to every neighbor of
agent i, i has to add full-scale noise to the parameter sent to j.
The topology-aware optimization will lose effectiveness when
there are a lot of such (i, j) pairs.

To overcome the above limitations, we design a novel
topology-aware protocol for asynchronous training. At every
iteration, each agent only pairs with one of its neighbors
for parameter exchange and update. An extra checking is
conducted to guarantee that the paired agents are qualified
for the topology-aware noise reduction: two agents cannot
be paired twice in two consecutive iterations. Otherwise,
the aggregated parameter selected by one agent in the previous
iteration is not a secret to the other agent, and full-scale noise
has to be added in this iteration. Hence the topology-aware
noise reduction cannot be applied. Specifically, during the
training process, agent i randomly selects a neighbor j which
is different from the paired neighbor in the previous iteration.
Then i asks j’s availability for parameter sharing. If j agrees
to collaborate with 7 in this iteration, they exchange parameters
with the reduced noise scale and update the models following
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Algorithm 2 Differentially Private Decentralized Learn-
ing for Agent i in the Asynchronous Mode

Input : Initial estimate x¢, initial budget o9 ;, learning
rate A, number of iterations 7'

1 Send oq,; to NV; and receive {00 ;}jen; ;

2 g(xg, &) < Compute the clipped gradient ;

3 xz <~ xo0 — A8(x0,&s) + G(O'() ,Cz)

4 ] < None;

sfor r €[0,7) do

6 | o;,; < Decay(0o,i,1);
7 | N* < Ni/jls
8 | while N* £ @ do
9 Randomly select j € N* and N* < N*\j;
10 Ask if j is available for pairing up;
11 if j is available then
2 jit+1 -
13 N* <~ @;
14 if receive pairing request from j' then
15 J <
16 N* <~ @,
v | if j™is found then
18 Send X; and receive X jr to/from j/*!
19 g, i+ < Decay(ao ji 1)
20 O'”<—\/”—(1 a)22,+1,
21 g(x;, &) < Compute the chpped gradient;
22 Update the local estimate
X < oXi+(1— a)f;m - 28(i, &)+ G} Ch 5
23 | else l
24 01,i < Decay(oo,i,1) ;
25 g(x;, &) < Compute the clipped gradient;
26 Update the local estimate
X < oXi+(1— a)f;_m - 28(%i, &)+ G} Ch 5

27 return Xx;

Eq. 5. If agent i cannot find a qualified or available pair at
this iteration, it will update its estimate by itself.

Algorithm 2 describes the detailed steps of our asynchro-
nous learning protocol. Similar to Algorithm 1, it takes the
same parameters as input, and updates the initial estimate
(Lines 1-3). At the t-th iteration, agent i passively waits
for pairing request from other neighbors. Meanwhile, it also
actively searches in a random order for a neighbor that is not
paired with it in the previous iteration (Lines 7-16). If the
selected agent j is available or i receives a pairing request
from j’, i stops searching and pairs with j/*' = j (j").
Agent i sends X; to and receives fj_m from jl.H'1 (Line 18).
Then, i adopts time-aware and topélogy—aware strategies to
reduce the noise scale (Lines 19-20) and updates its estimates
(Lines 21-22). Otherwise, i only utilizes the time-aware noise
decay to update its estimate locally (Lines 24-26).

VI. THEORETICAL ANALYSIS

We perform a formal analysis about Algorithms 1 and 2
from the aspects of privacy and efficiency.
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A. Proof of DP

First, we prove Algorithm 1 is differentially private by
carefully choosing the initial noise parameters. We track the
accumulated privacy loss of the training process using Rényi
DP [48], which is a natural relaxation of DP based on
the Rényi divergence and allows tighter analysis of tracking
cumulative privacy loss and ensures a sublinear loss of privacy
as a function of the number of iterations.

Theorem 1: Let the number of iterations be T. For any
decentralized system G and every agent i € V, the randomized
mechanisms in Algorithm 1 is (€, 0;)-DP if we choose

8,/T10g log 125

T @

Proof: We prove the theorem in the synchronous mode
and ignore the time-aware noise decay strategy since it does
not incur any additional privacy loss [19]. We clip the gradients
in /> norm of C and assume the privacy budget €/ is the same
at each iteration. According to the Gaussian mechanism [14],
the update rule in Line 19 is (elf , 0;)-DP at one iteration if we

choose
/2 10g 1(;25

€D

00,i =

Using Rényi composition theorem [48], our new update rule
is (¢;, 0;)-DP after T iterations if we choose

=4e€! [2T lo 1
= ¢ g5i~

4./2T log 5

Combining the above equations, we conclude that our
update rule in Line 19 is (¢;, 6;)-DP if we choose op; such

that
8,/T10g log 125

i Dy ©
We have proven that the local estimate of agent i is differen-
tially private during the training process. Then, we prove that
for Vj € N, the estimates generated for j is also differentially
private. Let k, (k, j) ¢ E be the selected agent for generating
estimate for j. Since j, k are not directly connected, the noise
of 35,’{ can be used as a random component to guarantee the
DP of i against j. Thus, because all agents generate noise
independently, the noise scale for j should satisfy

Then, we have

G(00)) = G()) + (1 —a)Gox ©9)

According to the additivity of Gaussian distribution,
the noise parameter for the estimate for j is

o] = \/‘702,1' — (1= a)za&k.
Therefore, in Algorithm 1, the estimates generated for the
neighbors of agent i are also differentially private. 0
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The DP of Algorithm 2 can also be analyzed in a similar
way. Note that an agent cannot pair with another agent twice
in a row. Therefore, even the agents in a decentralized system
are fully connected, the topology-aware noise reduction still
works in such situation, where Algorithm 1 fails.

B. Efficiency Analysis of TopP-DP

Our protocols can reduce the noise and thus improve the
usability of the trained models using the proposed Topr-DP
algorithm when considering the communication topology.
Here, we theoretically analyze the efficiency of Topr-DP
by comparing the amount of added noise with and without
Top-DP. Without loss of generality, we assume

o =o0,;=o0;; forVi, jeVand (i, j) e E.

Let atj ; be the noise parameter of Ec'lj at iteration 7. Accord-
ing to the proposed topology-aware noise reduction strategy,

Jo_ 2 2.2
Ori = \/Ut,i (- Otk
= o+v2a — aZ.

Compared with the full-scale noise parameter, the noise

added to 3511 is reduced by a factor of v2a — a?. We can

observe that ‘7/ ; decreases as a € (0, 1) decreases. When a

approaches 0, the noise of the estimates that agent i sends
to/receives from its neighbors would be significantly reduced.
Thus, the usability of the trained models would be theoretically
improved because of the decrease of the added noise.

In synchronous mode (Algorithm 1), agent i can always
reduce the noise of the estimates for its neighbor j using the
Top-DP if there exists an agent that connects to agent i and
cannot communicate with j directly, i.e.,

Ni/Nj #8.

For the asynchronous settings (Algorithm 2), Top-DP
works if it finds a pairing neighbor during the iteration.
Therefore, the agents in both synchronous and asynchronous
modes can theoretically improve the utility of their trained
models using our TOP-DP.

(10)

VII. EXPERIMENTS
A. Implementation and Experimental Setup

1) Dataset and DNN Model: We conduct experiments
mainly on the MNIST dataset. It consists of a training set
of 60k samples and a test set of 10k samples. We consider a
fully connected network with a hidden layer of size 100 for
image classification. We set a fading learning rate A with the
initial value of 0.05. Our solution is general and can be applied
to other DNN tasks as well (as demonstrated in Section VII-E).

For the implementation of the decentralized system, we con-
sider a network consisting of 30 agents, and each agent
connects to others with the probability of 0.2 (connection rate).
This decentralized system is guaranteed to be fully connected,
i.e., there exists at least one path connecting two arbitrary
agents. The training set of each agent is independent and
identically distributed with the same size. In the synchronous
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mode, all 30 agents participate at each training iteration. In the
asynchronous mode, we assume 10% of random agents will
not be involved at each iteration.

Without loss of generality, the agents have same pri-
vacy budget (1.0) and relaxation hyper-parameter (1072).
We assume the agents reach the consensus on the time-aware
noise decay strategy, where y and period are 0.9 and 1000,
respectively. We clip the gradients in /> norm of 4.0.

2) Baselines and Metrics: We consider different decentral-
ized learning algorithms in our experiments:

e No Noise: The agents exchange parameters without DP

protection.

o Lil8: The DP-SGD algorithm proposed by Li et al. [18].

o Lil8 4+ MA: We integrate Lil8 with moments

account [16] to track the accumulated privacy loss.

e UDP: The user-level DP-SGD algorithm proposed by

Wei et al. [45].
o Optimal: The optimal DP analysis for SGD proposed by
Asoodeh et al. [41].

e Proposed: Our proposed learning protocols.

It is worth noting the first five solutions cannot be applied
to the asynchronous mode directly. For fair comparisons,
we modify their update rules as Eq. 3 to follow our learn-
ing protocol for asynchronous learning. For each algorithm,
we measure the testing accuracy of each agent’s model at
every iteration during the training, and report the average
accuracy.

B. Effectiveness of TOP-DP

We evaluate and compare the performance of those DP-SGD
algorithms under different settings in both synchronous and
asynchronous modes.

1) Epoch v.s. Accuracy: Fig. 3 illustrates the trend of
average testing accuracy in the training process with different
o values. First, we observe that our proposed algorithm out-
performs all baselines, and is closer to the No Noise case, for
different o values and modes. Such advantage is more obvious
with a smaller a, as the reduced noise is larger. Second,
Lil8 + MA has higher performance than Lil8 because of the
usage of MA. With the new DP technique, Optimal outper-
forms UDP and Lil8 + MA in most settings. Different from
our solution, the usability of the models from all baselines
significantly decreases as a decreases. This is caused by the
increase of the noise of the selected estimates. Third, the model
training in synchronous mode converges slightly faster than the
one in the asynchronous mode, since each agent can contribute
to the model training to accelerate the process.

2) Privacy Budget v.s. Accuracy: We consider the impact
of privacy budget on the model accuracy, as shown in Fig. 4.
We can observe our solution can beat the other DP solutions
for different privacy budgets. Besides, when the privacy budget
decreases, the model usability decreases, as more noise is
required to inject to the estimates. Meanwhile, the advantage
of our solution also increases, as the amount of reduced noise
increases as well. This indicates that our algorithm is more
effective when a small privacy budget is needed.
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C. Impact of System Configurations

1) Connection Rate: We set the connection rate of the
decentralized network as 0.2 in the previous experiments.
Our proposed algorithm is effective under other connection
rates as well. To validate this, we measure and compare
the performance of different DP-SGD algorithms with the
connection rates of 0.1 and 0.4. Without loss of generality,
we consider the synchronous mode and set a as 0.25. Figure 5
shows the average accuracy of the agents as the training
epoch increases. We observe that the performance of each
algorithm does not change with different connection rates.
The underlying reason may be that although the number of
an agent’s neighbors is changed with the connection rate,
the agent still selects one estimate for updates at each iteration.
Then the training result will not be changed either. As such,
our proposed solution can exhibit advantages over prior works
under various network connection rates.

2) Number of Agents: We now investigate the impact of
the number of agents on the performance of decentralized
learning systems. We conduct experiments on decentralized
systems with 40 and 50 agents in the synchronous mode. The
experimental results are shown in Figure 6. We observe that
the accuracy of the trained models only slightly increases with
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Fig. 6. The average accuracy of the agents with different numbers of agents
under the synchronous setting.
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Fig. 7. The average accuracy of the agents with different parameters of the
noise decay strategy under the synchronous setting.

more agents involved, indicating that the number of agents has
a small positive impact on the decentralized systems.

3) Parameters of the Noise Decay Strategy: We evaluate the
impact of the parameters of the noise decay strategy on our
Top-DP, i.e., y and period. In our experiments, y is set from
0.7 to 1.0 while period varies from 8 to 12. Figure 7 illustrates
the average performance of the trained models under different
parameter settings. Two observations are drawn. First, both y
and period have only limited impact on the performance of
the decentralized learning systems, especially in Figure 7 (a).
Second, as period increases, the average accuracy of the
trained models slightly decreases.

4) Network Topology: We also evaluate our DP-SGD learn-
ing protocols on other typical network structures, such as the
ring, star, tree, and mesh topologies. Figure 8 illustrates the
comparisons of decentralized network structures with different
connections. In each network topology, we set the number
of total agents as 30. Figure 9 shows the learning curves
of different DP-SGD algorithms for both synchronous and
asynchronous modes.

We observe that in the synchronous mode, the aver-
age accuracy scores of our learning protocols are signif-
icantly higher than other baselines, which is attributed to
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Fig. 8. Four types of decentralized topologies. (a) Ring topology; (b) Star topology with two star agents; (c) Tree topology; (d) Partial mesh topology.
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Fig. 10. The effectiveness of topology-aware noise reduction with different
o values under synchronous settings.

our proposed topology-aware strategy. The performance gap
among Lil8 + MA, UDP, and Optimal is small due to the
limitation of the corresponding DP optimizations. In the asyn-
chronous mode, our protocol is slightly better than others,
although the advantage is not as big as the synchronous
mode.

D. Effectiveness of Each Strategy

Our DP-SGD learning protocols are composed of two strate-
gies: topology-aware noise reduction (TOP) and noise-aware
noise decay (ND). We evaluate the integration of these two
strategies in the above experiments. In this section, we mea-
sure the effectiveness of TOP separately. Figures 10 and 11
illustrate the performance comparison between TOP, the inte-
gration TOP + ND, and other DP-SGD algorithms.

We observe that in the synchronous mode, TOP almost has
the same performance as TOP + ND at the first 20 epochs,
as the reduced noise from ND strategy is quite small at the
first two reduction steps (the noise is not reduced at the first
reduction step). With more epochs, TOP + ND is slightly
better than TOP only, caused by the effectiveness of ND. In the

Fig. 11. The effectiveness of topology-aware noise reduction with different
o values under asynchronous settings.

asynchronous mode, TOP almost has the same performance as
Top + ND especially when a equals 0.25.

E. Results of a More Complicated Dataset

We also evaluate TOP-DP on a more complicated training
task over CIFARIO dataset. The model to be trained is a
Convolutional Neural Network, consisting of two max—pooling
layers and three fully connected layers. The system settings
and configurations are the same as the ones on MNIST. We set
o and the connection rate as 0.25 and 0.2.

Figure 12 illustrates the experimental results in the syn-
chronous and asynchronous modes. We observe that our
solution (Proposed) outperforms prior DP-SGD algorithms and
approaches the baseline (No Noise) as the training epoch
increases in both of the two modes. The other four baselines
even do not converge in the presence of Gaussian noise.
The reason is that each parameter in the model needs to be
appended with random noise to satisfy DP requirement. When
the model becomes more complicated with more parameters,
the overall divergence between the original model and the
DP-protected model becomes larger, making it hard to con-
verge. This scenario will never happen in our solution.
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Fig. 12. The average accuracy of the agents in different modes on CIFAR10.

Our ToP-DP is designed to be general for various learning
tasks and datasets. In terms of the computational complexity,
the protocols require each agent to calculate the scale of
noise that is added to its estimates at each iteration. The
cost of calculating the noise scale is a constant, while the
calculation of adding noise to estimates is proportional to
the number of parameters, which is negligible compared to
the training overhead. So we believe our solution is practical
and scalable to higher-dimensional datasets and more complex
neural networks. As future work, we will evaluate TOP-DP on
larger-scale decentralized learning tasks.

VIII. CONCLUSION

In this paper, we propose TOP-DP, a novel DP-based
method to preserve the privacy of decentralized learning
systems. The topology-aware technique leverages the network
topology to reduce the noise scale and improve model usabil-
ity while still satisfying the DP requirement. We apply the
time-aware noise decay technique to the decentralized systems
to further optimize the model performance. We design learning
protocols, which enables the topology-aware technique and
adapts to both the synchronous and asynchronous learning
modes. To the best of our knowledge, this is the first study
to utilize network topology for DP optimization, and deploy
DP protection to asynchronous decentralized systems. For-
mal analysis and empirical evaluations indicate that TOP-DP
can guarantee the privacy requirement, and achieve better
trade-offs between privacy and usability under different system
configurations.
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